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Robust statistical modeling improves sensitivity of high-1

throughput RNA structure probing experiments2
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1University of Edinburgh, School of Informatics, EH8 9AB, Edinburgh, UK4

2University of Edinburgh, Centre for Synthetic and Systems Biology, EH9 3BF, Edinburgh, UK.5

Structure probing coupled with high-throughput sequencing holds the potential to revolu-6

tionize our understanding of the role of RNA structure in regulation of gene expression. De-7

spite major technological advances, intrinsic noise and high coverage requirements greatly8

limit the applicability of these techniques. Here we describe a probabilistic modeling pipeline9

which accounts for biological variability and biases in the data, yielding statistically in-10

terpretable scores for the probability of nucleotide modification transcriptome-wide. We11

demonstrate on two yeast data sets that our method has greatly increased sensitivity, en-12

abling the identification of modified regions on many more transcripts compared with ex-13

isting pipelines. It also provides confident predictions at much lower coverage levels than14

previously reported. Our results show that statistical modeling greatly extends the scope and15

potential of transcriptome-wide structure probing experiments.16

RNA structure plays a key role in regulating RNA stability, transcription, and mRNA transla-17

tion rates. In order to identify novel RNA structural regulatory elements, chemical and enzymatic18

structure probing is routinely used to interrogate RNA structure both in vivo and in vitro1. Current19

in silico RNA structure prediction programs rely on thermodynamic estimates to generate the most20
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likely secondary structure models. By incorporating data from structure probing experiments, the21

accuracy of secondary and tertiary RNA structure prediction can be significantly improved2, 3.22

Most chemical RNA structure probing methods rely on the formation of adducts or cleav-23

age of the RNA backbone, using as probes dimethylsulfate (DMS) and SHAPE reagents such as24

1M7 (1-methyl-7-nitroisatoic anhydride) and NAI (2-methylnicotinic acid imidazolide)4, 5. In all25

of these methods, the reagents terminate reverse transcription (RT), enabling detection of the sites26

of cleavage or modification by primer extension analyses, followed by mapping the RT drop-off27

position back to the reference sequence. These methods can be combined with next-generation se-28

quencing (NGS) to simultaneously probe thousands of RNA molecules, as well as very long RNAs,29

in a single RT reaction. Insights obtained by these techniques include the largely unstructured state30

of stress-responsive transcripts in yeast and plants6, 7. Recently, we developed the ChemModSeq31

structure probing pipeline to gain deeper understanding of RNA structural changes in long riboso-32

mal RNA precursors during ribosome assembly8.33

NGS is certainly revolutionizing the RNA structure probing field, however, several data an-34

alytic questions need to be addressed. Firstly, NGS is often plagued by sequencing representation35

and coverage biases introduced during library preparation9. Identifying and correcting such biases36

is essential to avoid erroneous interpretations, however, to our knowledge, current methods do not37

address these issues. Secondly, statistical assessments must be informed by an analysis of inter-38

replicate variability in both control and treatment samples. Except for Mod-seq10, current methods39

do not exploit replicate information, and, as a result, their output scores are not readily statistically40
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interpretable, often requiring setting arbitrary thresholds and other post-processing. Finally, a ma-41

jor question in the field concerns the coverage per nucleotide necessary to get reliable chemical42

reactivity values. Partly as a result of unresolved statistical issues in handling variability, current43

recommendations indicate that very high coverage levels are required10, 11, which are normally only44

met for a handful of transcripts in transcriptome-wide experiments.45

To tackle these important issues, we developed BUM-HMM (Beta-Uniform Mixture Hidden46

Markov Model), a statistical machine learning pipeline for modeling NGS RNA structure probing47

data. BUM-HMM uses inter-replicate variability to identify transcript regions that are significantly48

more modified, incorporating coverage and sequence bias information within the model. The out-49

put of BUM-HMM is probabilistic, giving a transparent statistical interpretation which obviates the50

need for arbitrary thresholds and post-processing. We demonstrate that BUM-HMM is highly sen-51

sitive and remarkably robust even at low coverage, greatly improving over existing bioinformatic52

pipelines.53

Results54

To demonstrate the strength of the BUM-HMM method, we re-analyzed high-throughput DMS and55

1M7 RNA structure probing experiments performed on yeast 40S ribosomes8. This study gener-56

ated biological triplicates of each chemical probing experiment with very high sequence coverage,57

both in treatment and control samples (Supplementary Table 1). As secondary structure models for58

rRNAs and crystal structures of yeast ribosomes are now readily available12, 13, these data allowed59
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us to investigate the sensitivity and specificity of BUM-HMM compared to existing methods. In60

addition, we also generated two in vivo yeast mRNA transcriptome data sets using NAI as chemical61

probe (see Methods for details), which enabled us to test the performance of BUM-HMM in the im-62

portant context of a transcriptome-wide mRNA structure probing experiment. For these analyses,63

between 36 and 55 million paired cDNA sequences were analyzed per sample (see Supplementary64

Table 1 and Methods for details).65

Data preparation and model66

All cDNA libraries were generated by random priming6, 8, 11, 14 and paired-end sequenced (see67

Methods and Supplementary Fig. 1 for details). Paired-end sequencing allows normalization for68

different read depths through calculating drop-off rates, which we define as the total number of69

reads stopping at a nucleotide divided by the total number of reads that cover that nucleotide8, 14.70

The full procedure is described in detail in Methods and schematically illustrated in Fig. 1.71

Briefly, we quantify biological variability using the log-ratio between the drop-off rates at72

the same nucleotide in a pair of control replicates (log dor ratio, LDR), for all possible pairs.73

We assemble all control LDRs in a null distribution (Step A) and correct sequence and coverage74

biases (Step B) to control for confounders (see Methods and Supplementary Fig. 2 for details). We75

then evaluate empirical p-values for all treatment-control LDRs at each nucleotide (Step C) and76

model these p-values using a Beta-Uniform mixture hidden Markov model (Step D) with hidden77

states corresponding to presence or absence of modification (see Methods and Supplementary Fig.78

3 for a theoretical justification of the Beta-Uniform choice). We use BUM-HMM to compute79
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posterior probabilities of chemical modification for all nucleotides (Step E), providing a robust80

and statistically interpretable readout.81

It is important to remark at this stage that, while single molecules are either modified or not at82

a particular locus, interpreting structure probing data as binary may appear overly simplistic. Tran-83

scripts in vivo exhibit dynamic secondary structures and may be bound by different proteins, so84

that different molecules of the same transcript may be accessible to chemical reagents at different85

positions. Furthermore, not all accessible nucleotides will be modified at low reagent concentra-86

tions, such as those typically used in structure probing experiments. The correct interpretation87

of the probabilistic output of BUM-HMM is therefore not that all transcript molecules with high88

posterior probability at a locus are in a specific state of accessibility, but that the proportion of89

modified molecules is sufficiently large to lead to an LDR value which cannot be explained by90

random variability alone.91

Performance comparisons92

Interpreting and evaluating the outcome of structure probing experiments is a notoriously difficult93

task due to a lack of “ground truth” examples to validate model predictions (see also Discus-94

sion). In this respect, yeast 18S ribosomal RNA represents an important case of a high abundance95

transcript with a well-defined and very stable secondary structure. We therefore first evaluated96

BUM-HMM’s performance in terms of recovering the 18S structure from a recently published97

chemical probing data set8. These data sets have extremely high coverage (with a mean coverage98

per nucleotide close to 1 million for some samples, Supplementary Table 1), which clearly cannot99
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be achieved on many transcripts in transcriptome-wide studies. We thus later examine the per-100

formance of BUM-HMM on the transcriptome data set, which reflects a more realistic coverage101

scenario. We demonstrate through a number of case studies how BUM-HMM can aid the use of102

structure prediction algorithms and recover structural features in conserved areas of transcripts, as103

well as examine the robustness of BUM-HMM towards variations in coverage.104

BUM-HMM demonstrates state-of-the-art performance recovering the structure of 18S with105

readily interpretable output106

Guided by the available 80S and 40S structures12, 13, we determined which nucleotides were ac-107

cessible and single-stranded and should, in theory, be therefore modified by 1M7 or DMS. Notice108

that this crystallographic structure is different from the phylogenetic (predicted) structure used in109

other studies15. As DMS preferentially reacts with A’s and C’s, we were able to examine the sen-110

sitivity and specificity of BUM-HMM. From many existing bioinformatic approaches6–8, 10, 14, 16,111

we chose the following methods to compare our model to: structure-seq6, ∆TCR14, which was112

the strongest performer in a recent review16, and Mod-seq10, which to our knowledge is the only113

method supporting multiple biological replicates. We evaluated all methods using the receiver114

operating characteristic (ROC), which plots the false positive rate against the true positive rate115

for different discrimination thresholds. A random predictor would have the area under the ROC116

curve (the AUC statistic) equal to 0.5 and a higher value of the AUC indicates better performance.117

When evaluated against the known crystal structure, BUM-HMM and ∆TCR were clearly the best118
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performers with AUC of 0.73 and 0.74, outperforming structure-seq and Mod-seq scoring at 0.68119

and 0.64, respectively. The 1M7 data set demonstrated similar performance between methods120

(Supplementary Table 2).121

However, the dynamic output ranges of the methods vary dramatically; to enable compar-122

isons with BUM-HMM while taking into account these differences, we separately examined the123

true positive and true negative rate for different discrimination thresholds (scaling the scores to124

range between 0 and 1). BUM-HMM demonstrated a 20% increase of the true positive rate125

throughout most of the dynamic range compared to the other methods, for only a small decrease126

of the true negative rate (Fig. 2a and 2b).127

Fig. 2c shows the proportions of nucleobases called as modified by all methods, when dis-128

criminating the scores at low, medium, and high thresholds or considering all scores greater than129

zero. BUM-HMM has excellent specificity to A’s and C’s throughout its dynamic range. On the130

contrary, structure-seq and ∆TCR do not discriminate as well between C’s, G’s, and U’s when131

considering all scores, demonstrating their reliance on arbitrary thresholds as the means to remove132

noise. BUM-HMM identifies over a hundred modified nucleotides with very high posterior prob-133

abilities, many more than the other methods do when considering high reactivity thresholds. It is134

interesting to observe that on the 18S DMS data, BUM-HMM generates an almost binary output,135

with few values between 0 and 1. This reflects the stability of the 18S transcript clearly evident136

from the data, rather than a property of the model: BUM-HMM generates many more intermediate137

values on the transcriptome data set.138
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Fig. 2d shows a fragment of the 18S secondary structure as predicted by BUM-HMM, with139

many single-stranded A’s and C’s correctly identified. The results for all methods are shown on the140

18S secondary structure models in Supplementary Fig. 4.141

BUM-HMM output aids computational prediction of secondary structures142

As explained earlier, the output posterior probabilities of BUM-HMM should not be directly143

interpreted as secondary structure readouts in general. These probabilities can, however, pro-144

vide valuable constraints to energy-based structure prediction software, such as RNAstructure17,145

ViennaRNA18, and others. Such software predicts secondary structures of transcripts by minimiz-146

ing the free energy associated with a particular “sequence–structure” configuration. For all but the147

shortest transcripts, this is a very difficult combinatorial optimization problem, resulting in many148

nearly equivalent optima corresponding to different structures. Transcripts in vivo are highly dy-149

namic and can therefore exist in many different such configurations. However, under physiological150

constraints, it can be expected that only a subset of all possible structures (from a free energy point151

of view) will be present. We therefore used the BUM-HMM output as constraints for structure152

prediction with the RNAstructure Web Server17.153

To quantify the improvement provided by the BUM-HMM constraints, we selected as rep-154

resentative examples the SCM4, RPL37A, and RPL19B genes (coding sequence only), which155

encode a mitochondrial outer membrane protein and ribosomal 60S subunit proteins, correspond-156

ingly. These genes all have good coverage levels (mean coverage per nucleotide 799, 38711, and157
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15798), thus avoiding problems with missing information; they are also relatively long transcripts158

(564, 260, and 568 nucleotides long), and hence challenging for structure prediction algorithms.159

We used the Fold17 method in RNAstructure to predict their secondary structure, with and without160

the BUM-HMM constraints. Fold returns an ensemble of generally around 20 low free-energy161

structures and we quantify the distance between two structures by using the binary Hamming dis-162

tance. Constraining the algorithm with the BUM-HMM output considerably narrowed down the163

search space for free-energy minimization, as demonstrated by smaller Hamming distances be-164

tween the resulting structures (Fig. 3a, 3b, and 3c). Further, these structures were more similar to165

the output of the alternative method MaxExpect17 compared to only using sequence (Supplemen-166

tary Fig. 5). We conclude that using posterior probabilities generated by BUM-HMM as algorithm167

constraints can improve secondary structure prediction for relatively long transcripts.168

169

BUM-HMM correctly predicts structure of conserved regions in U3 snoRNA170

While transcripts may co-exist in several different structural configurations, it is likely that some171

of their sections present increased structural stability for correct cellular functioning (e.g. in order172

to be bound by proteins). It is reasonable to expect highly conserved regions of a transcript to rep-173

resent its more stable parts. To validate our model in the scenario of a more realistic transcriptome-174

wide coverage, we turned to the small nucleolar RNA U3. U3 is a model gene for evolutionary175

fitness studies19 and has an accepted secondary structure in yeast20, making it a good candidate for176

validation.177
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Even though the coverage on U3 was uneven and did not allow structural predictions on178

the whole molecule, BUM-HMM achieved the AUC of 0.76 when evaluated on the highly con-179

served regions located in boxes A, A’, B, C, C’, and D. Furthermore, when considering the longest180

conserved region with 16 nucleotides (box A and one highly conserved upstream nucleotide),181

BUM-HMM demonstrated excellent prediction accuracy of 0.88.182

BUM-HMM has increased informativeness on transcriptome-wide analysis of RNA structure183

probing data184

To evaluate the applicability of the methods in the transcriptome-wide scenario, we generated185

synthetic data sets by randomly selecting subsets of reads from the 18S DMS data set and evaluated186

the consistency of the methods at lower coverage (see Methods for full details). BUM-HMM187

showed excellent consistency as the mean coverage along the transcript was progressively reduced188

(Fig. 4a), retaining significantly above random accuracy even at a reduction of almost 2000 times189

(Supplementary Fig. 6). This performance challenges recent recommendations for the minimum190

coverage level for chemical probing experiments11, indicating that BUM-HMM can obtain reliable191

predictions on a large fraction of transcripts in a standard transcriptomic experiment. Mod-seq and192

structure-seq exhibited considerably lower levels of consistency (Fig. 4c and 4d) and behaved as193

random predictors at the lowest coverage level. Highly consistent reactivity scores generated by194

∆TCR (Fig. 4b) were largely due to its extreme conservatism at the chosen threshold of 50% of195

the dynamic range, at which it called no more than 20 nucleotides at all coverage levels. Notably,196
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all methods identified fewer modified nucleotides than BUM-HMM both on the full data set and197

at all coverage levels, this difference being particularly striking with ∆TCR and Mod-seq (Fig. 4b198

and 4c).199

While performance analysis is hampered by a lack of a “ground truth” for most transcripts, a200

more general assessment of the informativeness of the methods’ outputs is possible and instructive.201

We therefore quantified how many transcripts had at least 5% of their length called as modified by202

BUM-HMM and ∆TCR. We considered to be “called as modified” those nucleotides which ob-203

tained a score above 50% of the dynamic range of the model (having removed outliers for ∆TCR).204

With this procedure, BUM-HMM identified 2219 transcripts, while ∆TCR only retrieved 285. The205

low number of transcripts identified by ∆TCR is at odds with previous studies6, 7 suggesting that206

many RNAs are largely accessible and unstructured in vivo; this conservativeness may be due to207

the normalization procedures of ∆TCR14 (see Supplementary Fig. 7 for illustration of associated208

problems).209

We next analyzed the distribution of posterior probabilities across those mRNA transcripts210

which had a non-zero score attached to more than 75% of their length, which we call effectively211

probed. BUM-HMM selected 363 mRNA genes (Fig. 5a), which is in striking contrast with212

∆TCR’s 43 selected transcripts. When relaxing this criterion to (still highly informative) effective213

probing of more than 50% of the length, the number of mRNAs selected by BUM-HMM increased214

dramatically to 1764. Analyses of the 363 selected genes revealed that many appeared to have215

long segments of almost completely unstructured regions (such as TDH3, Fig. 5b) and many had216
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significant structure in the coding sequence (such as YOR365W, Fig. 5b). We next calculated217

the average FPKMs for these genes using the read counts from the control and treated sequencing218

data. This revealed a broad distribution with a median 191 (Fig. 5b) and the lowest FPKM of219

60 (YOR385W, Fig. 5b and 5c). This gene had an average coverage of 335 reads per nucleotide,220

which we propose can be an indicative guideline of the lower bound on coverage required for221

high-throughput RNA structure probing experiments to effectively probe long transcripts.222

Metabolic transcripts are generally flexible around the translation start site223

Structure in untranslated regions (UTR) and around the translation start site (AUG) can reduce224

translation efficiency21, 22. Recent high-throughput RNA structure probing also revealed a weak225

but significant negative correlation between RNA structure at that AUG in vitro and ribosome226

occupancy23. To test whether RNA structure measured in vivo also correlates with ribosome oc-227

cupancy, we plotted the distribution of posterior probabilities around the translation start sites and228

performed a k-means clustering to identify patterns in the data. This revealed five clusters with dif-229

ferent reactivity profiles (Fig. 5d). For the majority of transcripts, the region around the AUG had230

high posterior probabilities and therefore appeared to be largely unstructured (genes in clusters 0,231

2, 3, 4). Interestingly, KEGG pathway analyses revealed that these clusters were highly enriched232

for transcripts encoding for ribosomal and metabolic proteins, in particular proteins involved in233

glycolysis/gluconeogenesis and amino acid biosynthesis (Supplementary Table 3). Remarkably,234

the more structured transcripts in cluster 1 were mostly enriched for transcripts encoding proteins235
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involved in mitochondrial translation (Supplementary Table 3).236

One possible explanation for why the metabolic transcripts appear largely unstructured in237

vivo could be because they were occupied by ribosomes, which have an intrinsic RNA helicase238

activity to unfold structured regions within mRNAs24. We therefore asked whether there was a239

significant correlation between RNA flexibility within that region and ribosome occupancy on240

the transcripts. To test this, we calculated log2 of the sum of posterior probabilities within 50241

nucleotides around the AUG and compared it to the translational efficiency obtained from the242

recently published polysome microarray data25 (Fig. 5e). This revealed that flexibility around the243

AUG did not positively correlate with polysome occupancy (Pearson correlation: -0.196, p-value244

= 0.0014). Similar results were obtained when using the entire 5’ UTR region (Fig. 5f). Taken245

together, these results suggest that high ribosome occupancy alone is not sufficient to explain why246

certain transcripts were highly flexible in our in vivo NAI chemical probing data.247

Discussion248

High-throughput probing of RNA secondary structure offers unprecedented opportunities to eluci-249

date the role of RNA structure in many fundamental biological processes. While the experimental250

platforms are rapidly reaching maturity, several data analytic issues hinder their wider applicability251

and adoption.252

Our statistical pipeline addresses a number of such important problems. Firstly, it explic-253

itly models the biological variability of the data, providing a statistical basis for determining the254
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significance of the observed signal. As such, it removes the need to set arbitrary thresholds and255

perform extensive post-processing of the analysis results, yielding a clean and statistically inter-256

pretable pipeline. This is in contrast to most existing methods and is a direct consequence of the257

probabilistic formulation of BUM-HMM. In this respect, it is indebted to earlier probabilistic mod-258

els of SHAPE-Seq data26; notably, however, recent developments in the experimental technology,259

and in particular, the shift to random-primed experimental designs, force a major change in model260

architecture and motivate the non-parametric approach we take.261

Our analysis identified important biases in the technology, especially prominent transcriptome-262

wide, which can have severe downstream consequences in any analysis. While random-priming263

designs effectively resolve the 3’ biases of earlier SHAPE technologies, significant sequence and264

coverage biases remain. Our method provides automated empirical strategies for correcting these265

biases, potentially greatly extending the applicability of the technology.266

Finally, the BUM-HMM model generates accurate and more informative results compared to267

other methods. Crucially, its predictions remain consistent with reduced coverage, demonstrating268

that the choice of an appropriate modeling framework can greatly increase the robustness of the269

technology. This is borne out by the effectiveness of BUM-HMM on a transcriptome data set with270

relatively low coverage: while current state-of-the-art methods can only provide information over271

a handful of transcripts, BUM-HMM selected more than 360 transcripts, some of which had a272

per nucleotide coverage as low as 335, heralding the advent of truly transcriptome-wide structure273

probing experiments.274
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While BUM-HMM addresses many of the data analytic challenges associated with structure275

probing data, it is important to stress that significant issues remain unsolved with the interpretation276

of such data. Many factors may affect accessibility (protein binding being a prime example), and277

in general transcripts in vivo may co-exist in multiple configurations, cautioning against simplistic278

interpretations in terms of secondary structure. How structure probing data may be used to in-279

form model-based structure prediction is an important and active research field27, 28. Our results280

show that BUM-HMM constraints, when incorporated in structure prediction algorithms, lead to281

more consistent structure models for many transcripts, demonstrating the importance of statisti-282

cally sound data analytic strategies for downstream analyses.283

Accession codes. The 18S rRNA (DMS and 1M7) and transcriptome-wide chemical probing sequencing284

data are available in the Gene Expression Omnibus under accession numbers GSE52878 and GSE78208,285

respectively.286

Code availability. All of the code used in this study can be accessed in the following BitBucket reposi-287

tory: https://bitbucket.org/aselega/bum_hmm_pipeline. The BUM-HMM pipeline will288

be made available as a Bioconductor software package in due course.289
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Figure 1: Overview of the BUM-HMM computational analysis pipeline. (a) Null dis-370

tribution of LDRs is computed for all pairs of control replicate samples, quantifying variability in371

drop-off rate observed by chance. (b) Coverage-dependent bias is corrected by applying a vari-372

ance stabilization transformation. For transcriptome-wide data sets, different null distributions are373

computed for different nucleobase patterns to address sequence-dependent bias. (c) Per-nucleotide374

empirical p-values are computed for all pairs of treatment and control replicate samples, by com-375

paring the corresponding LDRs to the null distribution. (d) BUM-HMM is run on p-values as376

observations, leaving out any nucleotides with missing data. (e) The output is a posterior probabil-377

ity of modification, ranging from 0 to 1, for each nucleotide included in the analysis.378

Figure 2: BUM-HMM identifies many modified nucleotides of 18S ribosomal RNA with379

high accuracy and specificity. (a, b) True positive rate and true negative rate of all methods for380

reconstructing secondary structure of 18S rRNA, evaluated against the known crystal structure. (c)381

Base composition of called nucleotides for all methods, when considering scores greater than: a382

value close to zero (10−6), a low reactivity threshold (0.1), a medium reactivity threshold (0.4), and383

a high reactivity threshold (0.85). (d) A fragment of the 18S secondary structure with bases colored384

according to the BUM-HMM posterior probability at the corresponding nucleotide position.385

Figure 3: Using BUM-HMM output results in more consistent secondary structure pre-386
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diction. (a) Distribution of Hamming distances between all pairs of secondary structures (n = 20)387

predicted for SCM4 by Fold when using only sequence (blue) and adding the BUM-HMM output388

as constraints (red), and a fragment of the lowest free energy structure. (b, c) Same as in (a), for389

RPL37A (b) and RPL19B (c).390

Figure 4: BUM-HMM is highly consistent at low coverage and calls more nucleotides391

modified. (a) Consistency of posterior probabilities generated by BUM-HMM on data sets with392

progressively lower mean coverage (shown on the x-axis), synthesized from the DMS data set for393

18S rRNA (see Methods for details). For each coverage level, base composition of nucleotides394

called as modified is shown in a corresponding barplot, averaged across 10 selections of subsets.395

The barplot in a shaded rectangle corresponds to the base composition of called nucleotides on the396

full data set. (b, c, d) Consistency of reactivity scores generated by ∆TCR (b), Mod-seq (c), and397

structure-seq (d) on the same synthetic data sets, with prior outlier removal.398

Figure 5: Flexibility of 5’ UTR and ribosome occupancy do not show a significant pos-399

itive correlation in vivo. (a) Distribution of posterior probabilities over 363 protein-coding tran-400

scripts. The heatmap displays posterior probabilities for 363 mRNA transcripts that were selected401

from the transcriptome-wide data. The mRNAs were sorted by length (from short to long) and ex-402

tended at each end by 300 nucleotides. The two black lines indicate the position of the start codon403

and stop codon, respectively. (b) Genome browser examples showing posterior probabilities of a404

highly expressed gene (TDH3; average FPKM = 3491) and a lowly expressed gene (YOR385W;405

average FPKM = 60). (c) Violin plot showing the distribution of average FPKMs, calculated using406
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the sequence reads from the control and NAI datasets. (d) Many transcripts are flexible around407

the translation start site. The plot shows the distribution of posterior probabilities 50 nucleotides408

around the translation start site (AUG). K-means clustering revealed five clusters with different409

distributions of probabilities. On the right side of the heat map, cumulative plots are shown for410

each cluster. The number of genes (n) in each cluster is also indicated. (e) High structural flexi-411

bility does not correlate with high ribosome occupancy. For each gene, we calculated log2 of the412

sum of posterior probabilities from the heat map data shown in (d) and plotted it against the log2413

of the reported enrichment of the transcript in polysomes25. (f) Same as in (e) but with the entire414

5’ UTR.415

Methods416

ChemModSeq library preparation.417

The 18S DMS and 1M7 data sets were previously described8. To generate the NAI transcriptome-418

wide data set, yeast cells (BY4741 strain) were grown to exponential phase and harvested by cen-419

trifugation. Cells were subsequently resuspended in 1 volume of phosphate buffer saline (PBS).420

NAI (dissolved in DMSO) was added to the suspension in a final concentration of 100 mM (5%421

DMSO final) and incubated for 10 minutes at room temperature. Cells were harvested by cen-422

trifugation, washed with ice-cold PBS and snap-frozen in liquid nitrogen. Total RNA was ex-423

tracted as previously described29. The mRNAs were isolated using the PolyATtract mRNA iso-424

lation kit, according to manufacturer’s procedures (Promega). Two biological replicates were425

generated for the transcriptome-wide analyses. The ChemModSeq libraries were generated as426
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previously described8. Briefly, cDNA was generated by random priming using a random hexamer427

oligo8. Subsequently, a DNA adapter was ligated to the 3’ end of cDNAs using CircLigase. These428

adapters contained a random nucleotide at the 5’ end to minimize the sequence representation bi-429

ases introduced during the linker ligation reaction. Following PCR, libraries were resolved on 2%430

Metaphor gels and fragments between 200-700 were gel purified. Samples were sequenced on431

Illumina HiSeq2500 systems.432

Sequence data processing and raw data analysis.433

To process the fastq files the pyCRAC package was used30. To demultiplex the raw sequencing434

data we used pyBarcodeFilter.py, after which the remaining random nucleotide was removed from435

the 5’ end of the forward reads. The data were subsequently collapsed using pyFastqDuplicateRe-436

mover.py that utilizes the random barcode information present in the 5’ adapters to remove poten-437

tial PCR duplicates. The resulting fasta file was mapped to the Saccharomyces cerevisiae genome438

(version R64, ENSEMBL) using novoalign 2.05 and only uniquely mapped reads were considered.439

PyReadCounters.py was subsequently used to generate read counts and FPKMs for all annotated440

features. The resulting GTF output files were converted to tab-delimited files containing three441

columns: chromosome, genomic position, and coverage or drop-off counts using pyGTF2sgr.py.442

These files were then fed to the BUM-HMM model to generate posterior probabilities.443

Data characterization.444

Using the final output files (see Sequence data processing and raw data analysis), the drop-off rate445

was computed for all nucleotide positions in each replicate as a measure of nucleotide’s reactivity446

to the probing reagent in a given experiment. By definition, the drop-off rate ranges between 0 and447
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1. All drop-off rates were normalized to a common median across replicate samples.448

drop-off rate =
drop-off count

coverage

A measure of inter-replicate variability at each nucleotide position is defined as the log-ratio of449

drop-off rates (LDR) in a pair of replicate samples i and j:450

log

(
drop-off ratei
drop-off ratej

)
= log (drop-off ratei)− log (drop-off ratej)

If the drop-off rates are similar in both samples, the LDR will be close to 0, indicating little vari-451

ability. In contrast, different drop-off rates would result in an LDR large in absolute value. LDRs452

in control conditions collectively describe the variability in drop-off rates that could be observed453

in the absence of the probing reagent. The set of these define the null distribution of LDRs.454

LDRs are then computed for each combination of treatment-control replicates, quantifying455

the difference between the drop-off rate observed in a treatment experiment with respect to a con-456

trol replicate. These are compared to the null distribution giving rise to empirical p-values. For457

efficiency, LDRs are compared to the precomputed quantiles of the null distribution. The p-value of458

an LDR represents the probability of it being insignificantly different from what could be observed459

by chance.460

p-value = 1− q,where q is the closest quantile

Preprocessing.461

In order to use the log transform, it is necessary to ensure that no nucleotides have zero drop-off462

rates. Therefore, only those nucleotides with non-zero drop-off counts for a corresponding pair463
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of replicate samples are used. The pipeline also features a user-defined parameter describing the464

minimum level of coverage that nucleotides should have to be included in the analysis.465

Model.466

Empirical p-values, computed for each nucleotide position and each treatment-control comparison467

(of which there are nm for n treatment and m control experimental replicates) are passed onto a468

hidden Markov model. The model has a hidden state ht (t = 1...T for T nucleotides) representing469

the true binary state of the t-th nucleotide (modified, 1 or unmodified, 0) and the observed variable470

vt, corresponding to the empirical p-value at that position. P -values corresponding to different471

pairs of treatment-control replicates are assumed to be independent measurements. Notice that,472

since p-values are used as features and not for decision making, no issues of multiple hypothesis473

testing arise.474

Transition probabilities are defined through empirically derived lengths of single- and double-475

stranded stretches of nucleotides. The model assumes expected uninterrupted stretches of 20476

double-stranded or constrained nucleotides and 5 single-stranded or flexible nucleotides.477

Emission probabilities come from a Beta-Uniform mixture (BUM) model. This design ex-478

ploits the result that p-values are uniformly distributed under the null hypothesis31. P -values cor-479

responding to accessible nucleotides are modeled with a Beta distribution, which favors small480

values, accommodating the fact that accessible nucleotides would have LDRs greater than most481

values in the null distribution. The p-value distribution computed for the transcriptome-wide data482

set strongly agrees with this model (Supplementary Fig. 3). The HMM is run separately on con-483
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tinuous stretches of nucleotides with a user-specified minimum coverage threshold and a non-zero484

drop-off rate in at least one treatment sample.485

p(vt|ht = 0) ∼ U(0, 1)
486

p(vt|ht = 1) ∼ Beta(α, β),with α = 1, β = 10

Optimization of parameters.487

We provide a strategy to optimize parameters of the Beta distribution with respect to the data. This488

strategy uses the expectation-maximization (EM) algorithm32 and Newton’s optimization method.489

The iterative EM-algorithm starts with the initial values of α = 1 and β = 10, with which the490

posterior probabilities are computed. It then computes new estimates for α and β using Newton’s491

optimization method. Newton’s method finds the maximum of the expected complete data log-492

likelihood, or more precisely, its relevant terms. The shape parameters α and β only appear in the493

emission term and within that, only in the component corresponding to the modified state of the494

latent variable ht.495

The expected complete data log-likelihood is given by the following expression (all expecta-496

tions are with respect to corresponding distributions):497

〈log p(ν1:T , h1:T |α, β)〉 = 〈log p(h1)〉+ 〈
T∑
t=1

N∑
n=1

log p(vnt |ht)〉+ 〈
T−1∑
t=1

log p(ht+1|ht)〉,

for t = 1...T nucleotides and n = 1...N number of treatment-control comparisons. The relevant498

term corresponds to emission probabilities (second term in the previous expression):499

〈
T∑
t=1

N∑
n=1

log p(vnt |ht)〉 =
T∑
t=1

N∑
n=1

log p(vnt |ht = 0)p(ht = 0|vn1:T )+
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500

+
T∑
t=1

N∑
n=1

log p(vnt |ht = 1)p(ht = 1|vn1:T )

Within that expression, the relevant term corresponds to the modified state of the hidden variable501

(second term in the previous expression):502

T∑
t=1

N∑
n=1

log p(vnt |ht = 1)p(ht = 1|vn1:T ) =
T∑
t=1

N∑
n=1

γt log
(vnt )α−1(1− vnt )β−1

B(α, β)
=

503

= F,
504

where γt = p(ht = M |vn1:T ) is the responsibility.

The first order derivatives of F are:505

δF

δα
=

T∑
t=1

N∑
n=1

γt log vnt − γt(ψ0(α)− ψ0(α + β))

506

δF

δβ
=

T∑
t=1

N∑
n=1

γt log (1− vnt )− γt(ψ0(β)− ψ0(α + β))

The second order derivatives of F are:507

δ2F

δα2
=

T∑
t=1

γtN(ψ1(α + β)− ψ1(α))

508

δ2F

δαδβ
=

T∑
t=1

γtNψ1(α + β)

509

δ2F

δβ2
=

T∑
t=1

γtN(ψ1(α + β)− ψ1(β)),

where ψ is the polygamma function. Log transform is applied at the beginning of the algorithm510

to ensure that the estimated α and β are positive. Posterior probabilities are recomputed with the511

new estimates of α and β and the process is repeated a maximum number of 10 times or until the512

parameter values stop changing within the small predefined tolerance range.513
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Bias correction.514

We used the transcriptome-wide data set to identify potential confounding factors which influence515

the LDRs in the absence of a reagent. The aim is to transform all LDRs accordingly and eliminate516

the revealed biases.517

Coverage bias.518

The coverage bias was identified by plotting the control LDRs as a function of the inter-replicate519

mean coverage at the corresponding nucleotide position (Supplementary Fig. 2a and 2b).520

This bias is corrected by learning the functional dependency between these variables and521

transforming the data to reduce the variance of LDRs. We model drop-off count as a binomially522

distributed variable, which thus has the following standard deviation:523

σ[drop off count] =
√
np(drop off)(1− p(drop off)), for a nucleotide covered n times.

Consequently, LDR has a standard deviation of:524

σ[LDR] ∝ σ[drop off count]
n

=

√
p(1− p)√

n

Therefore, the functional relationship between log-ratios and coverage can be modeled as a k 1√
n
+b,525

with some unknown parameters k and b, which are learned from the data using a non-linear least526

squares technique. Then, all LDRs are rescaled by this model with fitted parameters. For efficient527

runtime on transcriptome-wide data sets, the LDRs are split in bins of equal coverage ranges and528

the 95th quantile of LDRs and mean coverage are computed for each bin. These are used for529
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parameter fitting. Supplementary Fig. 2c and 2d show that the transformed LDRs have reduced530

dependency on coverage.531

Sequence bias.532

We compared the resulting LDR null distributions when separately considering nucleobase patterns533

of three (AAA, AAT, AAG, ...). For each of the 64 combinations of nucleobases, the transcriptome534

sequence was searched for all places of its occurrence. The LDRs of the middle nucleotide at these535

occurrences defined the null distribution specific to this nucleobase combination. Supplementary536

Fig. 2e and 2f demonstrate significant differences between these null distributions.537

To correct for this sequence-dependent bias, we store the quantiles of each of the 64 different538

null distributions and compute empirical p-values by keeping track of which nucleobase triplet539

corresponds to the current nucleotide position and looking up values from the corresponding null540

distribution.541

Due to the short length of the 18S ribosomal RNA molecule, the sequence-bias correcting542

step was omitted from the analysis when handling the corresponding data sets.543

Handling of missing data and outliers.544

The methods used in the evaluation6, 10, 14 not only generate scores with drastically differing dy-545

namic ranges, but also assume different interpretations of the same score values. For instance,546
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∆TCR makes no distinction between the equal drop-off rates in control and treatment conditions547

and no coverage, assigning a score of 0 in both cases. Structure-seq marks missing data with a548

dummy value, whereas Mod-seq clamps the scenarios of no coverage and no significant modifi-549

cation to the same score of 0. Further, the outputs of these methods have clear outliers, with a550

handful of values being much larger than the 99th quantile of the output distribution. Therefore,551

simply choosing the midpoint of the dynamic range for binarizing the resulting classifications552

would result in as few as a single true positive for some methods.553

Thus, when performing evaluation, we set the missing data (for those methods that use it)554

and the outliers (computed as the values greater than the 99.5th quantile of the output distribution)555

to 0. Considering other strategies, such as removing outliers or only evaluating on the non-missing556

data, resulted in grossly limited outputs generated by some methods for the simulated low cover-557

age levels. Our choice, while circumventing these problems and enabling comparisons, follows558

the commonly utilized assumption that the reactivity of zero does not carry significant structural559

information.560

Overall, these difficulties expose the problems associated with the discussed methods; namely,561

the absence of a unified output scale (which therefore leads to arbitrary threshold setting), gross562

outliers, and inability to represent missing data, which thus results in extreme conservatism of the563

classification. BUM-HMM addresses this by having a clearly defined probability output range and564

separating out the nucleotides about which no predictions can be made.565

When computing true positive and negative rates, the output scores of all methods were566
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normalized to the range of BUM-HMM. AUCs and true positive and negative rates were computed567

with the ROCR package33. When characterizing the methods’ sensitivities using the DMS data568

set specific to A’s and C’s, the outputs of ∆TCR and Mod-seq were normalized with the 2-8%569

normalization rule34 to enable comparisons at the same (previously used) low, medium, and high570

reactivity thresholds34, 35.571

Secondary structure prediction.572

When generating secondary structures informed by BUM-HMM, posterior probabilities were up-573

loaded to the RNAstructure Web Server17 as a SHAPE constraints file with default parameter values574

used. For RPL37A and RPL19B, the structure was predicted for the longest CDS region.575

Performance evaluation of BUM-HMM on the conserved regions of U3 snoRNA.576

Conservation scores associated with the human U3 snoRNA were taken from Rfam36. Highly con-577

served parts of the box regions, matching in sequence between the human37 and yeast transcripts20,578

were selected, with three lowly conserved nucleotides allowed in the middle of the regions (a to-579

tal of 40 nucleotides). Evaluation was performed on those nucleotides with an attached posterior580

probability p > 0 (28 of those nucleotides).581
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Lower coverage simulation analysis.582

To evaluate the output consistency of the methods at lower coverage levels, we generated synthetic583

data sets by randomly selecting subsets of 2 million, 1 million, 100000, 30000, 20000, 10000, and584

1000 reads from the 18S DMS data set. For each subset, 10 such selections were made. Files585

with coverage and drop-off counts were generated for each selection and passed to BUM-HMM.586

Consistency was evaluated with the AUC statistic between the output scores generated by each587

method for a given synthetic subset selection and the whole data set. For all methods, outliers588

were handled as described above and calling of modified nucleotides (used for the barplots of base589

composition) was performed at the threshold of 50% of the dynamic range of each method, after590

having dealt with the outliers.591
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Supplementary Information614

Supplementary Table 1: Overview of paired cDNA reads analyzed from each data set. All raw615

sequencing data have been collapsed before aligning to the reference sequences to remove potential616

PCR duplicates. Only properly paired reads were considered for the analyses.617
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Supplementary Table 2: Accuracy of reconstructing secondary structure of 18S ribosomal618

RNA from the 1M7 data set for all methods, measured with the AUC statistic against the known619

crystal structure of the rRNA.620

Supplementary Table 3: KEGG pathway analysis of the k-means clusters shown in Fig. 4d.621

These analyses were performed on the string-db server (www.string-db.org).622

Supplementary Figure 1: ChemModSeq library preparation design. Chemically probed623

RNAs were reverse transcribed with an oligonucleotide containing a random hexamer and an Il-624

lumina compatible sequence for PCR amplification. Subsequently adapters were ligated to the 3’625

end of cDNAs that contained six random nucleotides and a six nucleotide barcode followed by626

another random nucleotide. The latter was introduced to minimize sequence bias representation627

introduced during the CircLigase ligation reaction. The six random nucleotides were used to elim-628

inate potential PCR duplicates. Indexing barcodes were added to the 3’ adapter sequence by PCR.629

The in-read barcodes in the 5’ end of the PCR product were processed using pyBarcodeFilter.py630

and reads were collapsed using pyFastqDuplicateRemover.py from the pyCRAC package30.631

Supplementary Figure 2: Coverage- and sequence-dependent biases were identified632

in the transcriptome data set. (a, b) Presence of a coverage-dependent bias, reflected by the633

dependency between the average LDR and the mean coverage at each nucleotide position in a634

pair of control replicate samples, for all such pairs. (c, d) Same dependency plotted as in (a,635

b) after applying a bias-correcting strategy to the LDRs. (e, f) Presence of a sequence-dependent636

bias, reflected by differing null distributions of LDRs, each computed only for nucleotide positions637
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corresponding to a given trinucleotide pattern.638

Supplementary Figure 3: Distribution of empirical p-values for the transcriptome data639

set closely follows a Beta-Uniform distribution on both strands. The histograms show the640

distributions of empirical p-values associated with LDRs between all combinations of treatment641

and control samples on the transcriptome data set.642

Supplementary Figure 4: BUM-HMM correctly identifies many flexible A’s and C’s as643

modified nucleotides. Secondary structures of 18S ribosomal RNA with bases colored according644

to the reactivity score or posterior probability at the corresponding nucleotide position, generated645

by BUM-HMM, ∆TCR14, Mod-seq10, and structure-seq6 analysis pipelines.646

Supplementary Figure 5: Using BUM-HMM output results in more consistent sec-647

ondary structure prediction across different methods. (a) Distribution of Hamming distances648

between the structures predicted for SCM4 by Fold17 (n = 20) and by MaxExpect17 (n = 3 with649

sequence, n = 1 with BUM-HMM) when using only sequence (blue) and adding the BUM-HMM650

output as constraints (red). (b, c) Same as in (a), for RPL37A (b) and RPL19B (c) (with Fold,651

n = 20 structures were generated, with MaxExpect, n = 1 structure).652

Supplementary Figure 6: BUM-HMM retains good accuracy at 18S secondary struc-653

ture reconstruction at lower coverage levels. Agreement with the 18S crystal structure of the654

posterior probabilities generated by BUM-HMM on data sets with progressively lower mean cov-655

erage (shown on the x-axis), synthesized from the DMS data set for 18S ribosomal RNA. For each656
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coverage level, the subsets of reads were randomly selected from the full data set 10 times.657

Supplementary Figure 7: The ∆TCR algorithm produces very high numbers in regions658

with low coverage. Shown is a genome browser image of a gene (YHB1) with an FPKM of 190.659

The red-dotted box shows a region near the 3’ end of the gene where there is low coverage. The top660

two panels show the ∆TCR14 output, with the second panel displaying the same data but scaled to661

a maximum ∆TCR value of 0.025. The third panel shows the BUM-HMM posterior probabilities662

for the same region. The last four panels show the cDNA coverage over the gene from the two663

control RNA sequencing data and the two NAI treated sequencing data.664
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