
could be the use of prophylactic Pneumocystis-active agents
in patients receiving long-term, high-dose inhaled or oral
corticosteroid therapy. Unraveling these complex issues ought
to be possible in larger longitudinal cohort-based studies.

A possible weakness of the current study is that it employed crude
extracts from murine P. murina infections, which may not be entirely
consistent with human P. jirovecii antigen sensitization and are not
suitable for skin hypersensitivity testing. To further develop the tools
and approaches needed to further define the role on Pneumocystis in
asthma, systematic definition of human Pneumocystis antigens could be
very useful, opening a door to direct sensitization studies, assessment of
individual cellar responses, and therapeutic vaccination. n

Author disclosures are available with the text of this article at
www.atsjournals.org.

Anand Shah, M.R.C.P., M.B. B.S.
Darius Armstrong-James, M.R.C.P., Ph.D.
National Heart and Lung Institute
Imperial College London
London, United Kingdom

ORCID ID: 0000-0002-1014-7343 (D.A.-J.).

References

1. Armstrong-James D, Copas AJ, Walzer PD, Edwards SG, Miller RF. A
prognostic scoring tool for identification of patients at high and low
risk of death from HIV-associated Pneumocystis jirovecii pneumonia.
Int J STD AIDS 2011;22:628–634.

2. Armstrong-James D, Meintjes G, Brown GD. A neglected epidemic:
fungal infections in HIV/AIDS. Trends Microbiol 2014;22:120–127.

3. Issa NC, Fishman JA. Infectious complications of antilymphocyte therapies
in solid organ transplantation. Clin Infect Dis 2009;48:772–786.

4. Katsuyama T, Saito K, Kubo S, Nawata M, Tanaka Y. Prophylaxis for
Pneumocystis pneumonia in patients with rheumatoid arthritis treated
with biologics, based on risk factors found in a retrospective study.
Arthritis Res Ther 2014;16:R43.

5. Dutz W, Jennings-Khodadad E, Post C, Kohout E, Nazarian I, Esmaili H.
Marasmus and Pneumocystis carinii pneumonia in institutionalised infants:
observations during an endemic. Z Kinderheilkd 1974;117:241–258.
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Muscle Regeneration after Critical Illness: Are Satellite Cells
the Answer?

In 1985, Op de Coul and colleagues reported 12 patients who had
developed profound skeletal muscle weakness without sensory

impairment after mechanical ventilation for 6 days or longer (1).
They attributed the weakness to the use of neuromuscular
blockade, but in fact their patients were also exposed to
other factors now believed to contribute to intensive care
unit–acquired weakness (ICUAW), including corticosteroids,
aminoglycosides, and, most importantly, multiorgan failure.
These patients followed a variable course: three died during
follow up, and only seven made a full recovery over 2 to
6 months.
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In the intervening 30 years, an explosion has occurred in the
number of patients receiving intensive care, their illness severity, and
the effectiveness of organ support. As a consequence, an increasing
number of survivors, recently estimated to be approximately 75,000
patients annually in the United States (2), develop ICUAW. Critical
illness is followed, even up to 5 years later, by functional disability,
including impaired exercise capacity (3). The etiology is probably
multifactorial, but it is at least in part ascribable to ICUAW and may
persist despite exercise training; therefore, effective therapeutic
approaches have great potential to improve quality of life in
survivors and to be economically attractive. However, identifying
these approaches has been hampered by the fact that patients with
ICUAW are typically heterogeneous in terms of their comorbidities,
their reason for ICU admission, and (in this context) the potentially
damaging therapies (e.g., neuromuscular blocking agents) to which
they might have been exposed. Similarly, at a physiological level
controversy remains regarding the extent to which ICUAW should
be considered a muscle disorder or of neurogenic origin.

The molecular mechanisms underlying ICUAW have been
recently studied; the strength of this approach is that it moves focus
toward maximizing function in the face of multiple etiological
factors. As a result of the work of Puthucheary and coworkers, we
have greater insight into the early changes taking place in the skeletal
muscle of patients admitted to the ICU (4). Briefly, myonecrosis was
observed in approximately half the patients, and rates of muscle
protein breakdown were increased throughout the first week of
ICU admission; interestingly, rates of muscle synthesis were
reduced at the point of ICU admission but were similar to fasted
healthy control subjects by Day 7. Until now, however, we had very
little insight into mechanisms determining skeletal muscle mass
over longer periods. In this issue of the Journal, dos Santos and
colleagues (pp. 821–830) studied a prospectively recruited cohort
of patients who required mechanical ventilation for 1 week or
longer after discharge from their index admission, which had lasted
between 9 and 88 days (5). From an initial pool of 82 eligible and
27 consented patients, 11 were studied at both 7 days and 6 months.
Strengths of these unique data include the prospective way in
which they were gathered and the comprehensive clinical and
histological data obtained. As expected, quadriceps strength
improved, to a variable extent, between Day 7 and 6 months and
was universally reduced at Day 7 compared with published normal
values. Recovery of quadriceps muscle bulk, assessed as computed
tomography–defined midthigh cross-sectional area, was similarly
variable, and in three patients the authors report that at 6 months
there was a marked diminution of the ratio between voluntary
contraction force and cross-sectional area (termed muscle-specific
force), suggesting the interesting hypothesis that the regenerated
muscle is of “poor quality.” At 7 days, there was evidence of
increased ubiquitination (suggesting an increased rate of muscle
breakdown), but this had reduced at 6 months to levels that were
not different from library samples obtained from healthy
volunteers. Why then should quadriceps weakness and atrophy be
present at 6 months, if there is neither increased breakdown nor
reduced synthesis?

Here the authors provide new data by determining the number
of satellite cells. Satellite cells are muscle progenitor cells that
differentiate into myoblasts and fuse to myofibers, as part of the

process of muscle regeneration. Thus, for example, patients with
chronic obstructive pulmonary disease (COPD) receiving exercise
training exhibited increased satellite cell numbers within 24 hours,
which persisted for 2 months of training (6). Satellite cells are
sparse, and it has been estimated that a minimum of 50 type I and
75 type II fibers should be assessed to draw meaningful conclusions
even in young adults (7). dos Santos and colleagues were obliged
to accept those specimens with 50 or more visible fibers only,
presumably because biopsies from patients in the ICU are
necessarily difficult to obtain (5). With this reservation, their
finding that patients with demonstrable muscle atrophy at
6 months had fewer satellite cells than those without atrophy at this
time point is relevant, because it implies that a reduced ability to
regenerate impairs restoration of muscle mass after critical illness
and explains variation between individuals.

A loss of muscle bulk may be considered to be a function both of
the magnitude of the insult and the susceptibility to that insult.
MicroRNAs (miRs) are noncoding RNAs that exert biologically
important effects. miR-1 promotes myotube formation, and thus one
candidatemechanism determining themagnitude of the insult may be
reduced miR-1 expression, which we found to be substantially
suppressed in a study of 20 patients with a median length of stay of
20 days (8) and also in patients with COPD (9). Reduced regeneration
was observed by Thériault and colleagues (10) and by ourselves
(11) in patients with COPD with a low fat-free mass index. In our
studies, reduced regeneration was associated with differential
expression of genes from imprinted genetic loci, suggesting a role
for epigenetics and DNA methylation in determining the rate of
regeneration in response to the stress of disease (11).

Understanding the mechanisms by which patients recover
muscle in response to the loss associated with critical illness
is important in developing appropriate therapeutic approaches
to relieve the burden of ICUAW on patients. By identifying satellite
cell number as a potential factor contributing to the longer-term
response of individuals to ICUAW, the study by dos Santos and
colleagues raises the possibility that the capacity of individuals to
regenerate may determine recovery of skeletal muscle function after
critical illness (5); the contribution of epigenetic factors to this
recovery may be an interesting avenue of exploration. n
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Advancing a Third Revolution in Critical Care

By the 1970s, a revolution was underway in critical care.
The field distinguished itself professionally, claiming that
critical care medicine was a distinctive body of expertise.
The closed intensive care unit (ICU) was born (1). This
revolution argued that a well-organized approach, not
merely individual excellence, could save the lives of the very
sick.

By the 1990s, a second revolution began in critical care.
Through a tumultuous series of debates, we recognized that
prolonging life ought not to be the sole goal of critical care. ICU
practitioners assumed ownership of acute care of the dying (2).
Excellence in family meetings, shared decision making, and
symptom palliation were recognized as core ICU competencies,
alongside resuscitation and ventilator management. This
second revolution argued that a well-organized approach can
provide a good death (or a good dying process) to those we
cannot save.

This decade, a third revolution is underway in critical care. It is
born of dissatisfaction with the simple dichotomization of alive
versus dead. It builds on our growing expertise in both resuscitation
and end-of-life care, but extends the ambition of the ICU to
helping patients thrive after surviving their critical illness. This third
revolution argues that a well-organized approach can help those

who survive critical illness live full new lives; lives not the same as
they were before, necessarily, but also not necessarily less.

Each revolution is unfinished, but no less important for that. Each
combines ambition, partnership, practice innovation, and science.
Helping each revolution are useful conceptual simplifications that
cognitively organized previously disparate problems and practices. In
the first revolution: “shock” (3), “resuscitation,” and “acute respiratory
distress syndrome” (4); in the second: a “good death” and “acute care
of the dying” (5).

The third revolution in critical care is still searching for that
grand simplification to help us improve survivorship. One area of
particular interest is those patients who linger in the ICU,
neither thriving nor dying (6). Although they comprise a minority
of those we serve, they may account for a disproportionate
number of bed-days and, given their emotional salience to many
clinicians, even more of our recalled experience of providing
ICU care.

Herridge and colleagues and the Canadian Critical Care Trials
Group began the RECOVER program in 2007 to study these
patients. In this issue of the Journal (pp. 831–844), they report that
they recruited ICU patients for 7 years, from 2007 through 2014, at
ICUs across Canada (7). They found 1,013 patients aged 16 years
and older who had been mechanically ventilated for at least 7 days
and were anticipated to survive at least another 24 hours, and
who were not in ICU with brain injury. (Other exclusions are
documented in Figure 1 of their article.) The 7-day mark was
chosen, it appears, on the basis of expert clinical judgment and
plausibility. Of the 534 participants enrolled, 398 survived the
ICU, and 391 survived the ICU by at least a week to become the
cohort.
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