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Abstract:  25 

For carbon capture and storage to successfully contribute to climate mitigation efforts, the 26 

captured and stored CO2 must be securely isolated from the atmosphere and oceans for a 27 

minimum of 10,000 years. As it is not possible to undertake experiments over such timescales, 28 

here we investigate natural occurrences of CO2, trapped for 104 -106 yr to understand the 29 

geologic controls on long term storage performance.  We present the most comprehensive 30 

natural CO2 reservoir dataset compiled to date, containing 76 naturally occurring natural CO2 31 

stores, located in a range of geological environments around the world. We use this dataset 32 

to perform a critical analysis of the controls on long-term CO2 retention in the subsurface. We 33 

find no evidence of measureable CO2 migration at 66 sites and hence use these sites as 34 

examples of secure CO2 retention over geological timescales. We find unequivocal evidence 35 

of CO2 migration to the Earth’s surface at only 6 sites, with inconclusive evidence of migration 36 

at 4 reservoirs. Our analysis shows that successful CO2 retention is controlled by: thick and 37 

multiple caprocks, reservoir depths of >1200m, and high density CO2. Where CO2 has 38 

migrated to surface, the pathways by which it has done so are focused along faults, illustrating 39 

that CO2 migration via faults is the biggest risk to secure storage. However, we also find that 40 

many naturally occurring CO2 reservoirs are fault bound illustrating that faults can also 41 

securely retain CO2 over geological timescales. Hence, we conclude that the sealing ability of 42 

fault or damage zones to CO2 must be fully characterised during the appraisal process to fully 43 

assess the risk of CO2 migration they pose. We propose new engineered storage site selection 44 

criteria informed directly from on our observations from naturally occurring CO2 reservoirs. 45 

These criteria are similar to, but more prescriptive than, existing best-practise guidance for 46 

selecting sites for engineered CO2 storage and we believe that if adopted will increase CO2 47 

storage security in engineered CO2 stores. 48 

 49 

 50 

 51 
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 55 

Highlights: 56 

- The most comprehensive analysis of naturally occurring CO2 reservoirs compiled to 57 

date 58 

- CO2 retention is controlled by CO2 density & state, reservoir depth, and caprock 59 

integrity 60 

- Migration to the surface occurs along faults and fracture zones 61 

- New storage site selection criteria are proposed, based on secure natural reservoirs 62 

  63 
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1. Introduction 64 

For successful widespread implementation of carbon capture and storage the long-term 65 

security of storage sites is vital. Migration of CO2 to the surface would render storage 66 

ineffective, pose a human health risk, and negatively impact the public perception of CCS as 67 

a climate mitigation technology (Shackley et al., 2009; Roberts et al., 2011; L’Orange Segio 68 

et al., 2014). Indeed, fear of surface migration is a main driver of negative public opinion 69 

towards CCS and has led to the delay of storage project development and has driven storage 70 

operations offshore (Mabon et al, 2014). It is thus critical that the CO2 storage security of 71 

potential sites is carefully assessed. Based on initial studies of natural analogues, experiences 72 

with pilot injection projects and the first industrial scale CO2 storage sites, guidelines for 73 

minimizing risks associated with CO2 storage and maximizing storage security have been 74 

developed over the last decade (Chadwick et al., 2008; IEA GHG, 2009; NETL, 2010; Det 75 

Norkse Veritas, 2010; Delprat-Jannaud et al., 2013). Key selection criteria include: depth, CO2 76 

state, and the presence of (open) fractures or faults. It is recommended that CO2 is stored at 77 

depths which are greater than 800 m and most studies recommend storage of CO2 in a 78 

supercritical state with reservoir temperatures in excess of 35 °C and reservoir pressure of 79 

more than 7.5 MPa (IEA GHG, 2009; CASSEM, 2011; Delprat-Jennaud et al., 2013) or over 80 

1000 m (Chadwick et al., 2008). Sealing caprocks should be “laterally extensive” (NETL, 2010) 81 

with “minimal faulting” (CASSEM, 2011), effectively ruling out active faults. Additionally, the 82 

capillary entry pressure of caprocks should be greater than the pressure increase induced in 83 

the reservoir during CO2 injection (Chadwick et al., 2008). 84 

CO2 derived from natural earth processes such as volcanism, mantle degassing, carbonate 85 

rock metamorphism or the degradation of organic matter (Wycherley et al., 1999) can naturally 86 

accumulate in subsurface rock formations and remain trapped for geological time periods. For 87 

example, known reservoirs in the US contain at least 310 Gt CO2 (NETL, 2014), typically at 88 

concentrations of 85 to 99 % CO2 (by volume), with the majority securely storing CO2 for an 89 

excess of a million years (Sathaye et al, 2014) and in one case for 42-70 Ma (Gilfillan et al, 90 
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2008). These natural CO2 stores can improve the understanding of the long-term behaviour 91 

and retention of CO2 in the subsurface (Baines and Worden, 2004) and provide long-duration 92 

evidence of the interaction of CO2 with the reservoir and caprock, which are difficult to 93 

reproduce in laboratory studies. In addition, natural sites can offer geological evidence of 94 

ancient or current migration of CO2 out of the primary reservoir, and sometimes to the surface. 95 

Study of these sites provides insights into the mechanisms by which engineered sites may fail 96 

and thus inform the selection and management of secure CO2 storage sites.  97 

Hence, naturally occurring CO2 reservoirs have been examined at a regional (tens of km) scale 98 

as analogues for saline aquifer carbon storage sites (Pearce et al, 1996; Stevens et al, 2001; 99 

Pearce et al, 2004; Dai et al, 2005; Holloway et al, 2005). These studies have concluded that 100 

CO2 retention is extremely secure, and any upwards migration of CO2 occurs mainly along 101 

fractures and faults that are conductive to fluid flow, and thus CO2 migration is spatially 102 

restricted to fault zones (Frery et al., 2015). Fault zones, consisting of a fault core which 103 

accommodates most of the displacement and a surrounding damage zone which can be highly 104 

fractured, have long been recognised as fluid migration pathways in the subsurface and 105 

considerable research has been completed on the hydraulic properties, particularly on the 106 

predictability of the sealing properties of fault zones (Faulkner et al, 2010). However, to date 107 

only a few works have focused specifically on CO2 retention in fault zones as the majority of 108 

published studies are focused on the sealing of faults to hydrocarbons (Yielding et al, 1997; 109 

Bretan et al, 2011).  110 

Here, we build on this previous work by presenting the most comprehensive analysis of 111 

previously studied naturally occurring worldwide CO2 reservoirs compiled to date, that are 112 

directly analogous to engineered CO2 stores. We critically examine the characteristics of these 113 

reservoir systems to determine the geological criteria required for long-term CO2 trapping in 114 

nature. These criteria are compared to site selection standards currently used to evaluate 115 

engineered storage sites, and we recommend improvements to these standards based on our 116 

findings. 117 
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 118 

2. Methods 119 

We compiled a global dataset of 76 naturally occurring CO2 reservoirs (Fig. 1; SI Tab. 1) 120 

extending a previous preliminary compilation of 49 sites (Miocic et al., 2013). All of the 121 

reservoirs have been investigated to some extent by previous published studies, and 122 

information about their geological characteristics is available (see SI Tab. 1 for specific 123 

details). The studied reservoirs have held CO2 in high concentrations for geological time-124 

scales within a clearly defined trap (structural, lithologic, or a combination of both) and can 125 

thus be viewed as analogues to engineered CO2 storage sites. Reservoirs where no geological 126 

trap has been proven or that hold low (<20 %) CO2 content have been disregarded. Naturally 127 

occurring CO2 seeps which are not linked to a known reservoir structure containing free phase 128 

CO2 at depth were also not included.  129 

Data from national and local data repositories were retrieved and integrated to produce a 130 

comprehensive dataset of location, depth, temperature, pressure, CO2 content, lithology of 131 

reservoir and sealing rocks for all reservoirs. The dataset also includes trapping structures, 132 

thicknesses of reservoir and CO2 origin, and percentage composition where this information 133 

is available in well logs and published studies. Where in situ pressure data was not available 134 

(28 sites) we assume a hydrostatic pressure gradient of 10.0 kPa/m. Where temperature data 135 

was not available (9 sites), it is reconstructed using published regional and local temperature 136 

gradients (within 25 km of the reservoir extent). Where calculated information is used this is 137 

indicated (SI Tab. 1). These data are used to calculate CO2 state and density for each case 138 

study using the equation of state developed by Huang et al. (1985) which is an extended 139 

Benedict-Webb-Rubin equation of state. In the following “dense phase CO2” refers to 140 

supercritical and liquid state, i.e. excluding gaseous CO2.  141 
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 142 

Fig. 1: Map showing the locations of naturally occurring CO2 reservoirs included in this study. 143 
Note that the majority of the insecure reservoirs are found in tectonically active regions, such 144 
as the Apennine thrust belt in Italy or the Florina Basin in Greece. 145 

Secure and insecure sites and reservoirs were determined using the following criteria to 146 

identify migration of CO2 out of the reservoir: CO2 occurrence at the surface within a 10 km 147 

radius of subsurface extent of the reservoir as determined from exploration data. This includes 148 

CO2 rich springs, mofettes and diffusive degassing which indicates a present day migration of 149 

CO2 to the surface. The precipitation of carbonate from springs to form travertine deposits at 150 

the surface may indicate the migration of dissolved CO2. Thus, if travertine deposits are 151 

mapped within a 10 km radius of the known subsurface reservoir extent, we consider that 152 

these indicate CO2 leakage, even if the travertine is historic and there is no evidence for 153 

current CO2 migration. We use the 10 km radius based on an extensive study of natural CO2 154 

seeps in Italy by Roberts (2012) which conclusively found that surface seeps linked to deep 155 

free phase CO2 reservoirs occurred with a 10 km radius of subsurface boreholes which 156 

encountered free phase CO2. 157 

In regions where natural CO2 degassing occurs due to modern volcanic activity there has to 158 

be a clear connection from depth to the surface, in order for the reservoir to be classified as 159 

insecure. For example, a fault or geochemical evidence which directly links the proven 160 
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subsurface CO2 reservoir to the surface occurrence of CO2 degassing. Reservoirs were 161 

classified as secure if no CO2 is encountered above the primary seal and no indications for 162 

CO2 seeps exist at the surface. Vertically stacked aquifers containing a proportion of CO2 were 163 

regarded as secure reservoirs if, based on geological cross sections and well logs, it could be 164 

shown that the shallowest CO2 holding aquifer was not in hydro-geological contact with the 165 

surface. 166 

Six of the 76 reservoirs show clear evidence of CO2 migration to the surface while 66 167 

reservoirs (86 %) are classified as secure, and thus successfully trap CO2. Four reservoirs 168 

exhibit inconclusive evidence for either migration or retention and could thus not be 169 

conclusively defined as secure or insecure. Montmiral in SE France, which is used as a secure 170 

example by Pearce et al. (2004), has many CO2 rich springs within a 10 km radius of the field 171 

which provide evidence for CO2 migration to the surface. However, it is currently unclear if the 172 

CO2 originates from the reservoir or is sourced from elsewhere. The Monte Taburno reservoir 173 

in central Italy is located just 1.6 km from a thermal spring with a small CO2 content and since 174 

there is no further geochemical information about the spring or the CO2 reservoir, the 175 

relationship between the two is unclear (Roberts, 2012). The Paritutu reservoir offshore New 176 

Plymouth, NZ, is shallow and there is a vent at the surface degassing CO2 (Lyon et al, 1996). 177 

However, the distance between the reservoir penetrating well and the vent is unknown, as are 178 

the possible CO2 migration pathways. For the reservoir of Farnham Dome, US, Kampman et 179 

al. (2012) reported that “surface calcite debris fields attest to leakage in the recent geological 180 

past” but did not identify a direct link between the reservoir and the debris fields. This is in 181 

contrast to previous reports where the reservoir was classified as secure (Morgan and 182 

Chidsey, 1991; Allis et al., 2001). 183 

Thus, for the following analyses, we present few examples of breached reservoirs. This is to 184 

be expected as we focus on reservoirs which have been charged with CO2 over geological 185 

time and it is probable that structures which do not securely retain CO2 are not preserved over 186 

such timescales. Numerous previously published studies have focused on sites which are 187 
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actively degassing CO2 in the form of springs, mofettes, travertines and diffusive degassing 188 

(Gal et al., 2011; Schütze et al., 2012; Burnside et al, 2013). Significantly, in the vast majority 189 

of areas of active CO2 degassing subsurface CO2 reservoirs are rare. For example in Italy 190 

there are 308 dominantly CO2 seeps degassing at the surface (Roberts et al., 2015), yet only 191 

seven subsurface CO2 reservoirs have been identified. This is also the case on the West coast 192 

of the USA, namely in Washington, Oregon and California where some 92 CO2 rich springs 193 

have been recorded, with only four subsurface wells encountering free-phase CO2 in California 194 

and no natural CO2 accumulations having been discovered in any of the three states (Irwin 195 

and Barnes, 1982). This is despite extensive CO2 exploration efforts driven by the desire for 196 

CO2 for enhanced oil recovery (Irwin and Barnes, 1982). Hence, whilst it is impossible be 197 

certain that our secure stores are truly 100% secure, with absolutely no diffuse CO2 leakage 198 

occurring, the mere fact that they still retain large amounts of CO2 without recorded CO2 199 

degassing or detrimental environmental effects nearby makes them suitable analogues for 200 

engineered CO2 stores. Based on the assumption that these reservoirs exhibit the desirable 201 

characteristics required for long term CO2 retention, as evidenced by their current existence, 202 

we believe that the conclusions we draw from studying these reservoirs in this work are valid.  203 

 204 

3. Properties of naturally occurring CO2 reservoirs 205 

Reservoir fluid composition: The CO2 contained in the studied reservoirs is mainly sourced 206 

from mantle degassing and igneous processes (32 of the 45 reservoirs for which stable carbon 207 

isotope and noble gas geochemical data is available; SI Tab. 1), with the remainder being 208 

sourced from the thermal breakdown of marine carbonates and/or organic matter. The CO2 209 

saturations (vol-%) range from 20 % to >99 % with 41 reservoirs having minimum 210 

concentrations which are 90 % or higher. Other frequently trapped gases include, in order of 211 

decreasing abundance; methane, nitrogen, helium and hydrogen sulphide. There are no 212 

notable differences between the CO2 composition or origin between secure and insecure 213 

reservoirs, with insecure reservoirs exhibiting CO2 concentrations ranging from 90 % to >99 %. 214 
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Rock type and stratigraphic column: We find no relationship between successful CO2 retention 215 

and the lithology of the reservoir or caprock in reservoirs for which this geological information 216 

is available (64 of 76 reservoirs). Naturally occurring CO2 reservoir rocks are commonly 217 

siliciclastic (37 reservoirs) or carbonate (24 reservoirs), or interlayered (11 reservoirs). Silicate 218 

mudstones and shales (43 reservoirs) are the dominant caprock lithology, with fewer cases of 219 

evaporite-bearing caprocks (12 reservoirs), or interlayered carbonate and siliciclastic seals (3 220 

reservoirs). Thickness of the primary seal appears to influence the security of CO2 storage. 221 

Caprocks directly above sealing reservoirs are on average nearly twice as thick as caprocks 222 

above insecure reservoirs, albeit based on a small dataset for insecure reservoirs for the 223 

reasons previously discussed (SI Fig. 1). Furthermore, stacked reservoirs enhance storage 224 

security, since at least a third (21 out of 66) of the secure reservoirs consist of layered 225 

compartments with up to five different reservoir horizons each with corresponding multiple 226 

caprocks. In contrast, only one of the insecure reservoirs has layered compartments (No. 2 in 227 

SI Tab. 1). 228 
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 229 

Fig. 2 (A) Depth versus pressure plot of naturally occurring CO2 reservoirs with in situ pressure 230 
data. Note that insecure and inconclusive reservoirs are mainly shallow (<1200 m) or within 231 
the fracture gradient regime. Fracture gradients tend to range from 60-90 % of lithostatic stress 232 
and depend on the sedimentary basin and tectonic regime. The deep, insecure reservoir with 233 
reservoir pressure in the fracture gradient regime is Pieve Santo Stefano, Italy (No. 36, SI Tab. 234 
1). (B) Depth versus temperature plot of naturally occurring CO2 reservoirs, based on in situ 235 
data. Note that a high geothermal gradient is associated with migration of CO2 in shallow 236 
reservoirs.  237 

Reservoir depth and fluid pressure: Our dataset shows that naturally occurring CO2 reservoirs 238 

around the globe exhibit a range of depths below the ground surface, from shallow (180 m, 239 

No. 23 in SI Tab. 1.) to very deep (7250 m, No. 12 in SI Tab. 1). Significantly, insecure 240 



12 
 

reservoirs are, with one exception, located at depths shallower than 1200 m below surface 241 

(Figs. 2A & 3). Reservoir fluid pressures range from 0.5 MPa to >60 MPa and Fig. 2A shows 242 

that successful CO2 trapping may be controlled to some extent by reservoir fluid pressure. 243 

Shallow CO2 reservoirs (<1200 m depth below surface) that are sealing are hydrostatically 244 

pressured, whereas insecure reservoirs at these depths exhibit pressures both above and 245 

below hydrostatic. Some sealing reservoirs that are deeper than 1200 m below surface show 246 

excess pressures 40-50 % above hydrostatic. In contrast, insecure and inconclusively 247 

insecure reservoirs at these depths all exhibit pressures significantly greater than hydrostatic 248 

despite ongoing CO2 migration, and thus being connected to the Earth’s surface (Fig. 3). 249 

These pressures are within 60-90 % of lithostatic pressure, which is the typical range for 250 

fracture pressure of caprocks in the North Sea (Moss et al., 2003), and in other sedimentary 251 

basins where the rock fractures (Hillis, 2003). Indeed, the only insecure reservoir which is at 252 

a depth of over 1,200 m exhibits reservoir fluid pressures within the fracture envelope (Fig. 253 

2A).  254 

CO2 fluid properties: Reservoir temperatures range from 20 to 200°C (Fig. 2B), with insecure 255 

reservoirs having either “normal” (30°C per km) or very high geothermal gradients. At 256 

pressures and temperatures below the critical point (7.38 MPa, 31.1 ºC) CO2 will be gaseous 257 

and exhibit densities of <470 kg/m3 while at conditions above the critical point it will be 258 

supercritical and shows a wide range of densities (<200-1000 kg/m3). Calculated CO2 259 

densities based on reservoir pressures and temperatures range from 15 to 919 kg/m3 (Fig. 4). 260 

CO2 is therefore securely contained in subsurface reservoirs in gas (8 out of 76 reservoirs) 261 

and supercritical CO2 phases; not as a liquid. It also exists as a dissolved phase, which has 262 

been shown to be a significant CO2 trapping mechanism in natural CO2 reservoirs by several 263 

studies (Gilfillan et al., 2009, Sathaye et al., 2014). Insecure reservoirs typically contain CO2 264 

in a gaseous state (with an average density of 110 kg/m3) (Fig. 4B). Reservoirs containing 265 

CO2 in a gaseous state are more prone to migration than reservoirs containing supercritical 266 

CO2 (Fig. 4A): 27 % (3 out of 11) of reservoirs with gaseous CO2 showing evidence for CO2 267 
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migration, while only ~5 % (3 out of 65) of deeper reservoirs containing CO2 as a supercritical 268 

phase exhibit CO2 evidence for migration to the surface.  269 

 270 
 271 
Figure 3: Left: Boxplot of reservoir depth of naturally occurring CO2 reservoirs against 272 
inconclusive (inconc.), insecure and secure reservoirs. Note that insecure reservoirs are 273 
mainly found in shallow depths (median of 1101 m) while secure reservoirs are generally 274 
deeper (2207 m).  Right: Boxplot of reservoir pressure/hydrostatic gradient of naturally 275 
occurring CO2 reservoirs against inconclusive (inconc.), insecure and secure reservoirs. Note 276 
that inconclusive and insecure reservoirs tend to be overpressured (reservoir 277 
pressure/hydrostatic gradient > 1) while secure reservoirs show a wide range of pressures. 278 
The box plot shows the median (black horizontal line) and the interquartile range. The whiskers 279 
(black vertical line) depicts the 1.5 inter-quartile range. 280 

 281 

Geological structure: Where data are available for the 21 multi-layered CO2 reservoirs, we 282 

observe CO2 is migrating between these stacked formations via faults or fractures (e.g. 283 

Huangquiao CO2 field, China). For 5 of the 6 insecure CO2 reservoirs, the migrating CO2 284 

emerges at the surface as CO2 rich springs and travertine deposits within 5 km to the surface 285 

traces of faults, showing the influence of faults on crustal fluid flow, in the near surface at least. 286 

However, over half of the secure reservoirs are fault bound structural traps, and several more 287 

are located in structurally complex and faulted provinces, indicating that faults more often 288 
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inhibit CO2 migration rather than permit it. Importantly, the majority of the insecure reservoirs 289 

are found in tectonically active regions, such as the Apennine mountain belt in Italy or the 290 

Florina Basin in Greece (Fig. 1).  291 

 292 

Fig. 4: CO2 state diagrams of the studied naturally occurring CO2 reservoirs. Dashed lines 293 
indicate critical pressure (7.38 MPa) and temperature (31°C), the thick black line represents 294 
the vapour curve. (A) Pressure versus temperature plot highlights that reservoirs holding 295 
gaseous CO2 are more likely to be insecure than reservoirs holding supercritical CO2. (B) 296 
Pressure versus CO2 density plot illustrating that the majority of insecure reservoirs hold CO2 297 
with a low (<250 kg/m3) density.  298 

4. Controls of CO2 retention in naturally occurring reservoirs 299 

From our study of naturally occurring CO2 reservoirs, we have observed that insecure CO2 300 

reservoirs tend to be shallow (<1200 m depth, Fig. 3), contain gaseous or supercritical CO2 301 
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with a low (<200 kg/m3) density (Fig. 5), exhibit reservoir pressures which are significantly 302 

above hydrostatic (Fig. 3), and that migration occurs along faults. Sealing reservoirs tend to 303 

be close to hydrostatic pressure, contain supercritical CO2 with a density of >250 kg/m3 and 304 

present faults are vertically sealing. Three key mechanisms are believed to control whether 305 

CO2 is securely retained in the subsurface or migrates out of the reservoir: diffusion through 306 

caprocks, capillary flow through caprocks and fault rocks, and flow of CO2 through fractures 307 

and faults (Gilfillan et al., 2009; Song and Zhang, 2013). The latter could be via existing 308 

structural elements, or induced by fracturing due to elevated fluid pressures (Rutqvist and 309 

Tsang, 2002).  310 

 311 

Figure 5: Box plot of CO2 density in naturally occurring CO2 reservoirs against inconclusive 312 
(inconc.), insecure and secure reservoirs. Note that insecure reservoirs hold low density CO2 313 
(231 kg/m3) while secure reservoirs on average have a higher density (546 kg/m3). The box 314 
plot shows the median (black horizontal line) and the interquartile range. The whiskers (black 315 
vertical line) depicts the 1.5 inter-quartile range. 316 
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Experimental investigations of CO2 diffusion through caprocks have shown that loss of CO2 317 

from reservoirs by this process is negligible at storage conditions (Chiquet et al., 2007; Angeli 318 

et al., 2009; Wollenweber et al., 2010). Migration of CO2 by capillary flow will occur when the 319 

pressure in the reservoir exceeds that of the capillary entry pressure of pores in the caprock 320 

(Finkbeiner et al., 2001). The pores in low permeability rocks are so small that they require 321 

very high capillary entry pressure for flow to occur. Such high pressures could be achieved by 322 

reservoir fluid overpressure, or by very high buoyancy pressure. The density contrast between 323 

CO2 and brine in the reservoir decreases with increasing depth because density and phase 324 

conditions of CO2 are dependent on pressure and temperature. For this reason, CO2 buoyancy 325 

pressure exerted on the caprock is more likely to be greater in shallow accumulations (<1000 326 

m depth) and this more likely to approach or overcome capillary entry pressure. However, the 327 

CO2 buoyancy will also be affected by the geothermal gradient and the column height of CO2 328 

accumulation, as controlled by geological setting and structure. Despite this, migration at the 329 

shallow reservoirs in this study is associated with fractures and fault damage zones, illustrating 330 

that capillary flow through unfractured caprock is not the primary CO2 migration mechanism 331 

from these natural reservoirs. Roberts at al. (2015) studied migration from breached CO2 332 

reservoirs in Italy and were able to show that the rate of surface seepage greatly exceed the 333 

rates physical possible from CO2 migration by capillary flow or diffusion through intact 334 

mudrocks showing that fracture-related rock permeabilities are necessary to permit such flow 335 

rates. For these reasons we can also identify that free-phase CO2 (as gas or supercritical 336 

phase) will be more prone to vertical migration due to gravitational forces than brine with 337 

dissolved CO2, which tends to be heavier than CO2 free pore-fluids. At only one of the 76 338 

reservoirs included in this study, the St. Johns Dome reservoir in Arizona (No. 2, SI Tab. 1), a 339 

connection between migrating dissolved phase CO2 and a subsurface reservoir could be 340 

documented (Gilfillan et al., 2011; Keating et al., 2014). This means that solubility trapping is 341 

also a critical control in secure CO2 retention as previously suggested (Gilfillan et al., 2009).  342 
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Many of the leaking reservoirs are overpressured with respect to the hydrostatic pressure 343 

gradient, suggesting that mechanisms of fluid escape could be enhanced by elevated 344 

pressures. Hydraulic fracturing and/or frictional failure along optimally oriented pre-existing 345 

fractures of the caprock can occur if pore pressure in the reservoir exceeds both the pore 346 

pressure in the caprock and the tensile strength of the caprock - including any differences in 347 

confining stress due to different elastic properties (Finkbeiner et al, 2001; McDermott et al, 348 

2013). Both mechanisms can lead to migration of CO2 from the reservoir through the caprock 349 

by flow in the induced fractures (Shukla et al., 2010). Hydraulic fracturing only occurs when 350 

the fluid pressure exceeds the least principal stress of the caprock (Hillis, 2003). The pore 351 

pressure required to form dilatant joints is less than that required to overcome the capillary 352 

entry pressure of a mudstone caprock (Busch et al., 2010), and so caprocks are more likely 353 

to fail before CO2 can overcome capillary entry pressures.  354 

There is evidence for CO2 migration through faulting related fractures at several insecure 355 

reservoirs in this study. CO2 seeps are frequently located close to faults, some of which, but 356 

not all, having been recently seismically active (Irwin and Barnes, 1980; Shipton et al., 2004). 357 

Thus fractures in the fault damage zone appear to be important fluid pathways for CO2 358 

migration to surface. The role of fracture networks/corridors for CO2 rich fluid migration in 359 

natural systems (e.g. on the Colorado Plateau, USA; Latera Caldera, Italy) has been studied 360 

and highlighted by several authors (Faulkner et al., 2010; Annunziatellis et al., 2008; Shipton 361 

et al., 2005). Dockrill and Shipton (2010) found that CO2 fluid flow at the northern end of the 362 

Paradox Basin (Utah) is localised and focused within the damage zone of faults. Further, they 363 

found evidence of several episodes of fluid flow, illustrating that such pathways have the 364 

potential to support long-term fluid migration from depth to the surface. Fieldwork in the same 365 

area enabled Ogata et al. (2014) to reinforce that extensive fracture networks/fracture 366 

corridors are the main pathways for (CO2 rich) fluid migration from depth to the surface. They 367 

were able to classify three fracture corridor types that bypass local sealing units: (1) fractures 368 

related to the damage zone of faults; (2) fractures related to the tip of faults; and (3) fractures 369 
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related to the crest of folds. This is also the case at St. Johns Dome, Arizona, where ongoing 370 

migration of dissolved phase CO2 is concentrated along fracture networks at the fault tip of, 371 

and along fracture zones related to a large fault in the region (Gilfillan et al., 2011, Keating et 372 

al., 2014).  This aligns with the conclusions of from Roberts (2012) studying the geological 373 

controls on natural CO2 systems in Italy. These three types correspond with the different 374 

structural settings at which CO2 migration is observed at the insecure natural analogues of 375 

this study and may thus be useful to predict potential fluid migration pathways at CO2 storage 376 

sites.  377 

The introduction of CO2 into the subsurface reservoirs may have increased the reservoir fluid 378 

pressure and led to fracture opening, reactivation or even to hydraulic fracturing of the 379 

caprocks, which could explain our observation that several insecure reservoirs are currently 380 

overpressured, despite ongoing CO2 migration from them. This is perhaps indicative of 381 

ongoing CO2 charge of the reservoirs, or perhaps the slow rate of pressure leak-off from CO2 382 

migration. While buoyancy may be the driving force of CO2 migration at some reservoirs, 383 

pressure gradients in excess of hydrostatic can also cause upwards flow, even in the absence 384 

of buoyancy forces. Thus the pressure difference between reservoir and caprock is important: 385 

If the pressure within the caprock is higher than the reservoir pressure, no fluid migration from 386 

the reservoir into the overlying caprock will occur as the caprock will act as a hydraulic barrier 387 

(Reveillere & Rohmer, 2011).  388 

The critical need to understand fracture networks and the potential of fracture reactivation 389 

and/or hydromechanically fracturing of caprock due to the injection of CO2 has been 390 

highlighted by experiences at existing industrial CO2 storage projects. At the Sleipner storage 391 

site, located in the Norwegian sector of the North Sea, where more than 15 Mt of CO2 has 392 

been injected into a saline aquifer at a depth of 800-1000 m since 1996, fractures in thin shale 393 

layers seem to control the size and extent of the CO2 plume (Cavanagh and Haszeldine, 394 

2014). At the storage site of In Salah, Algeria, where between 2004 and 2011 around 4 million 395 

tons of CO2 were injected into an anticlinal structure at ~1,800 m depth, high injection 396 
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pressures resulted in hydraulic fracturing of the reservoir and lower caprock units and 397 

potentially reactivated pre-existing fracture networks and small scale faults (Rutqvist et al., 398 

2010; White et al., 2014). Experiences from both Sleipner and In Salah thus coincide with our 399 

observations from naturally occurring CO2 reservoirs that flow of CO2 through fractures and 400 

fault damage zone related fracture networks is the controlling mechanism for migration of CO2 401 

within the subsurface. The two other modes of CO2 migration, diffusion and capillary flow 402 

through unfractured caprock, have not been found to play a significant role in leakage to the 403 

surface from naturally occurring CO2 reservoirs. 404 

5. Implications for storage site selection  405 

Our analysis of a global dataset of naturally occurring CO2 reservoirs has highlighted the 406 

importance of fault related fracture networks in causing the migration of CO2 from subsurface 407 

reservoirs to the surface. We also identify that shallow reservoirs with low density (<250 kg/m3) 408 

gaseous or supercritical CO2 are less likely to securely retain CO2 over the timescales required 409 

for geological storage and we propose that this could be in part controlled by CO2 buoyancy. 410 

Carbon stores are more likely to be secure if they are selected to have thick (>150 m) 411 

caprocks.  412 

Table 1: Table comparing site selection criteria for geological CO2 storage from previous 413 
recommendations and our study results. 414 

Criteria CASSEM (2011) 
Chadwick 
(2008) IEA (2009) This Study 

Fluid Properties 

CO2 State - Dense - Supercritical or liquid 

CO2 density 
(kg/m3) - - - >250 

Reservoir 

Structure Minimal faulting, with 
trapping structure 

Small or no 
faults 

Low faulting frequency, multi layered 
system 

Vertically sealing faults, multi 
layered systems 

Depth (m) >800 <2500 >1000 <2500 >800 >1200 

Temperature - - Minimum temperature of 35 °C 
Geo-thermal gradient of max. 

30°C/km 

Pressure 
(MPa) - - >7.5 

~10kPa/m (ideally close to 
hydrostatic) 

Caprock 

Thickness (m) >100 >100 >10 >150 

Continuity - Uniform Extensive Low fracture density 

 415 
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Tab. 1 shows how the results of this study compare with the previously published guidelines 416 

for site selection to minimize the risks associated with geological storage of CO2. If existing 417 

site selection criteria were applied to the six insecure reservoirs in this study, these reservoirs 418 

would be deemed unsuitable for CO2 storage (Tab 2). This gives confidence that the current 419 

site selection recommendations for engineered storage sites are effective in selecting sites 420 

which will be able securely retain CO2 for the timescales required. However, based on our 421 

observations from naturally occurring CO2 reservoirs we have identified a number of controls 422 

on CO2 storage security that are currently not addressed sufficiently in the existing site 423 

selection criteria. We find that the density of CO2, which governs the density contrast between 424 

CO2 and reservoir fluid, has a higher impact on reservoir security than storage depth or CO2 425 

state (Fig. 5). Previous site selection criteria do not include recommendations for CO2 density, 426 

only the CO2 state. Based on our findings we recommend that CO2 should be stored in a dense 427 

phase at the pressure and temperature conditions of the proposed storage reservoir, or, at the 428 

minimum, density should be no less than 250kg/m3 so as to minimize the density contrast 429 

between the CO2 and the brine, and thus minimise the CO2 buoyancy forces acting on the 430 

reservoir seal. 431 

Table 2: Table highlighting that insecure CO2 stores would have been identified using the site 432 
selection criteria listed in Tab. 1. Bold indicates where the reservoirs would have failed the 433 
selection criteria. Three of the insecure reservoirs hold CO2 in gaseous state with low densities 434 
due to their shallow depths. Two of the insecure reservoirs are located in suitable depths and 435 
hold supercritical CO2 but exhibit low densities due to very high temperature gradients. One 436 
insecure reservoir is located at a much greater depth and retains supercritical CO2 but is 437 
significantly overpressured. 438 

Site 
St. Johns 
Dome 
(USA) 

Imperial 
(USA) 

Messo-
kampos 
(Greece) 

Latera 
Caldera 
(Italy) 

Pieve 
Santo 
Stefano 
(Italy) 

Frigento 
Field 
(Italy) 

Depth (m) 465 180 200 1000 3600 1163 

Temperature 
(ºC) 

30 118 25 200 117 123 

Pressure 
(MPa) 

6.2 2.3 0.8 - 62 11.7 

CO2 state Gaseous Gaseous Gaseous Sc Sc Sc 

CO2 density 
(kg/m3) 

184 33 15 122 830 200 

 439 
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Faults and associated fracture networks are the only migration pathways observed at naturally 440 

occurring analogues, perhaps enhanced by elevated fluid pressure. For secure engineered 441 

CO2 storage, any faults must be vertically sealing and thus preventing vertical fluid migration. 442 

This can be determined by subsurface pressure analysis, and fault seal analysis, which we 443 

strongly recommend to be part of the screening process for potential storage sites regardless 444 

of the vertical extent of the faults present. Particular attention should be paid to the in-situ 445 

stress regime in order to assess the threat of fault/fracture network reactivation during CO2 446 

injection. The potential for CO2 migration laterally across faults must also be assessed. The 447 

extent of lateral movement across faults is unclear in the natural analogues we studied here. 448 

CO2 storage in tectonically active regions should be avoided since critically stressed fracture 449 

networks are more permeable and thus CO2 can migrate along active faults from great depths 450 

to the surface. We also recommend that selection criteria increase the minimum caprock 451 

thickness to 150 m. Potential fracture networks within the caprock should be considered in 452 

order to focus leakage monitoring efforts to these areas. Multiple caprock layers have been 453 

proven to be beneficial for a secure storage site.  454 

Most of the proposed site selection criteria for secure storage sites (Tab. 1) can be applied 455 

during site scoping where only limited subsurface data is available. Reservoir depth will be 456 

known in the order of 10s of meters and basin specific temperature and pressure gradients 457 

should also be readily available. With this information an estimate of CO2 state and density at 458 

reservoir conditions is possible and unsuitable sites can be ruled out quickly. However, a fault 459 

seal analysis at suitable sites requires detailed in situ information such as stress field data, 460 

reservoir pressure, and 3D subsurface structure which will rely on the existence of well and 461 

seismic data. For site scoping arbitrary limitations on site selection criteria such as caprock 462 

thickness, reservoir depth or CO2 density, may potentially be disadvantageous as otherwise 463 

suitable storage sites could be ruled out (Hannon and Esposito, 2015). These limitations risk 464 

making site selection prescriptive when actually the process must take many formation 465 

characteristics that influence storage and sealing viability into account. However, the lack of 466 
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such subsurface data at the first screening makes good site selection criteria (Tab. 1) crucial 467 

even if they may occasionally exclude suitable storage sites.  468 

The selection of secure sites for geological carbon storage is one of the greatest challenges 469 

for a successful implementation of this climate mitigation technology. Here we have identified 470 

controls for retention and migration of CO2 in the subsurface by analysing naturally occurring 471 

CO2 reservoirs. We find that insecure natural CO2 reservoirs would not pass current storage 472 

site selection criteria, though we also present new site selection criteria based on our results. 473 

Adopting these criteria would increase confidence in geological carbon storage site selection 474 

(Tab. 1).  475 
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