
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Language to logical form with neural attention

Citation for published version:
Dong, L & Lapata, M 2016, Language to logical form with neural attention. in 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016 - Long Papers. vol. 1, Association for Computational
Linguistics (ACL), pp. 33-43, 54th Annual Meeting of the Association for Computational Linguistics, ACL
2016, Berlin, Germany, 7/08/16.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016 - Long Papers

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/82991224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/language-to-logical-form-with-neural-attention(6ba6a055-e599-4770-b035-b073a7a1c155).html


Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 33–43,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Language to Logical Form with Neural Attention

Li Dong and Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

li.dong@ed.ac.uk, mlap@inf.ed.ac.uk

Abstract

Semantic parsing aims at mapping nat-
ural language to machine interpretable
meaning representations. Traditional ap-
proaches rely on high-quality lexicons,
manually-built templates, and linguis-
tic features which are either domain-
or representation-specific. In this pa-
per we present a general method based
on an attention-enhanced encoder-decoder
model. We encode input utterances into
vector representations, and generate their
logical forms by conditioning the output
sequences or trees on the encoding vec-
tors. Experimental results on four datasets
show that our approach performs compet-
itively without using hand-engineered fea-
tures and is easy to adapt across domains
and meaning representations.

1 Introduction

Semantic parsing is the task of translating text
to a formal meaning representation such as log-
ical forms or structured queries. There has re-
cently been a surge of interest in developing ma-
chine learning methods for semantic parsing (see
the references in Section 2), due in part to the
existence of corpora containing utterances anno-
tated with formal meaning representations. Fig-
ure 1 shows an example of a question (left hand-
side) and its annotated logical form (right hand-
side), taken from JOBS (Tang and Mooney, 2001),
a well-known semantic parsing benchmark. In or-
der to predict the correct logical form for a given
utterance, most previous systems rely on prede-
fined templates and manually designed features,
which often render the parsing model domain- or
representation-specific. In this work, we aim to
use a simple yet effective method to bridge the gap
between natural language and logical form with
minimal domain knowledge.

Sequence 

Encoder

Sequence/Tree 

Decoder

LSTM

answer(J,(compa

ny(J,'microsoft'),j

ob(J),not((req_de

g(J,'bscs')))))

Attention Layer
LSTM

what microsoft jobs 

do not require a 

bscs?

Input 

Utterance

Logical 

Form

Figure 1: Input utterances and their logical forms
are encoded and decoded with neural networks.
An attention layer is used to learn soft alignments.

Encoder-decoder architectures based on recur-
rent neural networks have been successfully ap-
plied to a variety of NLP tasks ranging from syn-
tactic parsing (Vinyals et al., 2015a), to machine
translation (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014; Sutskever et al., 2014), and
image description generation (Karpathy and Fei-
Fei, 2015; Vinyals et al., 2015b). As shown in
Figure 1, we adapt the general encoder-decoder
paradigm to the semantic parsing task. Our
model learns from natural language descriptions
paired with meaning representations; it encodes
sentences and decodes logical forms using recur-
rent neural networks with long short-term memory
(LSTM) units. We present two model variants,
the first one treats semantic parsing as a vanilla
sequence transduction task, whereas our second
model is equipped with a hierarchical tree decoder
which explicitly captures the compositional struc-
ture of logical forms. We also introduce an atten-
tion mechanism (Bahdanau et al., 2015; Luong et
al., 2015b) allowing the model to learn soft align-
ments between natural language and logical forms
and present an argument identification step to han-
dle rare mentions of entities and numbers.

Evaluation results demonstrate that compared to
previous methods our model achieves similar or
better performance across datasets and meaning
representations, despite using no hand-engineered
domain- or representation-specific features.

33



2 Related Work

Our work synthesizes two strands of research,
namely semantic parsing and the encoder-decoder
architecture with neural networks.

The problem of learning semantic parsers has
received significant attention, dating back to
Woods (1973). Many approaches learn from sen-
tences paired with logical forms following vari-
ous modeling strategies. Examples include the
use of parsing models (Miller et al., 1996; Ge and
Mooney, 2005; Lu et al., 2008; Zhao and Huang,
2015), inductive logic programming (Zelle and
Mooney, 1996; Tang and Mooney, 2000; Thom-
spon and Mooney, 2003), probabilistic automata
(He and Young, 2006), string/tree-to-tree transfor-
mation rules (Kate et al., 2005), classifiers based
on string kernels (Kate and Mooney, 2006), ma-
chine translation (Wong and Mooney, 2006; Wong
and Mooney, 2007; Andreas et al., 2013), and
combinatory categorial grammar induction tech-
niques (Zettlemoyer and Collins, 2005; Zettle-
moyer and Collins, 2007; Kwiatkowski et al.,
2010; Kwiatkowski et al., 2011). Other work
learns semantic parsers without relying on logical-
from annotations, e.g., from sentences paired with
conversational logs (Artzi and Zettlemoyer, 2011),
system demonstrations (Chen and Mooney, 2011;
Goldwasser and Roth, 2011; Artzi and Zettle-
moyer, 2013), question-answer pairs (Clarke et
al., 2010; Liang et al., 2013), and distant supervi-
sion (Krishnamurthy and Mitchell, 2012; Cai and
Yates, 2013; Reddy et al., 2014).

Our model learns from natural language de-
scriptions paired with meaning representations.
Most previous systems rely on high-quality lex-
icons, manually-built templates, and features
which are either domain- or representation-
specific. We instead present a general method that
can be easily adapted to different domains and
meaning representations. We adopt the general
encoder-decoder framework based on neural net-
works which has been recently repurposed for var-
ious NLP tasks such as syntactic parsing (Vinyals
et al., 2015a), machine translation (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever et
al., 2014), image description generation (Karpathy
and Fei-Fei, 2015; Vinyals et al., 2015b), ques-
tion answering (Hermann et al., 2015), and sum-
marization (Rush et al., 2015).

Mei et al. (2016) use a sequence-to-sequence
model to map navigational instructions to actions.

Our model works on more well-defined meaning
representations (such as Prolog and lambda cal-
culus) and is conceptually simpler; it does not
employ bidirectionality or multi-level alignments.
Grefenstette et al. (2014) propose a different ar-
chitecture for semantic parsing based on the com-
bination of two neural network models. The first
model learns shared representations from pairs of
questions and their translations into knowledge
base queries, whereas the second model generates
the queries conditioned on the learned representa-
tions. However, they do not report empirical eval-
uation results.

3 Problem Formulation

Our aim is to learn a model which maps natural
language input q = x1 · · ·x|q| to a logical form
representation of its meaning a = y1 · · · y|a|. The
conditional probability p (a|q) is decomposed as:

p (a|q) =
|a|∏
t=1

p (yt|y<t, q) (1)

where y<t = y1 · · · yt−1.
Our method consists of an encoder which en-

codes natural language input q into a vector repre-
sentation and a decoder which learns to generate
y1, · · · , y|a| conditioned on the encoding vector.
In the following we describe two models varying
in the way in which p (a|q) is computed.

3.1 Sequence-to-Sequence Model
This model regards both input q and output a as
sequences. As shown in Figure 2, the encoder and
decoder are two different L-layer recurrent neural
networks with long short-term memory (LSTM)
units which recursively process tokens one by one.
The first |q| time steps belong to the encoder, while
the following |a| time steps belong to the decoder.
Let hl

t ∈ Rn denote the hidden vector at time
step t and layer l. hl

t is then computed by:

hl
t = LSTM

(
hl

t−1,h
l−1
t

)
(2)

where LSTM refers to the LSTM function being
used. In our experiments we follow the architec-
ture described in Zaremba et al. (2015), however
other types of gated activation functions are pos-
sible (e.g., Cho et al. (2014)). For the encoder,
h0

t = Wqe(xt) is the word vector of the current
input token, with Wq ∈ Rn×|Vq | being a parame-
ter matrix, and e(·) the index of the corresponding

34



LSTM
LSTM

LSTM
LSTM

LSTM
LSTM

LSTM
LSTM

LSTM
LSTM

LSTM
LSTM

Figure 2: Sequence-to-sequence (SEQ2SEQ)
model with two-layer recurrent neural networks.

token. For the decoder, h0
t = Wae(yt−1) is the

word vector of the previous predicted word, where
Wa ∈ Rn×|Va|. Notice that the encoder and de-
coder have different LSTM parameters.

Once the tokens of the input sequence
x1, · · · , x|q| are encoded into vectors, they are
used to initialize the hidden states of the first time
step in the decoder. Next, the hidden vector of the
topmost LSTM hL

t in the decoder is used to pre-
dict the t-th output token as:

p (yt|y<t, q) = softmax
(
WohL

t

)ᵀ
e (yt) (3)

where Wo ∈ R|Va|×n is a parameter matrix, and
e (yt) ∈ {0, 1}|Va| a one-hot vector for computing
yt’s probability from the predicted distribution.

We augment every sequence with a “start-of-
sequence” <s> and “end-of-sequence” </s> to-
ken. The generation process terminates once </s>
is predicted. The conditional probability of gener-
ating the whole sequence p (a|q) is then obtained
using Equation (1).

3.2 Sequence-to-Tree Model
The SEQ2SEQ model has a potential drawback in
that it ignores the hierarchical structure of logical
forms. As a result, it needs to memorize various
pieces of auxiliary information (e.g., bracket pairs)
to generate well-formed output. In the following
we present a hierarchical tree decoder which is
more faithful to the compositional nature of mean-
ing representations. A schematic description of
the model is shown in Figure 3.

The present model shares the same encoder with
the sequence-to-sequence model described in Sec-
tion 3.1 (essentially it learns to encode input q as
vectors). However, its decoder is fundamentally
different as it generates logical forms in a top-
down manner. In order to represent tree structure,

LST
M

LSTM

LSTM

LSTM

lambda $0 e

and

<n>

LSTM

LSTM
LSTM

LSTM

LSTM

LSTM

<n> <n> </s>

LST
M

</s>

from

LSTM

LSTM

LSTM

LSTM

$0 dallas:ci </s>>

LSTM

LSTM

LSTM

LSTM
<n> 1600:ti </s>

LSTM

LSTM

departure

_time
$0

LSTM

</s>

Parent feeding
Start decoding

LSTM Encoder unit
LSTM Decoder unit

<n> Nonterminal

Figure 3: Sequence-to-tree (SEQ2TREE) model
with a hierarchical tree decoder.

we define a “nonterminal” <n> token which in-
dicates subtrees. As shown in Figure 3, we pre-
process the logical form “lambda $0 e (and (>(de-
parture time $0) 1600:ti) (from $0 dallas:ci))” to a
tree by replacing tokens between pairs of brackets
with nonterminals. Special tokens <s> and <(>
denote the beginning of a sequence and nontermi-
nal sequence, respectively (omitted from Figure 3
due to lack of space). Token </s> represents the
end of sequence.

After encoding input q, the hierarchical tree de-
coder uses recurrent neural networks to generate
tokens at depth 1 of the subtree corresponding to
parts of logical form a. If the predicted token
is <n>, we decode the sequence by conditioning
on the nonterminal’s hidden vector. This process
terminates when no more nonterminals are emit-
ted. In other words, a sequence decoder is used to
hierarchically generate the tree structure.

In contrast to the sequence decoder described
in Section 3.1, the current hidden state does not
only depend on its previous time step. In order to
better utilize the parent nonterminal’s information,
we introduce a parent-feeding connection where
the hidden vector of the parent nonterminal is con-
catenated with the inputs and fed into LSTM.

As an example, Figure 4 shows the decoding
tree corresponding to the logical form “A B (C)”,
where y1 · · · y6 are predicted tokens, and t1 · · · t6
denote different time steps. Span “(C)” corre-
sponds to a subtree. Decoding in this example has
two steps: once input q has been encoded, we first
generate y1 · · · y4 at depth 1 until token </s> is

35



t1 t2 t3 t4

t5 t6

y1=A y3=<n>

<s>

q

y6=</s>

<(>

y4=</s>y2=B

y5=C

Figure 4: A SEQ2TREE decoding example for the
logical form “A B (C)”.

predicted; next, we generate y5, y6 by condition-
ing on nonterminal t3’s hidden vectors. The prob-
ability p (a|q) is the product of these two sequence
decoding steps:

p (a|q) = p (y1y2y3y4|q) p (y5y6|y≤3, q) (4)

where Equation (3) is used for the prediction of
each output token.

3.3 Attention Mechanism
As shown in Equation (3), the hidden vectors of
the input sequence are not directly used in the
decoding process. However, it makes intuitively
sense to consider relevant information from the in-
put to better predict the current token. Following
this idea, various techniques have been proposed
to integrate encoder-side information (in the form
of a context vector) at each time step of the de-
coder (Bahdanau et al., 2015; Luong et al., 2015b;
Xu et al., 2015).

As shown in Figure 5, in order to find rele-
vant encoder-side context for the current hidden
state hL

t of decoder, we compute its attention score
with the k-th hidden state in the encoder as:

st
k =

exp{hL
k · hL

t }∑|q|
j=1 exp{hL

j · hL
t }

(5)

where hL
1 , · · · ,hL

|q| are the top-layer hidden vec-
tors of the encoder. Then, the context vector is the
weighted sum of the hidden vectors in the encoder:

ct =
|q|∑

k=1

st
kh

L
k (6)

In lieu of Equation (3), we further use this con-
text vector which acts as a summary of the encoder
to compute the probability of generating yt as:

hatt
t = tanh

(
W1hL

t + W2ct
)

(7)

LSTM

LSTM

LSTM

LSTM

LSTM
Attention
Scores

Figure 5: Attention scores are computed by the
current hidden vector and all the hidden vectors of
encoder. Then, the encoder-side context vector ct

is obtained in the form of a weighted sum, which
is further used to predict yt.

p (yt|y<t, q) = softmax
(
Wohatt

t

)ᵀe (yt) (8)

where Wo ∈ R|Va|×n and W1,W2 ∈ Rn×n are
three parameter matrices, and e (yt) is a one-hot
vector used to obtain yt’s probability.

3.4 Model Training
Our goal is to maximize the likelihood of the gen-
erated logical forms given natural language utter-
ances as input. So the objective function is:

minimize−
∑

(q,a)∈D
log p (a|q) (9)

where D is the set of all natural language-logical
form training pairs, and p (a|q) is computed as
shown in Equation (1).

The RMSProp algorithm (Tieleman and Hin-
ton, 2012) is employed to solve this non-convex
optimization problem. Moreover, dropout is used
for regularizing the model (Zaremba et al., 2015).
Specifically, dropout operators are used between
different LSTM layers and for the hidden lay-
ers before the softmax classifiers. This technique
can substantially reduce overfitting, especially on
datasets of small size.

3.5 Inference
At test time, we predict the logical form for an in-
put utterance q by:

â = arg max
a′

p
(
a′|q) (10)

where a′ represents a candidate output. How-
ever, it is impractical to iterate over all possible
results to obtain the optimal prediction. Accord-
ing to Equation (1), we decompose the probabil-
ity p (a|q) so that we can use greedy search (or
beam search) to generate tokens one by one.

36



Algorithm 1 describes the decoding process for
SEQ2TREE. The time complexity of both de-
coders is O(|a|), where |a| is the length of out-
put. The extra computation of SEQ2TREE com-
pared with SEQ2SEQ is to maintain the nonter-
minal queue, which can be ignored because most
of time is spent on matrix operations. We imple-
ment the hierarchical tree decoder in a batch mode,
so that it can fully utilize GPUs. Specifically, as
shown in Algorithm 1, every time we pop multi-
ple nonterminals from the queue and decode these
nonterminals in one batch.

3.6 Argument Identification

The majority of semantic parsing datasets have
been developed with question-answering in mind.
In the typical application setting, natural language
questions are mapped into logical forms and ex-
ecuted on a knowledge base to obtain an answer.
Due to the nature of the question-answering task,
many natural language utterances contain entities
or numbers that are often parsed as arguments in
the logical form. Some of them are unavoidably
rare or do not appear in the training set at all (this
is especially true for small-scale datasets). Con-
ventional sequence encoders simply replace rare
words with a special unknown word symbol (Lu-
ong et al., 2015a; Jean et al., 2015), which would
be detrimental for semantic parsing.

We have developed a simple procedure for ar-
gument identification. Specifically, we identify
entities and numbers in input questions and re-
place them with their type names and unique
IDs. For instance, we pre-process the training
example “jobs with a salary of 40000” and its
logical form “job(ANS), salary greater than(ANS,
40000, year)” as “jobs with a salary of num0”

and “job(ANS), salary greater than(ANS, num0,
year)”. We use the pre-processed examples as
training data. At inference time, we also mask en-
tities and numbers with their types and IDs. Once
we obtain the decoding result, a post-processing
step recovers all the markers typei to their corre-
sponding logical constants.

4 Experiments

We compare our method against multiple previ-
ous systems on four datasets. We describe these
datasets below, and present our experimental set-
tings and results. Finally, we conduct model anal-
ysis in order to understand what the model learns.
The code is available at https://github.
com/donglixp/lang2logic.

4.1 Datasets

Our model was trained on the following datasets,
covering different domains and using different
meaning representations. Examples for each do-
main are shown in Table 1.

JOBS This benchmark dataset contains 640
queries to a database of job listings. Specifically,
questions are paired with Prolog-style queries. We
used the same training-test split as Zettlemoyer
and Collins (2005) which contains 500 training
and 140 test instances. Values for the variables
company, degree, language, platform, location,
job area, and number are identified.

GEO This is a standard semantic parsing bench-
mark which contains 880 queries to a database of
U.S. geography. GEO has 880 instances split into
a training set of 680 training examples and 200
test examples (Zettlemoyer and Collins, 2005).
We used the same meaning representation based
on lambda-calculus as Kwiatkowski et al. (2011).
Values for the variables city, state, country, river,
and number are identified.

ATIS This dataset has 5, 410 queries to a flight
booking system. The standard split has 4, 480
training instances, 480 development instances, and
450 test instances. Sentences are paired with
lambda-calculus expressions. Values for the vari-
ables date, time, city, aircraft code, airport, airline,
and number are identified.

IFTTT Quirk et al. (2015) created this dataset
by extracting a large number of if-this-then-that

37



Dataset Length Example

JOBS
9.80

22.90
what microsoft jobs do not require a bscs?
answer(company(J,’microsoft’),job(J),not((req deg(J,’bscs’))))

GEO
7.60

19.10
what is the population of the state with the largest area?
(population:i (argmax $0 (state:t $0) (area:i $0)))

ATIS
11.10
28.10

dallas to san francisco leaving after 4 in the afternoon please
(lambda $0 e (and (>(departure time $0) 1600:ti) (from $0 dallas:ci) (to $0 san francisco:ci)))

IFTTT
6.95

21.80

Turn on heater when temperature drops below 58 degree
TRIGGER: Weather - Current temperature drops below - ((Temperature (58)) (Degrees in (f)))
ACTION: WeMo Insight Switch - Turn on - ((Which switch? (””)))

Table 1: Examples of natural language descriptions and their meaning representations from four datasets.
The average length of input and output sequences is shown in the second column.

recipes from the IFTTT website1. Recipes are sim-
ple programs with exactly one trigger and one ac-
tion which users specify on the site. Whenever the
conditions of the trigger are satisfied, the action
is performed. Actions typically revolve around
home security (e.g., “turn on my lights when I ar-
rive home”), automation (e.g., “text me if the door
opens”), well-being (e.g., “remind me to drink
water if I’ve been at a bar for more than two
hours”), and so on. Triggers and actions are se-
lected from different channels (160 in total) rep-
resenting various types of services, devices (e.g.,
Android), and knowledge sources (such as ESPN
or Gmail). In the dataset, there are 552 trigger
functions from 128 channels, and 229 action func-
tions from 99 channels. We used Quirk et al.’s
(2015) original split which contains 77, 495 train-
ing, 5, 171 development, and 4, 294 test examples.
The IFTTT programs are represented as abstract
syntax trees and are paired with natural language
descriptions provided by users (see Table 1). Here,
numbers and URLs are identified.

4.2 Settings

Natural language sentences were lowercased; mis-
spellings were corrected using a dictionary based
on the Wikipedia list of common misspellings.
Words were stemmed using NLTK (Bird et al.,
2009). For IFTTT, we filtered tokens, channels
and functions which appeared less than five times
in the training set. For the other datasets, we fil-
tered input words which did not occur at least two
times in the training set, but kept all tokens in
the logical forms. Plain string matching was em-
ployed to identify augments as described in Sec-
tion 3.6. More sophisticated approaches could be
used, however we leave this future work.

Model hyper-parameters were cross-validated

1http://www.ifttt.com

Method Accuracy
COCKTAIL (Tang and Mooney, 2001) 79.4
PRECISE (Popescu et al., 2003) 88.0
ZC05 (Zettlemoyer and Collins, 2005) 79.3
DCS+L (Liang et al., 2013) 90.7
TISP (Zhao and Huang, 2015) 85.0
SEQ2SEQ 87.1
− attention 77.9
− argument 70.7

SEQ2TREE 90.0
− attention 83.6

Table 2: Evaluation results on JOBS.

on the training set for JOBS and GEO. We used
the standard development sets for ATIS and IFTTT.
We used the RMSProp algorithm (with batch size
set to 20) to update the parameters. The smoothing
constant of RMSProp was 0.95. Gradients were
clipped at 5 to alleviate the exploding gradient
problem (Pascanu et al., 2013). Parameters were
randomly initialized from a uniform distribution
U (−0.08, 0.08). A two-layer LSTM was used for
IFTTT, while a one-layer LSTM was employed
for the other domains. The dropout rate was se-
lected from {0.2, 0.3, 0.4, 0.5}. Dimensions of
hidden vector and word embedding were selected
from {150, 200, 250}. Early stopping was used
to determine the number of epochs. Input sen-
tences were reversed before feeding into the en-
coder (Sutskever et al., 2014). We use greedy
search to generate logical forms during inference.
Notice that two decoders with shared word em-
beddings were used to predict triggers and actions
for IFTTT, and two softmax classifiers are used to
classify channels and functions.

4.3 Results

We first discuss the performance of our model on
JOBS, GEO, and ATIS, and then examine our re-
sults on IFTTT. Tables 2–4 present comparisons
against a variety of systems previously described

38



Method Accuracy
SCISSOR (Ge and Mooney, 2005) 72.3
KRISP (Kate and Mooney, 2006) 71.7
WASP (Wong and Mooney, 2006) 74.8
λ-WASP (Wong and Mooney, 2007) 86.6
LNLZ08 (Lu et al., 2008) 81.8
ZC05 (Zettlemoyer and Collins, 2005) 79.3
ZC07 (Zettlemoyer and Collins, 2007) 86.1
UBL (Kwiatkowski et al., 2010) 87.9
FUBL (Kwiatkowski et al., 2011) 88.6
KCAZ13 (Kwiatkowski et al., 2013) 89.0
DCS+L (Liang et al., 2013) 87.9
TISP (Zhao and Huang, 2015) 88.9
SEQ2SEQ 84.6
− attention 72.9
− argument 68.6

SEQ2TREE 87.1
− attention 76.8

Table 3: Evaluation results on GEO. 10-fold cross-
validation is used for the systems shown in the top
half of the table. The standard split of ZC05 is
used for all other systems.

Method Accuracy
ZC07 (Zettlemoyer and Collins, 2007) 84.6
UBL (Kwiatkowski et al., 2010) 71.4
FUBL (Kwiatkowski et al., 2011) 82.8
GUSP-FULL (Poon, 2013) 74.8
GUSP++ (Poon, 2013) 83.5
TISP (Zhao and Huang, 2015) 84.2
SEQ2SEQ 84.2
− attention 75.7
− argument 72.3

SEQ2TREE 84.6
− attention 77.5

Table 4: Evaluation results on ATIS.

in the literature. We report results with the full
models (SEQ2SEQ, SEQ2TREE) and two abla-
tion variants, i.e., without an attention mechanism
(−attention) and without argument identification
(−argument). We report accuracy which is de-
fined as the proportion of the input sentences that
are correctly parsed to their gold standard logical
forms. Notice that DCS+L, KCAZ13 and GUSP
output answers directly, so accuracy in this setting
is defined as the percentage of correct answers.

Overall, SEQ2TREE is superior to SEQ2SEQ.
This is to be expected since SEQ2TREE ex-
plicitly models compositional structure. On the
JOBS and GEO datasets which contain logical
forms with nested structures, SEQ2TREE out-
performs SEQ2SEQ by 2.9% and 2.5%, respec-
tively. SEQ2TREE achieves better accuracy over
SEQ2SEQ on ATIS too, however, the difference is
smaller, since ATIS is a simpler domain without
complex nested structures. We find that adding at-

Method Channel +Func F1
retrieval 28.9 20.2 41.7
phrasal 19.3 11.3 35.3
sync 18.1 10.6 35.1
classifier 48.8 35.2 48.4
posclass 50.0 36.9 49.3
SEQ2SEQ 54.3 39.2 50.1
− attention 54.0 37.9 49.8
− argument 53.9 38.6 49.7

SEQ2TREE 55.2 40.1 50.4
− attention 54.3 38.2 50.0

(a) Omit non-English.

Method Channel +Func F1
retrieval 36.8 25.4 49.0
phrasal 27.8 16.4 39.9
sync 26.7 15.5 37.6
classifier 64.8 47.2 56.5
posclass 67.2 50.4 57.7
SEQ2SEQ 68.8 50.5 60.3
− attention 68.7 48.9 59.5
− argument 68.8 50.4 59.7

SEQ2TREE 69.6 51.4 60.4
− attention 68.7 49.5 60.2

(b) Omit non-English & unintelligible.

Method Channel +Func F1
retrieval 43.3 32.3 56.2
phrasal 37.2 23.5 45.5
sync 36.5 24.1 42.8
classifier 79.3 66.2 65.0
posclass 81.4 71.0 66.5
SEQ2SEQ 87.8 75.2 73.7
− attention 88.3 73.8 72.9
− argument 86.8 74.9 70.8

SEQ2TREE 89.7 78.4 74.2
− attention 87.6 74.9 73.5

(c) ≥ 3 turkers agree with gold.

Table 5: Evaluation results on IFTTT.

tention substantially improves performance on all
three datasets. This underlines the importance of
utilizing soft alignments between inputs and out-
puts. We further analyze what the attention layer
learns in Figure 6. Moreover, our results show
that argument identification is critical for small-
scale datasets. For example, about 92% of city
names appear less than 4 times in the GEO train-
ing set, so it is difficult to learn reliable parame-
ters for these words. In relation to previous work,
the proposed models achieve comparable or better
performance. Importantly, we use the same frame-
work (SEQ2SEQ or SEQ2TREE) across datasets
and meaning representations (Prolog-style logi-
cal forms in JOBS and lambda calculus in the
other two datasets) without modification. Despite
this relatively simple approach, we observe that
SEQ2TREE ranks second on JOBS, and is tied for
first place with ZC07 on ATIS.

39



<
/s
>

d
e
g
id
0 a

re
q
u
ir

n
o
t

d
o

th
a
t

n
u
m
0

p
a
y

jo
b

w
h
ic
h

<
s>

job
(

ANS
)
,

salary_greater_than
(

ANS
,

num0
,

year
)
,

\+
(
(

req_deg
(

ANS
,

degid0
)
)
)

</s>

(a) which jobs pay num0 that do
not require a degid0

<
/s
>

ci
1 to ci
0

fr
o
m

tr
ip

ro
u
n
d

fa
re

cl
a
ss

fi
rs
t

w
h
a
t

<
s>

(
lambda

$0
e
(

exists
$1
(

and
(

round_trip
$1
)
(

class_type
$1

first:cl
)
(

from
$1
ci0
)
(

to
$1
ci1
)
(
=
(

fare
$1
)

$0
)
)
)
)

</s>

(b) what’s first class fare
round trip from ci0 to ci1

<
/s
>

to
m
o
rr
o
w

ci
1 to ci
0

fr
o
m

fl
ig
h
t

e
a
rl
ie
st

th
e is

w
h
a
t

<
s>

argmin
$0
(

and
(

flight
$0
)
(

from
$0
ci0
)
(

to
$0
ci1
)
(

tomorrow
$0
)
)
(

departure_time
$0
)

</s>

(c) what is the earliest flight
from ci0 to ci1 tomorrow

<
/s
>

co
0

th
e in

e
le
v

h
ig
h
e
st

th
e is

w
h
a
t

<
s>

argmax

$0

(

and

(

place:t

$0

)

(

loc:t

$0

co0

)

)

(

elevation:i

$0

)

</s>

(d) what is the highest elevation
in the co0

Figure 6: Alignments (same color rectangles) produced by the attention mechanism (darker color rep-
resents higher attention score). Input sentences are reversed and stemmed. Model output is shown for
SEQ2SEQ (a, b) and SEQ2TREE (c, d).

We illustrate examples of alignments produced
by SEQ2SEQ in Figures 6a and 6b. Alignments
produced by SEQ2TREE are shown in Figures 6c
and 6d. Matrices of attention scores are com-
puted using Equation (5) and are represented in
grayscale. Aligned input words and logical form
predicates are enclosed in (same color) rectan-
gles whose overlapping areas contain the attention
scores. Also notice that attention scores are com-
puted by LSTM hidden vectors which encode con-
text information rather than just the words in their
current positions. The examples demonstrate that
the attention mechanism can successfully model
the correspondence between sentences and logi-
cal forms, capturing reordering (Figure 6b), many-
to-many (Figure 6a), and many-to-one alignments
(Figures 6c,d).

For IFTTT, we follow the same evaluation pro-
tocol introduced in Quirk et al. (2015). The
dataset is extremely noisy and measuring accu-
racy is problematic since predicted abstract syn-
tax trees (ASTs) almost never exactly match the
gold standard. Quirk et al. view an AST as a
set of productions and compute balanced F1 in-
stead which we also adopt. The first column in
Table 5 shows the percentage of channels selected
correctly for both triggers and actions. The sec-
ond column measures accuracy for both channels
and functions. The last column shows balanced
F1 against the gold tree over all productions in

the proposed derivation. We compare our model
against posclass, the method introduced in Quirk
et al. and several of their baselines. posclass is
reminiscent of KRISP (Kate and Mooney, 2006),
it learns distributions over productions given in-
put sentences represented as a bag of linguistic
features. The retrieval baseline finds the closest
description in the training data based on charac-
ter string-edit-distance and returns the recipe for
that training program. The phrasal method uses
phrase-based machine translation to generate the
recipe, whereas sync extracts synchronous gram-
mar rules from the data, essentially recreating
WASP (Wong and Mooney, 2006). Finally, they
use a binary classifier to predict whether a produc-
tion should be present in the derivation tree corre-
sponding to the description.

Quirk et al. (2015) report results on the full
test data and smaller subsets after noise filter-
ing, e.g., when non-English and unintelligible de-
scriptions are removed (Tables 5a and 5b). They
also ran their system on a high-quality subset of
description-program pairs which were found in the
gold standard and at least three humans managed
to independently reproduce (Table 5c). Across all
subsets our models outperforms posclass and re-
lated baselines. Again we observe that SEQ2TREE

consistently outperforms SEQ2SEQ, albeit with a
small margin. Compared to the previous datasets,
the attention mechanism and our argument iden-

40



tification method yield less of an improvement.
This may be due to the size of Quirk et al. (2015)
and the way it was created – user curated descrip-
tions are often of low quality, and thus align very
loosely to their corresponding ASTs.

4.4 Error Analysis
Finally, we inspected the output of our model in
order to identify the most common causes of errors
which we summarize below.

Under-Mapping The attention model used in
our experiments does not take the alignment his-
tory into consideration. So, some question words,
expecially in longer questions, may be ignored in
the decoding process. This is a common prob-
lem for encoder-decoder models and can be ad-
dressed by explicitly modelling the decoding cov-
erage of the source words (Tu et al., 2016; Cohn
et al., 2016). Keeping track of the attention his-
tory would help adjust future attention and guide
the decoder towards untranslated source words.

Argument Identification Some mentions are
incorrectly identified as arguments. For example,
the word may is sometimes identified as a month
when it is simply a modal verb. Moreover, some
argument mentions are ambiguous. For instance,
6 o’clock can be used to express either 6 am or 6
pm. We could disambiguate arguments based on
contextual information. The execution results of
logical forms could also help prune unreasonable
arguments.

Rare Words Because the data size of JOBS,
GEO, and ATIS is relatively small, some question
words are rare in the training set, which makes it
hard to estimate reliable parameters for them. One
solution would be to learn word embeddings on
unannotated text data, and then use these as pre-
trained vectors for question words.

5 Conclusions

In this paper we presented an encoder-decoder
neural network model for mapping natural lan-
guage descriptions to their meaning representa-
tions. We encode natural language utterances
into vectors and generate their corresponding log-
ical forms as sequences or trees using recur-
rent neural networks with long short-term mem-
ory units. Experimental results show that en-
hancing the model with a hierarchical tree de-
coder and an attention mechanism improves per-

formance across the board. Extensive compar-
isons with previous methods show that our ap-
proach performs competitively, without recourse
to domain- or representation-specific features. Di-
rections for future work are many and varied. For
example, it would be interesting to learn a model
from question-answer pairs without access to tar-
get logical forms. Beyond semantic parsing, we
would also like to apply our SEQ2TREE model
to related structured prediction tasks such as con-
stituency parsing.

Acknowledgments We would like to thank
Luke Zettlemoyer and Tom Kwiatkowski for shar-
ing the ATIS dataset. The support of the European
Research Council under award number 681760
“Translating Multiple Modalities into Text” is
gratefully acknowledged.

References
Jacob Andreas, Andreas Vlachos, and Stephen Clark.

2013. Semantic parsing as machine translation. In
Proceedings of the 51st ACL, pages 47–52, Sofia,
Bulgaria.

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrap-
ping semantic parsers from conversations. In Pro-
ceedings of the 2011 EMNLP, pages 421–432, Ed-
inburgh, United Kingdom.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. TACL, 1(1):49–62.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the ICLR, San Diego, California.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Qingqing Cai and Alexander Yates. 2013. Seman-
tic parsing freebase: Towards open-domain seman-
tic parsing. In 2nd Joint Conference on Lexical and
Computational Semantics, pages 328–338, Atlanta,
Georgia.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 15th
AAAI, pages 859–865, San Francisco, California.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 EMNLP, pages 1724–1734, Doha, Qatar.

41



James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from the
world’s response. In Proceedings of CONLL, pages
18–27, Uppsala, Sweden.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment
biases into an attentional neural translation model.
In Proceedings of the 2016 NAACL, San Diego, Cal-
ifornia.

Ruifang Ge and Raymond J. Mooney. 2005. A statisti-
cal semantic parser that integrates syntax and seman-
tics. In Proceedings of CoNLL, pages 9–16, Ann
Arbor, Michigan.

Dan Goldwasser and Dan Roth. 2011. Learning from
natural instructions. In Proceedings of the 22nd IJ-
CAI, pages 1794–1800, Barcelona, Spain.

Edward Grefenstette, Phil Blunsom, Nando de Freitas,
and Karl Moritz Hermann. 2014. A deep architec-
ture for semantic parsing. In Proceedings of the ACL
2014 Workshop on Semantic Parsing, Atlanta, Geor-
gia.

Yulan He and Steve Young. 2006. Semantic process-
ing using the hidden vector state model. Speech
Communication, 48(3-4):262–275.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems 28, pages 1684–
1692. Curran Associates, Inc.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
Proceedings of 53rd ACL and 7th IJCNLP, pages 1–
10, Beijing, China.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 EMNLP, pages 1700–1709, Seattle, Wash-
ington.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of CVPR, pages 3128–3137,
Boston, Massachusetts.

Rohit J. Kate and Raymond J. Mooney. 2006. Using
string-kernels for learning semantic parsers. In Pro-
ceedings of the 21st COLING and 44th ACL, pages
913–920, Sydney, Australia.

Rohit J. Kate, Yuk Wah Wong, and Raymond J.
Mooney. 2005. Learning to transform natural to
formal languages. In Proceedings of the 20th AAAI,
pages 1062–1068, Pittsburgh, Pennsylvania.

Jayant Krishnamurthy and Tom Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 EMNLP, pages 754–765,
Jeju Island, Korea.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2010. Inducing prob-
abilistic CCG grammars from logical form with
higher-order unification. In Proceedings of the
2010 EMNLP, pages 1223–1233, Cambridge, Mas-
sachusetts.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2011. Lexical gener-
alization in CCG grammar induction for semantic
parsing. In Proceedings of the 2011 EMNLP, pages
1512–1523, Edinburgh, United Kingdom.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of the
2013 EMNLP, pages 1545–1556, Seattle, Washing-
ton.

Percy Liang, Michael I. Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S.
Zettlemoyer. 2008. A generative model for pars-
ing natural language to meaning representations. In
Proceedings of the 2008 EMNLP, pages 783–792,
Honolulu, Hawaii.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2015a. Address-
ing the rare word problem in neural machine trans-
lation. In Proceedings of the 53rd ACL and 7th IJC-
NLP, pages 11–19, Beijing, China.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015b. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 EMNLP, pages 1412–1421, Lisbon, Portu-
gal.

Hongyuan Mei, Mohit Bansal, and Matthew R Wal-
ter. 2016. Listen, attend, and walk: Neural mapping
of navigational instructions to action sequences. In
Proceedings of the 30th AAAI, Phoenix, Arizona. to
appear.

Scott Miller, David Stallard, Robert Bobrow, and
Richard Schwartz. 1996. A fully statistical ap-
proach to natural language interfaces. In ACL, pages
55–61.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th ICML, pages
1310–1318, Atlanta, Georgia.

Hoifung Poon. 2013. Grounded unsupervised seman-
tic parsing. In Proceedings of the 51st ACL, pages
933–943, Sofia, Bulgaria.

42



Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th IUI,
pages 149–157, Miami, Florida.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of 53rd
ACL and 7th IJCNLP, pages 878–888, Beijing,
China.

Siva Reddy, Mirella Lapata, and Mark Steedman.
2014. Large-scale semantic parsing without
question-answer pairs. TACL, 2(Oct):377–392.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
EMNLP, pages 379–389, Lisbon, Portugal.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Pro-
cessing Systems 27, pages 3104–3112. Curran As-
sociates, Inc.

Lappoon R. Tang and Raymond J. Mooney. 2000. Au-
tomated construction of database interfaces: Inter-
grating statistical and relational learning for seman-
tic parsing. In Proceedings of the 2000 EMNLP,
pages 133–141, Hong Kong, China.

Lappoon R. Tang and Raymond J. Mooney. 2001. Us-
ing multiple clause constructors in inductive logic
programming for semantic parsing. In Proceedings
of the 12th ECML, pages 466–477, Freiburg, Ger-
many.

Cynthia A. Thomspon and Raymond J. Mooney. 2003.
Acquiring word-meaning mappings for natural lan-
guage interfaces. Journal of Artifical Intelligence
Research, 18:1–44.

T. Tieleman and G. Hinton. 2012. Lecture 6.5—
RmsProp: Divide the gradient by a running average
of its recent magnitude. Technical report.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neu-
ral machine translation. In Proceedings of the 54th
ACL, Berlin, Germany.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015a. Gram-
mar as a foreign language. In Advances in Neu-
ral Information Processing Systems 28, pages 2755–
2763. Curran Associates, Inc.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015b. Show and tell: A neural
image caption generator. In Proceedings of CVPR,
pages 3156–3164, Boston, Massachusetts.

Yuk Wah Wong and Raymond J. Mooney. 2006.
Learning for semantic parsing with statistical ma-
chine translation. In Proceedings of the 2006
NAACL, pages 439–446, New York, New York.

Yuk Wah Wong and Raymond J. Mooney. 2007.
Learning synchronous grammars for semantic pars-
ing with lambda calculus. In Proceedings of the 45th
ACL, pages 960–967, Prague, Czech Republic.

W. A. Woods. 1973. Progress in natural language un-
derstanding: An application to lunar geology. In
Proceedings of the June 4-8, 1973, National Com-
puter Conference and Exposition, pages 441–450,
New York, NY.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In Proceedings of the 32nd ICML, pages 2048–
2057, Lille, France.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2015. Recurrent neural network regularization. In
Proceedings of the ICLR, San Diego, California.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the 19th AAAI,
pages 1050–1055, Portland, Oregon.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proceedings of the 21st UAI, pages
658–666, Toronto, ON.

Luke Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for parsing
to logical form. In In Proceedings of the EMNLP-
CoNLL, pages 678–687, Prague, Czech Republic.

Kai Zhao and Liang Huang. 2015. Type-driven in-
cremental semantic parsing with polymorphism. In
Proceedings of the 2015 NAACL, pages 1416–1421,
Denver, Colorado.

43


