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Abstract

Mammalian cell cultures are valuable for synthesis of therapeutic proteins and
antibodies. They are commonly cultivated in bioindustry in form of large-scale
suspension fed-batch cultures. The structure and regulatory responses of mammalian
cells are complex, making it challenging to model them for practical process
optimisation. The adjustable degrees of freedom in the cell cultures can be continuous
variables as well as binary-type variables. The binary-type variables may be irreversible
in cases such as cell-cycle arrest. The main aim of this study was to develop a general
model for mammalian cell cultures using extracellular variables and capturing major
changes in cellular responses between batch and fed-batch cultures. The model
development started with a simple model for a hybridoma cell culture using first-
principle equations. The growth kinetics was only linked to glucose and glutamine and
the cell population was divided into three cell-cycle phases to study the phenomenon of
cell-cycle arrest. But there were certain deficiencies in predicting growth rates in the
death phase in fed-batch cultures although it was successful to simultaneously optimise
a combination of continuous and binary-irreversible degrees of freedom. Thus, the
growth kinetics was further related to amino acids concentration and cellular responses
to high versus low concentration of glutamine and glucose based on a Chinese hamster
ovary cell-line where amino acids data were available. The model contained 192
parameters with 26 measured cell culture variables. Most of the sensitive parameters
were able to be identified using the Sobol' method of Global Sensitivity Analysis. The
model could capture the main trends of key variables and be used to search for the
optimal working range of the controllable variables. But uncertainties in the sensitive
model parameters caused non-negligible variations in the model-based optimisation
results. It is recommended to couple such off-line optimisation with on-line
measurements of a few major variables to tackle the real-time uncertain nature of the

complex cell culture system.
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Chapter 1

— Introduction and Objectives

1.1 Mammalian Cell Cultures in Bioindustry

Mammalian cell cultures take a wide range of forms depending on the cell types
and culturing methods. Some examples include adhesive tissue cells grown on 2-
dimensional plates or 3-dimensional scaffolds, cells encased in gel-like beads grown in
nutrient-rich solution, and suspension individual cells grown in well-mixed stirred-tank
reactors. The last method is commonly used in the bio-pharmaceutical industry to
produce antibodies and recombinant proteins from mammalian cell hosts on a large

scale.

A typical series of processes involved in the development of a new biological
drug is shown in Figure 0.1. Cells which have been made to be capable of producing
the product of interest (procedure dependent on products) are screened to select high
producers. Then the nutrient composition, i.e. media, of the cell culture is optimised to
enhance productivity by testing a wide selection of combinations. After that, the cell
culture is grown in larger bioreactors and further degrees of freedom, e.g. nutrient
supplementation time-profile, reactor operation mode (batch/fed-batch/continuous/
perfusion) etc., are decided. Finally, the bioreaction is scaled-up to produce the drug in

large quantity.
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Fig.1.1: Major steps involved in production of biopharmaceuticals using mammalian cell host.

The decisions made for most of the degrees of freedom are often fully dependent
on experiment results. For mammalian cell cultures which are expensive and grow
much slower than bacteria, heavy experimentation can significantly increase cost and
time to market. The overall market of recombinant DNA therapeutics, for example, is
projected to grow from US$41.7 billion in 2006 to US$52.2 billion in 2010 (Pavlou and
Reichert, 2004). With such a valuable market, there is much benefit in terms of profit
and efficiency if some of the selection steps can be done more rapidly at a lower cost.
The lab-scale bioreaction stage is a suitable candidate for computational simulations
since the well-agitated cell culture can be considered homogeneous and no major
changes in media composition is involved at this process development stage. However,
simulations are rarely used to model the biological dynamics of cell cultures in
bioindustry. The main reason is a lack of suitable mathematical models, which is

discussed in the next section.

1.2 Current Limitations in Cell Culture Simulations

Many mathematical models have been developed to describe a single biological
cell or an entire cell culture. The majority of the models are for bacterial systems due to
their simple nutritional demand, ease of growth, and less complex cellular structures.
Among those mammalian cell culture models, assumptions of sufficient availability of
essential amino acids are often made for model simplification purposes, so the models
cannot accurately predict cell culture dynamics when amino acids, which are excluded
in most of the models, are exhausted in the media. However, when a mammalian cell
model is trying to represent the biological complexity in great detail but the number of

model parameters far exceeds the number of practically measurable variables, there will
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be many possible sets of parameter values that can satisfy the experimental results so
that there is difficulty in estimating the true values of the parameters. Thus, there is
often a trade-off between the extent of biological detail in a model and the accuracy of

the estimated values of the model parameters.

Although modelling of biological systems has a long history, the development of
biological models applicable to real industrial processes is still in its infancy. Current
computational involvements in biological processes are in the areas of physical or
chemical property analysis, especially during scale-up of bioreactors. There is
significant potential for simulations of the biological properties of cell cultures to assist
understanding the cellular system and even to optimise it more efficiently. It is hoped
that the work from this thesis can provide a small contribution towards achieving such a

goal.



1.3 Thesis Aim and Objectives

The aim of this study is to develop an ir silico modelling platform to simulate
and optimise a lab-scale mammalian cell suspension culture producing biological drug.
In particular, the fact that some degrees of freedom encountered in mammalian cell
cultures are not continuous but are binary-irreversible or switch-like has been taken into
account during development of model structures and optimisation strategies. The

detailed objectives are as follows:

(1) To develop a simple first-principle dynamic mammalian (hybridoma cells)
suspension culture model which includes cell cycle distribution, and a strategy to
optimise two common degrees of freedom: nutrient supplementation time-profile and
cell cycle arresting time where the former is continuous and the latter 1s binary-

irreversible.

(2) To construct a tractable batch and fed-batch mammalian (CHO cells) suspension
culture model which includes amino acids essential for cell growth, which has so far
been neglected in most mammalian culture models due to the difficulty of amino acids
measurement and parameter values estimation. Secondary switch-like variables will be
introduced to model an ‘alternation’ in cell culture behaviours observed between batch

and fed-batch cultures.

(3) To develop a strategy for systematic estimation of model parameter values of a
complex non-linear biological model (CHO cells) with large degrees of freedom for

parameter values.

(4) To computationally optimise the supplementation time-profiles of two dominating
nutrients, glutamine and glucose, which affect the secondary switch-like variables in the
CHO cell suspension culture model developed in order to maximise drug yield. The

significance of parameter values uncertainty will also be analysed.



1.4 Chapters Outline

This thesis is divided into seven chapters. Chapter 2 presents certain
fundamental biological features related to this study and provides a literature review of
the practical concerns in biological drug production and existing mathematical cell
culture models. Chapter 3 develops a simple first-principle model for hybridoma cells
suspension culture producing monoclonal antibodies (MAbs) and applies a mixed-
integer dynamic optimisation (MIDO) algorithm to simultaneously optimise the nutrient
supplementation time-profile and cell cycle arresting time of fed-batch cultures.
Chapter 4 attempts to expand the first-principle model to include amino acids which
significantly affect growth of mammalian cells. Chinese Hamster Ovary (CHO) cells
producing interferon-gamma (IFNY) were used to provide experiment data. The CHO
cell culture exhibited an alteration in growth pattern when cultured under controlled low
concentrations of glutamine and glucose. This behaviour was simulated using two
secondary switch-like variables. In Chapter 5, the large number of model parameters of
the CHO cells model developed at the end Chapter 4 was estimated using a combination
of parameter isolation, parameter estimation using gPROMS (Process Systems
Enterprise Ltd., 2008), and Global Sensitivity Analysis (GSA). Optimisation of the
supplementation time-profiles of glutamine and glucose to maximise IFNY yield using
this model is presented in Chapter 6 with analysis of the possible effects of uncertainty
in sensitive parameters. Finally, overall conclusions and possible future work are

discussed in Chapter 7.



Chapter 2

— Background & Literature Review

2.1 Background

This section aims to provide an introduction for mammalian cells that is
important for the understanding of some biological concepts in subsequent chapters.
The cells involved in this work are only individual suspension cells that are non-
adherent to any surface or other cells, thus they do not form clusters. The internal
structure of mammalian cells is highly organised and the nutritional requirement is more
complex than other simpler organisms such as bacteria. In the following paragraphs, the
basic cell structure, growth requirements, cell division process, cell death mechanism,

and major types of drug products synthesised by mammalian cells are discussed.

2.1.1 Structure of the Mammalian Cell
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Figure 2.1: A eukaryotic cell showing major typical structures. (Source: Bergin 2008)



Mammalian cells are a type of eukaryotic cells. Eukaryotic cells possess a
membrane enclosed nucleus (Bailey and Ollis, 1986). Mammalian cells are one of the
most complex forms of eukaryotic cells with highly specialised internal compartments.
A general diagram of eukaryotic cell is shown in Figure 2.1. The only main difference
between mammalian cells and Figure 2.1 is the absence of flagellum in the former
which enables movement of single-cell organisms. The major internal elements in a
mammalian cell include the nucleus, mitochondria, peroxisomes, centrioles, lysosomes,
endoplasmic reticulum (ER), Golgi apparatus, ribosomes, microfilaments and
microtubules, and the plasma membrane. Below is a brief description of each element

according to Campbell and Smith (2000) and Alberts et al. (2002):

Nucleus: Contains DNA organized into separate chromosomes which consist of
chromatin (DNA-protein complex). The nuclear envelope has nuclear pores for transfer
of substances into and out of the nucleus. The nucleolus is the site for processing

ribosomal ribonucleic acids (RNAs) and their assembly into ribosomes.

Mitochondrion: Contains a small amount of mitochondrial DNA. The mitochondrion is
responsible for production of adenosine triphosphate (ATP). It consists of an outer and
inner membrane. The inner membrane is highly folded to increase surface area for
exchange of substances. The mitochondrion is also involved in catabolism of fatty acids

and controlling calcium level in the cell.

Peroxisome: Contains oxidative enzymes to eliminate hydrogen peroxide produced by

fatty acid oxidation and free radicals or to oxidise other toxic molecules.

Centrioles: Responsible for organisation of cellular elements including the nucleus

during cell duplication.

Lysosome: Contains proteolytic enzymes for controlled digestion of macromolecules,

e.g. obsolete cellular parts and macromolecules taken up from extracellular fluid.

Endoplasmic Reticullum (ER): A network of membranes which can be further
classified into rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum
(SER). The RER bears ribosomes on the surface for protein synthesis. The SER is

responsible for synthesis of complex lipids and control of calcium ion concentration.

Golgi apparatus: Responsible for further addition of carbohydrates to proteins after
they have been synthesised in the ER and subsequent transport of proteins to their final

destinations.



Ribosome: A large and complex structure containing proteins, RNA, and magnesium

ions. It is responsible for synthesis of polypeptides.

Microfilaments and Microtubules: Part of a lattice structure providing structural

support to the cell.

Plasma Membrane: Made up of double-layer lipids. It contains various surface

receptors and is responsible for selective transport of substances across the cell.

Within the complex cellular structure, a large number of reactions take place to
convert nufrients into energy, proteins, enzymes, cell mass etc. and break down or
excrete unwanted molecules in order to maintain survival of the cells. In mathematical
modelling of mammalian cells, simplification is often necessary to overcome the
bottleneck of incomplete biological knowledge and the impossibility to measure all

molecules within the system unless only a small part of the cell is considered.

2.1.2 Nutritional Requirement of Mammalian Cells

A typical medium for cultivation of mammalian cells mainly contains glucose,
glutamine, other amino acids, salts, and vitamins (Alberts et al.,, 2002). Penicillin-
streptomycin and phenol red are also added to prevent bacterial contamination and
indicate pH respectively. Serum is often used to stimulate cell growth but there is a
gradual preference to exclude it from the medium because it is chemically undefined, its
quality varies depending on its source, and it could be a source of virus contamination
(Keay, 1978; Spier 1997; Jayme and Smith, 2000; Birch and Racher, 2006).
Mammalian cells have a narrow pH tolerance around about pH7 beyond which the cell
viability would be significantly affected. For example, a hybridoma cell-line studied by
Miller et al. (1988) had an optimum pH of 7.1 — 7.4. The standard cultivation
temperature and air composition is 37°C and 5% CO, (Alberts et al., 2002). Many
modelling studies have focused on glucose, glutamine, and sometimes other amino
acids because they are the major sources of energy and cell mass (Bree and Dhurjati,
1988; Batt and Kompala, 1989; Dalili et al., 1990; Duval et al., 1991; Lourenco da Silva
et al., 1996; Jang and Barford, 2000a,b; Simon and Karim, 2002; Provost and Bastin,
2004). Other cell culture variables have also been studied: temperature (Laszlo and Li,

1985; Hahn and Shiu, 1985; Abravaya et al., 1991; Fox et al., 2004), pH (Osman et al.,
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2001), osmotic stress (Oh et al., 1993; Wu et al., 2004), and shear stress (Frangos et al.,
1988; Kretzmer and Schugerl, 1991).

2.1.3 Cell-Cycle

Go

S

Figure 2.2: Illustration of the major phases in fnammalian cell-cycle.

The growth of mammalian cells can be divided into several stages: Gy, S, Gy,
and M (Alberts et al., 2002). In the G; phase, enzymes for DNA replication are being
synthesised. When the cell is ready to initiate DNA replication, it enters the S phase
where the chromosomes are duplicated. In the G, phase, the cell is preparing for cell
division and necessary proteins including microtubules are being synthesised. The cell
is separated into two daughter cells in the M (mitosis) phase, after which they either
enter G; phase or a specialised resting state known as Gy. Cells in the Gy phase do not
participate in cell growth. The cycle contains two restriction points: one at the end of the
G phase which decides whether to replicate its DNA, and another one at the end of the
G» phase which decides whether to initiate mitosis (Pardee, 1974; Campbell and Smith,
2000). An illustration of cell-cycle for mammalian cells is shown in Figure 2.2. Further
details about the relationship between cell-cycle and productivity can be found in

Chapter 3.



2.1.4 Apoptosis

Cell death in mammalian cell cultures is caused predominantly by a mechanism
known as apoptosis or programmed cell death (Moore et al., 1995; Goswami et al.,
1999). The definition of apoptosis aims to exclude cell death that results from external
agents such as toxins which cause cells to swell and burst by a process called necrosis
(Campbell and Smith, 2000). Apoptosis is controlled by a set of pathways shown in
Figure 2.3 (Rowe and Chuang, 2004). There are three pathways that regulate cell fate:

extrinsic, intrinsic, and cell survival pathways.

a Extrinsic b Intrinsic ¢ Cell survival

e | Celksurface receptors |
Death-inducing p53

signalling complex l / \
FasL PI3K/Akt MEK/ERK
e -
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/ |L.|
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v

' Eﬁector caspases W '
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Figure 2.3: An overview of cellular pathways regulating apoptosis (Rowe and Chuang, 2004).

The extrinsic pathway is induced when death receptors on the cell surface, e.g.
Fas, are triggered. Binding of a ligand (FasL) to Fas results in binding of the cytosolic
death domain of the receptor to an adaptor protein (FADD) containing a death domain

which subsequently activates the effector caspases for apoptosis. The intrinsic pathway
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senses the integrity of the mitochondria, which is maintained by the Bcl-2 family
containing pro-apoptotic and anti-apoptotic members. The ratio of the pro- and anti-
apoptotic Bcl-2 family members is regulated by molecules including p53. If the ratio of
the Bcl-2 family members tips towards the pro-apoptotic side, the mitochondria’s
membrane integrity decreases and the pro-apoptotic factors, such as cytochrome c, are
released which eventually initiate apoptosis. The cell-survival pathway starts with the
activation of cell-surface receptors such as TrkB by growth factors. The anti-apoptotic
pathways including PI3K/Akt and MEK/ERK are then activated to suppress the intrinsic
pathway (Rowe and Chuang, 2004). Such detailed understanding of the apoptotic
pathways, however, does not enable the apoptotic mechanism to be modelled easily
from the fundamental level because the candidates involved in the apoptotic pathways
are highly connected to other genetic/metabolic networks in the cell. As a result, models
that aim to describe cell death behaviour of mammalian cells without involving the
highly interconnected cellular signalling networks would make use of extracellular
variables such as nutrient and by-product concentrations. Although such methods
sacrifice certain details at the molecular level, it is often more applicable for analysis

and optimisation of industrial bioreactors.

2.1.5 Antibodies & Recombinant Proteins

Antibodies are produced by lymphocytes or spleen cells upon detection of
antigens. These cells normally have a limited life-span in cell culture (Alberts et al.,
2002). Kohler and Milstein (1975) derived stable antibody-producing cell-lines known
as hybridomas by fusion of a mouse myeloma (immortalised cancerous lymphocyte)
and mouse spleen cells from an immunised donor. The antibodies produced by a
hybridoma cell-line are identical because they are clones of a single parent cell. Thus,
the product is also called monoclonal antibodies (MAb). The method of producing
hybridoma cell-lines has been widely used for synthesis of antibodies (James and Bell,
1987). Alternatively, antibodies can also be produced using recombinant technology

described below (Birch and Racher, 2006).

Proteins with therapeutic applications can be expressed in mammalian cells by
transfecting the cells with vectors, such as non-pathogenic viruses and lipid reagents

(Makrides, 2003; Masson et al., 2003), that contain the DNA sequence of the
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therapeutic proteins (Andersen and Krummen, 2002; Wurm, 2004). An example from
this study 1s interferon-y (IFNY) which is normally produced by T-cells or lymphocytes
in humans. Its gene sequence is inserted (or ‘recombined’) into the genes of Chinese
Hamster Ovary (CHO) cells, one of the most widely used mammalian cell-lines for
therapeutic protein production (Werner et al.,, 1992; Chu and Robinson, 2001;
Kaufmann, H. and Fussenegger, 2003), and this gives rise to the name ‘recombinant
protein’. Recombinant proteins are produced in mammalian cells in the same way as
other cellular proteins except that they are not needed for normal functions of the cells

and would be secreted to the extra-cellular medium (Campbell and Smith, 2000).

Both monoclonal antibodies and recombinant therapeutic proteins are valuable
drug products. Monoclonal antibodies have a global market that is predicted to increase
from US$5.4 billion in 2002 to US$16.7 billion in 2008 (Reichert and Pavlou, 2004;
Pavlou and Belsey, 2005). Similarly, recombinant DNA therapeutics has a projected
increase in market value from US$41.7 billion in 2006 to US$52.2 billion in 2010
(Pavlou and Reichert, 2004). Thus, there is a high incentive among the bioindustry and
academic research groups to improve production efficiency and reduce costs. In this
research, it was intended to enhance the understanding of cell culture dynamics and
efficiency of selection of nutrient supplementation time-profiles and/or cell-cycle arrest
time using mathematical modelling. A review of cell culture processes and modelling
approaches is presented in next chapter followed by discussion of model developments
for a hybridoma cell-line producing monoclonal antibodies and a Chinese Hamster

Ovary (CHO) cell-line producing IFNY.
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2.2 Literature Review

2.2.1 Cell Hosts & Bioreactors for Synthesis of Biopharmaceuticals

Possible Hosts for Biopharmaceuticals

Biological drugs can be produced by mammalian cell cultures as well as bacteria,
filamentous fungi, yeast, insect cells, transgenic plants, and transgenic animals (Verma
et al., 1998; Makrides and Prentice, 2003). The major advantages of mammalian cell
cultures over most other hosts are proper folding of proteins, high quality glycosylation
(an enzymatic process linking saccharides to proteins/lipids to give characteristic
biochemical and biophysical properties/functions), and extensive post-translational
modifications (Electricwala, 1992; Verma et al., 1998; Makrides and Prentice, 2003;
Stoger et al., 2003; Wurm, 2004).

Bacteria and filamentous fungi grow much faster with lower costs than
mammalian cells but they lack certain glycosylation or post-translational machinery and
the protein folding are often incorrect (Marino, 1989; Verma et al., 1998; Joosten et al.,
2003; Ma et al., 2003). Yeast has a more advanced protein folding mechanism than
bacteria and, apart from sharing the low cost attractiveness as bacteria, is capable of
glycosylation of proteins. But its glycosylation is not the same as those found in
mammalian cells (Kukuruzinska et al., 1987). Insect cells are able to produce
functionally active drug products (zu Putlitz et al., 1990; Maeda, 1989). However, insect
cells are incapable of carrying out complex forms of glycosylation as in mammalian
cells (Kuroda et al., 1986; Marino, 1989; Verma et al., 1998; Ma et al., 2003).
Transgenic plants have advantages in terms of low production costs, high scale-up
capacity, good product quality, and low risk of virus contamination (Ma et al., 2003;
Stoger et al., 2003). But the glycosylation structures provided by transgenic plants have
minor differences when compared with mammalian cells and this could potentially
change the activity of the product (Ma et al., 2003). Transgenic animals are the most
similar hosts to mammalian cell cultures. The animals involved are mainly
mouse/livestock and there is a longer production timescale than mammalian cell
cultures due to the slow animal growth (Echelard and Meade, 2003; Ma et al., 2003).

But the use of transgenic animals is still a relatively new technology. Until now,
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mammalian cell cultures remain a popular and well established method in the

bioindustry (Chu and Robinson, 2001; Joosten et al., 2003; Wurm, 2004).

Fed-batch Processes versus Batch & Perfusion

There are many possible methods to run suspension cell cultures. Some basic
modes include batch, fed-batch, continuous, and perfusion stirred tank bioreactors.
Other more complex bioreactors such as dialysis membrane, hollow fibre,
electrophoretic bioreactor etc. had also been used for cell culture studies (Portner et al.,
1994; Chang et al., 1995; Mancuso et al., 1998; Schwabe et al., 1999; Frahm et al.,
2003). Perfusion and hollow fibre bioreactors are able to achieve higher cell yield and
product concentration than batch/ fed-batch cultures (Stoll et al., 1995; Yang et al., 2000;
Kretzmer, 2002). Continuous culture is similar to perfusion except the cells in the outlet
stream are not retained in the continuous mode. Thus, continuous culture is not popular
for mass production of therapeutic proteins/ antibodies due to significant cell loss.
Perfusion is sometimes referred to as a continuous process based on the continuous inlet
and outlet streams which should not be confused with the continuous operation mode
discussed above. Dialysis membrane and electrophoretic bioreactor allow selective
removal of metabolic byproducts which are toxic to cell cultures so the productive time

can be extended (Chang et al., 1995; Frahm et al., 2003).

Despite the fact that batch and fed-batch cell cultures yield a relatively lower
cell density and product concentration, there are several reasons making them more
favourable in therapeutics production. Contamination, process consistency, length of
process validation, and reactor down time are key factors affecting the quality of
product, production costs, and time to market (Werner et al., 1992; Xie and Wang,
1997). The most frequent sources of contamination are the media supply and sampling
system (Werner et al., 1992). Thus, the contamination risk is relatively lowest in batch
cultures and, due to simplicity in the process control, there is high consistency in the
process output and flexibility for implementation in multipurpose facilities (Xie and
Wang, 1997; Kretzmer, 2002). Fed-batch cultures share most of the advantages of batch
cultures plus higher cell and product yields because of nutrient supplementation so they
are more attractive when compared to batch cultures (Bibila and Robinson 1995). As all

bioprocesses must have their identity, purity, safety, genetic stability, and productivity
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characterized and validated within and beyond the fixed production time scale,
perfusion bioreactors are more expensive and time consuming to be licensed for
production (Werner et al., 1992; Kretzmer, 2002). In terms of reactor down time for
maintenance and decontamination, perfusion system and other more complex
bioreactors require much longer period than batch/ fed-batch bioreactors. Together with
the concern that transformed cell-lines might show genetic instability in long-term
cultures due to possible variations in their chromosomes (Werner et al., 1992), batch
and fed-batch processes are the most widely used modes in the bioindustry (Bibila and
Robinson 1995; Xie and Wang, 1997; Birch and Racher, 2006; Whitford 2006). As fed-
batch cultures enjoy higher yields than batch cultures, the former is an important and

interesting area for process optimisation studies.

2.2.2 Modelling Mammalian, Yeast, and Microbial Cell Cultures

2.2.2.1 Modelling Bacterial and Yeast Cells

Due to the relative simplicity of the structure of bacterial cells among all other
living organisms, bacteria were those early candidates to be modelled mathematically.
Models that focused on the genetic regulations of bacteria commonly assumed the rate-
limiting step was at the transcriptional level where activated genes were copied into
mRNAs (McAdams and Arkin, 1998) although there were suggestions that the
translational level, where the mRNA ‘templates’ were used to synthesize proteins, or
mRNA/ protein degradation had a stronger regulation over the activity of the gene
products (Neidhardt et al., 1990; Moat et al., 2002). In order to build a genetic model, it
is necessary to know much detail about the connectivity in the gene network. The
activities of gene had been modelled using Boolean (on/off) algebra. For example,
Kauffman (1974) studied the lactose (lac) operator of Escherichia coli (E. coli) and
examined the response of the operator to saturating/minimum concentrations of its
controlling molecular variables. Since a repressor is bound to the operator only when
another substance, allolactose, is absent, ‘O’ was used for the unbounded state and ‘1’

for the bounded state of the operator.

Lee and Bailey (1984a, 1984b) described quantitatively the regulation of
expression of the lac operon and lac promoter-operator function in E. coli. The model
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was genetically structured such that a nucleotide sequence change affecting
transcription initiation at the lac promoter-operator would influence one or few
corresponding model parameters. Such model incorporated a translational efficiency
factor to account for translational control. A different way of genetic modelling was
described by Collado-Vides (1989) that a ‘language’ known as transformational-
grammar approach was used to describe the genome organization and regulation of gene
expression. But this approach did not gain as much popularity as other mathematical

methods because it was not directly usable for prediction purposes.

Genetic regulation had also been modelled as a circuit. The most typical
example is bacterial phage-A which is a virus that infects bacteria which was modelled
using a combination of differential algebraic equations and on/off logic gates (Reinitz
and Vaisnys, 1990; Chung and Stephanopoulos, 1996; McAdams and Shapiro, 1995).
Genetic circuit can be combined with Boolean logic to form a Boolean threshold logic
paradigm (Thieffry and Thomas, 1995; Thomas, 1973; Thomas, 1991; Thomas et al.,
1995; Prokudina et al., 1991; Tchuraev, 1991). The modelling equation has a general

form as:

Xi = ko F (X, Xy X, ) = kX, 2.1)

where x; is the concentration of the i-th protein species, k; is the rate of protein
production when the gene type i is ‘on’, and k; is the degradation rate constant for
protein type i. F; represent step-functions, assumed to equal ‘0’ or ‘1’ depending on the
concentration of x; relative to threshold values determined by the kinetics of the

promoter sites. More details were discussed by McAdams and Arkin (1998).

With the accumulation of knowledge about the interactions between nutrient
concentrations and genetic expressions for bacteria, genetic models of bacterial
metabolisms could be formulated with greater details. Kremling and coworkers
(Kremling et al., 2000; Kremling and Gilles, 2001a; Kremling et al., 2001b) proposed a
decomposition of complex metabolic networks into manageable smaller functional units
based on three criteria: (1) common physiological task; (2) common genetic units; (3)
and common signal transduction network. In each functional unit, metabolic pathways
were divided into a metabolic and a genetic regulatory sub-network. The regulatory
network described the local signal transduction in the unit and the biosynthesis of the

specific enzymes, while the metabolic network described the metabolic flux affected by
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enzyme-catalyzed reactions. Such approach has been applied to E. coli’s glucose and
lactose metabolism (Kremling et al., 2001b), sucrose and glycerol metabolism (Wang et
al., 2001), and tryptophan biosynthesis (Schmid et al., 2004). Modelling of
transcriptional and translational regulations often make use of algebraic and ordinary
differential equations (Axe and Bailey, 1994; Laffend and Shuler, 1994a) although it is
also possible to use stochastic simulation to capture the randomness in gene networks.
Common computational methods for modelling genetic regulatory systems have been
reviewed in details from the use of binary logic to differential algebraic equations and
stochastic kinetics (McAdams 1998; Hasty et al., 2001). The choice of method is
dependent on the level of knowledge of the gene network and the type of prediction

required from the model.

2.2.2.1.1 Genetic Network Inference

As bacterial systems are studied experimentally at the genetic level, it is important
to understand how the genes are related to each other. There are various ways to infer
the genetic network connectivity from gene expression data. Some common methods
are discussed in the following paragraphs. The interconnections among genes are
commonly estimated from changes in gene expression level upon introduction of
disturbances, e.g. gene over-expression, gene deletion, change in cell culture conditions
etc. Depending on the number of genes involved in the system, the scale of gene
network inference can range from an order of 10 to 10,000. It is important to be aware
that genes are not only regulated by other genes, but also proteins and other factors in
many cases. Thus, the gene network alone is insufficient though valuable for
understanding the entire mechanism of the genetic regulation. Below is a summary of
common methods for inference of gene connectivity with a couple of literature

examples for each method.

Steady-State vs. Transient-State Gene Expression after Perturbation:

When a perturbation is introduced into a gene network, the change in gene
expression can be measured at transient-state or steady-state. Tegner et al. (2003)
identified a simple network topology by analyzing the steady-state changes in gene

expression resulting from the systematic perturbation of a particular node in the
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network. The perturbations were delivered around a steady-state so that the
network dynamics could be projected onto a general linear mapping model. The

linearised mapping model for gene x; around a steady-state a; was:

i
i

=—Y.(x;—a)+[w,(x, —a)+w,(x, —a,) +..+w, (xy—a)+F ,i=1...N

(2.2)
where 7; was the time-scale; N was the total number of genes; % was the
degradation rate of the i-th mRNA; w; was the effective gene-to-gene coupling
coefficient between the i-th and j-th genes; P; was a ramp function representing the
perturbation. At steady-state, the above equation became:

O=w' (x,—a)+w, (x,—a,)+..+w, (xy, —ay) (2.3)

where % and w;; were combined into w’j;, leaving only N’ unknown parameters. It
was further assumed that cellular networks had a sparse topology which would
make some w’; to be zero. This constraint reduced the search space and the

number of computations since N was replaced by k. where Kipax << N.

A similar method for construction of a first-order gene and protein regulatory
network using only steady-state expression measurements was discussed by
Gardner et al. (2003). The use of steady-state gene expression avoids/minimizes
the complication of noise which would be maximal at transient-state. But for very

large networks, the required number of perturbation can still be unfeasibly huge.

Hoon et al. (2002) suggested fitting a linear system of differential equations to
the transient-state gene expression data to infer the gene network. The approach
was similar to that above, except the differential terms were non-zero and were
estimated from transient-state data. They also proposed a formal way of estimating
the non-zero coefficients by using Akaike’s Information Criterion which took into
account the number of estimated parameters and the likelihood of the estimated
model. Transient-state gene expression data potentially contains rich information
of gene interactions, though it shares a similar disadvantage as above for large
networks. The decision between steady-state and transient-state data is likely to be

based on the nature of specific experiments.

MacCarthy et al. (2005) used a simple enumerative reconstruction method based

on a discrete dynamic system model to study how microarray experiments
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involving global perturbations could be designed to obtain reasonably accurate
gene network reconstructions. The method was tested on artificial gene networks
with biologically realistic in/out characteristics. For a system of N genes, the state
of each gene s; (i = 1, ..., N) was represented by binary values O(OFF) and 1(ON).
Each gene state was assigned a default ON/OFF state 6; € [0,1]. The gene
interactions were described by an N x N matrix C, where C; € [-1, 0, +1],
representing positive[+1], zero[0] or negative[-1] influence of gene j on gene i. The
state of the i-th gene at the next time-step was determined by a balance of positive
versus negative inputs which were ON at the previous time-step. Discrete model
has an advantage over continuous model that integer computation is faster than
floating point computation. However, the description of gene states being discrete

may not well represent the continuous nature of gene expression in many cases.

Singular Value Decomposition:

Singular value decomposition (SVD) aims at reverse-engineering the gene
network connectivity based on gene transcription data via matrix transformation
(Alter et al., 2000; Holter et al., 2001). Yeung et al. (2002) discussed in details a
scheme to reverse-engineer gene networks on a genome-wide scale using a
relatively small amount of gene expression data from microarray experiments.
They used SVD supplemented by extra conditions based on biological knowledge
to construct a family of candidate solutions and then used robust regression to
identify the solution with the smallest number of connections as the most likely
solution. Such algorithm had an order of log(N) sampling complexity but an order

of N* computational complexity, where N is the number of genes.

Firstly, SVD was used to construct a set of feasible solutions that are consistent
with the measured data and then use robust regression to select the sparsest one as
the solution. E.g. for a system operating near steady-state where the dynamics

could be approximated by a linear system of ordinary differential equations:
i

xi (1) =-Ax (t)+iW.,xj O+b@)+<& @) Jfori=1,2,..,.N. (2.4)

where x; was the concentration of the i-th mRNA, A; was the self-degradation rates,
b; was the external stimuli, and & represented noise. The matrix element, W ,

consisted of real numbers that described the type and strength of the influence of
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the jth gene on the i-th gene, with a positive sign for activation and negative sign
for repression. Then in experiment, a prescribed stimulus (b;, b, ..., bN)T was
applied and the concentrations of all N different mRNAs were measured. After

repeating the procedure for M times, the results could be tabulated as:

1 2 M
X, X, - X
1 2 M
X X . X
— 2 2 2
XNxM - . . . . (25)
1 2 M
Xy Xy o Xy

The original equation could be rewritten as: X wtt = Ayyy X yopy + B where

NXM “% NxM NxM >
the noise was neglected and the self-degradation rate was absorbed into W , i.e. A;

= W;; - 6;4;; . The goal of the reverse engineering was to use the measured data B, X,

and X to deduce A and hence W. Because SVD leads to non-unique solutions,
additional constraints were needed to isolate the true solution from the entire
family of solutions. These constraints may come from knowledge of the biological

system.

Singular value decomposition offers a way to infer complex gene networks from
a reasonably small number of samples. But the order of computational complexity

increases exponentially as networks become large.

Clustering:

Clustering is a method that groups together genes with similar expression
patterns over time. This approach is likely (though not always) to group genes that
specialize on certain cellular functions of interest. It is useful in uncovering the
function of novel genes when they are co-expressed with genes functionally known
(Eisen et al., 1998; Tamayo et al., 1999; Tavazoie et al., 1999). Many different
clustering methods has been suggested and the choice depends on how the results
are to be used (D'haeseleer et al., 2000; Herrero et al., 2003). For data that
naturally falls into distinct groups and is well separated, all clustering methods
produce the same gene clusters. But if the data is more uniformly distributed, each

algorithm places the cluster boundaries differently (Bittner et al., 1999).
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Genetic Algorithm and Genetic Programming:

Genetic algorithm optimises model parameters of a pre-defined set of equations
that generate an expression pattern that is most similar to the given experimental
results (Iba and Mimura, 2002; Pan et al., 2002). It can be used, for instance, to
optimise parameters of enzymatic regulation in a model of metabolic network
based on an objective (Gilman and Ross, 1995) or to select the optimal parameter
values to describe experiment data of a genetic model. For example, if a system

could be described by a set of differential equations of the following form (Ando et

al., 2002):

dX L 4 4 i

_cl_l:aiHXjU_'BiHX;U i=1,2,..,0 (2.6)
! j=l j=1

which is an S-system (a type of power-law formalism) where X; was a state
variable. The first term on the right represented all influences that increased X;; the
second term represented all the influences that decreased X;. Then genetic

algorithm could be used to optimise the unknown parameters ¢, 53, g;. and h;;.

Genetic programming is an extension of genetic algorithm. The improvement in
genetic programming is that no pre-defined set of system equations is needed to
start with (Sugimoto et al., 2005; Koza, 1994). Instead, state variables are selected
randomly to fit experimentally observed results. As an example, let’s consider the
following general form (Ando et al., 2002):

%:fi(Xl,Xz,...,X”) ,i=1,2,...n (2.7)

where X; was the state variable and n was the number of observable components.

Genetic programming could then evolve the differential equations from the
observed time series of the state variables. Although genetic programming is
effective in finding the suitable structure, it is sometimes difficult to optimise the
parameters, such as constants or coefficients of the polynomials. This is because
the ordinary genetic programming simply uses randomly generated constants. To

overcome such difficulty, Ando et al. (2002) introduced a least mean square
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method to improve selection of model candidates based on the least mean square

fitness of each model to the experimental data.

Styczynski and Stephanopoulos (2005) commented on genetic algorithm as
being initialization-dependent and thus potentially unreliable for determining a
final network structure, but served as an excellent purpose for algorithms that need
a few strong candidates. Genetic programming, being an improved version of
genetic algorithm, requires all relevant state variables of a system to be known in
order to generate a true model of the system. For large networks, the presence of
unknown state variables is unavoidable; and the large number of state variables

involved is like to affect the computational efficiency.

There are also other gene network identification methods such as the ensemble
method used by Battogtokh et al. (2002) which identified an ensemble of models
consistent with, and constrained by, the available RNA and protein profiling data based
on Monte Carlo simulation techniques. The idea behind such method was the fact that
biologically realistic models are often parameter rich and data poor even with the advent
of RNA and protein profiling. It was applied in a chemical reaction network responsible
for regulation of a gene cluster in bread mould and successfully identified an ensemble
of models fitting available RNA profiling data of the gene cluster. The applicability of
this method for other organisms would depend on the simulation complexity involved if
all possible models that would fit the data have to be explored. Hoon et al., (2002) used
differential equations and the Akaike’s Information Criterion (a method for
determination of network sparseness) to infer gene regulatory networks from gene

expression data.

With the availability of DNA arrays and computational analysis, much progress
have been made towards understanding the genetic networks of simple organisms,
especially for yeast (Cho et al., 1998; Spellman et al., 1998; Ogawa et al., 2000; Kel et
al., 2001; Guelzim et al., 2002; Lee et al., 2002; Wang et al., 2002). For example, Wang
et al. (2002) analyzed yeast cell gene expression profiling under various environmental
and genetic perturbations and were able to construct transcription modules with good
predictions. Cho et al. (1998) found in budding yeast that 416 out of 6220 monitored
mRNA had cell cycle-dependent periodicity. Spellman et al. (1998) identified 800 yeast

genes that were related to cell-cycle regulation and found that more than half of them

29

oy



responded to G1 cyclin Cin3p or B-type cyclin Clb2p. Guelzim et al. (2002)
summarized 909 genetic or biochemical interactions among 491 yeast genes based on
available databases and an earlier work by Svetlov and Cooper (1995). Kel et al. (2001)
created a program to locate binding sites of transcription factors of the E2F family
which are key regulators of cell cycle (for eukaryotic organisms) and some new E2F
target genes were successfully identified. The fact that many studies has focused on
yeast cells is related to the availability of microarray chips for gene expression analysis
of yeast. Developments in DNA microarray technology will enable similar studies to be

carried out on more complex organisms.

A general feature of all the genetic modelling methods mentioned so far is that all
of them described a small part of the virus/bacteria. Application for an entire cell would
only be possible when all the connectivity details in the whole genome are well
understood. Insufficient current biological knowledge at the genetic control of an entire

cell is a bottleneck for immediate application of such approach to a whole-cell level.

2.2.2.1.2 Metabolic Modelling of Bacterial/Yeast Cells

Monod-Type Models

Not all bacterial cell culture models were directed towards the genetic level. The
overall growth and metabolic activities of bacterial cells are more suitably modelled
using variables that can be easily measured in the cell cultures. A common structure of
bacterial growth kinetics is named after Monod (1949) who proposed a first order
saturation relationship between the growth rate and concentration of a single nutrient:

C

R=R,: 2.8
K +C (2-8)

where R is the growth rate, C is the concentration of nutrient, Ry is the rate limit for
increasing concentrations of C, C; is the concentration of nutrient at which the rate is

half of the maximum.
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Inhibition Models

Inhibition relationship between specific growth rate and concentration of nutrient
has been applied in bacterial suspension cell cultures with a single nutrient source (Aiba
et al., 1968; Jackson and Edwards, 1975; Tan et al., 1996; Canovas et al., 2002). In
bacterial cell cultures, inhibitions of growth by the biomass concentration and
sometimes product concentration have been observed (Aiba et al., 1968; O’Neil and
Lyberatos, 1990). For example, O’Neil and Lyberatos (1990) used three types of

biomass inhibition model for a continuous yeast culture:

Contois model: u = Fn S (2.9)
B-x+s
Competitive inhibition model: u S (2.10)
P ' B-x+C+s '
PR A-s
Non-competitive inhibition type model: f=—#6"—— (2.11)

(B+35)-(C+x)
where 4, : maximum specific growth rate
M specific growth rate
s : residual substrate concentration
x : biomass concentration

A, B, C: model parameters

An example of product inhibition is shown below for a yeast culture producing
ethanol from glucose (Aiba et al., 1968):

. S
— .ex 'Lu‘i’, 2]2
K= Ho-exp K,+S (212)

where p : ethanol (product) concentration
S : glucose concentration
My : specific growth rate when p=0
M - specific growth rate
k; : empirical exponent

K, : saturation constant
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Some growth kinetics of bacterial cultures involves a nutrient inhibition term at
high concentrations. A commonly used substrate inhibition kinetics takes the following

form (Andrews et al., 1968):

P

-~ 2.13
="K s 213)
1+—+—
s K.

I

where [ : maximum specific growth rate
M specific growth rate
S : limiting substrate
K, : saturation constant

K;: inhibition constant

The specific growth rate in bacterial cultures has also been modelled as
proportional to the nutrient transport rate (Kremling et al., 2001b). Bailey and Ollis
(1986) have provided a detailed introduction of various equations for biomass

production in bacterial and yeast cell cultures.

Metabolic Flux Analysis

As cell metabolism is controlled by gene expression, small metabolic networks
such as the central carbohydrate metabolism and amino acid synthesis have been
modelled dynamically with connection to the genetic regulation (Kremling and Gilles,
2001; Schmid et al., 2004). But dynamic simulations (involving the time-differential of
variables) are limited to small networks where the kinetic relationship among the
variables has been characterised. For genome-scale metabolic networks, most of the
existing models make use of steady-state assumption to avoid the use of un-
characterised kinetic equations. The metabolites are connected in the model using linear
stoichiometric relations or Michalis-Menten-type equations and their concentrations
(which are not measured) are assumed to be independent of time. The main focus of
those models is the flux of metabolites in all of the metabolic reactions. Thus they are
known as flux balance analysis (FBA) or metabolic flux analysis (MFA) (Christensen
and Nielsen, 1999). MFA has been used to interpret the reconstructed metabolic
network of numerous bacteria including E. coli, yeast, and Haemophilus influenzae

(Pramanik and Keasling, 1997; Schilling et al.,, 1999; Edwards and Palsson, 2000;
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Schilling and Palsson, 2000; Covert et al., 2001; Edwards et al., 2001; Papin et al., 2002;
Schuster et al., 2002; Allen and Palsson, 2003; Famili and Palsson, 2003; Fong et al.,
2003; Forster et al., 2003; Price et al., 2003; Duarte et al., 2004; Herrgard et al., 2004;
Papin et al., 2004a; Papin et al., 2004b; Shimizu 2004; Riascos et al., 2005; Puchalka et
al., 2008). It can qualitatively estimate the metabolic network properties, such as the
growth potential of mutant bacterial strains (Edwards and Palsson, 2000) and potential
gene knock-out targets for metabolic flux improvement (Puchalka et al., 2008). MFA

can also be applied on signal transduction networks (Papin and Palsson, 2004).

Single-Cell Models

Models describing the detailed metabolic kinetics of an entire bacterial cell have
been studied (Shuler et al., 1979; Domach et al., 1983; Peretti and Bailey, 1986; Jeong
and Ataai, 1990; Jeong et al., 1990). For instance, Shuler et al. (1979) modelled the
dynamic details of protein synthesis, degradation, transportation, and metabolite
conversion and transport in Escherichia coli cells. The cell content was grouped into
five main categories (protein, RNA, DNA, cell envelope, and glycogen) each having its
precursors (amino acids, ribonucleotides, deoxyribonucleotides, cell envelope
precursors, and glucose). Most of the rate kinetics were assumed to be Monod-type. The
model was able to describe known phenomenon of the cell culture but the values of
many kinetic parameters could not be estimated with high confidence. There appears to
be a trade-off between the complexity of cell culture models and the confidence level of
parameter values. Thus, many cell culture models tend to simplify the cell system using

various assumptions in order to reduce the difficulty in parameter estimation.

S-system Models

When the cell culture is operated at steady-states, it is often possible to simplify the
kinetic equations of growth and metabolism. A popular choice of equation is the S-
system which makes use of power-law model structure (Kitayama et al., 2006). As
discussed earlier in Genetic Algorithm (Equation 2.6), S-system represents the rate of
change of a variable (X)) in terms of the multiple of factors causing an increase in X; less
the multiple of factors causing a decrease in X;. In the equation below, ¢; and f; are

positive real coefficients; g;, and h;; are the exponentials of the factors affecting X;.
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dX. Yty Tk
—dt—'=“iHXf”‘ﬁfHX?” ,i=1,2,...,n (2.14)
i=1 =l

Below is an example of growth kinetics for Escherichia coli perfusion cell culture
using S-system equation (Alvarez-Vasquez et al., 2002):

Ex WHomaxg

lu = a4 ) GgXIG .lumaxg (215)

where u: specific growth rate
G : glycerol concentration
X : biomass concentration

Mmaxg - Maximum anaerobic specific growth rate
But for cell cultures that do not reach steady-state, e.g. batch and fed-batch

cultures, S-system is a less appropriate choice as its approximation is likely to miss out

certain cell culture dynamics.

Cybernetic Modelling

A new approach of modelling genetic regulation via replacing genetic expression
terms by ‘cybernetic’ variables has been described by Varner and Ramkrishna (1999a;
1999b). It was postulated that metabolic network had physiological objectives; and
genetic alteration did not alter the presumed goals of the genetic network which are in
place because of millions of years of evolutionary pressure. This approach was
originally —used to model genetic regulation of nutrients uptake
(substitutable/complementary) of bacteria assuming such organisms had a goal to

maximize growth. For example:

(i) The elementary cybernetic variable that governs the allocation of critical
resources for enzyme synthesis for a substitutable process follows from the
matching law and is given functionally by:

’ =12, .k (2.16)

— 4
U, ==

7
i=l

where r; denotes the jth specific reaction rate and the index & denotes the number of

enzymes competing for resources from the same pool. The elementary cybernetic



variable that governs enzyme activity for a substitutable process follows from the
proportional law and is given by:
r; ‘
Vv, = ——— s i=1,2, Lk j=12, ..k (2.17)
max;(7;)
(i1) The functional form of the elementary cybernetic variable that governs the
allocation of critical resources for a complementary process follows from the

matching law and takes the following form:

r/p.
w = P =122 (2.18)

J z
Z rr / pi+1
i=l

where pr.; denotes the specific level of product being produced by rr and the
index z denotes the number of enzymes competing from the same elementary
resource pool. The elementary cybernetic variable that governs the activity of the
Jjth key enzyme belonging to a complementary elementary pathway follows from

the proportional law which is as follows:

rj/pj+1

v, = ——————— ,

i=1,2,...,z;j=12, ...,z (2.19)
max, (r;/ p;,,)

For bacteria, it has been shown that the assumption of growth maximization was
useful in predicting genetic regulation (Venkatesh et al., 1997; Edwards et al., 2001).
The Cybernetic approach has been applied to bacterial cell models (Kompala et al.,
1986; Straight and Ramkrishna, 1991; Ramakrishna et al. 1996; Varner and Ramkrishna,
1998) but there is no solid evidence that other higher organisms, e.g. mammalian cells,
would have the same objective. Below is an example of microbial multiple substrate

growth kinetics being modelled using the cybernetic approach (Kompala et al., 1984):

HilS 2.20
ﬂZ(KHv (2.20)

where u: specific growth rate
M growth coefficient
e; : specific level of key enzyme i
s;: substrate i concentration
K;: Michaelis constant for substrate i

v;: Cybernetic variable for substrate i
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Other Types of Bacteria/Yeast Cell Culture Models

The mathematical model structures discussed in previous sections are systematic
modelling methods commonly used in the literature for microbial and yeast cell cultures
when there is a single carbon source (or multiple substrates in Equation 2.20). Other
types of equations have also been used, such as a discrete model to describe an
asymmetric metabolic response to a shift-up versus shift-down of the specific growth
rate (Lievense et al., 1989), experimental interpolation (Oh et al, 1993), powered
Monod equations, multi-substrate growth kinetics using summation of the consumption
of each carbon source, and logarithmic kinetics etc. Kovarova-Kovar and Egli (1998).
The effects of pH and temperature which are usually fixed in cell cultures have also
been included in the growth kinetics by Leroy and Vuyst (2003). They are outside the

main focus of this study and so will not be discussed in detail.

2.2.2.1.3 Mathematical Classification of Cell Culture Models

Structured | Un-structured

Segregated Deterministic

Un-segregated Stochastic

Figure 2.4: Schematic diagram for different types of models of cell cultures.

Cell culture models can be classified as structured versus un-structured,
segregated versus un-segregated, and deterministic versus stochastic (Figure 2.4).
Structured models take into account the realistic multi-components inside a cell (e.g.
mitochondria, lysosome, nucleus etc.) and include transportation of metabolites and

molecules to and from these components (Barford, 1990a; Barford, 1990b; Rizzi et al.,
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1997); but un-structured models assume a simplified homogeneous cellular unit
(Tziampazis and Sambanis, 1994; Bailey 1998; Sidoli et al., 2004). Segregated models
treat the cell population as heterogeneous, i.e. each cell may operate at a different state
relative to other cells; but un-segregated (also called distributed) models assume a
homogeneous population so the actual heterogeneity is averaged into a single state
(Tsuchiya et al., 1966; Tziampazis and Sambanis, 1994; Bailey 1998). Deterministic
models predict an exact value of model variables at any specific time; but stochastic
models use probability functions to predict the likelihood of different values for each
model variable (Tsuchiya et al., 1966). Stochastic models are particularly useful for
events that the inducing molecules have low copy number (N) (Elowitz et al., 2002;
Kierzek et al., 2001; Blake et al., 2003), causing the occurrence of a reaction or signal
transduction to be uncertain even when those molecules are present. But when N is large,
the average of the predictions from a stochastic model will tend towards the output from

a deterministic model.

A cell culture model can take any combinations of the three categories discussed
above (also illustrated in Figure 2.4). For example, a model can be un-structured, un-
segregated, and deterministic; or structured, segregated, and stochastic etc. The choice
is dependent on the property of the system of interest, level of biclogical understanding,
types of data available, and the goal of modelling. Un-structured models are often used
(instead of structured models) when the details of reactions in intracellular
compartments is less important than metabolites/proteins excreted into the extracellular
medium (e.g. suspension cell cultures producing valuable proteins). Segregated models
are used (instead of un-segregated models) if there is at least one important
heterogeneous cell culture characteristic affecting a desirable cellular property (e.g.
protein  synthesis  dependent on  cellcycle phase  distribution).  For
deterministic/stochastic models, the latter is relatively more applied for genetic
networks (Kepler and Elston, 2001; Elowitz et al., 2002). Gene expression is not always
a continuous process which can be deterministically described by differential equations
(Kaern et al., 2005; Salis and Kaznessis, 2005). Askin et al. (1998} noted that
fluctuations in the rate of gene expression could produce highly erratic time patterns of
protein production in individual cells and wide diversity in instantaneous protein
concentrations across cell populations. McAdams and Arkin (1997) simulated the
processes of gene expression which showed that random pattern of expression of

competitive effectors can produce probabilistic outcomes in switching mechanisms that
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select between alternative genetic regulatory paths. The result could be a partitioning of
the cell population into different phenotypes as the cells follow different paths. But
metabolic networks and cell growth are generally modelled deterministically as the cost
of computational time is often very high. Although there has been study of stochastic
simulations of bacterial metabolic networks indicating the possibility that the
randomness of gene expression can propagate to the metabolic level (Puchalka, J. and
Kierzek, 2004), experimentally such randomness is not explicitly observed in metabolic

data.

2.2.2.1.4 In Silico Cells

In order to model an entire cell without the limitation that some genes are still
not well understood, hypothetical cells with ‘minimum’ number of genes to sustain
normal cell functions have been proposed. One of those minimum gene sets has been
developed into a ‘whole-cell” modelling software known as E-CELL (Ishii et al., 2004;
Kikuchi et al., 2003; Tomita et al., 1999; Takahashi et al., 2004). The genes in E-CELL
are mostly based on the smallest bacterial genome Mycoplasma genitalium (Fraser et al.,
1995). Many major cellular activities are modelled in E-CELL though some of the
reaction kinetics are simplified. Enzymes and proteins are modelled to degrade
spontaneously over time. The protein synthesis is implemented by modelling the
molecules necessary for transcription and translation, namely RNA polymerase,
ribosomal subunits, rRNAs, tRNAs, and tRNA ligases. The model cell does not need to
switch the genes on and off so it does not have any regulatory factors. The E-CELL
software is a valuable tool for the study of cell behaviours (Tomita, 2001a; Tomita,
2001b; Takahashi et al., 2003; Takahashi et al., 2004; Kikuchi et al., 2003; Sugimoto et
al., 2005).

Similarly, Castellanos et al (2004) proposed a genetically and chemically
detailed model of a ‘minimal cell’ based on a ‘coarse-grain’ parameter computer model
of E. coli. The equations for metabolisms were formulated by writing pseudo-chemical
reactions that included the relationship between the nucleotides inside the cell;
developing kinetic relationships that reflect the metabolic pathways; and including
metabolic control using the concentration of the chemical components as signals. Those
kinetic relationships were typically semi-empirical in form and reflected the known

factors modulating activity. But there were no direct experimental data to test the model,
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so available data from several bacterial organisms were used only for determining
whether the overall model response was physiologic in nature or not. There are many
software tools for cell system simulations, e.g. VCell (Schaff et al., 1997; Slepchenko et
al.,, 2003), SmartCell (Dublanche 2006), CellDesigner (Funahashi et al., 2003) etc.
Computational studies of gene and metabolic networks enable testing of hypotheses and
screening of possible network alternatives before doing further wet-lab experiments. In
silico simulation of hypothetical cells is a valuable tool for investigation of cellular

dynamics without the presence of unknown interactions or noise.

2.2.2.2 Mammalian Cell Culture Modelling

There are many similarities between mammalian and bacterial/yeast cells. Some
of the growth and nutrient consumption kinetics for mammalian cell cultures are
adapted from bacterial and yeast models. All of the modelling methods discussed in
Section 2.2.2.1 for bacterial and yeast cell cultures can theoretically be applied on
mammalian cell cultures either directly or with modifications. However, some of those

methods tend to be more favoured than others for mammalian cell cultures.
2.2.2.2.1 Monod-Type Kinetics

The Monod-type kinetics is the most popular relationship between the nutrients
concentration and specific growth rate of mammalian cell cultures and it has been
modified in various ways to suit the mammalian cells’ requirement of more than one
nutrient (Portner and Schafer, 1996). Models that describe mammalian cell proliferation,
nutrients metabolism, and antibody production etc. has mainly focused on the influence
of a few major nutrients and by-products upon those cellular activities (Bree and
Dhurjati, 1988; Batt and Kompala, 1989; Dalili et al., 1990; Bakker et al., 1996; da
Silva et al., 1996; Zeng and Deckwer, 1999; Jang and Barford, 2000b; Fox et al., 2004;
Provost and Bastin, 2004; Teixeira et al., 2005). Some of these models provide insights
into the mechanisms of how relevant enzymes, proteins, and substrates (nutrients/wastes)
are involved in various cellular activities. An example of such kind of growth kinetics is
shown below:

[GLC] [GLN] KI KI,,

Au = i‘umm I:( J‘( } el

X ) (2.21)
K, +[GLCY K, +IGLN] KI, +[AMM] KI,, +[LAC]
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where Jang and Barford (2000b) related the specific growth rate, u (h'l), of batch/fed-
batch cultures of murine hybridoma AFP-27 cell-line to the concentration of glucose
([GLCY), glutamine ([GLN]), ammonium ([GLC]), and lactate ((GLC]). In the equation
above, U max (h‘l) is the maximum specific growth rate; K¢ (mM) and K, (mM) are the
half-saturation constants of glucose and glutamine respectively; Klu, (mM) and Kl
(mM) are the growth-inhibition constants of the byproducts ammonium and lactate
respectively. This type of growth kinetics is commonly used in batch/fed-batch
mammalian cell culture models (Zeng et al., 1998a) but sometimes the concentration of
the byproducts are not linked to the specific growth rate (Heidemann et al., 1998; Frahm
et al., 2003). But the growth rate in continuous cultures is typically directly related to
the dilution rate (Suzuki and Ollis, 1989; Zeng, 1996) because both the specific growth

rate and dilution rate are equal at steady-states.

Modifications of the Monod-type kinetics also appear in mammalian cell culture
models. Below is an example for mouse hybridoma CRL-1606 batch cultures taking
into account the effect of serum and cell concentration on growth rate (Glacken et al.,
1988):

Mo S-G 1

IS +(K,), ~X_ﬂ]'[G+KG][1+A—2H1+L_2}
K,

U (2.22)

where 4 : specific growth rate
Mmax - maximum specific growth rate
S : serum level

G : glutamine concentration

X : cell concentration

A : ammonium concentration

L : lactate concentration

(K)o : initial value of Monod constant in serum

K¢ : Monod constant for glutamine

K : inhibition constant for ammonium

K; : inhibition constant for lactate

Some models include amino acids in the growth kinetics. For instance, Duval et
al. (1991) related a general ‘amino acids’ term (a lumped variable for several amino

acids) to the growth of hybridoma cells VO 208 & 6H; batch and semi-continuous
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cultures supplemented with extra amino acids; (Simon and Karim, 2002) measured
amino acid concentrations in Chinese hamster ovary batch cultures and identified
asparagine and glutamine as important for the growth model. But it is not common to
include amino acids in the growth kinetics due to the difficulty in measuring all of the

amino acids in the cell cultures.

Cell growth is not always the main interest in mammalian cell modelling. Bibila
and Flickinger, (1991a) detailed the heavy and light chain synthesis steps for
monoclonal antibody (MAb) production in a mouse hybridoma cell-line. They also
modelled the transient steps of MADb synthesis from the endoplasmic reticulum to Golgi
apparatus and their excretion into the medium (Bibila and Flickinger, 1991b). The main
purpose of those models was to study the secretion of MADb in order to optimise the

production rate (Bibila and Flickinger, 1992a; Bibila and Flickinger, 1992b).

2.2.2.2.2 Single-Cell Models

The dynamics of metabolic reactions at a whole-cell level is important for
understanding the overall response of mammalian cells to different physiological
conditions. Thus, some mammalian cell models have focused upon the details of the
dynamics of all known metabolic reactions (Wiechert, 2002; Haag et al., 2003; Sidoli et
al., 2004). Wu et al. (1992) had described a detailed single-cell model for CHO-K1
cells by lumping cell components into several major groups and modelled their
interactions (similar to Shuler et al. (1979) for a single bacterial cell model in Section
2.2.2.1.2). The equations involved material transport across cell membrane, nutrient
metabolism, formation of macromolecules, ATP, DNA, RNA, and byproducts etc. But
many parameter values were taken from other cell types which may not reflect the
actual property of CHO cells. Sanderson (1997) and co-workers (Sanderson et al., 1995;
1997; 1999) had simulated the major metabolic pathways of hybridoma cells detailing
the glycolysis pathway, pentose phosphate pathway, mitochondrial citric acid cycle,
glutaminolysis pathway, and amino acid interconversions etc. for optimisation of
antibody synthesis. It is a challenge to apply highly detailed intracellular models to
industrial cell culture processes due to the difficulty to monitor intracellular variables.
Cell-cycle signalling mechanism which affects cell growth is another aspect of

mammalian cell (as well as yeast) which has been modelled in detail (Novak et al., 1998;
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Novak and Tyson, 2004) but these models are often too complex for the purpose of cell

culture process optimisation.

2.2.2.2.3 Population Balance Models

Population balance is used in segregated models (Section 2.2.2.1.3) that the
heterogeneity in the cell population with respect to certain characteristic is taken into
account (Uchiyama and Shioya, 1999; Sidoli et al., 2004; Henson 2005; Mantzaris,
2005). It is mainly applied in mammalian cell cultures instead of bacterial cultures due
to the slower growth rate and higher experimentation cost of the former which make
optimisation of the segregation behaviour more beneficial. A general equation for cell
population balance was discussed by Mantzaris et al. (1999; 2001a; 2001b; 2001c)
based on Fredrickson et al. (1967) and Ramkrishna (1979) for continuous cell cultures:

NCD 19 [16x,8) N(x. ]+, 8) Nx, 1)+ D- Nt
P (2.23)

=2[™T.8)- p(x.y,S)- N(y.1) dy
where N(x,?) : time-dependent state of cell population
X : physiological state vector of a cell
S : state vector of nutrient environment

y : physiological state vector of a dividing cell

~

: single-cell growth rate
D : dilution rate
I": cell division rate

p : probability density function

The above equation can be simplified with assumptions to simple ordinary differential
equations. A simple population balance model of the cell-cycle was used by Nielsen et
al. (1997) to explain the phenomenon in animal cell culture (and microbial systems) that
cell number dynamics lag behind biomass dynamics. Population balance model is a
more accurate representation of the actual heterogeneity among cells in cell cultures.
But the additional complexity of the model structure may hamper the predictive

capability of the cell culture models.
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2.2.2.2.4 Multiple Steady-State Models

‘Multiple steady-states’ was defined by Qu et al. (2003) as multiple solutions of
mathematical representation of the biological system at steady state. In many
mammalian continuous cell culture experiments, it has been observed that the cell
culture history can occasionally switch the cells to a different steady-state for the same
final cell culture input conditions. Europa et al. (2000) studied hybridoma MAK cells in
continuous culture. Those cells pre-grown in fed-batch culture versus cells from batch
culture gave different steady-state cell density and metabolite concentration after both
cultures were switched to continuous culture. A similar phenomenon was reported by
Follstad et al. (1999) in hybridoma CRL-1606 chemostat cultures. Smolen et al. (1998)
attempted to develop a conceptual framework for investigating the function of genetic
regulatory systems. Simple kinetic models that incorporate known feature of genetic
regulatory systems, e.g. phosphorylation of transcription factors, crosstalk, feedback etc.,
were used and multiple stable steady-states were manifested that brief perturbations

could switch the model between these states.

There has been attempts to model the multiple steady-states (under identical
input conditions) exhibited by mammalian cells using the cybernetic approach discussed
in Section 2.2.2.1.2 (Namjoshi et al., 2003; Namjoshi et al., 2005; Guardia et al., 2000).
The Cybernetic approach has been modified to model the partially substitutable,
partially complementary nature of glucose and glutamine metabolism in mammalian
cells (Namjoshi et al., 2003; Guardia et al., 2000). The model by Guardia er al was able
to predict two steady-states (though more than two steady-states were expected in real
cases); and the model by Namjoshi ef al captured three experimentally observed steady-
states. The model by Namjoshi et al has been repeated and the simulation results are
shown in Figure 3.3 and 3.4. It involves roughly 30 parameters and 26 variables (of
which 12 are cybernetic variables) describing a simplified network of mammalian cell
growth and glucose/glutamine metabolism. The cybernetic approach is able to capture
the multiple steady-states behaviour of mammalian cells but it requires a large quantity
of model parameters to describe a small number of cell culture behaviour (about 30
parameters for the lactate production and total cell concentration in the model of
Namjoshi et al. (2003)). When the ratio of parameters to measured variables is large, the
parameter estimation from experimental data will result in numerous sets of possible

solution which are difficult to discriminate.

36



2.2.2.2.5 Other Types of Mammalian Cell Models

Mammalian cells have been modelled with diverse types of equation structure.
Some are based on empirical correlations such as the power-law equation for serum
degradation in hybridoma CRL-1606 fed-batch cultures used by Glacken et al. (1989).
The level of ATP in mammalian cells has also been incorporated into the growth
kinetics using exponential equation (DiMasi and Swartz, 1995). Signalling pathway
models consisting of first-order, second-order, Monod-type, Michaelis-Menten, and
stochastic kinetics are used to describe the details of various sensing mechanisms in part
of a mammalian cell (Schroder et al., 1999; Fussenegger et al., 2000; Takahashi et al.,
2002; Hatakeyama et al., 2003) and also similarly for insect cells (Rensing et al., 1982).
Genome-scale linear metabolic models have also been made for mammalian cells
(Sheikh et al., 2005) but they are less common than bacterial/yeast cells (Section
2.2.2.1.2) due to the complexity of mammalian genomes. Metabolic flux analyses for
the central mammalian metabolic pathways have provided much valuable information
towards the flux distribution of important metabolites at steady-states (Zupke and
Stephanopoulos, 1995; Xie and Wang, 1996; Altamirano et al., 2001) though the
dynamic details, such as variation of nutrient consumption ratio and byproduct yield
(Zeng et al., 1998b), are missing. Metabolic network modelling for red blood cells
(RBC) has exceptionally assumed simple kinetic relationship (due to a lack of nucleus
and thus metabolic regulation at the genetic level in RBC) to model the metabolic
characteristics dynamically (Lee and Palsson, 1992; Jamshidi et al., 2001; Kuchel 2004)
as well as the oxygen transport kinetics to and from RBC (Beyer et al., 2002). There is
no universal standard of model structure for each specific mammalian cell system. The
choice of model for mammalian cultures is generally based on the purpose of modelling

and the amount of data available.
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2.2.3 Applications of Model-Based Optimisation in Cell Cultures &

Bioindustrial Processes

There are not many cases in the bioindustry that mathematical models are used
to predict cell culture productivity of proteins and drugs. Although computational
measurement tools are extensively used to monitor the states of cell cultures, the use of
those data for prediction of cell culture dynamics is generally missing. Some of the
adopted control methods are simple unstructured models, engineering judgement,
artificial neural networks, fuzzy logic, expert systems, and adaptive control (Luttmann
et al., 1985; Semones and Lim, 1989; Lenas et al., 1997; Guan and Kemp, 1999;
Hammond and Hammond, 2001; Portner et al., 2004; Julien and Whitford, 2007). The
latter three methods require a considerable size of experiment data to test or train the
control systems which would be expensive when the experimentation cost is high. A
common practice for mammalian cell cultures is experimental optimisation with limited
variations in the adjustable variables (Clark and Hirtenstein, 1981; Suzuki and Ollis,
1990; McKinney et al., 1995; Cheng et al., 1997; Chuppa et al., 1997; Gorfien et al.,
2003). The use of mathematical models to improve or optimise cell cultures is still
mainly at the research stage (Parulekar and Lim, 1985; de Tremblay et al., 1993; Fu and
Barford, 1994; Portner et al., 1996; Roubos et al., 1997; Dhir et al., 2000; Lavric et al.,
2006). For example, Gadkar et al. (2003) developed a cybernetic model for poly-/£-
hydroxybutyrate (PHB) production in perfusion cultures of Alcaligenes eutrophus. The
model was interfaced to a model predictive control algorithm to optimise PHB
productivity by adjusting the dilution rate and recycle ratio. Cheema et al. (2002)
applied genetic programming to develop a model for gluconic acid production from
glucose in bacterial batch culture using historic process input-output data. The model
was then used to optimise cell culture productivity. Frahm et al. (2002, 2003) used a
model-based adaptive control strategy to optimise the nutrient feeding time-profiles at
the same time that the fed-batch mouse hybridoma cell cultures were operating. It is a
common practice to use simple cell culture models to estimate the amount of nutrient
required to achieve a particular growth rate or to maximise product yield (Xie and Wang,
1994; Zhou et al., 1995; Zhou et al., 1997b; Jang and Barford, 2000a; Kontoravdi et al.,
2007). Other degrees of freedom for model-based optimisation include temperature
(Fox et al., 2004) and osmolarity (Ho, 2007). When the cell culture models are linear,
e.g. metabolic network models, the system is optimised via linear optimisation

(Hatzimanikatis et al., 1996a,b; Riascos et al., 2005). Non-linear cell culture models are
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either linearised before model-based optimisation or are optimised via non-linear
methods (Torres et al., 1997; Rodriguez-Acosta, et al., 1999; Alvarez-Vasquez et al.,
2000; Marin-Sanguino and Torres, 2000). Non-linear optimisation methods will be

discussed in greater detail in Chapter 6.

Concerns about Hydrolysis/Proteolysis of Products

The loss of antibodies or recombinant proteins in cell cultures due to hydrolysis
or proteolysis (due to proteolytic enzymes released from dead cells) is seldom studied.
Goldman et al. (1997) analysed the proteolytic cleavage of recombinant human
interferon-y produced by Chinese hamster ovary cells during batch culture. It was found
that the proteolysis of interferon-y increased towards the end of the cell culture
especially during the death phase, resulting in higher heterogeneity of the peptide
change and a reduction in biological activity. When the time length of cell culture is
increased to achieve higher product concentration, there is also a possibility that protein
hydrolysis/proteolysis will become more significant. In practice, the viability of cells is
monitored and the cell culture would be terminated once the viability drops below
certain level. A high viability threshold should be able to minimize the side effect of

longer cell culture time on product quality.
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2.2.4 The Dynamic Nature of Biological Cell Cultures

Many dynamic properties in bacterial, yeast, and mammalian cell cultures have
been observed in experiments. In bacterial cultures, the transcription time-profiles of the
same promoters have been observed to have significantly different time-lag and
maximum fold increase when the cells were cultured in nutrient-rich versus minimal
medium (Marques et al., 1994). Yeast is one of the most studied cell-type at the gene
level. The global-scale gene response in yeast has been studied at different
concentrations of glucose (Yin et al, 2003) and it was found that more genes
responsible for amino acids metabolism, carbon metabolism, energy, protein synthesis,
cellular transport were up regulated at low glucose concentration (0.01%) relative to

medium (0.1%) and high (1%) levels (Figure 2.5).

Table 1. Proportion of ORFs in sach functional categary that showed =twofold regulation in response to different glucose signals.™

0.01% Glucose 0.1% Glucosa 1.0% Glucose

Functional categories All ORFs Up Dowin Up Down Up Dawn
1. Metabolism 17% 44% 18% 0% 14% 27% 14%
1.1 Amino acids 3% 3% 2% 7% 2% 9% 2%
1.2 Nitrogen and sulphur 1% 0% 1% 1% 0% 1% 1%
1.3 Nucleotides 2% 3% 2% 4% 2% 4% 1%
1.4 Phosphate 1% 0% 0% 0% 0% 1% 0%
1.5 Carbon 6% 8% 7% 16% 8% 9% Q%
1.6 Lipids and fatty-acids 3% 0% 4% 3% 2% 4% 2%
1.7 Vitamins and cofactors 1% 0% 1% 1% 0% 1% 0%
1.8 Secondary matabolism 0% 0% % 0% 0% 0% 0%
2. Enargy 4% 16% 8% 11% 7% 5% 10%
3. Cell cycle and DNA procassing 10% 0% 8% 5% 5% 5% 4%
4. Transcription 12% 6% 11% 6% 9% 9% 7%
5. Protain synthesis 6% 38% 5% 35% 2% 28% 2%
6. Protein fate 9% 6% 10% 4% 5% 4% 7%
7. Cellular transport 8% 19% 7% 3% 5% 5% 5%
8. Cellular communication/signal transduction 1% 0% 0% 1% 1% 1% 1%
9. Call rescus 4% 3% 5% 4% 3% 4% 2%
10. Interaction with celiular environment 3% 3% 4% 2% 2% 2% 2%
11. Cell fate 7% 0% 8% 2% 5% 3% 4%
12. Transposable elements 2% 0% 0% 1% 0% 1% 0%
13. Cellular organization 3% 0% 4% 2% 2% 3% 2%
14. Subcellular localization 35% 78% 3% 65% 29% 57% 20%
15. Protein activity regulation 0% 0% 0% % 0% 0% 0%
16. Proteins with binding functions 0% 0% 0% 0% 0% 0% 0%
17. Transpont facilitation 5% 19% 5% 3% 4% 5% 4%
18. Classification not yet clear cut 2% 0% 9% 2% 5% 1% 1%
19. Unclassified proteins 7% 6% 6% 15% 22% 14% 18%
Number of ORFs® 6450 32 238 191 294 52 368

a. ORFs can belong to mors than one functional catagory in the MIPS database (hitp:/mips.gsf.de/proj'yeast/CYGD/db/index.html; January
2003}.

b. Expressad as percentage of number of ORFs belonging to each functional category.

¢. Total number of ORFs regulated by sach glucose signal are given.

Figure 2.5: Data of global-scale gene response of a yeast cell culture exposed to low, medium,

and high concentration of glucose (Yin et al., 2003).
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The glucose sensing pathway in yeast is one of the most studied cellular
signalling mechanism. Geladé et al. (2003) summarised three different pathways in
yeast related to glucose availability:

- Figure 2.6(a) shows the repression of genes related to respiration, gluconeogenesis,
and metabolism of alternative carbon sources by high glucose concentrations;
- Figure 2.6(b) illustrates the Snf3/Rgt2 glucose-sensing pathway
(i) When there is no glucose, the transcription factor Rgt/ forms a complex with
Mthl and Stdl causing the transcription of the hexose transporters for
glucose to be inactivated the presence of glucose inactivates Rgf/ and
initiates transcription of HX7T/-HXT4 transporters;

(i) High concentration of glucose would further enhance the expression of

HXTI.
- Figure 2.6(c) shows the Gpri/Gpa2 glucose-sensing pathway. High glucose
concentration activate cAMP production in a glucose-phosphorylation-dependent
manner resulting in activation of protein kinase A (PKA) which affects many cellular

functions including carbon metabolism, stress resistance etc.
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Figure 2.6: Simplified glucose-response pathways in yeast (Geladé€ et al., 2003).

The glucose-dependent expression of hexose transporters in yeast is clearly

demonstrated by the study of Ozcan and Johnston (1995) who showed experimentally
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that some hexose transporters are more strongly expressed at low glucose

concentrations and vice versa (Figure 2.7).
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Figure 2.7: Level of HXT gene expression for different hexose transporters in yeast at different

0

glucose concentrations (Ozcan and Johnston 1995).

The responses in the glucose-signalling pathways in yeast can be caused by
either the extracellular glucose concentration or glucose flux. A dependency of the
signalling pathways on the extracellular glucose concentration but not glucose flux has
been observed in yeast (Meijer et al., 1998; Ozcan et al., 1998) and Escherichia coli
(Phue et al., 2005). The overall availability of glucose is also likely to affect cell culture
dynamics as shown in the experimental results of Tweeddale et al. (1998) that the types
and levels of metabolites produced by Escherichia coli grown in chemostat cultures
with different dilution rates (same glucose concentration in the inlet stream) were

reproducibly different.

Nutrient concentration is also found to affect mammalian cell cultures.
Altamirano et al. (2001) studied chemostat cultures of Chinese hamster ovary (CHO)
cells producing tissue-type plasminogen activator (tPA). A decrease in the concentration
of glucose in the inlet stream resulted in an increase in the specific growth rate and
specific uptake rate of glutamine and some amino acids but a decrease in the specific
tPA production rate. Interestingly, the response of a mouse hybridoma cell-line to
reduction in the glutamine concentration in the inlet stream (in chemostat cultures) was
dependent on how fast the extracellular glutamine concentration was reduced (Mancuso
et al., 1998). Rapid reduction in the feed glutamine concentration from 4mM to OmM
for a short time which caused a rapid drop in residual glutamine from 0.67mM to OmM
had a strong stimulation for the specific antibody production rate. But a slow reduction
in the feed glutamine concentration from 2.4mM to 1.2mM which caused a gradual

decrease in residual glutamine from 0.30mM to 0.08mM has no significant effect on the

42



antibody synthesis rate. Similar observation was also reported for Escherichia coli that
an abrupt reduction of the dilution rate in continuous or fed-batch culture triggered
accumulation of the sigma factor o> (Teich et al., 1999) or degradation of ribosomal
RNA (Rinas et al., 1995) but gradual changes fail to induce these responses (Teich et al.,
1999; Rinas et al., 1995).

Jang and Barford observed an increase in specific antibody production rate and a
decrease in the lactate yield from glucose in fed-batch cultures of a mouse hybridoma
cell-line operating at very low specific growth rates (2000a). The study by Teich et al.
(1999) about the stringent response and general stress response (which are related to
nutrient limitation) in Escherichia coli may provide an explanation: the regulators
ppGpp and o of both responses were monitored in glucose-limited fed-batch and
continuous cultures; both regulators responded significantly to a fast shift in glucose
level but less when the change was gradual. It has been shown in the case of myeloma
cells that the regulation of fluxes in the central metabolism can be regulated by
activation/deactivation of the enzymes instead of at transcription of translation levels
(Vriezen and van Dijken, 1998). The detailed mechanism of cellular response of both
bacterial/yeast and mammalian cells to nutrient concentrations is still not well
understood although the phenomenon has been observed for decades. Such cellular
response would be useful for antibody/recombinant protein synthesis if the resulting
effect is an increase in the specific product synthesis rate and at the same time the

specific growth rate is not compromised.
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Other Types of Stress for Cell Cultures

Nutrient limitation can be regarded as a ‘stress’ for cell cultures. There are many
other types of stress that can be imposed on bacterial, yeast, and mammalian cells but
they are outside the scope of this study. Below are several physical and chemical

stresses that have been studied in cell cultures:

(1) Temperature change:

Mammalian cells including Chinese hamster fibroblasts, Hela cells, and
Chinese hamster ovary (CHO) cells have been reported to develop thermo-tolerance
after being heated up to 41 — 45 °C and Asp70 transcription was reported to increase in
the case of HeLa cells (Hahn and Shiu, 1985; Laszlo and Li, 1985; Abravaya et al.,
1991). A reduction in cell culture temperature has caused and increase in the
productivity of CHO cells due to elevated mRNA levels responsible for recombinant
protein synthesis (Fox et al., 2004; Bollati et al., 2005) Fox et al., 2005). A detailed
review of the physiological responses is made by Wick and Egli (2004) regarding the
heat-shock and cold-shock phenomena in Escherichia coli which should have certain

similarity with mammalian cells.

(ii) pH change:

The operating pH of cell cultures is typically around pH 7. Osman et al., (2001)
studied pH shifts in a range of pH 6.5 — 9.0 in GS-NSO myeloma cell cultures.
Maximum specific growth rate was observed after the pH was shifted to pH 7.3 - 7.5
and glucose consumption was found to increase with increasing pH. The cell cultures

were able to return to original growth and metabolic behaviour after pH recovery.

(ii1) Osmotic stress change:

A shift-up in cell culture osmolarity was found to increase the specific
productivity (Wu et al., 2004), culture longevity (Oh et al, 1993), or amino acid
metabolism (Cherlet and Marc, 1999) in mammalian cells and activation of myelin
basic protein phosphorylation kinases in tobacco cells (Mikolajczyk et al., 2000). The

effects appear to be cell-type dependent and may not always be associated with an
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increase in cell culture productivity. In certain case the effect of osmolarity on
productivity did not indicate a clear upward or downward trend (Kimura and Miller,

1996).

(iv) Shear stress change:

Shear stress on cells is caused by interaction with the reactor and agitator and it
varies with the reactor designs, e.g. stirred tanks, shake flasks, roller bottles, bubble
columns etc. (Henzler 2000). An increase in shear stress caused higher metabolite
production by human umbilical vein endothelial cells (Frangos er al, 1988) but a
negative effect on cell viability for baby hamster kidney (BHK) cells has been reported
(Kretzmer and Schugerl, 1991). The shear stress in cell cultures is typically maintained

low because cell viability has a significant impact on product quality.

(v) Stress due to recombinant protein production:

The production of recombinant proteins in Escherichia coli has been shown to
compete for protein resources with cell growth (Hoffmann and Rinas, 2004). The
additional energy required to synthesize recombinant protein was also reflected by
higher maintenance substrate consumption in recombinant protein producing cells
(Hoffmann and Rinas, 2004). Such stress is unavoidable in cell cultures producing

foreign proteins.
(iv) Chemical stress:

The presence of highly oxidative compounds, e.g. superoxide anions, hydrogen
peroxide etc., cause oxidative stress to cell cultures and can damage DNA and proteins (Moat er

al., 2002; Arrigo et al., 2005). But these compounds are normally absent from cell cultures that

are used to produce antibodies and recombinant proteins.
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Summary

Biological cell cultures are full of diversity in terms of growth characteristics,
applications for synthesis of various products, and responses to different types of stress
in the surrounding environment. There is an equally wide range of mathematical models
in the literature describing cell culture properties from the genetic level to the whole cell
level with different extent of complexity. Modelling is becoming more popular in the
biological world but there are still many challenges to be overcome when applying
traditional mathematical and engineering approaches on cell cultures of which the full

properties are yet to be explored.
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Chapter 3

— Hybridoma Culture Cell-Cycle
Modelling & Optimisation

Mammalian cell culture modelling often focus upon choosing the best nutrient
supplementation strategy for a fixed type of culturing mode (batch/fed-
batch/continuous/perfusion). However, there are other degrees of freedom involving
discrete selections, e.g. arresting cell growth, triggering a change in metabolism,
stepping-up osmolarity, switching cell culture temperature etc., that are encountered in
cell culture processes. It is important to develop a modelling and optimisation
framework to handle both continuous and discrete degrees of freedom of dynamic cell
cultures simultaneously to enable efficient analysis and improvement of the productivity.
Two types of discrete degrees of freedom are studied in this work: cell-cycle arrest and
metabolism alteration in hybridoma and CHO-IFNY cell cultures respectively. The cell-
cycle modelling for hybridoma cells is presented in this chapter followed by the CHO-
IFNY cell culture model in Chapter 4.
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3.1 Cell-Cycle & Productivity Modelling

3.1.1 Relationship between Cell-Cycle and Productivity

Mammalian cells reproduce by self-duplication which involves four cell-cycle
phases: Gi, S, Gy, and M (Figure 3.1). Cells in the G; phase enter the S phase where
DNA replication takes place when the cell culture environment is favourable and the
required cellular signals are present. Then in the G, phase the cells prepare themselves
for division and finally in the M phase each cell is separated into two. There is a
dormant phase called Gy that the cells do not participate in the cell-cycle. The cell-cycle
is regulated by various cyclins, cyclin-dependent protein kinases, and protein complexes
(Pines and Hunter, 1989; Norbury and Nurse, 1992; Gu et al., 1992; Lew and Reed,
1993; Fussenegger and Bailey 1998; Kohn, 1999; Ekholm and Reed, 2000; Simon et al.,
2001; Barre and Perkins, 2007) which govern the initiation and progression of each cell-
cycle phase. Many studies had been done to identify which of the cell-cycle phases is
the most productive in terms of antibody and recombinant protein synthesis. Cherlet et
al. measured cell DNA content and antibody content on the surface of hybridoma AFP-
27 cells using flow cytometry analysis and found that the G; cells showed a lower
specific antibody secretion rate than the G»/M cells (Cherlet et al., 1995). Al-Rubeai and
Emery studied TB/C3 murine hybridoma cells synchronised by thymidine block and
measured antibody synthesis using pulse-labelling (Al-Rubeai and Emery, 1990). The
rate of synthesis was at maximum during the G,/S phases and the specific antibody
production rate was increased when cells were arrested and maintained in the late G,/S
phases (Al-Rubeai and Emery, 1990). Kromenaker and Srienc studied various AFP-27
cell-lines and found that the accumulation of antibody in the cells was highest in the G,
phase and lowest in the G»/M phase; and the specific antibody secretion rate increased
when specific growth rate decreased (Kromenaker and Srienc, 1991; Kromenaker and
Srienc, 1994a,b). Al-Rubeai et al. compared specific antibody productivity of 3 different
hybridoma cell-lines (TB/C3, PQXB1/1, 1.13.17) at the growth phase and death phase
of the cell cultures but there was no consistent trend in the specific productivity between

the two phases among those cell-lines (Al-Rubeai et al., 1992).
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Go

Figure 3.1: Illustration of the major phases in mammalian cell-cycle (same as Figure 2.2).

Comparisons done by Lloyd et al. for the productivity of a wide range of
mammalian cells including hybridoma and CHO cells showed variations in the phase(s)
of maximal expression, e.g. Go/Gi, Gi, Gi/S, or Go/M, for different cell-lines and
promoters (Lloyd et al., 1999; Lloyd et al., 2000). Thus, the most productive cell-cycle
phase appeared to be dependent on the cell type and each cell-line and product of
interest should be studied independently to determine the cell-cycle phase of maximal
product expression. The growth arrest had also been reported to increase specific
productivity in other mammalian cell-lines (Mazur et al., 1998; Seifert and Phillips
1999; Watanabe et al., 2002; Ho, 2007) apart from the hybridoma cell-lines discussed
above. It is important to understand and model such cell-cycle and growth dependency
of productivity systematically in order to fully utilize this potential to improve product

yield.

3.1.2 Cell-Cycle Modelling

Cell-cycle modelling can be grouped into two main categories: population
balance of each cell-cycle phase versus modelling the detailed phase transition
regulation by growth factors. Population balance approach models the number or
fraction of cells in Gy, S, G,, and M phases as a function of growth rate (Suzuki and
Ollis, 1989; Nielsen et al., 1997; Cain and Chau, 1998; Uchiyama and Shioya, 1999;

Faraday et al., 2001; Basse et al., 2003). Phase transition regulation approach takes into
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account the detailed connections of cyclins, cyclin-dependent kinases, transcription
factors, and inhibitors etc. that regulate the progression of cells across each cell-cycle
phase (Novak and Tyson, 1997; Obeyesekere et al., 1997; Novak et al., 1998; Aguda
and Tang, 1999; Hatzimanikatis et al., 1999; Chen et al., 2000; Cross et al., 2002;
Deineko et al., 2003; Qu et al., 2003; Tyson et al., 2003; Novak and Tyson, 2004). The
population balance method has a simpler model structure, making the model
computationally less demanding. It can potentially be connected to other cellular
functions such as metabolisms of major nutrients, though the model equations are often
specific to particular cell types which cannot be directly applied to other cell cultures,
e.g. the yeast cell-cycle model by Uchiyama and Shioya (1999) and the human tumour
cell-cycle model by Basse et al. (2003). Whereas the phase transition regulation method
provides deep insight into the detailed biological mechanisms governing the cell-cycle

process but there would be difficulties in expanding the model due to its complexity.

Optimisation of biological cell cultures using mathematical models has mainly
been performed in bacterial or yeast cultures (Modak et al., 1986; Lim et al., 1986;
Chen and Hwang, 1990) due to their simple nutrient requirement. Most of the objectives
in model-based bacterial/yeast culture optimisation are feed rate profiles of nutrients
(Modak et al., 1986; Lim et al., 1986; Park and Ramirez, 1988; San and Stephanopoulos,
1989; Chen and Hwang, 1990; Lee and Ramirez, 1994) which are variables that can
take any continuous values. Mammalian cell cultures are by nature more complex than
bacteria and yeast so their optimisation is often highly dependent on experiments. In the
context of cell-cycle distribution which can be manipulated by addition of chemicals in
a one-off manner, the incorporation of logic-type binary variable is an interesting and
useful application to be explored. In the next sections, the development of a
mathematical cell-cycle model for a hybridoma cell cultures and application on
optimisation of both continuous and logic-type degrees of freedom is discussed and the

model prediction is compared with experiment results.
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3.2 Development of Cell-Cycle Model for Hybridoma
CRL-1606

In this section, modelling and optimisation of a mammalian suspension cell
culture based on first-principles and population balance for off-line optimisation of
time-varying and logic-type degrees of freedom was carried out. The population in
various phases of the cell-cycle (Go/G;, S, Go/M) was tracked in the model and the
specific productivity of each sub-population was taken into account. Control of fed-
batch biological cultures sometimes involve not only continuous variables such as
nutrient supplementation rate but also logic-type variables such as, in cell-cycle, the
growth-arrest time which has a binary irreversible property. The aim of this work is to
develop a comprehensive cell-cycle model for a hybridoma culture producing
monoclonal antibody and design a mathematical strategy to incorporate binary
irreversible variables into the dynamic optimisation strategy. The ability to
computationally optimise such system would save experimentation time since fewer

combinations of the two types of degree of freedom are required to be tested in wet lab.

3.2.1 Model Structure

3.2.1.1 Development of Model Equations

The equations for cell growth, death, nutrient uptake, and major metabolism
were modified from Kontoravdi et al. (2005), Jang and Barford (2000b), and Tatiraju et
al. (1999). The model was further developed in this study to include description of cell-
cycle sub-populations and the changes are detailed below. The cell-cycle representation
was based on the yeast model of Uchiyama & Shioya (1999) and the tumour cell model
of Basse et al. (2003) but adapted using first-principles to suit the replication rate of
hybridoma cells which is dependent on more factors than yeast cells and slower than the
tumour cells. Equations 3.2 — 3.5 express viable cell concentration (X,) in terms of cells
in Go/Gy, S, and G2/M phases. The G, phase and M phase were treated as one group
because they both have twice the DNA content of a non-growing cell making them
undistinguishable from each other under common cell-cycle analysis methods with flow
cytometry. As a simplification in notation, Go/G; cells will be indicated as G, unless
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otherwise stated. Detailed definition of all variables and parameters can be found in

Section 3.2.6.

Cell culture volume:

av _

i T Y ow T sam
dt

3.1)

The effect of volume increase by addition of concentrated nutrients on the
residual concentration of cells, nutrients, product, and byproducts was negligible in this
hybridoma cell culture experiment. Thus, an approximation of volume independency
was made in the mass balance equations of the concentration of cells, nutrients, product,
and byproducts. But this assumption could not be made in Chapter 4 for the CHO-IFNy
fed-batch cell cultures as the feedback controller in those experiments could add
significant volume of nutrients to the cell cultures. Sampling caused a negligible

reduction in volume and did not disturb the concentration of substances.

Cell-Cvcle & Cell Concentrations:

X, =X+ Xs+Xeuu (3.2)
dX’ FUUI )
T(Azzb'XGZ/M _kl'Xcl—:ud'Xcl_( v ) X (3.3)
dX Foul

d; :kl'Xc;l_kz'Xs_,u(/'Xs_(T)'XS (3.4)
dX 2 Euu

%zkz X5 =0 Xgom —Hy X —( v ) Xeam (3.5)

Assuming any possible cell lysis is negligible:

dx,
— X (3.6)
dt ﬂd ¥
X, =X, +X, (3.7)

Since d—;(‘— =(u—-p,;)-X,, ki, ko, b can be expressed in terms of u:
t

k, :ﬂ.(ﬂ+ﬂr_) (3.8)
X5 14
b = [‘”F_j (3.9)
) X 1%
b o (WF_) (3.10)
Xearm 4
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where x; is fraction of cells in cell-cycle phase i. x; is related to the specific growth rate

(Uchiyama & Shioya, 1999; Slater et al., 1977) and are expressed as follow:

_(ts +tcz/M)'lu_

Xg =1 log 2 s =0caim (3.1D)
Is M
= +6 3.12
Xs log?2 s ( )
Xoam =1—Xg — Xg (3.13)

where & represents the fraction of cells in cell-cycle phase i when specific growth rate
is zero; and f5 and tca represent the time-length of the S phase and G,+M phase

respectively.

Antibody synthesis:

d[MAb Fo
dt ) = f(V)'(QMAh,Gl 'XGI +QMAb.S 'Xs +QMAb,G'.’/M 'XGZ/M)_(7)'[MAZ7] (3'14)
0 RN
where f(v) = 1 <y (3.15)
1+ KMA[; “
v

Oravrct =1 Oraporn + 2 “Ouarcia)
Quars =1 Oransi ¥V Ouiansz) (3.16)

QMAI),GZ/M = (yl ’ QMAh,G2/M,I + y2 ’ QMAb,GZ/M,Z)

Equations 3.14 — 3.15 take into account the production of MAb by each cell-
cycle phase. The introduction of viability, v, in the specific MAb productivity, Qs
was based on the results of Glacken et al. (1988a) which demonstrated that cell culture
productivity of hybridoma CRL-1606 was affected by low viability. It was also
observed in our experiments that specific productivity decreased for this cell-line during
death phase. The model has used binary variables, y; and y,, when parameter values are
affected under cell-cycle arrest condition (Equation 3.16). This is further discussed in

the cell-cycle arrest session below.
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Glucose/lactate consumption/production:

H [Glc]?
Qe = = > (3.17)
87 'Yx,glc,l +y, 'Yx,glc,z) K Qgle +HGlc]
[Gle]
ac :lel\"ll(_' 4is : 4{s 3-18
Ql xlac, gl Qg,l K +[GlC] ( )

lac. glc

The specific glucose uptake rate, Q.1e» and specific lactate production rate, Q..
were modified from Kontoravdi er al. (2005) based on results of the test fed-batch
culture showing both specific glucose consumption rate and lactate yield decreased
when glucose reached a level much lower than that in batch cultures. Thus in Equation

3.17 - 3.18, Qg and Q. are proportional to glucose concentration.

Ammonium production:

Qamm = Yamm,gln ’ len (3 . 19)

The specific ammonium production rate, Q. Was proportional to the specific

glutamine consumption rate, Q..

Cell growth/death:

Gl Gl L Ky amm
A= (Y Mgy + Yol n) - [Gle] . [Gln] : L : - (3.20)
Kglc + [Glc] Kgln + [Gln] Kl,lm' + [LaC] Kl.amm + [AI?’ZI?'[]
My = Hdmas a1 (3.21)

1 + (yl Ktl.nmml + yde.nmm’l )
[Amm]

The model has used binary variables, y; and y», when the parameter values are

affected under cell-cycle arrest condition which is discussed in Equation 3.28 — 3.29.

Equation 20 uses multiplicative terms to represent the dependence of the specific
growth rate on various substrates and by-products. This equation structure is commonly
used to describe cell growth although growth itself is not a multi-order ‘reaction’ and
the effects of by-product inhibition (from Amm and Lac) may not be fully independent
from other variables in the growth kinetics. The biological details of growth inhibition

by toxic by-products require further experimental investigation to identify, for example,
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whether the inhibition mechanism is competitive or non-competitive and the possibility

of a more mechanistic structure for the growth kinetics.

The equations for the specific glutamine consumption rate, Qgin, and the mass
balance equations for glucose, glutamine, lactate, and ammonium are the same as

Kontoravdi et al. (2005):

d[Glc] F, Fo
— = -0y X, + 7 (Glc], - - [Gle] (3.22)
d[Gln] F"-" Foul
g = Qo X~ K, [Glnl+ =2 [Glnl, — =2 [Gln) (3.23)
d[Lac) F
i S Xl rra 3.24
dr Q/ap . v [Lac] ( )
A X, 4 K s 161~ 20 ) (3.25)
dt ’ 1%
len = Yﬂ + mgln (326)
x,gln
_ a,*[Gin] (3.27)

m,, =
" a, +[Gln]

3.2.1.2 Cell-Cycle Arrest Simulation

Two binary variables were used to activate/inactivate parameters of which the
values were affected by the cell-cycle arrest. In Equation 3.28 — 3.29, y; represents
activation of parameters during normal condition and y, represents activation of

parameters during arrested condition.

0 <1,
y, = (3.28)

1 121,

»n=Il-y, (3.29)

where 1, is the cell-cycle arrest time which can be any positive real value.
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3.2.2 Materials and Methods

3.2.2.1 Batch and Fed-batch Cultures

The hybridoma CRL-1606 cell-line (ATCC) producing IgGl monoclonal
antibody (MAb) against human fibronectin was used. Batch cultures were inoculated
with mid-exponential phase cells at 1.5-2.0 x 10° cell mI™' in 100 m] medium containing
DMEM (GIBCO) supplemented with 25 mM glucose and 4 mM glutamine (GIBCO),
2.5% vlv Calf Bovine Serum (ATCC) and 1% v/v Penicillin-Streptomycin (10,000 units
of penicillin and 10,000 ug of streptomycin per ml stock (GIBCO)). The shake-flask
cultures were incubated at 37°C, 5% CO,, 100% humidity, and 120 rpm. Samples were
taken every 8 hrs. The batch culture started with 6 replicates and half of them were
arrested with 0.5% v/v Dimethyl Sulfoxide (DMSO) (Wang er al., 2004) of 299.7%
pure sterile stock (Sigma) at 44 hrs. Fed-batch cultures were performed in triplicates
with the same initial conditions as the batch cultures. In the test fed-batch culture,
concentrated glutamine (Sigma) at 200 mM was added twice a day after the glutamine
in the original culture was depleted. Fed-batch cultures for model validation were
carried out following a computationally optimised feeding strategy and were arrested
with 0.5% DMSO at certain time. Three different cell-cycle arrest times at 78 hrs, 96 hrs,
and 126 hrs which gave similarly high yield in the simulations were tested in separate
fed-batch cultures. The feed contained DMEM (GIBCO) with 200 mM glutamine
(Sigma) and 500mM glucose (Sigma). All of the arrested fed-batch cultures were

carried out in triplicates.

3.2.2.2 Cell Culture Analyses

Cell concentration and viability were determined with a Neubauer
haemocytometer (Assistant) by employing the dye exclusion method with trypan-blue
(Sigma, 0.4% w/v stock). The trypan-blue stock solution was diluted ten times in PBS
(GIBCO) solution before use. Each suspension cell sample from cell culture flask was
diluted 2 — 8 times with working solution of trypan blue and then one drop was put onto
the haemocytometer with a glass slide. The number of cells was counted in five out of

nine 1mm squares (four corners and centre) on the haemocytometer under a microscope
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(Lica). The average number of cells per 1mm square corresponds to the amount of cells

in every 107 ml.

Glucose, glutamine, lactate, and ammonium were detected using a BioProfile
200 analyser (Nova Biomedical) pre-calibrated with internal standards of different range
of substrate/metabolite concentration. Cells were fixed with 50% v/v ethanol and
stained with PBS (Gibco) solution containing 50 pg/ml propidium-iodide of 1mg/ml
stock (Sigma), 25 pg/ml RNase Type I-A (Sigma) for cell-cycle analysis using an Epics
Altra flow cytometer (Beckman Coulter). The flow cytometer was calibrated using
Flow-Check fluorospheres (Beckman Coulter) and then the cell samples were measured
at 605-615nm wavelength. The data were analyzed for cell-cycle distribution using
Cylchred software (Cytonet UK). Antibody concentration was measured using an
enzyme-linked immunosorbent assay (ELISA) modified from Kontoravdi (2007).
Microplates (Corning) were coated with 100ul of lug/ml anti-human fibronectin
antibody from rabbit (Sigma) in each well overnight at 4°C. After blocking non-specific
binding with 250-300ul per well of 0.5% w/v casein (BDH), each well was incubated
with 100ul of 0.2pug/ml human fibronectin (Chemicon) for 1 hour. The plates were then
incubated with 100ul of diluted samples per well in triplicates and separately with
100pl per well of serial dilutions of the standard antibody anti-human fibronectin
antibody from mouse (Sigma) in duplicates for 2 hours. This was followed by
incubation with 100ul per well of 0.64pg/ml of anti-mouse Fc antibody from goat
(Sigma) for 1 hour. Afterwards, 100ul per well of TMB (Sigma) solution with 0.2 ul/ml
of fresh 30% H,0, (Sigma) was added and the reaction was stopped with 50ul of 2.5 M
sulphuric acid (BDH) after 10-45 minutes. Absorbance was measured at 450 nm with an
ELX 808 Ultra Microplate Reader (Bio-Tek Instruments Inc.). A detailed ELISA

protocol is available in Appendix 1.
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3.2.2.3 Parameter Estimation

The model was implemented in gPROMS ModelBuilder 3.0.3 (Process Systems
Enterprise Ltd.). Model parameters were estimated using a general maximum likelihood
approach in gPROMS mainly based on the normal and arrested batch culture data. Data
from the test fed-batch culture were used to estimate the parameters for glucose
consumption and lactate production as glucose dropped to a lower level in fed-batch
cultures than batch cultures. The maintenance consumption of glucose was estimated

using glucose consumption data in the death phase of fed-batch cultures.

The specific antibody productivities in the G;, S, and G»/M phases were
estimated based on the cell-cycle distribution analysis, the average specific antibody
productivity, Qumap, measured from ELISA, and the viable cell concentration in the batch
and test fed-batch cultures. The Oy in the early exponential phase was found to be
relatively lower than in the mid-exponential phase; and there was no significant change
in Quap in the early death phase but a reduction at low viability in mid- and late death
phase. Since Gy cells are more abundant than S and G»/M cells in the early exponential
phase — the opposite is true in the mid-exponential phase — G; cells are assumed to be
less productive than S and G»/M cells. This assumption is only applicable for the CRL-
1606 cell culture tested in this work as the relationship between cell-cycle and
productivity had been reported to be cell-line and promoter dependent (Al-Rubeai and
Emery, 1990; Al-Rubeai et al., 1992; Lloyd et al., 1999). There were multiple solutions
for the specific productivities of each cell-cycle phase as a result of the number of
measured variables for antibody production being less than the number of the
corresponding model parameters. Thus, the system was simplified by a further
assumption based on the trend of cell-cycle related specific productivity reported in the
literature that the specific product secretion rate is highest in Go/M phase followed by §
phase and G, phase (Lloyd et al., 1999; Lloyd et al., 2000). It is assumed that Ouanci 18

twice smaller than Quap5; and Quap,s is the same as Oap.com.

The time-length of each cell-cycle phase was estimated based on the study of
Volpe and Eremenko that most mammalian cells grown at 37°C have cell-cycle phases
ranging in 6 — 9 h for S, 2 — 5 h for Gz, 1 — 2 h for M, and 0 — 30" h for G; (Volpe and
Eremenko, 1973).
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There are 13 differential equations (V, G, S, G/M, Xv, Xd, MAbg,;, MAby,
MAbgzp, Glc, Gln, Lac, Amm) and 26 parameters in the model, of which 7 parameters
(Ka.amm , maxs Ysgics Yogins Ortan,G1, Omab.s, Oman,czm) were affected by cell-cycle arrest.
The values of those affected parameters were programmed to switch automatically in

the model when the cell-cycle arresting chemical was introduced.

3.2.3 Productivity Optimisation

As a case study for product yield optimisation, the amount of feed, F, w(t), and the
cell-cycle arrest time, t,, were varied while all other conditions, e.g. initial conditions,
feed compositions, time intervals etc., were fixed. For practical purpose, the time
interval was fixed to be a repeating cycle of 6 h = 6 h = 12 h. The objective was to
maximize MADb yield by increasing the longevity and productivity of the cell culture.
The model-based optimisation was done using a mixed-integer dynamic optimisation
(MIDO) algorithm (Bansal er al., 2003) implemented in gPROMS with a grid of
different initial values for the two degrees of freedom concerned (Fin(t) and ¢1,). Further
discussion of the literature background of MIDO is available in Chapter 6. A total of
100 different combinations of initial conditions of Fj,(t) and f, were analysed. The
optimised profile of Fj,(t) and #, with the highest antibody yield was selected for
experimental validation. Two more fed-batch cultures were performed with the same
optimised Fj,(z) but two different values of #, to investigate if the model was able to

predict the cell culture variations.

3.2.3.1 Model Transformation for Optimisation

In order to carry out simultaneous optimisation of z, and Fi,(t), Equation 3.28
and 1, were transformed into Equation 3.30 — 3.33. The cell culture time was divided
into sub-intervals and @; was a degree of freedom that can be either 0 (normal condition)
or 1 (arrested condition) in each short time interval. Equation 3.31 — 3.33 translated the
‘decision’ of @y into a binary value for y, and this decision is irreversible from 0 to 1

when @y is set at 1 at anytime in the history of the cell culture.



@ =0 orl (3.30)

dw,
=M 3.31
dt o 3-31)
-_ % 3.32
s (6 +m,) (3.32)
— (3.33)

where M, >> 1, 6 << 1 such that Equation 3.32 would saturate rapidly once @y was first
set to 1. In the above optimisation, 5= 10"% M, = 10*. A schematic diagram showing
the role of the binary variable in the model simulation and optimisation is shown in

Figure 3.2.
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optimisation framework. The parameter values of the cell-cycle model with continuous and
binary variables are estimated using experiment data. During dynamic simulation, the binary
variables are dependent on the cell-cycle arrest time (r,) which is fixed. In the mixed-integer
dynamic optimisation (MIDO), the dependency of the binary variables is changed to a binary
number @, which can be either o or 1 in any time interval. The first instance that @; becomes 1
will cause y, to switch from O to 1 and vice versa for y, permanently regardless of the
subsequent values of @j in later time intervals. The optimised profile of F;,(#) and cell-cycle

arrest time with the highest MADb yield was tested by experiment.
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3.2.4 Results & Discussion

3.2.4.1 Deviations in the Original Model

The main trends of the concentration of viable cell, monoclonal antibody,
glucose, lactate, glutamine, ammonium and the distribution of cell-cycle in the batch
and test fed-batch cultures were able to be simulated accurately by the model (Figure
3.3 - 3.10). However, there are significant deviations in the prediction for the optimised
arrested fed-batch cultures which make it necessary to re-evaluate the original model
structure. In the optimised arrested fed-batch cultures, the viable cell concentrations
appeared to be significantly overpredicted (Figure 3.11) though the predicted antibody
concentrations were close to the experiment data (Figure 3.12). For example, the viable
cell concentration of the optimised fed-batch culture arrested at 96 h was over-predicted
by up to about 1.2 x 10° cell L in the death phase and the peak viable cell
concentration was higher than the experimental result by 0.3 x 10 cell L. The over-
prediction for the optimised fed-batch cultures arrested at 78 h and 126 h followed

similar trends.
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Figure 3.3: Viable cell concentration in batch and test fed-batch hybridoma cell cultures.
Symbols represent experiment data and lines represent model simulation.
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Figure 3.4: Monoclonal antibody (MAb) concentration in batch and test fed-batch hybridoma
cell culture. Symbols represent experiment data and lines represent model simulation.
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Figure 3.5: Cell-cycle distribution in batch hybridoma cell cultures. Symbols represent
experiment data and lines represent model simulation.
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Figure 3.6: Cell-cycle distribution in test fed-batch hybridoma cell culture. Symbols represent
experiment data and lines represent model simulation.
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Figure 3.7: Glucose and lactate concentration in batch hybridoma cell cultures. Symbols
represent experiment data and lines represent model simulation.
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Figure 3.8: Glutamine and ammonium concentration in batch hybridoma cell cultures.
Symbols represent experiment data and lines represent model simulation.
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Figure 3.9: Glucose and lactate concentration in test fed-batch hybridoma cell culture.
Symbols represent experiment data and lines represent model simulation.
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Figure 3.10: Glutamine and ammonium concentration in test fed-batch hybridoma cell culture.
Symbols represent experiment data and lines represent model simulation.
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Figure 3.11: Viable cell concentration in optimised arrested fed-batch hybridoma cell culture
showing 3 different cell-cycle-arrest time (f,). Symbols represent experiment data and lines

represent model simulation.
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Figure 3.12: Monoclonal antibody (MAb) concentration in optimised arrested fed-batch
hybridoma cell culture showing three different cell-cycle-arrest time (z,). Symbols represent

experiment data and lines represent model simulation.
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Figure 3.13: Ammonium concentration in batch, test fed-batch, and optimised arrested fed-
batch hybridoma cell cultures.
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A comparison of the toxic byproducts concentrations revealed that the
ammonium concentration in the arrested fed-batch cultures reached a significantly
higher level than in the batch and test fed-batch cultures. The maximum levels of
ammonium in the batch, test fed-batch, and optimised arrested fed-batch cultures were
3mM, 6mM, and 8mM respectively (Figure 3.13). Thus, the growth rate appeared to be
inhibited more strongly at higher levels of ammonium that was not tested in the batch
and fed-batch culture data used for parameter estimation. The growth and death kinetics
were modified to incorporate the accelerated growth inhibition and death initiation by
ammonium at higher concentrations. The inhibition term of ammonium in the growth
kinetics in Equation 3.20* became 4th-order instead of first-order to represent a sharper
decrease in growth rate when ammonium concentration is beyond its half-saturation
inhibition level. The second term in the death kinetics in Equation 3.21* represents the
acceleration of death rate at high ammonium concentration. Equation 3.34 takes into
account that the presence of glutamine could increase the cells’ tolerance of ammonium,
thus reducing death rate. The ammonium yield from glutamine was also found to be
non-linear at high ammonium concentration and it is represented by the third term in
Equation 3.19* which takes into consideration that the ammonium yield from glutamine

decreased at high concentration of ammonium.

o - “ _IGKT’
o ( 'Yx,glc,l +y 'Yx.gw,z) Kéglc +[GZC]2

+I7lglc

(3.17%)

The maintenance consumption, my,, for glucose in Equation 3.17* was initially
considered negligible due to observations in batch cultures that Qg dropped to zero in
the death phase. However, in all of the fed-batch cultures a significant consumption of
glucose was observed throughout the death phase. Thus Mg 18 restored and it is
assumed that the glucose uptake mechanism in batch cultures might be affected when

glutamine is depleted.

1 <
Qamm = Yamm,g/" : Qg[,, ) “2 (3 19*)
. [ [Amm) J
K rev,amm
[Glc] Gln] K Jdue K4.umm &
/u:(yllumaxl +y21umax2) : [ i : 4 (320*)

K, +[Glc) K, +[GIn] K,, +[Lac] K., +[Amm]
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#[] = ﬂdmnx n .[ 1+ :1 m J ’,/l’m > 1 (3.21*)
1 [(yl K(l,(lmml + .)’2 Kd,nmml) ) f(Gln)\J Kzl amm
+ 14| —Lamm
[Amm] [Amm]
where F(Gln) =1+ _ (3.34)

1 + Kinh,gln )
[Gin]

The new model has 31 parameters due to 5 new parameters being introduced:
mygic (Equation 3.17%), Koy amm (Equation 3.19%), K’ yum (Equation 3.21*), m (Equation
3.21%), and Kiu, o1n (Equation 3.34).

Because of changes in part of the equations in the model, the values of 8
parameters from the old model were affected: Kiamm (Equation 3.20%), Y. o1 In normal
and arrested culture (Equation 3.26), o (Equation 3.27), a» (Equation 3.27), n
(Equation 3.21%), K;umm (Equation 3.21%), and K (Equation 3.20*). All the parameter

values can be found in Table 3.2 at the end of Section 3.2.4.

3.2.4.2 Results of the Adjusted Model

3.2.4.2.1 Growth and Cell-Cycle Distribution

The new simulation results for cell concentrations in batch and test fed-batch
cultures are shown in Figure 3.14. The simulated viable cell concentrations in the batch
cultures were well predicted as the original model (Figure 3.3) though there was a mild
under-prediction of the peak viable cell concentration of the test fed-batch culture by 0.2
x 10° cell L™ (Figure 3.14). The monoclonal antibody (MAb) concentrations of the
batch and test fed-batch cultures in Figure 3.15 also followed the experiment data. The
higher simulated MAb concentration in the batch cultures in Figure 3.15 than in Figure
3.4 was resulted from a slightly higher simulated viable cell concentration using the
new model. The new cell-cycle distribution for batch cultures in Figure 3.17 was very
similar to Figure 3.5. But in Figure 3.18, the predicted cell-cycle distribution of the G,
and S phase in the test fed-batch culture was significantly different from the experiment
data. Investigation into the original model predictions revealed that the old total cell
concentration for test fed-batch culture was significantly overpredicted (Figure 3.19).

Thus, the original apparent simulation success in the cell-cycle distribution of the test-

70



fed-batch culture in Figure 3.6 was caused by an overpr-ediction in the growth rate.
Traditionally, the dead cell concentration was considered to be less important than the
viable cell concentration because most cell culture models assume dead cells to be non-
productive which means their concentration would not affect the predicted productivity.
With the correct prediction of total cell concentrations using the new model, the
simulated G; phase relative population was over-predicted and the S phase relative
population was under-predicted in the test fed-batch culture between 50 — 100 h with a
deviation of 10 — 20% (Figure 3.18); and in the optimised arrested fed-batch cultures
such deviation was between 70 — 170 h (Figure 3.20). The G»/M phase relative
population remained at 10 — 20% throughout all fed-batch cultures. The cell-cycle
distribution data of the optimised arrested fed-batch cultures did not show significant
differences among various cell-cycle arrest time (t,) which was also reflected in the

simulation (Figure 3.20).

The cell-cycle distribution in the batch cultures showed a dynamic variation in
the G, and S phase relative population throughout the whole cell culture time (Figure
3.17). The Go/M phase relative population was more stable in between 10 — 20% before
and during exponential phase and then dropped to 5 — 10% during death phase. The
introduction of 0.5% DMSO at 44 h to arrest the batch culture resulted in an increase in
G phase relative population by roughly 10% and a corresponding decrease in S phase
by a similar extent. The G»/M phase data did not show significant difference between
the normal and arrested culture though the simulation results showed a slight reduction
of the G»/M phase relative population in the arrested culture by about 2%. There
appeared to be a lag of about 10 h between the data and model prediction at the early

culture time particularly for G; and S phases.

As mentioned above, the cell-cycle equations in the adjusted model with correct
total cell concentration predictions were not able to predict the higher percentage of
cells in the S phase and lower percentage in the G; phase after mid-exponential phase of
all the fed-batch cultures (Figure 3.18 & 3.20). About 10 — 20% more cells appeared to
remain in the S phase in the fed-batch cultures during death phase than in the batch
cultures (Figure 3.17, 3.18, 3.20). Current knowledge about the dynamic variation of
mammalian cell-cycles in the literature is very limited. There might be a change in the
time-length of the cell-cycle in the late-exponential and death phase of the fed-batch

cultures due to growth inhibition by lactate/ammonium. The time lag between the cell-
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cycle data and simulation results in the first 10 h of the cell culture time indicated the
presence of an adaptation period right after inoculation. This can be addressed in the

model by introducing a time delay in the cell-cycle equations.

3.2.4.2.2 Metabolism

The adjusted model followed the changes in glutamine and ammonium
concentrations in all of the batch and fed-batch cultures (Figure 3.27 — 3.30). The
glucose concentration is also well simulated (Figure 3.23 — 3.25) but the measured
lactate concentration in the optimised arrested fed-batch cultures was unexpectedly low
(Figure 3.26). It was surprising that the lactate concentration in the optimised arrested
fed-batch cultures did not increase beyond 35 mM despite ongoing consumption of
glucose in all of the 9 shake-flask cultures performed. Lactate production in mammalian
fed-batch cultures had been reported to level-off despite continuous glucose
consumption (Zhou et al., 1997a) or in some cases a transient net consumption was
observed (Zhou et al., 1997b). The metabolic pattern of lactate production may have
changed at the later stage of the fed-batch cultures. The deviation in the prediction of
lactate concentration did not have a significant effect on the prediction of viable cell
concentration and productivity because lactate has a much lower impact on the growth
kinetics than ammonium. As the viable cell concentration is dependent on the levels of
nutrients and byproducts, it is encouraging that most of them were properly simulated

by the model.
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3.2.4.2.3 Antibody Productivity

The average specific antibody productivities, Quup, of the batch and test fed-
batch cultures are shown in Figure 3.16. The mean Qs data of the arrested batch
culture after cell-cycle arrest at 44 h was higher than that of the normal batch culture in
4 out of 6 analyzed time points, so the arrested culture had higher productivity than the
normal culture. The Qpup of the test fed-batch culture at 7 h was significantly lower
than that between 20 — 40 h (Figure 3.16). As the G; phase was more dominant in the
early few hours of cell culture time than in 20 — 40 h (Figure 3.18), the experiment data
indicated a relatively higher specific productivity in the S or Go»/M phase than the G;
phase. The corresponding QOumap, of the batch cultures were inconclusive about the
relative specific productivity between the early exponential phase and mid-exponential
phase due to a higher measurement uncertainty. The batch and fed-batch cultures in this
study had identical initial medium compositions and similar inoculum density. Thus,
their specific antibody productivity, Qpap, should be the same in the early hours of the
cell culture before any disruption by DMSO at 44 h or later on the addition of nutrients.
During the death phase, the mean Quup of the batch cultures appeared to drop though
that of the test fed-batch culture did not decrease significantly (Figure 3.16). The
simulation captured the relative trend of Qumap with a two-fold reduction in the death
phase when viability was low and a higher specific productivity when the cells were

arrested.

Various cell-cycle phases had been reported to have the highest antibody
production rate, depending on the cell-lines studied (Ho, 2007; Cherlet et al., 1995; Al-
Rubeai and Emery, 1990; Lloyd et al., 1999; Lloyd et al., 2000). Kromenaker and
Srienc studied several AFP hybridoma cell-lines and suggested there was a net
accumulation of antibodies in G; phase but a net secretion in G2+M phase (1991; 1994a;
1994b). Lloyd et al. (2000) showed the specific productivity of four different
mammalian cell-lines had the same trend that specific productivity increased from G, to
S and to G»/M. The simulation results of antibody concentration, MAb, with an
assumption of the relative values of Ouabcr » Omans » and Quap.cam discussed in the
Modelling section was able to follow the different MAD yields in the batch and fed-
batch cultures. In terms of growth phase dependency of specific productivity, i.e.

whether Quap 1s higher in the growth phase or death phase, it had been shown to be cell-
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line dependent (Al-Rubeai et al., 1992). The hybridoma cell-line used in this study

appeared to be less productive in the death phase.

The MAD yield in the optimised arrested fed-batch cultures reached about 3.5 g
L as compared to about 2.5 g L' in the initial fed-batch culture and approximately 1.3
g L in the arrested batch cultures (Figure 3.15 & 3.22). The arrested batch culture
achieved a higher MAb concentration than batch culture and this is reflected in the
simulation with the adjusted model although the simulated values are slightly higher
than the data by 0.2-0.3 g L' towards the end of culture time (Figure 3.15). The MAb
yield from the test fed-batch culture was approximately twice the amount in the batch
cultures. The MADb concentration in the optimised arrested fed-batch cultures reached
34 ¢g 1.3 02 g L") with no significant differences among the cultures arrested at
different times (Figure 3.22). The simulation result was able to capture this trend with a
negligible decrease in the predicted MADb yield when the cell-cycle arrest time (7,)
increased from 78 h to 126 h.
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Figure 3.14: Viable and total cell concentration in batch and test fed-batch hybridoma cell
cultures with simulation from the adjusted model.
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Figure 3.15: Monoclonal antibody (MAb) concentration in batch and test fed-batch
hybridoma cell cultures with simulation from the adjusted model.
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Figure 3.16: Specific monoclonal antibody productivity (Quas) in batch and test fed-batch
hybridoma cell cultures with simulation from the adjusted model.

75



100

m} G1% Batch (normal)

WL 90 1 =] G1% Batch (arrested)
® — — — G1% Batch (normal) simulation
~ 80 - G1% Batch (arrested) simulation =4
g
T8 {1 i Vet it o e e - N 1| (R NeRERs Tt
=
3 60
=
) A
2 50
>
9
= 40 -
9
&}

30 -

20 T T T T

0 20 40 60 80 100
Time (h)
80

(o] S% Batch (normal)

70 - e S% Batch (arrested)

— — —  S% Batch (normal) simulation
S% Batch (arrested) simulation

Cell-cycle distribution (%)

100
Time (h)

50

v G2M % Batch (normal)

A G2M % Batch (arrested)
40 4| ——— G2M % Batch (normal) simulation

G2M % Batch (arrested) simulation

30 -

1]
(=]
L

Cell-cycle distribution (%)
s

0 20 40 60 80 100
Time (h)

Figure 3.17: Cell-cycle distribution in batch hybridoma cell cultures with simulation from the
adjusted model.
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Figure 3.18: Cell-cycle distribution in test fed-batch hybridoma cell culture with simulation
from the adjusted model.
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Figure 3.19: Total cell concentration in batch and test fed-batch hybridoma cell cultures using
simulation from the old model. There was overprediction in the test fed-batch culture although
the cell-cycle simulation in Figure 3.4.
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Figure 3.20: Cell-cycle distribution in optimised arrested fed-batch hybridoma cell with
simulation from the adjusted model. Three different cell-cycle-arrest time (z,) are illustrated.
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Figure 3.21: Viable and total cell concentration in optimised arrested fed-batch hybridoma

cell cultures with simulation from the adjusted model. Three different cell-cycle-arrest time (z,)
are illustrated.
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Figure 3.22: Monoclonal antibody (MAb) concentration in optimised arrested fed-batch

hybridoma cell cultures with simulation from the adjusted model. Three different cell-cycle-
arrest time (¢,) are illustrated.
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Figure 3.23: Glucose and lactate concentration in batch hybridoma cell cultures with
simulation from the adjusted model.
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Figure 3.24: Glucose and lactate concentration in test fed-batch hybridoma cell culture with
simulation from the adjusted model.
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Figure 3.25: Glucose concentration in optimised arrested fed-batch hybridoma cell cultures
with simulation from the adjusted model. Three different cell-cycle-arrest time (z,) are
illustrated.

100 -

) Lactate (¢,:78h)
= O Lactate (¢,:96h)
% 80 - \V4 Lactate (¢,:126h)
~ Lactate (¢,:78h) sim Looeeee
g — — — - Lactate (¢,:96h) sim ‘L.,r-_-_-:ﬁ"' i
R 60 | sesesscsss Lactate (¢,:126h) sim .__,u_u—*"!
£ L.
: -
c:) e
e 4l //
& /'
g %9 ®¥® 8% ggE ¥w¥ ¥
& g
S 20 v
e -4

1 o
0 v’y’l T T T T T T T
0 20 40 60 80 100 120 140 160 180
Time (h)

Figure 3.26: Lactate concentration in optimised arrested fed-batch hybridoma cell cultures
with simulation from the adjusted model. Three different cell-cycle-arrest time (z,) are
illustrated.
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Figure 3.27: Glutamine and ammonium concentration in batch hybridoma cell cultures with
simulation from the adjusted model.
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Figure 3.28: Glutamine and ammonium concentration in test fed-batch hybridoma cell cultures
with simulation from the adjusted model.
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Figure 3.29: Glutamine concentration in optimised arrested fed-batch hybridoma cell cultures
with simulation from the adjusted model. Three different cell-cycle-arrest time (t,) are
illustrated.
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Figure 3.30: Ammonium concentration in optimised arrested fed-batch hybridoma cell
cultures with simulation from the adjusted model. Three different cell-cycle-arrest time (z,) are
illustrated.
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3.2.4.2.4 MIDO Optimisation

The MIDO results from the adjusted model using 100 different combinations of
the initial guess of Fy(t) profile and cell-cycle arrest time (¢,) subjected to the
constraints discussed in the Section 3.2.3 gave rise to numerous local optima of MAb
yield ranged 2650 — 3040 mg L. The optimum result with the highest MAD yield had a
cell-cycle arrest time, #,, at 60 h (Figure 3.31), which is earlier than the optimum

estimated from the old model of which the value of 7, was at 126 h.

The developed model has assisted to evaluate numerous combinations of
nutrient supplementation profiles and cell-cycle arrest times to identify the best possible
profiles of the two degrees of freedom. The number of random experiments required for
identification of the optimal process conditions has been significantly reduced. The
accuracy of the MIDO optimisation result is dependent on whether the model can
sufficiently represent the system for the whole range of variable values encountered.
The old model which assumed a first-order inhibition of growth and a simple second-
order effect on death by ammonium over-predicted the viable cell concentration in the
arrested fed-batch cultures, resulting in an inaccurate optimal cell-cycle arrest time at
126 h instead of 60 h from the new model. The viable cell concentration in the arrested
fed-batch cultures reached its peak at 90-100 h. Thus the optimisation result suggested
cell-cycle arrest before the peak viable cell density is reached. As there is a trade-off
between slower cell growth and higher specific productivity in the arrested cells, the
mixed-integer model-based optimisation offers an advantage to isolate important ranges
of the controllable variables. Such simulation/optimisation strategy can reduce time and
cost in the search for the optimal culture conditions. The new incorporation of a binary
irreversible variable to optimise cell-cycle-dependent productivity has been very useful
in this case study on hybridoma culture. This method can be applied to other

combinations of binary and continuous control variables in cell cultures.
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Figure 3.31: Optimisation results for nutrient supplementation profile (top), F,(t), and cell-
cycle arrest time indicated by y, (bottom) switching from O to 1.
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Table 3.1: Degrees of freedom in the simulation of the hybridoma cell culture.

Degrees of Freedom Values Units
F; 0 (initial value) Lh'
Fou 0 Lh
Foum 0 (initial value) Lh'
[Glc], 500 mM
[Gln],, 200 mM
t, 44 h

Table 3.2: Parameter values for the cell-cycle model of the hybridoma cell culture.

Parameters | Values Units Reference
K’ 4 armm 7 (**newpara) mM -
Ky umm normal: 2.6; arrested: 2.0 mM -
(old model: 2.4)
Kign 0.0096 h! Kontoravdi 2007
Kgie 0.1 mM -
(old model: 0.5)
Kain 0.075 mM Kontoravdi 2007,
Jang & Barford 2000b
Ko 171.756 mM Kontoravdi 2007
Kramm 2.5 mM -
(old model: 28.5)
Kivioin 0.5 (**newpara) mM -
Klac.glc 4 mM -
Kuap 80 % -
K pete 16 mM” -
Krevamm 6 (**newpara) mM _
Mg 4e-11 (**newpara) mmolg. cell’ h? | -
n 2 - Kontoravdi 2007,
(old model: 2.5) Jang & Barford 2000b
m 2 (**newpara) - -
| Omasc normal: 1.8e-8; arrested: 2.58¢-8 | mg cell' h” -
| Omap.com normal: 2.8e-8; arrested: 4.0e-8 mg cell' h! -
Ouans normal; 2.8e-8; arrested: 4.0e-8 mg cell' h”! -
team 2 h -
Is 7 h -
Y womein 0.48 MOlypm mol gy | -
Ymax lac.glc 2 mOIIac morlelc -
Y, o normal: 6.5¢7; arrested: 4.1e7 cell mmolg,c" -
Y, ein normal: 8e8; arrested: 7e8 cell mmolgm'l -
(old model: 4.7e8) | (old model: 2.5e8)
o Se-11 mmolg, cell" h™ | -
(old model:1le-15)
a, 0.6 mM R
(old model: 4)
M max 0.023 h' -
| Himax normal: 0.048; | arrested: 0.02 h' -
V. 80 % -
Gcom 0.04 - -
& 0.07 - -
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3.2.5 Conclusions of the Cell-Cycle Model

The developed model was able to predict the cell culture dynamics for most of
the major variables in all the batch and fed-batch cultures studied. The two selected
degrees of freedom in the hybridoma cell culture: nutrient addition profile and cell-cycle
arrest time, were computationally optimised simultaneously based on the model and
initial experiment data. Among all the cell cultures performed, the monoclonal antibody
yield in the arrested fed-batch cultures was about 3.5 g L' which was roughly 40%
higher than in the test fed-batch culture. With the optimisation results, only three sets of
arrested fed-batch cultures were performed for validation instead of carrying out a lot
more experiments to select the best control strategy from. Further work is necessary to
understand the change in metabolic pattern for lactate production and cell-cycle
distribution in fed-batch cultures which appeared to be significantly different from that
in batch cultures. It would also be interesting to investigate different cell culture initial

conditions and higher degrees of freedom in this model-based optimisation.

Overall, with the aid of model predictions, fewer experiments were needed in
order to explore the possible limits of the cell culture production capacity. In the
optimised fed-batch culture, the culture life-time was extended as indicated by the X,
peaking at about 100 h while the corresponding peaking time for the initial fed-batch
and batch cultures were about 90 h and 65 h respectively; and the MAD yield reached
~3.5x10° mg L' as compared to ~2.5x10% mg L' in the initial fed-batch culture and
~1.3x10° mg L' in the batch cultures. The fact that the original model over-predicted
certain cell concentrations in fed-batch cultures and the adjusted model slightly under-
predicted viable cell concentration in a test fed-batch culture indicated in deficiency in
the growth kinetics. In this cell-cycle model, only two major nutrients, glucose and
glutamine, is related to the specific growth rate although there are other amino acids that
are essential for growth being supplemented to the cell culture. This will be addressed in

Chapted 4 where amino acids are modelled explicitly for a CHO-IFNY cell-line.
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3.2.6 Notations for the Cell-Cycle Model of Hybridoma Culture

Table 3.3: Notations for the cell-cycle model of the hybridoma culture.

Symbol Definition Units
[Amm] ammonium concentration mM
b transition rate of cells from G;to S h'!
F; inlet flowrate Lh'
Fou outlet flowrate Lh’
Fom sampling rate Lh’
[Glc] glucose concentration mM
[Glc]i feed glucose concentration mM
[Gln] glutamine concentration mM
[GIn],, feed glutamine concentration mM
K’ g amm half-saturation constant for high ammonium inhibition on mM
death rate
k; transition rate of cells from S to G»/M h'
k; transition rate of cells from G/M to G; h!
K ammi half-saturation constant for ammonium inhibition on death rate | mM
Ky amms2 half-saturation constant for ammonium inhibition on death rate | mM
in arrested culture
Kiowm degradation rate of glutamine h!
K. half-saturation constant of glucose on growth rate mM
Koin half-saturation constant of glutamine on growth rate mM
K amm inhibition constant of ammonium on growth rate mM
Ko inhibition constant of lactate on growth rate mM
Kinngin inhibition constant of glutamine on death rate via increasing mM
[Amm] tolerance
Kiac,glc half-saturation constant for lactate production with respect to mM
[Glc]
K inhibition constant for MAb production with respect to cell %
viability
K peic half-saturation constant for glucose uptake mM”
Koy gmm inhibition constant of ammonium on ammonium yield from mM
glutamine
[Lac] lactate concentration mM
m exponential order in death kinetics -
[MAD] monoclonal-antibody concentration mg L'
Mgic maintenance consumption of glucose mmol cell' h”
Mgin maintenance consumption of glutamine mmol cell h
n exponential order in death kinetics -
Qamm specific ammonium production rate mmol cell’ h
Qeic specific glucose uptake rate mmol cell' b
Qlac specific lactate production rate mmol cell’ h
Owmap average specific MAD production rate mg cell' h’'
Onan.i specific MAb production rate of cell-cycle phase mg cell' b
t time h
t, cell-cycle arrest time h
ts, toom Time-length of the S phase and G,+M phase respectively h
v viability %
|4 Cell culture volume L
Ver critical viability Yo
Xon Xs, concentrations of viable cells in Gy/G,, S, and G»/M phase cell L
Xoom respectively
X; fraction of cells in cell-cycle phase i -
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X, viable cell concentration cell L™
¥ binary variable for normal culture condition -
Y2 binary variable for arrested culture condition -
Y i ammonium yield from glutamine mmol mmol”
Y lacole maximum lactate yield from glucose mmol mmol™
Yieie cell yield from glucose cell mmol
Yiein cell yield from glutamine cell mmol™
o maximum maintenance consumption of glutamine mmol cell” h™!
% half-saturation constant for maintenance consumption of mM
glutamine

u specific growth rate h'
Uy specific death rate h'
U max maximum specific death rate h'!

| Mmaxs maximum specific growth rate h'
Monax2 maximum specific growth rate in arrested culture h!
o fraction of cells in cell-cycle phase { when growth rate is zero | -
) binary degree of freedom for optimisation of ¢, -
s, continuous variables for optimisation of ¢, -
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Chapter 4
— Model Development for CHO-

IFNYy Cell Culture Including Amino
Acids & Cellular Regulations

As concluded in the previous chapter, amino acids except glutamine are often
not considered in mammalian cell culture models though certain amino acids are known
to be essential for growth. This is partly due to the difficulty in measuring the
concentration of all amino acids in the cell culture; and partly because of the complexity
of models that attempt to track the relationship between growth and amino acids
concentration as well as interconversions of amino acids. In Section 4.1 of this chapter,
a simple amino acid model is created for a mammalian cell-line (Chinese hamster ovary
cells) commonly used in the bioindustry. The model was able to simulate cell growth,
product synthesis, and consumption/production of most amino acids but certain
insufficiency was noticed when applying such model to fed-batch cell cultures. As a
result, a more detailed model is developed in Section 4.2 taking into account certain
changes in the cell culture dynamics when the cells are subjected to a different condition
in the cell culture medium. The model in Section 4.2 is further analysed in Chapter 5

and subsequently used for model-based optimisation in Chapter 6.

90



4.1 A Simple Amino Acid Model for CHO-IFNYy Culture

4.1.1 Cell-Line & Experiment Setup

Data of Chinese hamster ovary (CHO) cell-line producing recombinant human
interferon gamma (IFNYy) adapted to serum-free suspension culture were kindly
provided by Dr. Danny Wong (Bioprocessing Technology Institute, BTI-A*Star,
Singapore). The cell culture experiment was performed in serum-free and protein-free
media (Wong et al., 2005). Detailed methodology has been described in Wong et al.
(2005). The CHO-IFNY cells were cultivated in 4 L stirred-tank bioreactors at 37°C and
pH 7 in batch and fed-batch conditions. The fed-batch cultures were controlled at low-
glutamine or low-glutamine plus low glucose conditions using on-line feed-back
controllers with different set-points of glutamine and glucose concentrations. The
dynamic feed profile records were only available for at least one of each fed-batch
conditions tested: (i) 0.1mM glutamine set-point, (ii) 0.3mM glutamine set-point, (iii)
0.5mM glutamine set-point, (iv) 0.3mM glutamine set-point plus 0.35mM glucose set-
point, and (v) 0.3mM glutamine set-point plus 0.7mM glucose set-point. Concentrated
nutrient stream containing glutamine, glucose, and other amino acids were used to
supplement the fed-batch cultures. Analyses of glucose, glutamine, and lactate were
carried out using a biochemical analyser; ammonium was detected using UV
spectrophotometry; IFNy concentration was analysed using enzyme-linked
immunosorbent assay (ELISA), and amino acid concentrations were measured using
reverse-phase HPL.C (Wong et al., 2005). A total of 19 amino acids were measured:
alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine,
histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine,
threonine, tyrosine, and valine. Tryptophan was not able to be measured due to technical
problems in resolving its peak in the HPLC analysis (personal conversation with Dr.

Danny Wong).
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4.1.2 Model Development

4.1.2.1 Essential Amino Acids for Mammalian Cell Cultures

Mammalian cells are known to be unable to synthesise certain amino acids
which must be supplemented in the cell culture to sustain cell growth. A comparison of

the essential amino acids of several mammalian cell types is shown in Table 4.1.

The lists of amino acids that cannot be produced by mammalian cells appear to
be cell-line dependent (Table 4.1). It should be noted that the data for murine hybridoma
TB/C3 by Simpson et al. (1998) did not distinguish between amino acids that the cells
cannot produce versus growth-stimulating amino acids that cen be synthesised from
other amino acids. To avoid confusion, ‘essential amino acids’ will be used to refer to
amino acids that cannot be synthesised by mammalian cells for the rest of this chapter.
There are several common essential amino acids for all the cell-lines in Table 4.1:
lysine, tryptophan, methionine, threonine, and leucine. Chinese Hamster Ovary (CHO)
cells are genetically closer to mouse (murine) and human than other organisms (refer to
Appendix 3 for linage relationship). Thus, those amino acids that are essential or
growth-stimulating for human and murine hybridoma TB/C3 have been assumed to be
important for the growth of CHO cells. Several literature studies have reported partial
lists of essential or non-essential amino acids for various CHO cell-lines: CHO-IFNy
chemostat cell cultures studied by Hayter et al. (1992) showed net productions of
glutamic acid, aspartic acid, serine, and alanine at various steady-states, indicating they
are non-essential amino acids; Heal and McGivan (1997) reported tryptophan, histidine,
and phenylalanine to be essential for CHO-K1 cells; Altamirano et al. (2001) studied a
CHO cell-line producing tissue-type plasminogen activator (tPA) in chemostat and
alanine, glycine, and aspartic acids were produced by the cells; the CHO-IFNy cell
culture modelled in this chapter showed net productions of alanine, glycine, and proline.
All these examples are in agreement with the lists of essential/growth-stimulating versus
non-essential amino acids of human and murine hybridoma TB/C3. The amino acids

considered in the growth kinetics of CHO-IFNYy are indicated in Table 4.1.
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Table 4.1: Comparison of essential versus non-essential amino acids for different

mammalian cells reported by Morgan (1958) and Simpson et al. (1998).

Mammalian Organisms Model
= S = = 2 g = = EEES
= 5 |% | (B |&: |2 |3%|%pif
% £ - Z = Sh| = EG | gEs e
£ |% 13 |F |3.|5%|% |58|£4:°
O . == = e | N &| = SE | <3 mE

Arginine E E E E E nE,S | nE,S | E* \/
Histidine E |E |[E |E |E |E |[nE |E V
Lysine E E E E E E E E \
Tryptophan E E E E E E E E \
Phenylalanine | E E E E E E E n/a v
Tyrosine E E E E E nE | nES | E* v
Cysteine E E E E E nE | nE,S | E* N
Methionine E E E E E E E E vV
Serine nE nE nE nE E nE,S | nE nE -
Threonine E E E E E E E E v
Leucine E E E E E E E E vV
Isoleucine nE |E E E E E E E N
Valine E |E |E |E |E [nES|E |E v
Glutamic acid | inh | nE nE nE nE nE nE nE -
Aspartic acid inh | nE nE nE nE nE nE nE -
Alanine inh | nE nE nE nE nE nE n/a -
Proline inh | nE nE nE nE nE nE nE -
Hydroxyproline | inh | nE nE nE nE nE nE n/a -
Glycine nE nE nE nE nE nE nE nE -
Glutamine nE E E E E na |na |E energy source
Asparagine na |nfa |n/a |E na |n/a |n/a |nE -
Remarks:

E: Essential amino acid (cannot be produced by cells)
nE: Non-essential amino acid

S: Stimulating (enhance growth rate because of a slow rate of synthesis by the organism)

inh: Inhibitory

n/a: Not available
*: Simpson et al. (1998) did not classify between essential amino acids that the cells cannot
produce versus growth-stimulating amino acids that can be produced from other amino

acids.

) Summarised by Morgan (1958) from experiments of Eagle (1955a; 1955b), Eagle et al.
(1956), Haff et al. (1956), Kidder and Dewey (1945), McCoy et al. (1956), and Rose et al.

(1954).

® Data from Simpson et al. (1998) depleting amino acids one at a time in chemostat cultures
of hybridoma TB/C3 and studied cell viability after 48h of removal of each amino acid.
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4.1.2.2 Structure of Model Equations

In this section, all the variables and parameters are summarised in Section 4.1.6

with detailed definition.
Specific Growth Rate

The specific growth rate of CHO-IFNy cell culture is related to the
concentrations of glucose, glutamine, and essential/growth-stimulating amino acids
discussed in Section 4.1.2.1 except tryptophan which was not able to be measured in the
experiment. It is assumed that the concentration of tryptophan never dropped to zero in
the cell cultures and the effect of tryptophan on specific growth rate (1) is less
significant than other essential amino acids.

[GLC]-[GLN]
K. +IGLC))- (K, +[GLN])
|-

H= i +( max _;umm)'|:(

[;[/CAL]- [LYS]-[THR]-[HIS] - [ILE]. [PHE]
( ml [VAL] ( Iw + [LYS])' (Kmr + [THR]) (K

+[ILE))-(k ,, +[PHE))

phe

his + [HIS])' (Kile

[LEU]-[MET]-[ARG]-[TYR]- [CYS]
+|LEV))- (K, +IMET))- (K, +[ARG])- (K, +

met

Iul nr ) (Kryx + [CYS])

“4.1.1)
where 1, (h'l) is the minimum specific growth rate, fqx (h'l) is the maximum specific
growth rate, K; represents the Monod-type constant of nutrient i which is the

concentration of i to have half of the maximum stimulation on specific growth rate.

In the above equation, glucose and glutamine are separated from other amino
acids because the CHO-IFNY batch culture appeared to exhaust glucose and glutamine
earlier than the amino acids and cell growth did not stop when there was no
glucose/glutamine in the cell culture medium (Figure 4.1). The role of the minimum
growth rate (4,) is to compensate for possible under-estimation of & due to any under-

prediction of amino acid concentrations.
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Volume

Assuming the sampling volume is negligible relative to the flowrates of the inlet

stream(s):
dd_‘t/ = F‘ill + Fgl(: - E)ut (4]2)

The effect of volume increase by addition of concentrated nutrients on residual
concentration of cells, nutrients, product, and byproducts is taken into account by

modelling the total amount of each substance in the mass balance.

Specific Death Rate

The relationship between specific death rate (1) and ammonium concentration
([AMM]) proposed by Ludemann et al. (1994) was adopted for CHO-IFNY cells with the
inclusion of another toxic by-product lactate ([LACT). Detailed explanation of the death
rate equation can be found in Section 4.2.1.2 (Equation M10). The values of critical
concentration of ammonium and lactate ((AMM],, and [LAC].,) were estimated based on
findings by Hayter et al. (1991) that CHO cell-line could tolerate ammonia
concentration up to about SmM and was not affected by lactate concentration as high as

17.5mM.

My =Hy min’

Kd .amin Kd Jlac

Kd,amm+ ([AMM] B [AMM]cr)] _ [Kd,lac + ([LAC] B [LAC]C’_)J (4.1.3)

where ([AMM] - [AMM],.,) = 0 and ([LAC] - [LAC].,) = 0 if [AMM] < [AMM],, and
[LAC] < [LAC],, respectively.

Cell Concentrations

MHIXWV—M,~X.,-V—Fm,,~X., (4.1.4)
t

d(X, V) 415
—a,t_:ﬂ(i'Xv.V_rfmg .Xd.v_qu'Xd ( T )
X, =X, +X, (4.1.6)
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where X,, Xy, and X, (cell L’l) are the viable, dead, and total cell concentrations
respectively. Possible loss of dead cells is represented by 7y, (h™') in Equation 4.1.4. A

more detailed discussion of cell lysis can be found in Section 4.2.1.2.

Glucose ([GLC])

d(oLclv) X,-V+F, -[GLC]., —F, -[GLC] 4.1.7

T - lec Ay + gle in — Low ( T )

0, :__ﬂ__MglC 4.1.8)
Yx,glc

where Qg (mmol cell' bl is the specific consumption rate of glucose, F. (L h') is
the flowrate of glucose-containing stream, Y. (cell mmole™) is the cell yield from

glucose, M. (mmol cell™* h'l) is the maintenance glucose consumption.

Amino Acids

The interconversions of amino acids is based on discussions with Dr. Yih Yean
Lee (BTI-A*Star, Singapore) based on their experimental results and the list of essential
amino acids discussed in Section 4.1.2.1 that cannot be synthesised by mammalian
cells. Below is a list of interconversions of amino acids included in this simple amino

acid model:

Arginine € - Glutamic acid
Arginine € Proline
Arginine €= Aspartic acid
Asparagine € Aspartic acid
Asparagine € Arginine
Cysteine € Serine
Glutamic acid € - Proline
Glutamic acid € Histidine
Glutamic acid € Glutamine
Glycine €-> Serine
Proline € Arginine
Tyrosine € Phenylalanine
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Glutamine (|GLN]):

d{|GLN|-V
—([—# - len ’ X\* ’ V - rd,gln ’ [GLN] V + Ez: ’ [GLN]in - ‘Fuul ’ [GLN] (419)
Q,=—L-M, +v, -0 (4.1.10)
gin Y ; gin gln.glu glu T
x.8n
_ o] (4.1.11)
o, +[GLN]|

where Qg (mmole cell! h'l) is the specific consumption rate of glutamine, Fd ln (h'l) 18
the spontaneous glutamine degradation rate, Y., (cell mmole™) is the cell yield from
glutamine, Y, 0, (mmole mmole'l) is the yield of glutamine from glutamic acid, Q,
(mmole cell’ h'l) is the specific consumption rate of glutamic acid, My, (mmole cell ' b
') is the maintenance glutamine consumption, @; (mmole cell’ h™') is the maximum
maintenance consumption of glutamine and @ (mM) is the corresponding half-

saturation constant.

The specific consumption/production rate, Q; , is negative for consumption and
positive for production of species i. The sign of Y;Q; , where Y;; is the yield of amino
acid j from i , is dependent on the sign of Q; of the specific cell culture studied. Two
exceptions occur for glutamate and arginine as their specific consumption/production
rates altered between net consumption and net production in batch CHO-IFNY culture.
As a simplification, it is assumed that the sign of Y; giu 18 positive and the sign of Yj,,, is

negative.
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Below are the mass balance and specific consumption equations for other amino

acids starting from the essential/growth-stimulating amino acids.

Valine ([VAL]):

M = Q"ﬂ’ ’ Xv : V + F;‘n ’ [VAL]m - Fom ’ [VAL] (4 1 ' 1 2)
t
___H (4.1.13)
QV”[ Y.x',val
Lysine ([LSY]):
d([LZS]-V) =0, X,-V+F, -[Lys] —F. -[L¥s] (4.1.14)
: A
0, =- H (4.1.15)
xlys
Threonine ([THR]):
d([TiIJR} V) _ 0, X.V+F,-[THR], —F, -[THR] (4.1.16)
!
___H (4.1.17)
Q,hr Y.x',r/zr
Histidine ([HIS]):
d([HCIZS]V) = thx ’ X\f V+ En ’ [HIS]In - Fom ’ [HIS] (4 118)
!
ths=—Yﬂ (4.1.19)
x,his
Isoleucine ([LEU]):
d([IZE].V) = Qile ) Xv V + I:in ’ [ILE]m - Fout : [ILE] (4 1 20)
t
= H 4.1.21)
Qllf Yx,ile
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Phenylalanine ([PHE]):

d([PHE] V)
dt

:Qphe ’ Xv 'V+En [PHE]m -F

out

-[PHE]

Qp/ze :_Ylu

x,phe

Leucine ([LEU] ):

d(LEU]-V)
dt

:Qleu .Xv .V+F‘in [LEU]m —F

(el

«[LEU]

M
Q[eu == Y

x,leu

Methionine ([MET]):

d(MET]-V)
dt

MET], - F,, -[MET]

out

= ané’l : X\’ .V + F

in

Qmel == Y ﬂ

x,met

Arginine (JARG]):

d([ARG]- V)
dt

—F, -|ARG]

= Qarg : Xp : V + F : [ARG]in out

in

___ M
Qarg - Y + Yarg,glu ’ leu + Yarg,pm ’ me - Yarg,axp ’ Qa.vp

x,arg

Tyrosine ([TYR]):

d([rYr]-v)
dt

= Ql_\'r ’ X\' ‘V+F, [TYR] _Eiul [TYR]

in in

___H
Q})'r - - Yl_\’r,phé’ : Qphe

x.nr

Cysteine ([CYS]):

d(cys]-v)
dt

= QL')’.Y : X\’ : V + E’I : [CYS]

- F,, [cys]

in

___M
Qcy.\' - - Y cys,ser ' Q.\'L’r

X,0y8
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(4.1.28)

(4.1.29)
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(4.1.32)
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Alanine ([ALA]):

WAL g, %, v +F, laLal, -, fara) (4139
Qota :—_/:l_+rulax (4.1.35)
Yx,ala ‘

where 7, (mmole cell”’ h') represents a specific production rate of alanine from cells
as there are many possible amino acid sources for alanine, making it difficult to track all

the sources. This is also the case for aspartic acid and glutamic acid below.

Asparagine ([ASN]):

i[A—AZLV). = le’n ! X\r' V + E}r : [ASN]m - E}ur : [ASN] (4 1 36)
t .
Qa.\'n = _L - Ya.vn,a.x'p ’ qup (4 1 37)
Aspartic acid ([ASP]):
@K} = Qusp : Xv : V + En ' [ASP]in - Foul ’ [ASP] (4 1 38)
t
0, =——F—=Y,_ . O+ (4.1.39)
asp Y asp,arg arg asp.x
x,asp
Glutamic acid ([GLU] ).
&%M = leu ’ Xv ’ V + Flin ’ [GLU]M - E)m ) [GLU] (4140)
t

___ M
QS“' - Y + Yglu,pm : Qpro - Yglu,hix : ths - Yglu,gln : len - Yglu,arg : Qarg + rglu,,\' (4 1 41)

x,glu

Glycine (|GLY]).

d(GLY]-v)
dt

=0,, X, V+F,-[GLY], - F,,-[GLY] (4.1.42)

in

U
0 =—3—=

x,gly

(4.1.43)

Ygl_v,ser ’ Qser
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Proline (|PRO]):
d([PRO]-V)

dt :Q[”U 'X\’ 'V+En .[PROJin _Fnul [PRO] (4144)

0. =—* 1y o _y .0 (4.1.45)

pro pro,glu glu pro,arg arg i

X, pro

Serine ([SER]):
d([SlZ,t ]V) =Q, X, V+F, '[SER]M ~-F, '[SER] (4.1.46)
0, =——t—+7,.,. 0 4.1.47)

ser Y\, N ser,gly gly e
Byproducts

Lactate ([LAC]) is produced mainly during metabolism of glucose. Thus, the
specific production rate of lactate, Oy, (mmole cell” h™), is linked to specific glucose
consumption rate (Qg.) via a term representing lactate yield from glucose, Y gl
(mmole mmole™).
d(racl-v)

dt
Qe = Yiueie Qe (4.1.49)

=0, X,-V-F,, [LAC] (4.1.48)

our

Ammonium ([AMM]) is mainly produced from metabolism of glutamine and
spontaneous glutamine degradation (r4,). The specific production rate of ammonium,
Oumn (mmole cell’! h‘l), is related to specific glutamine consumption rate (Quin) via a
term representing ammonium yield from glutamine, ¥, ¢» (mmole mmole™).
d([AMM]-V)

dt
Qanm =Y amm gin* Qi (4.1.51)

= Qamm ' Xv .V + rd,gln ’ [GLN]V + F : [AMM]m - Foui ’ [AMM] (4150)

m
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IFNy

A simple equation is used to relate the production of IFNY to viable cell concentration:

d([IFN1-V
({ dt] ):rIFN'Xv'V—F -[IFN] (4.1.52)

out

where ripy (mg cell! h'l) is the average specific production rate of IFNY.

4.1.3 Model Parameter Estimation

The model contains 67 parameters with 26 measured variables. The parameter
values were estimated in gPROMS (Process Systems Enterprise Ltd.) using a general
maximum likelihood approach similar to in Chapter 3. Below are the parameter values

for the CHO-IFNY batch culture.

Table 4.2: Parameter values of the simple amino acid model for batch culture of CHO-

IFNY cells.

Parameter Value Units
[AMM],, 5 mM

Korg 6x 107 mM

Kcyx 1.2x 107 mM

K amm 5x 107 mM

K 4.5 mM

K. 1.5x 10" mM

K 2.2x 10" mM

Khis 5x 107 mM

K. 2.5x 107 mM

Kiey 2x 107 mM

Kiys 1x10° mM

Koo 8x 107 mM

K e 4x 107 mM

Kor 5x 107 mM

K 1x 107 mM

Koul 1.5x 107 mM

[LAC],, 20 mM

M, 1x10™ mmole cell' h
Yalax 55x 10" mmole cell' h*
Fuspx 2x 107" mmole cell’ b
Folu,x 4x 10" mmole cell b
Yd gin 9x 107 h!

Frag 1x 107 h'

) g— 1.2 mmole mmole”
Yoreasp 1x10° mmole mmole™’
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Yorg gl 1x107 mmole mmole™
Yirepro 1x10° mmole mmole™
Yionamp 1x10? mmole mmole™
Yospare 1x 10" mmole mmole™
Y evs,ser 1x 10" mmole mmole™
Yoinglu 1x 10" mmole mmole™
Yoruarg 1x10° mmole mmole™
Y otugin 7x 107 mmole mmole’
Yo nis 5x 10" mmole mmole™
Yeiupro 1x10° mmole mmole™
Yoty ser 6.5x 10" mmole mmole™
Yiac.ule 1.5 mmole mmole
Yoroare 6x 10" mmole mmole™
Yoro.gi 5x 10" mmole mmole™
Yieron 1x10° mmole mmole™
Y iy phe 5x 10" mmole mmole™
Y ata 1x10° cell mmole™!
Yiarg 2x 10° cell mmole™

Y asn 1.5x 10° cell mmole™
Yeasp 1.1x10° cell mmole’
Yicys 6x10° cell mmole™

Y, pic 7.7 x 10 cell mmole™

Y. oin 8x 10° cell mmole™

Yo gl 9.6 x 10° cell mmole™
Yeery 1.6 x 10° cell mmole™
Yhis 4.6 x 10° cell mmole”

Y ie 2x10° cell mmole™

Y ien 15x 10° cell mmole”
Yo 13x10° cell mmole™
Yomer 52x10° cell mmole

Y. phe 4.1x10° cell mmole’
Yepro 2.1x 10’ cell mmole™

Y ser 2.5x10° cell mmole™
Yeimr 1.8x 10° cell mmole™
Yo 2.6x 10° cell mmole™
Yival 3x 107 cell mmole™

o 2x 10 mmole cell’ h”!
as 2 mM

M min 5x 10 h'

Hnin 2x 107 h

Mimax 1.9x 107 h'

TiEn 1.8x 10" mg cell’ h”

The simulation results of the CHO-IFNYy batch culture using the parameter
values in Table 4.2 are shown in Figure 4.1 for the concentrations of IFNYy, viable and
total cell, glutamine, glucose, isoleucine (example for essential amino acid), alanine
(example for non-essential amino acid), ammonium, and lactate. The model is able to

follow the trends of all major variables. However, there are significant deviations in all
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fed-batch cultures unless certain parameter values were changed for each individual fed-
batch culture. A comparison of fed-batch culture simulation results using parameter
values from Table 4.2 versus parameters individually adjusted by trial and error is made
in Figure 4.2 — 4.7. The affected parameters are listed in Table 4.4 in Section 4.1.4.2.
The discrepancy in the predictions of IFNY and cell concentrations of fed-batch cultures
when batch parameter values were used indicated certain changes had occurred in the
cell culture when the cultivation method was changed from batch to low-glutamine/

low-glucose fed-batch.

In order to systematically identify the model parameters that affect the
prediction of productivity, Global Sensitivity Analysis (GSA) was performed to
quantify the relative influence of each parameter upon the model prediction of cell
growth. In next section, an overview of existing sensitivity analysis methods is
presented followed by an application of GSA on the simple amino acid model of the

CHO-IFNY cell culture.
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Figure 4.1: Simulations of the simple amino acid CHO-IFNy model for batch culture and
comparison with the corresponding experiment data.
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parameter values. Circles represent experiment data.



IFNy

Viable & Total cell

35 le+10
® IFNy [ 9649 [ Viable cell (Xv) conc.
30 | ~~—- Simulation (batch para) A Total eell (X0) conc.
— —— Simulation (new para) ~ 8Be+d 1 - Xv sim (batch para) _
Ty 25 3 Jpreeenee Xt sim (batch para) o
o = Te+9 Xv sim (new para) Pt
§ 20 - % 6e+9 4 ——— X1 sim (new para) /./' A A A
-é £ Sesd ] A
4 <
£ 15 £ ges0 ]
g g ¢
5 10 4 2 3er9 £ PR A
© 249 N }
5 1
i ________________ Te+9 ‘.:—"’ - \\
——————— A
0 T T T T 0 v ¥ | T
0 50 100 150 200 250 0 50 100 150 200 250
Time (h) Time (h)
Glutamine Glucose
5 12
®  Glutamine (HPLC) ®  Glucose 7]
O Glutamine (bio-analyser) 10 4100 Simulation (batch para)
4 o] corarnn i 5 o . .
Simulation (batch para) — Simulation (new para)
g — Simulation (new para) g
E E 8]
£ g
= E X i
s 24 e a \ . £
o : ] LW/
© < [ ] “ f“‘ Ry ',‘ ®
1+ ] 5 e /
o 2 s
o 00 @8
0 i "." a8 T T (] .l LU T T T
0 50 100 150 200 250 0 50 100 150 200 250
Time (h) Time (h)
Isoleucine Alanine
2.0 12
® Isoleucine ® Alanine
—==- Simulation (batch para) w0l Simulation (batch para)
sl Simulation (new para) — Simulation (new para)
g g
E E
= =
b S
g 1.0 g
:
v 9
£ . . £
© 05 1 ©
. . L v
~ R
0.0 T T T T T
0 50 100 150 200 250
Time (h) Time (h)
Ammonium Lactate
12 70
®  Ammonium ® Lactate
10 {| === Simulation (batch para) 60 1| ———- Simulation (batch para)
— Simulation (new para) — Simulation (new para) o ———— ]
g S 50 g
E E /
g £ 40 /
£ H d
H £ 30 // .
£ y .
S S 20 4 . e & ¢
. /,
(3
10 o2
==
0 T T T T T 0 T T T T
0 50 100 150 200 250 [ 50 100 150 200 250
Time (h) Time (h)

Figure 4.3: Simulations of the simple amino acid CHO-IFNY model for fed-batch culture with
glutamine set-point at 0.3mM (1st experiment) using parameter values from batch culture
versus adjusted new parameter values. Circles represent experiment data.

107



35
® JFNy
30 | =—=- Simulation (batch para)
— -—— Simulation (new para) L
254
-1
£
z 20 1
2
£ 15
=
@
9
g 10 -
o]
5 -
0 >
0
Time (h)
Glutamine
5
®  Glutamine (HPLC)
O Glutamine (bio-analyser)
4 [ eerenes Simulation (batch para)
’E‘ —— Simulation (new para)
g
3
- M
2 s “ .
L]
‘_; :,- \.w. /
S 2 K ..
2 g
- L
S 4
-~
1 7
I'e
o o
0 2. 857 e o e L
0 50 100 150 200 250
Time (h)
Isoleucine
2.0
®  Isoleucine
——=- Simulation (batch para)
154 ——— Simulation (new para)
=
g
=
2
® 101
i
=
51
-]
S
0.5 A [

Concentration (mM)

IFNy

Time (h)
Ammonium

®  Ammonium
]| ===+ Simulation (batch para)
—— Simulation (new para)

100
Time (h)

150 200

250

Concentration (cells L)

Viable & Total cell

Viable cell (Xv) conc.
A Total cell (Xt) conc.
Xv sim (batch para)

Te+9 4 ********+ Xtsim (batch para)
Xv sim (new para) as
6etd | — . —. Xt sim (new para) Pt

0 50 100 150 200 250
Time (h)
Glucose
20 4| ® Glucose
+ Simulation (batch para)
——— Simulation (new para)
Z 15 - ;
£ £ F
3 H Y rd
2 E N
3 ff 3 /
£ 10 A + X F
g ; Mo S 1
© s
5 p
"J
[ e .
0 e o S (Yo ]}
0 50 100 150 200 250
Time (h)
Alanine
12
®  Alanine
w4~ Simulation (batch para)
— Simulation (new para)
=
E 3
g e
E 67 7
E] /
g /.
s Y S .
/// ..
2 1 -
- -~ q
0 - - T v T
0 50 100 150 200 250
Time (h)
Lactate
70
® Lactate
60 4| —==- Simulation (batch para)
—— Simulation (new para)
S 50 LTI
=
g Vi
z /
5 40 ’/
§ 30 4 '
3 7 . [
S 20 1 4 b
174
10 A °
9=
0 T T T T
0 50 100 150 200 250
Time (h)

Figure 4.4: Simulations of the simple amino acid CHO-IFNy model for fed-batch culture with
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Figure 4.5: Simulations of the simple amino acid CHO-IFNy model for fed-batch culture with
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Figure 4.6: Simulations of the simple amino acid CHO-IFNY model for fed-batch culture with
glutamine set-point at 0.3mM and glucose set-point at 0.7mM using parameter values from
batch culture vs. adjusted new parameter values. Circles represent experiment data.
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4.1.4 Parameter Sensitivity Analysis

4.1.4.1 Sensitivity Analysis Methods & the Method of Sobol’

The relative importance of model parameters with respect to model outputs can
be analysed by varying the parameter values to see how the outputs are affected. The
methods for sensitivity analysis can be classified into screening, local sensitivity, and
global sensitivity (Saltelli et al., 2000). Screening methods rank the input factors in the
order of importance but do not quantify the exact percentage of influence that each input
factor has on the total output (Campolongo et al., 2000). Local sensitivity analysis
methods either numerically vary the input factors within a small interval around a
nominal value or directly solve the differentiation of output variables with respect to
input factors (Turanyi and Rabitz, 2000). As the local sensitivity analysis methods do
not explore the whole range of possible values of the input factors, it is not suitable for

non-linear models which are common in dynamic biological systems.

Global sensitivity analysis (GSA) methods vary the input factors over their
ranges of existence and relate their importance to the output uncertainty. It evaluates the
effect of each input factor while all other factors are varied as well (Saltelli et al., 2000).
Both sampling-based methods and variance-based methods can be used for GSA.
Sampling-based methods sample the whole domain of the input factors. But certain a
priori knowledge of the model is required to select an appropriate distribution of the
input factors within their ranges (Helton and Davis, 2000). This knowledge may be the
fact that the model is linear or at least monotonic, or the information about the relative
importance of the variables. Variance-based methods use variance to indicate the
significance of input factors. There are several approaches to evaluate the variance, all
of which include calculating the following quantity with or without higher order

interactions of input factors (Saltelli et al., 1999; Chan et al, 2000):
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vary [E(Y|X)] (4S.1)
or

vary [E(Y|X)] 4s.2)
var(Y) '

or other combinations of the numerator and denominator in Equation 4S.2. In Equation

4S.1 & 4S.2, Y is the output variable, X is the input factor, E(Y‘X) is the expectation of

Y conditional on a fixed value of X, and vary is the variance taken over all possible

values of X.

Correlation ratio method, Fourier amplitude sensitivity test (FAST) and Sobol'
method are often used in GSA to measure the variance. Correlation ratio is a simple
way to evaluate the importance of an input factor. It is equivalent to the first-order
sensitivity indices in FAST and Sobol' method (Chan et al, 2000). FAST was first
proposed by Cukier et al. (1978) involving the use of transformation functions to
translate the probability density of the variation of input factors into an s-space in order
to convert the n-dimensional integral in the input factor space into a one-dimensional
integral in s-space. The FAST method is model independent and it calculates the higher
order terms of interactions of input factors though the number of model evaluations
required is often large (Saltelli et al., 1999; Haaker, 2004). But it is important to use an
appropriate set of transformation function for FAST and the best choice is up to the user
(McRae et al., 1982). The Sobol' method is an alternative to FAST but does not involve
any user-selected transformation (Sobol', 2001). The method of Sobol' was used in the
sensitivity analysis of the simple amino acid CHO-IFNY model in Section 4.1 and the
more complex CHO-IFNy model in Chapter 5. Below is a detailed description of the
Sobol' method (Sobol’, 2001).

Sobol' Method for Global Sensitivity Analysis (GSA)
If a function f(x) can be integrated and X = (x;, ... , x,) iS a point in an n-

dimensional unit hypercube with a range of 0 — 1, the function f{x) can be decomposed

into summands of increasing dimensionality as the following:
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FGos x)=fo+ Y, Zf (X, reees X))

s=1 i <.<iy

., ., (4.53)
= f, +Zfl.(xi)+2ﬁj(xi,xj)+...+flizw_“” (x5 oo 5X,)
i=] i<f
Equation 4.53 1s valid if:
[ £ (e e, =0 k=ip, ..., is (4.54)

A consequence of Equation 4.54 is that the right-hand-side terms in Equation 4.S3 can

be expressed as integrals of f(x). For example:

j:f (x)dx = f (4.85)

[ ] [ = fo+ fi(x) (4.86)

j:f(X)dek=fo+ﬁ(xi)+f,~(xj)+ﬁ~,~(xi,xj) (4.87)
k#i,j

and so on.

Assuming that f{x) can be square integrated (i.e. the integral of the square of the
function over the whole interval of the unit hypercube is finite), the total variance, D, of

the function f{(x) can then be calculated from:

D= f Frx)dx—f; =§n: Z £ [l dx, .dx, =i iDi]m,.S (4.S8)

s=1 <<y s=1 <<y

The global sensitivity indices can be defined as:

D,

Siis =7 (4.89)
Because D =i iDilmtg ,

s=1 <.y
Zn: ZS =1 (4.510)
s=1 ij<..<iy
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where 0< S, , <1.If the sensitivity index of an input factor is close to zero, the factor

iy
has no significant impact on the output variable of interest within its possible range of

variation. The opposite is true if the sensitivity index is close to one.

Sobol' Sensitivity Indices for a Subset of Input Factors

If x is consisted of two subsets of variables y and z, such that:

y=(xkl,...,ka), 1<ki<...<ks<n 4.811)
and z is the set of n —m complementary variables. Then, the variance corresponding to y
is:

D,=) > D, (4.512)

m
s=1 (ij<.<ig)EK

§

The total variance corresponding to y also involves the interactions between y and z

except the variance of z:

Dy =D-D, (4.513)
Sy = 3 (4.514)
D

Thus, 0< S, <SI <1.

An implementation of the Sobol' GSA method coded in C++ and linked to
gPROMS for model solving was kindly provided by Dr. Sergei Kucherenco (Centre for
Process Systems Engineering, Chem Eng Dept., Imperial College London). The C++
codes employed a Sobol' sequence (Sobol', 1967; Sobol', 1976) for sampling the
parameter space. The Sobol' sequence has a uniformity property for small number of
samples and optimal uniformity of sample distribution when the length of the sequence
tends to infinity which makes it more superior than random numbers (Chan et al., 2000).
The GSA analysis results of the simple amino acid model for CHO-IFNY cell culture is

discussed in the next section.
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4.1.4.2 GSA for the Simple Amino Acid CHO-IFNyModel

In this section, the Sobol' method of Global Sensitivity Analysis (GSA) is used
to analyse the relative importance of the parameters of the simple amino acid CHO-
IFNyY model with respect to the viable cell concentration which directly affects the total
production rate. The specific IFNy production rate (rizn) was excluded from the GSA
analysis because by definition it is a very significant parameter for the specific

productivity of the cell culture.

Due to the large number of parameters involved, they were grouped according to

parameter types as shown in Table 4.3.

Table 4.3: Parameter groups for Global Sensitivity Analysis (GSA) of the simple amino
acid model for the CHO-IFNY culture.

Group | Parameter Type

1 Minimum and maximum specific growth rates.

2 Half-saturation constants relating amino acid concentration to specific
growth rate. E.g. K5, (overall insensitive w.r.t. X,)

3 Parameters for specific death rate. E.g. AMM,,

4 Parameters for specific consumption of glutamine. E.g. Yy o,

5 Parameters for specific consumption of glucose. E.g. Y, ¢

6 Cell yields from amino acids. E.g. Y, g

7 Specific production rates of non-essential amino acids. E.g. ryp,
(overall insensitive w.r.t. X,)

8 Yield of non-essential amino acids from other amino acids. E.g. Yergiy
(overall insensitive w.r.t. X,)

9 Yield of byproducts from energy sources. E.g. Yyun gin

116



The parameters were varied by £100% of their nominal values in Table 4.2. The
sensitivity indices were normalised to a range of O — 1. A cut-off threshold of 0.05 was
used to separate the sensitive parameter groups (> 0.05) from the insensitive parameter
groups (< 0.05). The individual parameters in each sensitive parameter group were then
further analysed using GSA to identify those parameters that have significant effects on
the viable cell concentration. The cut-off threshold of the sensitivity indices for the
individual parameters was also 0.05. A total of 21 parameters out of 66 analysed
parameters were identified as sensitive with respect to viable cell concentration. Thus,
overall there are 22 sensitive parameters including r;zy that are significantly affecting
IFNy productivity within £100% of their nominal values. Among the 22 sensitive
parameters, 17 of them require a change in values in order to be able to correctly
simulate the fed-batch CHO-IFNY cell cultures. The remaining 5 unchanged sensitive
parameters are: Kg umm, Kdiae, [AMM]cr, [LAC],,, and ryq,. A list of parameters of which

the values are different between batch and fed-batch cultures is shown in Table 4.4.
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Table 4.4: List of sensitive parameters of the simple amino acid CHO-IFNy model
identified by GSA.

Parameters of which the Sensitive Normalised parameter
values changed in FB parameters fluctuation*
L min d 02-1
Y ot ® 0.8-2.3
Ko - 0.05-1
Lonax ° 09-14
) . 0.6-1
Y.\'.I\*r - 1-77
Yeows - 1-67
Yy mer - 1-3.8
Yiarg ® 1-10
Y. . 1-11
Y oin [ 0.8-1.1
Yo . 1-6.2
Yoo ) 1-12
Yy al ® 1-6.7
Y. nis . 1-6.5
) . 1-73
Y: teu d 1-6
Yo ite . 1-7.5
YX.[JI'() - 1 - 48
Yion - 1-100
Y asn - 1-33
YX.L’]Y - 1 —_ 63
Yons - 0.5-1
Yotax - 0.07 -1
Yt ) 03-1.1
Y ammgin ® 05-1
L - 05-1
Koic - 03-1
Tien o’ 0.6-23

* Parameter fluctuation expressed as multiple of the corresponding nominal value in the batch
culture. The range represented the lower and upper bounds of the parameter values in fed-
batch cultures after normalisation.

** Parameter sensitive for product synthesis instead of viable cell concentration.

Apart from 17 sensitive parameters having different values in fed-batch cultures,
the values of 12 other insensitive parameters are also changed (Table 4.4) but the
influence of the latter on productivity prediction is relatively negligible. The varied
sensitive parameters are mainly related to specific growth rate, cell yield from most of
the essential/growth-stimulating amino acids, and byproduct yields. The varied
insensitive parameters are mainly related to non-essential amino acids. The variation of
certain parameters is much larger than the 2-fold range analysed in the GSA, e.g. one of
the sensitive parameters, Y, 1S changed up to 12-fold; and one of the insensitive
parameters, Y., is changed up to 100-fold. This revealed a highly dynamic nature of

the mammalian cell culture system. It would be necessary to model the cell culture in
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greater details particularly regarding any possible changes in cellular regulations that

might be encountered in batch and fed-batch cultures.

4.1.5 Conclusions of the Simple Amino Acid Model

In Section 4.1 it has been attempted to build a simple cell culture model
including amino acids to describe the growth kinetics and productivity of a CHO-IFNy
cell-line. The model started with simulation of the batch culture and was able to capture
the patterns of all major variables. But subsequent simulations for fed-batch cultures
revealed significant prediction discrepancy unless the values of certain model
parameters were changed for each individual fed-batch culture. It is necessary to model
the cell culture in greater details and include variations of the cell culture dynamics in

batch/fed-batch cultures that have been reported in the literature.
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4.1.6 Notations for the Simple CHO-IFNY Amino Acid Model

Table 4.5: Notations for the simple amino acid model of the CHO-IFNy culture.

Symbol Definition Units
Variables:

[a.a.], Feed concentration of amino acid (a.a.) mM

[ALA] Extracellular concentration of alanine mM

[AMM] Extracellular concentration of ammonium mM

[AMM] Ammonium concentration in inlet stream mM

[ARG] Extracellular concentration of arginine mM

[ASN] Extracellular concentration of asparagine mM

[ASP] Extracellular concentration of aspartate (aspartic acid) mM

[CYS] Extracellular concentration of cysteine mM

[GLC] Extracellular concentration of glucose mM

[GLC],, Glucose concentration in inlet stream mM

[GLN] Extracellular concentration of glutamine mM

[GLU] Extracellular concentration of glutamate (gutamic acid) mM

[GLY] Extracellular concentration of Glycine mM

[HIS] Extracellular concentration of histidine mM

[ILE] Extracellular concentration of isoleucine mM

[LAC] Extracellular concentration of lactate mM

[LEU] Extracellular concentration of leucine mM

[LYS] Extracellular concentration of lysine mM

[MET] Extracellular concentration of methionine mM

[PHE] Extracellular concentration of phenylalanine mM

[PRO] Extracellular concentration of proline mM

[SER] Extracellular concentration of serine mM

[THR] Extracellular concentration of threonine mM

[TYR] Extracellular concentration of tyrosine mM

[VAL] Extracellular concentration of valine mM

Foe Flowrate of glucose-containing stream Lh'

F, Flowrate of concentrated amino acids stream Lh'!

F,. Outlet flowrate Lh!

M. Maintenance consumption of glutamine mmole cell’ b’
Qmm Specific ammonium production rate mmole cell ' h™!
Qe Specific glucose consumption rate mmole cell’ b
Qi Specific glutamine consumption rate mmole cell' h”
Qi Specific consumption/production rate of amino acid { mmole cell' h”
Qe Specific lactate production rate mmole cell' h’'
Vv Cell culture volume L

Xy Dead cell concentration cell L

X, Total cell concentration cell L

X, Viable cell concentration cell L

U Specific growth rate h'!

1y Specific death rate h'

Parameters:

[AMM] .. critical ammonium concentration for specific death rate mM

Kirg Monod-type constant of arginine for specific growth rate mM

K. Monod-type constant of cysteine for specific growth rate mM

K amm Effective concentration of ammonium to double the mM

specific death rate
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Kiiue Effective concentration of lactate to double the specific mM

death rate
K Monod-type constant of glucose for specific growth rate mM
Ko Monod-type constant of glutamine for specific growth rate | mM
Khis Monod-type constant of histidine for specific growth rate mM
Ki. Monod-type constant of isoleucine for specific growth rate | mM
Kiew Monod-type constant of leucine for specific growth rate mM
Kps Monod-type constant of lysine for specific growth rate mM
Koer Monod-type constant of methionine for specific growth mM

rate
Kope Monod-type constant of phenylalanine for specific growth | mM

rate
K Monod-type constant of threonine for specific growth rate | mM
Ky Monod-type constant of tyrosine for specific growth rate mM
Kou Monod-type constant of valine for specific growth rate mM
[LAC],, critical lactate concentration for specific death rate mM
Mgy, Maintenance consumption rate for glucose mmole cell”" h™!
Falux Specific production rate of alanine from cell mmole cell’ h’!
Tusp.x Specific production rate of aspartate from cell mmole cell” h”
Talux Specific production rate of glutamate from cell mmole cell” h”
Td,eln Degradation rate of glutamine h'!
Ffrag Rate of loss of dead cells h'
Y umm, oin Yield of ammonium from glutamine mmole mmole™
Yirg.asp Yield of arginine from aspartate mmole mmole™'
Yire olu Yield of arginine from glutamate mmole mmole™
Yirepro Yield of arginine from proline mmole mmole™
Yosnasp Yield of asparagine from aspartate mmole mmole”’
Yusp.are - Yield of aspartate from arginine mmole mmole™’
Yevsser Yield of cysteine from serine mmole mmole™
Yoin.olu Yield of glutamine from glutamate mmole mmole™
Youare Yield of glutamate from arginine mmole mmole™’
Yolu gin Yield of glutamate from glutamine mmole mmole™
Y b his Yield of glutamate from histidine mmole mmole™
Yotupro Yield of glutamate from proline mmole mmole”’
Yoryser Yield of glycine from serine mmole mmole”’
Yiac.oic Yield of lactate from glucose mmole mmole™*
Yoroars Yield of proline from arginine mmole mmole™
Yoro.gi Yield of proline from glutamate mmole mmole™
Yier.oty Yield of serine from glycine mmole mmole™
Yivr.phe Yield of tyrosine from phenylalanine mmole mmole”’
Y, uia Cell yield from alanine cell mmole™
Y are Cell yield from arginine cell mmole™
Yeusm Cell yield from asparagine cell mmole™
Yiasp Cell yield from aspartate cell mmole™
Yy cys Cell yield from cysteine cell mmole™
Y eic Cell yield from glucose cell mmole”
Y oin Cell yield from glutamine cell mmole’'
Ye o Cell yield from glutamate cell mmole”
Yion Cell yield from glycine cell mmole’’
Yo his Cell yield from histidine cell mmole™
Y ite Cell yield from isoleucine cell mmole™
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Yien Cell yield from leucine cell mmole™

Yiivs Cell yield from lysine cell mmole™

Yimer Cell yield from methionine cell mmole™

Yy phe Cell yield from phenylalanine cell mmole™

Yspro Cell yield from proline cell mmole”

Y ser Cell yield from serine cell mmole”

Y Cell yield from threonine cell mmole™

Yir Cell yield from tyrosine cell mmole™

Yival Cell yield from valine cell mmole™

o Maximum maintenarnce consumption rate for glutamine mmole cell h’!

o Half-saturation concentration for glutamine maintenance mM
comsumption

i min Minimum specific death rate h!

Umin Minimum specific growth rate h'

Himax Maximum specific growth rate h'

YIEN Specific production rate of IFNy mg cell'h!
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4.2 A CHO-IFNY Model including Amino Acids &

Cellular Regulations

The main motivation of developing a more detailed growth and amino acid
model for CHO-IFNYy cell culture was the inability of the simple cell culture model
developed in Section 4.1 to predict both batch and fed-batch cell culture behaviours
using the same set of parameter values. In this section, the evidence in the literature
regarding mammalian cell cultures exhibiting a change in cell culture dynamics is
discussed. An approximation has been introduced to incorporate the variation between
the batch and fed-batch CHO-IFNYy cultures into the mathematical model. Certain
simplifications have also been made to the modelling of non-essential amino acid
consumptions and interconversions in order to reduce the number of under-specified
parameters that have no significant influence upon cell density and productivity

predictions.

4.2.1 Development of Model Equations

4.2.1.1 Alterations in Cell Culture Dynamics

A ‘Shift’ in Cell Culture Responses

The response of cells to changes in nutrient concentration is better understood
for yeast cells than other cell cultures. In yeast cells, there are distinct glucose-sensing
pathways providing 3 different responses at different glucose concentrations (Geladé et
al., 2003). As shown in figure 4.8, the Snf3/Rgt2 glucose sensing pathway is inactive in
the absence of glucose and the Rgt/-Stdl-Mthl complex represses transcription of the
HXTI1-HXT4 genes responsible for glucose transport. The presence of glucose
inactivates Rgtl via SCF-Grril-mediated inactivation and degradation of Mthl/5td] and
hyperphosphorylation of Rgrl, thus activating the HXT promoters. Low glucose
concentrations cause Snf3 to trigger the expression of HXTI-HXT4; whereas high

glucose concentrations cause Rg:2 to further enhance HXT! expression (Geladé et al.,

123



2003). A similar glucose-sensing mechanism is also discussed by Ozcan and Johnston

(1995), Diderich et al. (1999), and Rolland et al. (2001) for yeast cells.

No glucose

Rgt2

Rot1
HXT1-HXT4
Low glucose High glucose
¥ v
[th J[ sth [ Mth1 }[ Std1 )
@ @ @ D @ D
¥
_ [AXTTHXT4 HXTT

Figure 4.8: The Snf3/Rgt2 glucose sensing pathway in yeast by Geladé et al. (2003).

At the genetic level of yeast cells, high glucose concentrations were found to
suppress genes responsible for the citric acid cycle which fully oxidises glucose into
CO; while producing ATP; and more genes responsible for amino acids metabolism,
carbon metabolism, energy, protein synthesis, and cellular transport were up regulated at low
glucose levels than high glucose levels (Yin et al., 2003). The effect of glucose
signalling in yeasts was also found to be only dependent on extracellular glucose

concentration but not glucose flux (Meijer et al., 1998; Ozcan et al., 1998).

Mammalian cell cultures also showed different responses to various levels of
extracellular nutrient concentrations. For example, low glucose concentration in a CHO
chemostat culture producing tissue-type plasminogen activator (tPA) cuased an increase in
viable cell concentration (Altamirano et al., 2001); low glucose/glutamine fed-batch cultures of
a murine hybridoma cell-line showed a lower lactate yield from glucose and lower ammonium
yield from glutamine (Zhou et al., 1997a); glutamine-limited fed-batch cultures of a
murine myeloma cell-line had higher cell yield from glucose, glutamine, and essential
amino acids (Ljunggren and Héggstrom, 1994). Mancuso et al. (1998) had carried out a
detailed study of the effect of glutamine concentration on perfusion cultures of murine

hybridoma 4A2 cell-line producing IgG type antibody. It was found that a rapid removal of
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feed glutamine for a short time produced a rapid change in residual glutamine from
0.67mM to below 0.3mM plus a strong stimulation of the specific and total antibody
synthesis; but a slow reduction in feed glutamine concentration which caused a similar
reduction in residual glutamine from 0.30mM to 0.08mM did not increase antibody
production rate. An increase in cell density and productivity for a human embryonic
kidney cell-line in fed-batch cultures with glutamine controlled at 0.1 — 0.3mM had also
been observed (Lee et al., 2003a) which suggested mammalian cells tend to respond to
such range of glutamine concentrations distinctively from higher concentrations. At the
genetic level, Korke et al. (2004) demonstrated that the metabolic state of mouse
hybridoma MAK cells in continuous culture can be shifted by culture the cells in low-
glucose fed-batch cultures previous to initialtion of continuous culture; and the cells in
the shifted state showed a significantly lower lactate yield from glucose. Genetic
expression analysis of the shifted culture indicated regulations of a large variety of
genetic functions had taken place including central metabolism, mitochondrial transport,

RNA binding etc. (Korke et al., 2004).

Approximation Factor for Changes in Cell Culture Behaviour

When only high versus low range of concentration of major nutrients are the
main interests of process design, i.e. the intermediate range of nutrient concentration
provides no particular advantage for enhancing product yield or quality, a system that
behaves differently in the high versus low range of concentration of major nutrients may
be described by the following approximation:

I = fxi, T, i)

where 9 is a dimensionless quantity representing cell culture response, x; is cell culture
variable, 7 is a hypothetical threshold separating x; into two regions, y; is a binary
variable responsible for activation/deactivation of 9 depending on the value of x; such

that:

Yi = - (RO)
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A graphical illustration of the relationship between the hypothetical response

and cell culture variable x; is shown below:

Response
A

—

Ro-— Shlza

v

Xi
,L;_L 7 ,G_U

Figure 4.9: Conceptual representation of the response factor.

Since such ‘step-change’ is an approximation of the system’s behaviour, 7 has

an uncertainty range of [T,-L, T U] unless the change is known to be sharp around 7.

Such response factor is applied on glucose- and glutamine-controlled fed-batch
cultures of CHO-IFNY versus batch culture. According to the glucose-sensing pathways
of yeast cells reported by Geladé et al. (2003), there is a third signalling response at zero
glucose concentration that all glucose sensors and transporters became inactive. There
are many similarities in the signalling network between yeast and mammalian cells.
Examples include the Snfl gene in yeast responsible for activating glucose-repressed
gene and regulating fatty acid synthesis is structurally very similar to a mammalian
protein kinase AMPK responsible for glucose and lipid metabolism (Carling et al., 1994;
Mitchelhill et al., 1994; Woods et al., 1994); and one out of three identified activating
molecules of the SNF1 kinase in yeast was able to activate mammalian AMPK (Hong et
al., 2003) which suggested functional conservation of signalling pathway between yeast
and mammalian cells. Thus, the binary variable in Equation RO is extended to include a

third region for Glc = 0:

0, Glc=0
yy=1 1, 0<Glc<tg, M1)
0, Glczr1g,
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where y; is the binary variable for glucose, Glc (mM) is glucose concentration in the
cell culture, 7g is the threshold level of glucose below which certain cellular activities

might appear to be shifted to a different trend.

It is assumed that the cellular responses to different levels of glutamine have a

similar structure as glucose:

0, Gln=0
v,=9 1, 0<Gln<zy, M2)
0, Gin>rtg,

where y» is the binary variable for glucose, Gln (mM) is glutamine concentration in the
cell culture, 7, is the threshold level of glutamine below which certain cellular

activities might appear to be shifted to a different trend.

The response functions for glucose and glutamine take the following form:

d (‘xrex,Glc )

" = rmax,,, o, -1og[l+ y, - (Tg, =Gl —d o Gie * Xrey e (M3)
d(x
-(—;Q = r’naxres Gin* log[l + y2 : (TG[H - Gln)] - drfv Gin ' xres‘ Gin (M4)
t K S, S

where X, is the hypothetical dimensionless response variable, r17ax;.s ;18 an activation

coefficient, and d,e;, ; (h'l) is a degradation rate of the response. The logarithmic function

serves to restrict the upper limit of y, - (¢, —Glc) and y, - (7, —GlIn) for large values

of 75 and 7, but in this study the values of the two parameters are relatively small that

the function remains unsaturated.

Because the response functions cannot be validated by cell culture data, the
response variables Xy, cic and Xyeycin are linked to parameters that quantify the changes
between batch and glucose-/glutamine-controlled fed-batch cultures. The usefulness of
such response functions would then be judged by whether the overall model predictions
are able to capture the trends of the cell culture dynamics under both batch and fed-

batch conditions or not and this is discussed in Chapter 5.
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4.2.1.2 Growth/Death Rate & Cell Lysis

Specific Growth Rate

Ammonium is one of the byproducts that would inhibit cell growth and trigger
cell death (Ryll et al., 1994). Hayter et al. (1991) reported that an initial level of 4.5mM
ammonium inhibited the growth of CHO cells in batch culture but a level of 2mM had
no significant effect; the cell growth was also unaffected by an initial lactate
concentration of 17.5mM. Schlaeger and Schumpp (as cited in Hayter et al., 1991)
found in their study that 8 — 10 mM ammonium and 90 — 110 mM lactate were required

to give 50% inhibition of CHO cell growth.

Ludemann et al. (1994) studied a hybridoma cell-line and proposed an equation
structure for the toxic effect of ammonium based on a threshold level of ammonium
below which the toxicity would be negligible. The specific growth rate was modelled to
be proportional to the following equation:

k,

: R1
(NH, - NH,_)+k, ®D

where k; is an inhibition constant, NH; is the ammonia concentration in the medium,
NH;,, is the critical level of ammonia below which (NH; — NH;,.,) = 0. In this section,
the symbol ‘R’ is used to represent terms and equations referenced from other literature
as opposed to equations for the CHO-IFNY model (‘M’). In the above equation, the
concentration of ammonia was used instead of ammonium (NH,") because a significant
relationship between the specific growth rate and NH; was detected but not the total
ammonium concentration (Ludemann et al., 1994). As the amount of dissociated NHj3 in
an ammonium solution is pH dependent, the Henderson-Hasselbach equation was used

to calculate NH; concentration from measured values of NH," concentration:

NH
pH = pK, + log[ NHij (M5)

4
The pK, value at 37°C is 9.27 based on the equation of Edwards et al. (1975). The pH in
the CHO-IFNY cell culture studied in this work was controlled at pH 7 (Wong et al,,
2005) so the concentration of NH; and NH4" became linearly related. If there were
fluctuations in the cell culture pH, Equation M5 would have a more significant role in

every time step of the model simulations.

128



The inhibitive level of ammonium appeared to be cell-line dependent as
different values had been reported for various types of cells and ranges from less than
ImM to about SmM had been reported (Glacken et al., 1986; Reuveny et al., 1986;
Visek et al., 1972; Hassell et al., 1991).

Lactate is another major metabolic byproduct that would inhibit growth rate and
accelerate death rate in the cell culture. Omasa et al. (1992) performed a detailed study
towards the effect of lactate on growth rate in a fed-batch hybridoma cell culture. It was
tested whether replacing sodium lactate by sodium chloride would produce the same
growth inhibition. When the osmotic pressure was adjusted to the same condition as that
of lactate using sodium chloride, the specific growth rate showed the same degree of
growth inhibition (Omasa et al., 1992). Thus, it was the increase in osmotic pressure
caused by high lactate concentration that induced an inhibition of specific growth rate
(Kurano et al., 1990a; Kurano et al., 1990b; Omasa et al., 1992); whereas ammonium
started to inhibit cell growth at low concentrations before osmolarity can be affected
(Kurano et al., 1990b). As lactate is one of the major byproducts contributing to
increasing the osmotic pressure, its concentration is assumed to be proportional to
osmotic pressure and the inhibition equation (R1) has been extended to include lactate
concentration:

k. ko
]Cinh (NH3 s LaC) = inh,NH 3 . inh.Lac (M6)
(NH,—NH, ) +k, s ) \(Lac—Lac, ) +k,, .

where where ki, yyz and kg 1. (mM) are inhibition constants of ammonium and lactate
respectively, Lac (mM) is the concentration of lactate, Lac,, is the critical level of

lactate below which (Lac — Lac.,) = 0.

The growth inhibition of ammonium and lactate had been linked to specific
nutrient consumption indirectly by Jang and Barford (2000b) using the following

function:

g 0<L+ms (R2)

xS
where gy was the specific uptake rate of nutrient S, Y, s was the cell yield from S, my
was the growth-independent consumption, and & was a function of glucose, glutamine,

ammonium and lactate. The same phenomenon of ammonium inhibition upon gg can



also be modelled directly by adding the inhibition function to the nutrient uptake
equation:

S

m . finh (NH; . Lac) (R3)
S

qs =

where S is the concentration of nutrient S, K is a half-stauration constant for nutrient
consumption, and fi,(NH3, Lac) is defined in Equation M6. The difference between
Equation R2 and R3 is that the latter is not linked to other growth limiting nutrients.
Equation R2 separated the specific nutrient consumption into growth related (/Y s) and
non-growth related (mg) terms. Equation R3 combines both growth and non-growth

related consumptions into one overall term which tends to u/Y, ¢ +m; at low

concentration of NHj3 and/or lactate; but tends to a non-zero value of mjg at high NHj
and/or lactate concentrations. By using Equation R3, the f;,,(NH3, Lac) function would
not appear directly in the specific growth rate equation. The growth inhibition effects of
NH3; and lactate would be executed in the model via a reduction in gy at high levels of
byproducts. Equation R3 is an approximation of Equation R2 both relating the high
byproduct levels to a decrease in # and gs. Such approximation is appropriate for (i)
batch and fed-batch cultures up to exponential growth phase when all growth-limiting
nutrients are still abundant; and (ii) continuous and perfusion cultures when all growth
limiting nutrients are supplied in the feed stream. This has an advantage of fewer model
parameters being directly associated with the measurable quantity gg, especially when
the specific growth rate is linked to all essential amino acids on top of glucose and
glutamine A lower number of parameters directly connected to a measurable quantity
(without changing the biological relation) can reduce the number of multiple solutions

in the parameter estimation stage.

For the relationship between specific growth rate () and essential nutrients,
many batch/fed-batch culture models in the literature related u to the extracellular
nutrient concentrations using the following equation structure:

g (R4)

K,s+S
where S is the concentration of a growth-limiting nutrient and K, s is a half-saturation
constant. In the equation above, # is modelled using Monod-type kinetics (Monod,

1949) in terms of the nutrient concentration. However, in continuous cell culture it had

been reported that the specific growth rate remained high when the extracellular
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concentration of a rate-limiting nutrient was close to zero (Altamirano et al., 2001). In
continuous cell culture models, x is often linked to the nutrient supplementation rate
(dilution rate) instead of using Equation R4. At steady state, 4 is equal to the dilution
rate and the cell concentration is related to the dilution rate (Heidemann et al., 1998).
The dilution rate in a batch culture is zero so a different equation structure for g is

required when changing from batch to continuous culture and vice versa.

In this study, it is proposed that 4 of a batch/ fed-batch/ continuous culture can
be related to the availability of the limiting nutrient in the following form:
proe—H— M7)

K e Tds
where ¢, (mmole 10°%ell by is the specific uptake rate of the limiting nutrient per unit
cell, and K, ,; (mmole 10%cell™ h™) is a half-saturation constant. In a batch culture, the
specific uptake rate of a limiting nutrient is related to its extracellular concentration. But
in a continuous culture, the dilution rate and composition of the inlet stream also play a
role in affecting the specific uptake rate of the nutrient. For example, if the supply and
consumption of the limiting nutrient in a continuous culture are equal such that at steady
state the residual nutrient concentration in the medium is close to zero, the specific
nutrient uptake rate would remain positive. Thus, Equation M7 would predict a positive
specific growth rate when Equation R4 would predict a near-zero growth rate in fed-

batch or continuous cultures.

Y }
Equation M7 can be reduced to Equation R4 when ¢, = %. However, if
+
S

gs is also  affected by other substrate and  by-products, e.g.

.= % f. (NH,,Lac)- f(x.) (Equation M17), the R.H.S. of Equation M7
N
becomes:
rmaxg - S
I — f‘inh (NH’) ’ Lac) ’ f(xres)
Ki+S§ D)
rmaxg - S
2.48 + m ’ .finh (NH3 ? Lac) ’ f(‘xre,\‘)
_ Krnla;g -§ D2)
S

K, . -( )+ rmaxg - S
- ‘fin}x (NH3 ? Lac) ’ f(xre,\') S
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rmaxg - S

= (D3)
Kg,qs K K{,’vl/s
+( +rmaxg)-S
-finh (NH3 3 LaC) ’ f(xrzs ) finh (NHS 3 LCIC) ’ f(xre.v )
rmaxs
K, . S
o N Lac) f (i) T
; , Lac) - X
- inh 3 res (D4)

[ —
K, ,trmaxg - f, (NH,, Lac)- f(x,,)

which would reduce to a simple Monod-type kinetics of S only when the effects of NH3,
Lac, and x,, are negligible. Otherwise g, is dependent on more than one variable. The
upper limit of the dependent variable g, is bounded by the availability of S, the substrate

uptake capacity, and the effect of the virtual response variable x,..

Using Equation M7 and assuming essential/growth-stimulating amino acids
(Table 4.1) and glucose + glutamine are the only growth-limiting substrates, the specific

growth rate equation is proposed to be the following:

/l _ ‘[lmav\,l . l:[H qAA,k ] . (1 + luma.\'Z . . quc . . qun J:| (M8)

k Kg,k + qAA,k luma.\‘l Kg,Glc + QGIL‘ Kg,G[n + qun

Hinin Hinax

=| Hmaxi '[HL]+,UMX2 (H Dans ][ 461 ) D6 ]

k (K;.k +qpar) k (K:L +qaps) (K;Glr +46.) (K;.Gln +46,)

(M8’)

where k = Val, Leu, lle, Met, Phe, Trp, Thr, Lys, His, Arg, Tyr, or Cys (common
essential and growth-stimulating amino acids for mammalian cells from Table 4.1).
Hinax! (h'l) is the maximum specific growth rate associated with essential/growth-
stimulating amino acids, fuuo (h'l) is the maximum specific growth rate associated with
glucose and glutamine, K o and K ¢ /G, (mmole 10%ell”" h™") are the apparent half-
saturation constants of growth for amino acids and glucose/glutamine respectively and
are expressed in terms of the glutamine response variable (X Gin):

K, =K, (1I-—mo (M9)

Pe T X5 6in

where [ = Val, Leu, lle, Met, Phe, Trp, Thr, Lys, His, Arg, Tyr, Cys, Glc, or Gln.
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K, (mmole 10%cell’! h") is the corresponding intrinsic half-saturation constant of
growth for nutrient /, p, is a half-saturation constant relating the cell culture response at
low-glutamine concentration to any possible reduction in K*g,, . The glucose response
variable is not included in Equation M9 because no further change in the growth pattern

was observed in low-glucose-glutamine cultures relative to low-glutamine cultures.

When the essential and growth-stimulating amino acids are abundant in the cell
culture, Equation M8 may be interpreted as Equation M8’ which resembles common

growth kinetics that only model glucose and glutamine but not other amino acids.

Glutamine is not an irreplaceable energy source in mammalian cell cultures
(Kurano et al., 1990b). Hansen and Emborg cultured CHO cells producing tissue-type
plasminogen activator (tPA) in chemostat with higher concentration of asparagine than
glutamine in the medium, leading to a higher consumption rate of asparagine than other
amino acids (Hansen and Emborg, 1994a). Altamirano et al. (2001) replaced glutamine
by glutamate in CHO chemostat culture producing tPA with no significant difference in
cell growth and tPA production. Thus, the role of glutamine in the equation above
represents a dominating amino acid energy source in the medium that might be a

different candidate when the medium composition is changed.
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Specific Death Rate

The specific death rate equation from Ludemann et al. (1994) with an addition of

a lactate term similar to equation M6 is used in this model:
kd,NH3 +(NI{3 —NI—13W) . kdﬁLac+(LaC_LaQ'r) . 1 ‘xrex(jln . 1 xrexGl('
kzLNIﬁ ktI.Lac ID(I.G/II +xre.x'G[n ID(I,G/C + xrva/c

(M10)

ll'lll = lucl,min : [

where i, (h‘l) is the specific death rate, gy min (h'l) is the minimum death rate, k, yy; and
kirqc (mM) are constants relating ammonium and lactate respectively to specific death
rate. The last two terms on the right hand side relate cell culture responses (Xye; g and
Xres,Glc) at low-glutamine or low-glucose conditions to changes in i with p; g, and py g

being the corresponding half-saturation constants.

Another type of equation using Hill function to relate NH," concentration to
death rate was proposed by Jang and Barford (2000). But Ludemann et al. (1994) had
done a more in depth study into the death kinetics of mammalian cells, so their equation

structured was applied to the CHO-IFNY cell culture model.

Cell Lysis

Cell breakage can occur to dead cells (Jang and Barford, 2000b) or living cells
(Georgen et al. 1993; Bakker et al., 1996) in mammalian cell cultures and both had been
called cell lysis in the literature. A study of the pH dependence of lysis of living cells in
a continuous mammalian culture by Georgen et al. (1993) reported that cell lysis was
negligible at pH 7 but increased at pH 6.8. From our experience with the hybridoma cell
cultures studied in Chapter 3 that only a negligible amount of dead cells fragmentation
was observed, it is believed that the lysis of living cells is dependent on cell-lines and
culture conditions. The CHO-IFNy cell cultures were controlled at pH 7 (Wong et al.,
2005) and no significant decrease in total cell concentration was observed in the batch
and fed-batch cultures. Thus, only fragmentation of dead cells is considered in this
model:

d(X,-vV)
dt

where X, (106cells L'l) is the dead cell concentration and 7/, (h']) is the fragmentation

/ud .X\'.v—rf

rag

X,"V-F, X, (M11)

out

rate of dead cells.
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4.2.1.3 IFNy Production

The production of IFNY in the cell culture is modelled using a simple
relationship with the viable cell concentration. Hayter et al. (1991) reported that in
CHO-IFNY stirred batch cultures IFNYy production would continue in the absence of cell
proliferation, suggesting that the specific production rate in different cell-cycle phase
might be similar. The mass balance of IFNy below is linked to glutamine and glucose

response variables (Xe; i and Xy Gie):

ﬂ% = r;na&nw . XV V[l"r

FMax.,. ien_Gn ‘xm.(;/n] [ | IAX e 1mN_Gle " Xrescte

l ! \]_IFM/. Ellll

Piev_cin T XresGin Pirn_cie T Xrescie

(M12)
where IFNy (mg L‘l) is the concentration of IFNY, rmax;pn, (mg 105¢cell™! h‘l) is the
maximum IFNy specific production rate in batch culture, rmax, ;v gm and
rMaXres 1Fn_Gle are the maximum coefficient of productivity response to low-glutamine
and low-glucose conditions respectively, pirw gin & Pirn gic are the half-stauration

constants of X,e; iy and X, i On productivity.
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4.2.1.4 Consumption of Nutrients

Glucose

An ‘effective concentration’ term is used to represent the amount of glucose
available in the extracellular medium in both batch and fed-batch cell cultures. From the

mass balance of glucose in a bioreactor,

d(Glc-V
_(dct—)_F -Gle, +F, , -Glc, —F,, -Glc—qg X, -V (D5)
V- ddGlC +Glc- ‘;—‘;—En Gle, +F,, olc -Gl -F,  Glc—q, - X,V (D6)
t
F' F‘in c . F
dole _ Ol YV o e, 428 Grel, ~ Fou g - 9. X, (D7)
dt \% dt v \% V

d
Assuming d_‘t/ ~0 when (F, +F, 0 for a short time interval and Glc ~ Glc;:

in in glc oul )

dG[C i En g,l(

F

Gle, + -Gle, ——2~ . Glc - X, (D8

d[ V in V V qO[( v )
AGlc  F, Fo e _F

LI Gle, + 2 Glel — S Gle, g, - X, (D9)
At |4 \% V

F, Fyy gic - F
Glc, - Gle, ~ (== Glc,, + —— 2 Gle, ——2. Gle, - — Qo X,) At (D10)
Vv Vv Vv

Fuwe o Fu
Gle, ~ — - Gle, —=2-Gle, 4, - X,) - Ar+Gle, (DD

where Glc; (mM) and Glcy (mM) are the initial and final glucose concentration of the

time interval respectively.

In a batch culture, Equation D11 becomes:

Gle, ~—qg - X, - At +Gle, (D12)
. e dGl av
For continuous culture under glucose limitation, P - 0, —d— =0, and Glc; =0,
t t
F Ell C '
Glc, =(=2 - Gle, +—=%-Gle, —qg - X,)- At =0 (D13)
V Vv

Thus glucose availability cannot be associated with residual glucose concentration in
glucose-limited continuous culture. Instead, it has always been associated with the

o F. + . .
dilution rate (D; D —('"—V‘“"—) and inlet glucose concentration.

In a fed-batch culture with nutrient (e.g. glucose) controlled at very low

concentration by a feed-back controller (e.g. 0.35mM residual glucose in one of the

136



CHO fed-batch experiments in this study), the residual nutrient concentration is close to

zero and thus cannot reflect the actual availability of the nutrient. The specific glucose

consumption rate, gg., is often linked to residual glucose concentration in batch culture

(e.g. using Monod kinetics) since Glc > 0 until glucose exhaustion (Equation D12); but

is linked to dilution rate in continuous culture since Gle; and Gley = 0 under glucose

D (Ca ~Ca)
X

v

limitation (Equation D13). For example, 4 o = 0 in a CHO chemostat

model by Altamirano et al. (2001) where C and C° (mM) are the concentration at
reactor inlet and outlet respectively. The two different approaches of estimating g,
cannot be cross-applied because D = 0 in batch culture and Glc can be zero in
continuous culture. The common practice of relating gg, to D, X,, and glucose
inlet/outlet concentration in continuous culture is a backward-calculation approach
instead of a forward-prediction approach based on a mechanistic relation between gcic
and glucose availability. In order to search for a general predictive equation structure for
gaic under batch/fed-batch/continuous conditions, it is proposed in this study to relate
gcic to the amount of glucose in a cell-free reactor (i.e. X,=0) during time interval Ar. An
effective concentration term representing the amount of glucose available in the cell

culture within a unit time interval is thus expressed as follow:
F‘ ' Ell el F
Glc,, = B-(Gle, -—“+Glc, -—=£ _ Glc - =) + Glc (M13)
eff in V in V V

where Glc,y (mM) is the effective glucose concentration, 4 (h) is one unit time interval,
Glc;, is the glucose concentration in the inlet stream Fj, (L h™) that also contains other
amino acids (mM), Glc’;, (mM) is the glucose concentration in the pure glucose stream

Finge (L h'l). Glc (mM) is the glucose concentration in the cell culture.

In the above equation, f= 1 h by default but this does not affect the actual time
interval of recalculating Glc;. The simulation would re-evaluate the effective
concentration everytime when a pulse of F; or Fj,. occurs. Alternatively, the
simulation time-step can be set equal to the time-width of a pulse of nutrient
supplementation. In the absence of any inlet/outlet stream, the effective glucose
concentration becomes the same as the residual glucose concentration in a batch

situation.

The same concept of effective concentration is applied to all other simulated
nutrients: glutamine (Gln), valine (Val), leucine (Leu), isoleucine (Ile), methionine

(Mer), phenylalanine (Phe), tryptophan (Trp), threonine (Thr), lysine (Lys), histidine

137



(His), alanine (Ala), glycine (Gly), proline (Pro), aspartic acid (Asp), glutamic acid
(Glu), asparagine (Asn), serine (Ser), tyrosine (Tyr), cysteine (Cys), and arginine (Arg).

Below are the effective concentration equations for glutamine and other amino acids:

Gin,, = -(Gin,, - %— ~Gln FT) +Gln (M14)

F, F
AAy, =B (AA,, - T AL 0+ A4, (M15)

where i : Val, Leu, Ile, Met, Phe, Trp, Thr, Lys, His, Ala, Gly, Pro, Asp, Glu, Asn, Ser, Tyr, Cys,
or Arg.

Coming back to glucose, the mass balance is as follow:

MzGlcm .F, +Glc, - F,

d n.gle GZC ' F()ul - quC X,V (M16)
t .

v

where gg. (mmole 10°5cell h'l) is the specific consumption rate of glucose.

The specific glucose consumption rate is modelled as follow:

rmaxg, - Gle,, FIAX o5 Gic _Gin " Fres.Gin
9o = * fon (NH 3, Lac) - | 1+ MI7)
K +Gle,, Paie_cin T Xres 6

where rmaxg,. (mmole 105cell™ h'l) is the maximum specific glucose consumption rate
in batch culture, Glc.y (mM) is the effective glucose concentration defined in Equation
M13, K. (mM) is the half-saturation constant for glucose consumption, f;,,(NH3, Lac)
is an inhibition function defined in Equation M6, rmax;.; i G represents any possible
effect on glucose consumption in low-glutamine condition and pgi g, is the

corresponding half-saturation constant.

Glutamine & Glutamine Decomposition

Glutamine would spontaneously decompose to pyrrolidone carboxylic acid
during cell culture incubation at 37°C (Bray et al., 1949; Tritsch and Moore, 1962;
Glacken et al., 1986; Ozturk and Palsson, 1990). For example, Glacken et al. (1986)
reported a first-order glutamine decomposition rate constant of 0.0048 h™' in fructose
medium with/without 5% foetal calf serum withour cells at 37°C and 10% CO,. Ozturk
and Palsson (1990) studied the glutamine decomposition with different media
composition and represented the relation between the decomposition rate constant, k,
and pH with the following equation:

In(k) =a+b- pH (R5)
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Using the parameter values from Ozturk and Palsson (1990), the decomposition

rate constant for several media at pH 7 was calculated and shown in Table 4.6 below.

Table 4.6: Chemical decomposition of glutamine to ammonia and pyrrolidone
carboxylic acid studied at 37°C and pH 6.8 — 7.8 with different media containing foetal

bovine serum (Ozturk and Palsson, 1990).

Media a b k (at pH 7) [h]
IMDM -18.31 (£1.21) 1.685 (£0.095) 0.0015
OPTI-MEM -16.76 (£1.11) 1.458 (£0.065) 0.0014
DMEM -17.07 (£1.12) 1.478 (£0.073) 0.0012
RPMI-1640 -13.85 (+1.19) 1.133 (£0.055) 0.0027

Higher ranges of glutamine degradation rate had also been reported. For
example, Schmid and Keller (1992) determined that the glutamine in a continuous
hybridoma culture at 37°C and pH ~7 in serum-free low protein lipid-free medium
degraded at ~7.5% day'1 (~0.03 h'"). A summary made by Schneider et al. (1996) of
glutamine half-lives reported in various literature showed variations up to 10-fold. The
glutamine degradation rate in the CHO-IFNY cell cultures is assumed to be constant in
the model since the stirred-tank reactor was controlled at 37°C and pH 7 (Wong et al,
2005). Below is the mass balance and specific consumption rate of glutamine:

d(GIln-V)

d = Glnin ’ En - Gln ’ Faul - qGIn ’ X\' V- r{IAGln ’ Gln vV (Ml 8)
t

q Gin =

rmaxg, - Gln ' Ko ic
K

Fmax ;G _Gle ‘xrc,\‘.Glr'
KGIH + Gln eff

pGIn _Gle + 'xrc.\\(ilr

]-f,.",,(NH3,Lac) . [1 +

inh Glc + GlC eff

M19)
where 74 6m (h'l) is the glutamine degradation rate, rmaxcn (mmole 105cell” h'l) 1s the
maximum specific glutamine consumption rate in batch culture, Gln,y and Glcoy (mM)
are the effective glutamine and glucose concentration defined in Equation M14 and
M13 respectively, Kimncie (mM) is a glucose inhibition constant for glutamine
consumption, fi(NH3, Lac) is an inhibition function defined in Equation M6,
FMAXres, Gin_Glc TEPIESENTS any possible effect on glutamine consumption in low-glucose

condition and Pgis_cie 18 the corresponding half-saturation constant.
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Other Amino Acids

The amino acid network considered in this model is based on that of a CHO cell
culture from Altamirano et al. (2001) and a mouse hybridoma cell culture from Europa
et al. (2000) together with discussions with Dr. Yih Yean Lee (BTI-A*Star, Singapore).
The modelled interconversions of amino acids are similar to Section 4.1 except the
excretion of aspartic acid and glutamic acid are assumed to be insignificant because
their extracellular concentrations dropped to zero rapidly in all batch and fed-batch
cultures; and reversible conversions are simplified into net conversions based on the

amino acid time-profiles of the CHO-IFNY cultures.
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Figure 4.10: Amino acid network for the general model of CHO-IFNY cell culture.
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Overall Mass Balance:

The mass balance of all amino acids is as follow:

d(AA V) _

in.d .F'in _‘AA, F
dt '

out

~Gui X,V (M20)

Y

where g4 ; (mmole 10cell h'l) is the specific consumption rate of amino acid 7,
i =Val, Leu, Ile, Met, Phe, Trp, Thr, Lys, His, Ala, Gly, Pro, Asp, Glu, Asn, Ser, Tvyr,
Cys, or Arg.

Essential Amino Acids:

Since essential amino acids cannot be synthesised by the cells, the specific
consumption rate of all essential amino acids, g; (mmole 10°cell” h™"), is defined to be
related to their effective concentration (AA;.; [refer to Equation MI15]) and the
concentrations of byproducts (f,u(NH3, Lac) [refer to Equation M6]). K; (mmole 107
cell’! h’l) is the half-saturation constant for consumption of amno acid j. rmax,..; i, and
rMaxrs; cic represent any possible effect of low-glutamine and low-glucose conditions

on g; and p; gix and p; g are the corresponding half-saturation constants.

rmax, -AA, rmax X
q,=——""— 1+

Jeff . ‘finh (NH% , Lac) . res.j_Gin " A res,Gin . 1 + rlnaxras.j_(}lr ’ xre.r.(}/r
Kj + AAj,e[f pj_Gln + xreLGln pj_G](- + xrex‘Glr'
(M21)

where j : Val, Leu, Ile, Met, Phe, Trp, Thr, Lys, or His (essential amino acids).

As discussed in Section 4.2.1.2 when the development of Equation M6 was
presented, an assumption has been made that the cells have a non-zero maintenance
consumption of all nutrients. The knowledge of maintenance consumption of amino
acids in mammalian cell cultures in the literature is insufficient to judge which of the 19
amino acids might not be consumed when the specific growth rate is zero. The model
performance will be discussed in Chapter 5 and any deviations caused by this

assumption will be highlighted.
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Non-essential Amino Acids:

Alanine —

Alanine is produced from pyruvate which comes from nearly all amino acids
(figure 4.10). The intracellular sources of alanine are assumed to be from specific
consumption of the two dominating nutrients glucose (gcic) and glutamine (gg,), and a
non-negligible background production rate, gajgmi» (mmole 10%ell’ h™"). Below is the
proposed equation for specific alanine consumption:

_ r}naxl\la : Alaeff l rlnaxres,Ala_GIn ' 'xre.r,GIn 1 r’na'xrex.A[u_Glr : 'xre.r,GI('
q/\l(l - K Al - qAIlein ! + ' +
Ala + aeﬂ' pAla_Gln + 'xres.Gln p/\lu_Glr + xre.r,GIr

—IMAax,y, g 9o — My G Dom
(M22)
where rmaxu, (mmole 10°cell” h') is the maximum specific consumption rate of
alanine in batch culture, K4, (mM) is the half-saturation constant for alanine
consumption. Ala.y (MM), rmMaX,esala_Gin s "MAXresAla_Gle > PAla_Gin and pa, i are the
effective concentration and response coefficients/constants for alanine similar to
Equation M21. rmaxa,_cic (mmole mmole'l) and rmaxa,_cr» (mmole mmole'l) are the

linear yield coefficients of alanine from glucose and glutamine respectively.

In Equation M22, gas,min 1S linked to the response variables X,e5.Gm and Xyes g
based on observation of variations of gas,mi» in the fed-batch CHO-IFNY cultures. Such
phenomenon was not found in the case of glycine or proline which are the other two
amino acids being significantly produced by the CHO-IFNy cells. The sign of gai
would be positive if specific consumption > specific production and negative in the

opposite case.
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Glycine —

Glycine is assumed to be mainly produced from serine plus a non-negligible

background production rate, geiy,mi» (mmole 10%ell” h'):

_ r’naxfily ’ Glyejf 1+ r’naxre.r,Gly_Gln ’ xrcx.(jln\] [l + r]na‘xl'e&(il.\'_Glr' ’ xl‘L’,\'.Gl(‘]

QGI)‘ -
Ko, + Gly,, Pois_cin t Xres Gin Pais_cie T Xrescie (M23)

“AGremin ~ MGy, ser * Dser
where rmaxg;, (mmole 10%cell’ h') is the maximum specific consumption rate of
glycine in batch culture, Kg, (mM) is the half-saturation constant for glycine
consumption. Gly.y (mMM), 7MaXyes,Giy_Gin » TMXres,Gly_Gle » PGly_Gin > and Paiy_gim are the
effective concentration and response coefficients/constants for glycine similar to
Equation M21. rmaxciy ser (mmole mmole™!) is the linear yield coefficient of glycine

from specific serine consumption (gse).

Proline —

Proline is assumed to be mainly produced from glutamic acid and arginine plus a

non-negligible background production rate, gpyo,min (mmole 10cell”! h'l):

_ rmaxPru ’ P roﬂff 1 rma‘xres,Pm_Gln : xres.Gln 1 r’naxl'ex.Pr()_GI(‘ ’ ‘xres,Glr'
9po = |1+ o1+

K, +Pro, (M24)

me_ Gin + ‘xr‘cs,Gln meﬁGl(' + ‘xres,Glc

~G promin ~ T @ppy Gu Do —TMAXpr,_prg "D arg
where rmaxp,, (mmole 10%cell! h") is the maximum specific consumption rate of
proline in batch culture, Kp,, (mM) is the half-saturation constant for proline
consumption. Progy (mM), rmaXyes, pro_Gin s "MXres,Pro_Glc » PPro _Gin » and Ppy,_cin are the
effective concentration and response coefficients/constants for proline similar to
Equation M21. rmaxpy,_gi, (mmole mmole'l) and rmaxpy,_are (mmole mmole‘l) are the
linear yield coefficients of proline from specific consumption of glutamic acid (g¢u) and

arginine (qa,,) respectively.
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Aspartic acid —

The excretion rate of aspartic acid into the extracellular medium is assumed to
be negligible because the residual aspartic acid concentration decreased rapidly to zero
in all batch and fed-batch cultures. Although aspartic acid can be produced from
asparagine (figure 4.10), this is assumed to take place at the intracellular level which
would not be included in the model equation.

r’nax/\xp ’ Aspeﬁ' . 1+ r’na}"’res.,ASp_Gln ’ 'xrex,Gln . 1+ r’na‘xrsx./\xp_(.ilf ’ xre.r.Gl(' (M25)
K + Aspﬂff prp_Glr + xl‘c.\',G[('

qAxp =
prp_GIn + xrzs,Gln

Asp
where rmaxss, (mmole 10Ccell™ h'l) is the maximum specific consumption rate of
aspartic acid in batch culture, K4y, (mM) is the half-saturation constant for aspartic acid
consumption. Asp.y (MM), rMaXyes asp_Gin » TMAXresAsp_Glc s PAsp_Gln » and pPuyp_cin are the
effective concentration and response coefficients/constants for aspartic acid similar to

Equation M21.

Glutamic acid —

Similar to aspartic acid, the excretion rate of glutamic acid is assumed to be
negligible as the cellular consumption rate of glutamic acid was dominating in the

CHO-IFNY cultures.

rma‘xGlu ’ Glueff . 1+ r’na‘xres,Glu_Gln ’ xrex,GIn X 1+ nnaxrz‘x,Glu_Glr ! xre:,Gl(‘ (M26)
Kg, +Glu,,

quu =
pGlu_Glr' + x/'cs,GIr'

Piuu_cin T Xres Gin
where rmaxgy, (mmole 10%cell’ h!) is the maximum specific consumption rate of
glutamic acid in batch culture, K¢, (mM) is the half-saturation constant for glutamic
acid consumption. Gluey (MM), rMaXyes,Giu_Gin s MXres,Glu_Gle > PGlu_Gin » and P g are
the effective concentration and response coefficients/constants for glutamic acid similar

to Equation M21.

144



Asparagine —

The production of asparagine from aspartic acid is assumed to be less significant
than the reverse conversion (figure 4.10). Thus, this is not included in the equation

below:

m ax/\.m ) Asn@ﬂ 1 + rma‘x‘ex./\m__Gln ’ xres.Gln 1 r}na’&a\‘,/\.\‘n_o‘[r ' xre.s'.Gl('

KA.vn + Asnej] p/\leGln + xres,Gln pAsn_(_ilz' + xrex.GI('

(M27)

q/\.m =

where rmaxa,, (mmole 10°cell’ h™') is the maximum specific consumption rate of
asparagine in batch culture, K4y, (mM) is the half-saturation constant for asparagine
consumption. Asngy (MM), rMaXres asn_Gin s YMAXres Asn_Gle > PAsn_Gln » and Pagn i are the
effective concentration and response coefficients/constants for asparagine similar to

Equation M21.

Serine —

It is assumed that the conversion of serine to glycine is more dominating than

the opposite conversion (figure 4.10). Thus, the specific consumption of serine takes the

following form:

r’naxs‘cr ’ Ser 1 + r’na'xres,SL’r_Gln ’ xrex,G/n 1+ r’naxl‘es.Su'_Glr : xrf.\',Glr

eff .
KSer + Se’;’fj pSer_G[n + 'xre.r,Gln pSL’I'_Gll‘ + xre.xx(]lr

Dser = (M28)

where rmaxse, (mmole 10°cell” h™") is the maximum specific consumption rate of serine
in batch culture, K., (mM) is the half-saturation constant for serine consumption. Sery
(mM), rmaXresser Gin » MM res Ser_Gic » PSer_Gin > A0d Pser_Gin are the effective concentration

and response coefficients/constants for serine similar to Equation M21.
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Tyrosine —

Tyrosine can be produced from phenylalanine (figure 4.10). Below is the
specific consumption rate of tyrosine:

rmax[j‘.,. . Ty’sz + rmax,_m_T_‘.,._Gl,, . xra\:Gln 1 + r’na'x’;'e.v,'l)'l'_Glz' . 'xra\:GlC

Ky, +Tyr, Pryr_cin T XresGin Pryr_cie T Xrescte

ql:\”' = - r’naxl‘_\'l'_ Phe qPIlE

(M29)
where rmaxr,, (mmole 10%ell! h!) is the maximum specific consumption rate of
tyrosine in batch culture, Kp, (mM) is the half-saturation constant for tyrosine
consumption. Tyryy (mMM), rmaX,es, ryr_Gin » TMAXres Tyr_Gle » PTyr_Gin » and pr, g are the
effective concentration and response coefficients/constants for tyrosine similar to
Equation M21. rmaxry,_pp. (mmole mmole™) is the linear yield coefficient of tyrosine

from specific phenylalanine consumption (gpae)-

Cysteine —

Cysteine can be produced from serine (figure 4.10). The specific consumption

rate of cysteine is as follow:

_ r’naxC,\'s ’ Cyse_// [1 + r’na‘xres,c_\'s'Gln ’ ’xres,GIn ] [] + ’ll?ﬁl[z'xre.\‘.(;i\“v_614' ’ 'xrt's.GIr

qC\'s -
KC\’S + Cys pr;_ Gle + xre.\‘.Glr

] - r’na'x(')':_Ser ’ qSu‘
eff

Peys_cin T Xres g

(M30)
where rmaxcy, (mmole 10°cell™ h'l) is the maximum specific consumption rate of
cysteine in batch culture, K¢y, (mM) is the half-saturation constant for cysteine
consumption. Cysey (MM), rMaXes,Cys_Gin » TMAXres,Cys_Gle > PCys_Gin » and pPcys gis are the
effective concentration and response coefficients/constants for cysteine similar to
Equation M21. rmaxcys_ser (mmole mmole™) is the linear yield coefficients of cysteine

from specific serine consumption (gser).
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Arginine —

The production of arginine from proline is assumed to be less significant than
the reverse conversion (figure 4.10). Thus, the specific arginine consumption rate is

modelled as follow:

G = rn];ax,‘j,- Aé;g‘ff .(1 N rm;x,,g_l A,.g_i,; " Xres Gl J - [ 1+ ””g%-e.y,/\j-g_iz;c ' ‘xre.\',GI(‘] (M31)
Arg eff Arg_Gln res.Gin Arg _Gle res,Gle

where rmax,, (mmole 10%cell! h!) is the maximum specific consumption rate of

arginine in batch culture, K, (mM) is the half-saturation constant for arginine

consumption. Arg.y (MM), rmaXyes.arg_Gin » "M@XresArg Gic > PArg_Gln 5 and pare cin are the

effective concentration and response coefficients/constants for arginine similar to

Equation M21.

4.2.1.5 Metabolic Byproducts
Ammonium

Ammonium is one of the major metabolic byproducts in the cell culture. Apart
from glutamine and glutamic acid, ammonium is also produced from metabolism of
histidine (His), serine (Ser), asparagine (Asn), lysine (Lys), methionine (Met), and
tryptophan (Trp) (Altamirano et al.,, 2001). In a detailed study of CHO chemostat
culture metabolism by Altamirano et al. (2001), the metabolic flux of His, Ser, and Asn
was higher than Lys, Met, and Trp at different steady-states. Thus, His, Ser, and Asn
were approximated to be the alternative sources of ammonium production in the
absence of glutamine in the CHO-IFNy cell cultures. Glutamic acid was rapidly
consumed by the CHO-IFNY cells such that there was negligible concentration in the
extracellular medium. Because glutamine was supplemented more than glutamic acid by
80 times in batch culture and by 100 times in fed-batch cultures, the contribution of

ammonium production from glutamic acid is assumed to be negligible.
The specific ammonium yield from amino acids is assumed to be proportional to

the specific consumption of amino acids. The specific ammonium production rate also

contains a non-negligible background production term, rmingmm (mmole 10"%cell”! h'l),
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which is based on observation that the ammonium production rate in CHO-IFNY batch

culture remained positive when most major sources of ammonium had been exhausted.

A limited number of studies in the literature suggested that the nitrogen in amino
acids could end up in other non-essential amino acids instead of ammonium. It had been
reported that the NHj; group in glutamate (glutamic acid), a major metabolite from
glutamine, can be channelled into alanine and aspartic acid via aminotransferase in rat
lymphocytes and mouse tumour cells (Ardawi and Newsholme, 1982; Moreadith and
Lehninger, 1984). In the CHO-IFNy cell culture studied in this chapter, there was a
singificant accumulation of alanine in all batch and fed-batch cultures; the ammonium
accumulation also became less positive at high concentration of ammonium despite
ongoing consumption of glutamine. Thus, a ‘reverse’ reaction term, gamm,rev {(mmole 10
Scell' h'), representing the possible channelling of metabolites away from ammonium
production is proposed for the mass balance of ammonium:

d(Amm-V) _

d[ - r:/,Gln ’ Gll’l v+ (qum - ) ' Xv -V —Amm- Foul (M32)

qum ey

where Amm (mM) is the ammonium concentration, 7y Gin (h‘l) is the spontaneous
glutamine degradation rate, Gln (mM) is the glutamine concentration, and gamm (mmole

10%cell” h™") is the specific ammonium production rate.

The equation for gamn v is defined as follow:

m

qum.rev = rnun/\/nm,rcv : Amm ,m > 1 (M33)

where rminamm rev (mmole(l‘m) L™ 105cell’! h'l) represents the minimum specific rate of
metabolite redirection away from ammonium production, and m is an exponential of

ammonium concentration.
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Below is the proposed equation for specific ammonium consumption:

_ . + rn’la‘&mm_ Gin’ qun
G anm =M i K ‘YGmn
Amm_Gin +qGIn

rma&mm_ HisSerAsn : (QHix + anr + QAxn) xresGln
+ a '(‘]His’*'CISerJ"q,\m) ’ 1_,0 .
Gln r Gln resGin
(8+K_———) : KAmm_Hi.;Sel;A.fn +(qus +qSer+qA5n) Amm_ G e
smle+ qGIn

(M34)
where rmaxamm g (mmole mmole'l) is the stoichiometric maximum ammonium yield
from glutamine and Kmm_ci» (mmole 10ell! h') is the corresponding half-saturation
constant. Similarly, rmaxamm_#isSer,asn (MMole mmole'l) is the stoichiometric maximum
ammonium yield from histidine + serine + asparagine and Kanum_His,serasn (momole 107
Scell h'l) is the corresponding half-saturation constant. Kyq. (mmole 105¢cell” h'l)
represents a low level of glutamine consumption that would cause the cells to consume
other amino acids, causing a change in the ammonium yield from those amino acids. &
is a constant <<1 that prevents the denominator from approaching zero when geu, GHis,
gser, and Gasn tend to Zero. Pamm_cix 1S a TEsponse constant relating the cell culture low-

glutamine response (X, gin) to any possible further reduction of Gamm-

Lactate

Wu et al. (1992) studied CHO-K1 cells chemostats and used "¢ radioisotope
glucose and glutamine to track the fates of glucose and glutamine carbons. It was found
that 68-81% of glucose carbon ended up in lactate, 14-23% of glutamine carbon ended
up in lactate, 22-64% of glutamine carbon became amino acid and other
macromolecules of the cells, 5-8% of glutamine degraded in the medium, and the rest of
glucose and glutamine carbons were fully oxidised and ended up as CO;. Thus,
glutamine is also contributing to the production of lactate in CHO cell cultures apart

from glucose and this is taken into account in the model.

Unlike ammonium, lactate consumption by mammalian cell cultures is known to take
place at low glucose concentrations (Gmunder et al., 1988; Kurano et al., 1990a). Syrian

hamster kidney cells grown on microcarriers in 2ml cell culture tube is reported to use
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lactate as an energy source when all glucose was depleted (Gmunder et al., 1988); CHO
cell static cultures studied by Kurano et al. (1990a) continued to grow accompanied
with a decrease in lactate concentration after glucose depletion. Thus, a lactate

consumption term is included in the mass balance of lactate below:

yl ' r’naxlxrr.rel' ! Lac

K

d(Lac-V)
T = ql,m‘,G[(‘ + ql,ar',G[n -

oul

+ Lac

j-x‘,\/—l,ac-F (M35)
Lac,rev

where grqc i (mmole 10%cell™ bl is the specific lactate production rate from glucose,
qrac.cle (mmole 10%cell’! h'l) is the specific lactate production rate from glutamine, y; 18
a binary variable associated with glucose concentration and is defined in Equation M1,
FMAXL e rey (MMoOle 10%cell™ h'l) is the maximum lactate consumption rate at low

concentration of glucose and Ky, r» (mM) is the corresponding half-saturation constant.

In the equations of specific lactate production rate glucose and glutamine below, the
lactate yield from glucose/glutamine is assumed to be proportional to the specific

consumption rate of glucose(gg)/glutamine(gaic):

rmax, .. e 9o X res Gl
qLac,Glc = : 1_ ’ quc (M36)
KLac_Glc + quc (pLac_Glc + 'xre:,Glc )
Ymax; . i 9om X res.Gin
QracGin = 1= "G (M37)
KLuL'_Gln + qun (pLac_Gln + xrus,Gln )

where rmaxp,._ci. (mmole mmole’l) is the maximum stoichiometric yield of lactate from
glucose, rmaxpqc_ i (mmole mmole'l) is the maximum stoichiometric yield of lactate
from glutamine. Kz, G (mmole 10%cell”! h'l) is the half-saturation constant for lactate
yield from glucose, and Ki4c_gi» (mmole 107 cell h'l) is the half-saturation constant for
lactate yield from glutamine. Prac_cic and Prac_cim are response constants relating the cell
culture responses (Xyesgic and Xpescim) at low-glucose and low-glutamine levels to any

possible further reduction of gruc,cic and GracGin respectively.

A summary of all the model equations that have been introduced is available in
the next section. This model contains 192 parameters of which the values are more
challenging to estimate than in Section 4.1. In Chapter 5, these 192 parameters are
divided into different categories and a parameter estimation strategy is developed for
this large model. This section (Section 4.2) is in conjunction with Chapter 5 where the
model prediction performance is evaluated. Please refer to the next chapter for a

detailed discussion of the parameter estimation method and model simulation results.
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4.2.2 Model Equations Summary

Overall volume:
Y o_p 4R -F 4.2.1)

in,glc T ow
dt

(Note: It is assumed that the sampling colume is negligible relative to the flowrates of F;, and
Fin,glc“)

Cell concentration:

d(X,-V F,

LD oy -2y X,V (4.2.2)
aix,-v

—(_dd;_):ﬂd'xv'v—rﬁ'ug'xd'V_Faut'th (423)
X =X, +X, (4.2.4)

Effective Nutrient concentrations for addition of small amount of concentrated nutrients:

F, o Fe F,
Gle,, = 8- (Glc, - =2+ Glc,, - —=~—Glc - —22) + Gl (4.2.5)
Ccff ﬂ ( Cln V Cm V c V ) c
Elr lel 4 2 6
Gll’leff Zﬂ'(Gll’li” '—V—'—Gll’l —V—)+Gll’l ( WL )
EII Fnul
AAeff,i = ﬂ . (AAI."‘,. . 7 - AA, . 7) + AA, (427 - 4225)

where i : Val, Leu, Ile, Met, Phe, Trp, Thr, Lys, His, Ala, Gly, Pro, Asp, Glu, Asn, Ser, Tyr, Cys, or Arg.
Cellular regulation responses:
0, Glc=0

y,={ 1, 0<Glc<tg, (4.2.26)

0, Glc=1g,

0, Gln=0
Y, = 1, 0<Gll’l<TG[" (4227)
0, Ghhzrtg,
d
(x;;ac) = rmax,,; o, 10g[1+ y, - (T, =GO = d 10 * Xres e (4.2.28)
d(
(v;;.cln) = rmax,, g, - 1080+ Y, - (T = GIM = dry 0 * Xpes o (4.2.29)
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Nutrients uptake:

(1) Glucose —

d(GlC . V) - GlCm F o+ GZC;" . F" —Glc- F X VvV (4230)

in n.gle out qGIr ¥
dt ¢

rmaxg, - Glc,,

r’nax"r d 'n.‘xrev n
Goo =—— L. f,-,,,,<NH3,Lac>-[1+ J (4.231)

KGI( + Glceff pGl(‘_ Gin + xre.s‘,Gln

k, k,
f,-”h (NH3 , LaC) — [ inh NH3 J . [k inh.Lac ] (4232)

kinh.NH} + DNH3 + DL(I(,'

inh,Lac

(i1) Glutamine —

d .
(GZl V) = Gln’_” . F’,” —Gin - Fom ~Gm X‘Y V- FiGm Gin-V (4233)
T E
rmax . Gln . K. rMax ., cm o X o5 Gic
Tan = - - e * fun (NH 3, Lac) - | 1+ res.Gin _Gle 7 res- Gl
KG[n + Gl”hff Kiuh.Glp + Glceff IOGlniGlr' + xrux.(}h‘
(4.2.34)
(iii) Amino acids —
d(AA, -V
( dl ) = AAini ’ Fin - AA: ' an “Gani’ X\- v (4235 - 4253)
t ’ .

where i : Val, Léu, lle, Met, Phe, Trp, Thr, Lys, His, Ala, Gly, Pro, Asp, Glu, Asn, Ser, Tyr, Cys, or Arg.

rmax. - AA; rmax,, ; X rmax,, - X
_ i j.eff res,j_Gln res,Gn res.j _Glc res.Glc
4, = fua(NH, La) | 1+ J1+
J + Jeff pj_GIn + xz'e.v,G[n pj_G](- + xl‘es,(;](‘

(4.2.54 - 4.2.62)
where j : Val, Leu, lle, Mer, Phe, Trp, Thr, Lys, or His (essential amino acids).

_ r’na‘x/llﬂ : Alaeff 1 r’naxres./\lu_Gln : xrex.(}ln 1 ”naxr&v./\lu_(}lr ’ xrc.\'.Glr
Gain = K Al =G Atamin | + : +
Ala + aej/ IDAIu_G[n + xrcxv(}ln p/\lu_GIr + ‘xre.x'.G[r'

—ITMaX s, gie " Doie — M 510 _ci " Dom

(4.2.63)
q _ r’71axGl)' ’ Glyeff 1 T r’nax:'eAr‘Gl)'_Gln ’ “xres.Gln 1 + r’na'xrf.\‘.G[,\'_G[r ' ‘xrcx.GI('
Gy — ’ ’
K an T Glyq/f Par_cin T XresGin Per_cie T Xrescie (4.2.64)
- qu)zmin - r’na‘XGl,\'_Sm' : qS('r
r’na‘xPr() ’ Proqff 1+ rma‘xrm,Pm_Gln ’ 'xre:,G[n 1+ rnlaxres,Pm_Glr ’ xl't’.\'.G[{'
qu = ’ :
KFI'() + Proej]’ pPr{)_Gln +xre,r.G1n me_Glr' + )er'.(jh' (4265)

- qu,min - rma‘xPr()_Glu ’ quu - rma‘xl-‘m_/\rg : CI/\rg
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Gy = max, ., Aspcf/ 1+ FINAX oo Asp_Gin * FresGin J1e FIAX, 5 psp_Gle ™ FresGle ( 4266)
K/\Ap + A‘Sptf[ pAsp_ Gin + 'xres.Gln pA.\'p_Gl{‘ + xrcs.GI('
quu — r’naXGlu Glll 1+ r’naxu\ Glu_Gln : xres‘Gln . 1 + r,na'xrc.v.Glu_Glr ' 'xre.f.(}l(' (4267)
KGlu + Glll pGIu_Gln + 'xrcs,G[n pGlu_Glr' + 'xru.x'.GIr
r’nax/\sn Asne[[ r’na)g‘es,/\xn Gin’ 'xres.(jln rma'x;cs./\sn Gie ' 'Xres.(}lr
Gran = K A 1+ |1+ (4268)
Asn + Si’l pAsn_Gln + ‘xl'es.Gln pA.\‘n_Glr' + xrz'.\:(}l('
ds = rmaxg,, - Sertff 1+ rmax,,, Ser_Gin Xres.Gin A1+ rlnax/‘es.SL*r_ Gle " XresGie (4269)
K&Lr + S€7 pSer”Gln + xrcs,(}ln pSL’I‘_Gll' + ‘xre.v.(.il(‘
r’naxl\r Ty l T na'xres.T,\'r_ Gin~ X res.Gln .1 r’nax"rfs.'f.\'r_(z‘l(‘ ’ xrmuGIt'
ryr = K Tor + S —TMaxy, phe " qppe
Tyr + V pT)'r‘_Gln +xres,G[n pTyr_Glr +xrex.G1r
(4.2.70)
_ r]na‘var ’ Cy scﬂ r’na‘x es.Cvs _Gln X res,Gin 1 r’naxres.Cy:_Glr ’ xrc.v.GIr
q(’,‘yx - K C ' + + —n naXC.\j:_Sur ) qSer
Cys + }SLﬂ pC)'s_Gln + er'sA,GIn prsﬁGlt' + xres,Glr
(4.2.71)
q r’na'x/\lg A’gqu + rmaxre‘v‘Arg_Gln ’ xh’.’J.GII! 1 + ’7na'xr£5‘/\rgw(ilr' . xres:GIr (4 2 72)
Arg T L.
KArg +A rgeff IOArg_GIn + xres,G[n pArg_Glr + xres.Glr
Byproducts:
0 NH3< NH3
s or
D,,, = (4.2.73)
NH3-NH3,, NH32NH3,
-9.3
NH3 = Amm -107#7%9 , assume pH ~ 7.0 (4.2.74)
NH3,, = Amm,, 1077 (4.2.75)
d (Amm V)
dl’ d Gin Gln V + (QAmm q/\mm,rev) ’ X\' : V - Amm Fnul (4276)
e eyt m
q/\mm,rev - ”nlnmnm.n’v - Amm sm > 1 (4277)
q _ rmin + r’naxAmm_ Gin® qG[n q
Amm “Amm 4G
KAmm_ Gin + QGln
r’naxmnm_ His,Ser,Asn : (qux + qAS'cr + qm‘n) ( ) 1 ‘xrv,\'.(}ln
+ q ' qu.\‘ + qS(‘l' + q/\xn A p +x
Gin A Gin " resGh
(£+ ) ’ KAmm_ His.Ser,Asn + (qu,\' + q.\‘er + qA.m) =t e
K scale + qun
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0 . Lac<Lac.
D = €< Lac, (4.2.79)

Lac —

Lac—Lac,, LaczLac,

d(Lac-V) Y, - Tmax . .. - Lac
—= e Y Disecn — LEe X V—-Lac - F (4.2.80)
dt [qLa( JGle qlﬂ( .Gln KL(“,V'.“, + LCIC v out
r’naxlxl(‘_Glc ) qur 'xres, Gle
Qoo = | e = - g (4.2.81)
KL(IC_G/F + qur plm'_GI(‘ + 'xre.\'ler
r’naan('_GIn ’ qGIn xr'e.r, sin
Qiaecm = . |’ 1—'—_L[_—— Uy (4'2'82)
KLaz'_Gln + qun pLu('len + 'Xrex,Gln
Growth:

lu :#"'Ml . {H qAA,k ] . [1 + ;unme . quz' . qGIn ] (4283)
k

Kgl\ + qAA.k ﬂnm.\‘l ngGlr + qur' Ké,Gln + qG/n
where k : Val, Leu, Ile, Met, Phe, Trp, Thr, Lys, His, Arg, Tyr, or Cys (essential and growth-stimulating
amino acids).
# ‘xresx n
Ky =Ky -(1-—"22—) (4.2.84)
pg + xres,Gln
where [ : Val, Leu, Ile, Met, Phe, Trp, Thr, Lys, His, Arg, Tyr, Cys, Glc, or Gln.

The second term on the right hand side of Equation 4.2.84 is to account for any possible
change in the half-saturation constants in low glutamine fed-batch cultures.

Death:
ﬂ _# k{I,NH3 + DNH3 [kd.lﬂf + DLaz' l xres.Gln ] [1 xl'es.Glf ]
d — Fd.min ’ ’ - ’ -
k!l.NH3 kzl.Lar' p(I,GIn + xre.&GIn prI.GIr + “xr&\'.Glr
(4.2.85)
Product synthesis:

d(IFNy-V Ty 1 _Gin " Xoesin P, 1in_gic " Xrescle
L_M/—) _ nn%FM . XV Vll+ esIFN_Gl res,Gll 11+ s,IFN_Glc ““res,Gle —]FIV}/ F.m”
dt pIFN_GIn +'xres,Gln pIFN_Glr +xres,Glc

(4.2.86)
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4.2.3 Notations for Complex CHO-IFNY Model with Amino

Acids

Table 4.7: Notation of parameters for the complex CHO-IFNY model.

glutamine

Parameters Definition Units

Jij One unit-time hr

£ Engineering constant for Amm spec. production rate| -

Tale Response threshold for Glc mmole L™

T Response threshold for Gln mmole L™

Udmin Minimum specific death rate h'

Hinaxi Maximum specific growth rate dependent on h'
essential/growth-stimulating amino acids

Hinax2 Mmaximum specific growth rate dependent on h
glucose & glutamine

Amm,., Critical ammonium concentration mmole L' (= mM)

dros Gl Degradation rate of of X,.; 1 h'

dres.Gin Degradation rate of of Xes.gim h'

K Half-saturation constant for alanine consumption mmole L

Kanm_cin Half-saturation constant for the Amm yield from mmole 10%cell” h”!

KAmm__H is,Ser,Asn

Half-saturation constant for the Amm yield from
histidine + serine + asparagine

mmole 10%cell" b

growth in batch culture

Kare Half-saturation constant for arginine consumption | mmole L'

K Half-saturation constant for asparagine mmole L™
consumption

Kasp Half-saturation constant for aspartic acid mmole L™
consumption

Keys Half-saturation constant for cysteine consumption | mmole !

Ky Lac Inhibition constant of lactate for cell death mmole L

kg nu3 Inhibition constant of ammonium for cell death mmole L™

Ko arg Half-saturation constant of arginine for cell mmole 10%cell T h’!
growth in batch culture

K cus Half-saturation constant of cysteine for cell mmole 10°cell” h”'
growth in batch culture

Ko cie Half-saturation constant of glucose for cell growth | mmole 10%cell " h
in batch culture

Ke.Gin Half-saturation constant of glutamine for cell mmole 10°%celi” h
growth in batch culture

K nis Half-saturation constant of histidine for cell mmole 10%cell” h’!
growth in batch culture

Ko ne Half-saturation constant of isoleucine for cell mmole 10°cel” h
growth in batch culture

KoL Half-saturation constant of leucine for cell growth | mmole 10cell” h!
in batch culture

Ko Lys Half-saturation constant of lysine for cell growth mmole 10°cell” h’
in batch culture

K Mer Half-saturation constant of methionine for cell mmole 10°cell h
growth in batch culture

Kq phe Half-saturation constant of phenylalanine for cell | mmole 10%cell ™!
growth in batch culture

Ko 1hr Half-saturation constant of threonine for cell mmole 10%celi™h”
growth in batch culture

K1 Half-saturation constant of tryptophan for cell mmole 10%cell” h™
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from glutamine

Ky e Half-saturation constant of tyrosine for cell mmole 10°cell” h”
growth in batch culture

Ko v Half-saturation constant of valine for cell growth mmole 10°celi’ h”!
in batch culture

Kgi Half-saturation constant for Glc uptake mmole L

Kai Half-saturation constant for glutamine mmole L
consumption

Ko Half-saturation constant for glutamic acid mmole L
consumption

Ko Half-saturation constant for glycine consumption | mmole L'

Kyis Half-saturation constant for histidine consumption | mmole L!

K. Half-saturation constant for isoleucine mmole L
consumption

Kin,Gic Glucose inhibition constant for glutamine mmole L™
consumption

Kinh,Lac Inhibition constant of lactate for nutrient mmole L
consumption

ki N3 Inhibition constant of ammonium for nutrient mmole L
consumption

Kiacrey Half-saturation constant of lactate for lactate mmole L
consumption at low glucose level

Kioe Gic Half-saturation constant for lactate yield from mmole 10°cell” h”
glucose

Krac Gin Half-saturation constant for lactate yield from mmole 10cell™ h’!
glutamine

Kie Half-saturation constant for leucine consumption mmole L

Kpys Half-saturation constant for lysine consumption mmole L'

Kier Half-saturation constant for methionine mmole L'
consumption

Kpe Half-saturation constant for phenylalanine mmole L
consumption

Kpro Half-saturation constant for proline consumption mmole L

Kcate Half-saturation constant responsible for scaling mmole 10°cell” h!
down Kamm ais. ser. 4w at low levels of gein

Ks.r Half-saturation constant for serine consumption mmole L

Keir Half-saturation constant for threonine mmole L
consumption

Krip Half-saturation constant for tryptophan mmole L™
consumption

Kryr Half-saturation constant for tyrosine consumption | mmole L!

Ky Half-saturation constant for valine consumption mmole L

Lac,, Critical lactate concentration mmole L

m Exponential of Amm for qaum rev in the mass -
balance of ammonium

pH pH of cell culture -

| GAtamin Background specific production rate of alanine mmole 10cell’ h”!

GGlvmin Background specific production rate of glycine mmole 10%cell h!

Gpromin Background specific production rate of proline mmole 10°cell” h”

YdGin Degradation rate of glutamine (hr™) h!

Trag Rate of fragmentation of dead cells h'

TMAXaL Maximum specific alanine consumption rate mmole 10°cell’ h'!

rMaXan Gic Linear yield coefficient of alanine from glucose mmole mmole™

MAaXal Gin Linear yield coefficient of alanine from glutamine mmole mmole”

FMAXAmm_Gin Maximum stoichiometric ratio of ammonium mmole mmole”
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rmaxs mm_His,Ser,Asn

Maximum stoichiometric ratio of ammonium
from histidine + serine + asparagine

mmole mmole’

mmole 10°cell” h’!

TMAXArg Maximum specific arginine consumption rate

FIMAX 4 Maximum specific asparagine consumption rate mmole 10%cell’ h!
FMaXae Maximum specific aspartic acid consumption rate | mmole 10°cell” h”
FIMAXCys Maximum specific cysteine consumption rate mmole 10%cell' h”’
FIMAX(ys Ser Linear yield coefficient of cysteine from serine mmole mmole’’
rmaxgie maximum specific consumption rate for Glc mmole 10%cell” b
rmaxgny Maximum specific consumption rate of glutamine mmole 10%cell” h”
FMaxg Maximum spec. glutamic acid consumption rate mmole 10°cell’ h'!
TIMaxgry Maximum specific glycine consumption rate mmole 10°cell”’ h'
FIMAXGH Ser Linear yield coefficient of glycine from serine mmole mmole”
FMaxyis Maximum specific histidine consumption rate mmole 10%cell” b’
FIAXiENy Maximum specific production rate for JFNy mg 10°cell” h’!
rmaxy, Maximum specific isoleucine consumption rate mmole 10%cell” h

TMaXpac,rev

Maximum specific lactate consumption rate at low
glucose level

mmole 10°%cell” h”

YMaXpae_Gle

Maximum stoichiometric ratio of lactate from

mmole mmole™

glucose
rMaXiae Gin Maximum stoichiometric ratio of lactate from mmole mmole™
glutamine
PINAX oy Maximum specific leucine consumption rate mmole 10°cell” h’'
rmaxy. Maximum specific lysine consumption rate mmole 10%cell™ b
FIMAXpse; Maximum specific methionine consumption rate mmole 10°cell’ b
rmaxpy. Maximum spec. phenylalanine consumption rate | mmole 10°cell” b
FmMaxpy, Maximum specific proline consumption rate mmole 10%cell” h”!
FIAXpro Are Linear yield coefficient of proline from arginine mmole mmole”
FIAX Py Gl Linear yield coefficient of proline from glutamic | mmole mmole”

acid

YMAXye5,Ala_Gle

Maximum response coefficient for alanine
consumption due to Jow glucose Jevel

Ty na-xres,Al a_Gin

Maximum response coefficient for alanine
consumption due to low glutamine level

T Xres Arg_Gle

Maximum response coefficient for arginine
consumption due to low glucose level

r naxres‘Arg_Gln

Maximum response coefficient for arginine
consumption due to low glutamine level

FMNQXres Asn_Gic

Maximum response coefficient for asparagine
consumption due to low glucose level

YA X o5, Asn_Gin

Maximum response coefficient for asparagine
consumption due to low glutamine level

VX pes Asp_Gle

Maximum response coefficient for aspartic acid
consumption due to low glucose level

YMAXes Asp_Gin

Maximum response coefficient for aspartic acid
consumption due to low glutamine level

TMAXpes, Cvs_Gle

Maximum response coefficient for cysteine
consumption due to low glucose level

HNAX rey, Cys_Gin

Maximum response coefficient for cysteine
consumption due to low glutamine level

FINAXres Gle Activation coefficient of X, Gie h'
FTNGX 24 Gl Gin Maximum response coefficient for glucose -
consumption due to low glutamine level
Activation coefficient of X, e h’

TN o5 Gin

PO X o5, Gin_Gle

Maximum response coefficient for glutamine
consumption due to low glucose level
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FIAX,es, Glu_Gle

Maximum response coefficient for glutamic acid
consumption due to Jow glucose level

MaXyes, Glu_Gin

Maximum response coefficient for glutamic acid
consumption due to low glutamine level

FIMAXyes, Gly_Glc

Maximum response coefficient for glycine
consumption due to low glucose level

A X yes, Gly_Gin

Maximum response coefficient for glycine
consumption due to low glutamine level

r’naxres,His_Glc

Maximum response coefficient for histidine
consumption due to low glucose level

FMAX,es,His_Gin

Maximum response coefficient for histidine
consumption due to low glutamine level

YMaX,es, IFN_Glc

Maximum response coefficient for IFNYy
production due to low glucose level

YIMAXres [IFN_GIn

Maximum response coefficient for IFNy
production due to low glutamine level

YMaXes,fte_Glc

Maximum response coefficient for isoleucine
consumption due to low glucose level

YMAX s lte_Gin

Maximum response coefficient for isoleucine
consumption due to low glutamine level

r’naxres,Leu_Glc

Maximum response coefficient for leucine
consumption due to low glucose level

14 7na-xre,v,Leu_Gln

Maximum response coefficient for leucine
consumption due to low glutamine level

YMAXres,Lys_Glc

Maximum response coefficient for lysine
consumption due to low glucose level

FTHAX e, Lys_Gin

Maximum response coefficient for lysine
consumption due to low glutamine level

FMAXyes Mei_Gle

Maximum response coefficient for methionine
consumption due to low glucose level

FMAXyes Mer_Gin

Maximum response coefficient for methionine
consumption due to low glutamine level

YNAX ey, Phe_Glc

Maximum response coefficient for phenylalanine
consumption due to low glucose level

YIAX s, Phe_Gin

Maximum response coefficient for phenylalanine
consumption due to low glutamine level

i naxres,Pm_Glc

Maximum response coefficient for proline
consumption due to low glucose level

14 771a-xres,Pm_Gln

Maximum response coefficient for proline
consumption due to low glutamine level

T X ey, Ser_Gle

Maximum response coefficient for serine
consumption due to low glucose level

QX s, Ser_Gin

Maximum response coefficient for valine
consumption due to low glutamine serine

FIMAXyes Thr_Gic

Maximum response coefficient for threonine
consumption due to low glucose level

r’"a-xre.s‘, Thr_Gin

Maximum response coefficient for threonine
consumption due to low glutamine Jevel

YMQXres, Trp_Gle

Maximum response coefficient for tryptophan
consumption due to low glucose level

FIAX ey, Trp_Gin

Maximum response coefficient for tryptophan
consumption due to low glutamine level

I naxres, Tyr_Gle

Maximum response coefficient for tyrosine
consumption due to low glucose level

YN X s, Tyr_Gin

Maximum response coefficient for tyrosine
consumption due to low glutamine level

158




FMQAXyes, val_Glc

Maximum response coefficient for valine
consumption due to low glucose level

I 7‘la-xres, Val_Gin

Maximum response coefficient for valine
consumption due to low glutamine level

mmole 10°cell h

TMaxse, Maximum specific serine consumption rate
Maxys, Maximum specific threonine consumption rate mmole 10°cell” h!
TMaX1y, Maximum specific tryptophan consumption rate mmole 10°cell” h”!
FINAXTy, Maximum specific tyrosine consumption rate mmole 10°cell’ h’'
FMAX1yy_phe Linear yield coefficient of tyrosine from mmole mmole™
phenylalanine
FMAXy, Maximum specific valine consumption rate mmole 10%cell” h”
FINIR Ay Background specific production rate of Amm mmole 10°%cell” h”
TR A, rev Minimum specific rate of metabolite mmole" ™ L™ 10°
. . . 6 11—1 h-l
redirection away from Amm production ce
Pala_Gic Response constant for alanine consumption due to | -
low glucose level
Pila_Gin Response constant for alanine production due to -
low glutamine level
Pimm_Gin Response constant for ammonium production due | -
to low glutamine level
Pire_Glc Response constant for arginine consumption due -
to low glucose level
PArg_Gin Response constant for arginine production due to | -
low glutamine level
Phsn_Gle Response constant for asparagine consumption -
due to low glucose level
Phsn_Gin Response constant for asparagine production due | -
to low glutamine level
Phsp_Gle Response constant for aspartic acid consumption -
due to low glucose level
Pasp_Gin Response constant for aspartic acid production -
due to low glutamine level
Pcys_Gic Response constant for cysteine consumption due -
to low glucose level
DCvs_Gin Response constant for cysteine production due to | -
low glutamine level
Pucle Response constant for cell death due to low -
glucose level
Pu.Gin Response constant for cell death due to low -
glutamine level
De Response constant of nutrients for cells growth -
due to low glutamine level
PGic_Gin Response constant for glucose production due to -
low glutamine level
P6in_Gic Response constant for glutamine consumption due | -
to low glucose level
PGlu_Gle Response constant for glutamic acid consumption | -
due to low glucose level
PGlu_Gin Response constant for glutamic acid production -
due to low glutamine level
PGly_Gle Response constant for glycine consumption due to | -
low glucose level
P6iy_Gin Response constant for glycine production due to -
low glutamine level
Phis_Gle Response constant for histidine consumption due | -

to low glucose level
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PHis_Gin Response constant for histidine production due to
low glutamine level

PIFN_Gic Response constant for IFN7y production due to low
glucose level

PIFN Gin Response constant for IFNy production due to low
glutamine level

DPlie_Gle Response constant for isoleucine consumption due
to low glucose level

Plie_Gin Response constant for isoleucine production due
to low glutamine level

PlLac Gl Response constant for lactate production due to
low glucose level

PlLac_Gin Response constant for lactate production due to
low glutamine level

PlLew_Gle Response constant for leucine consumption due to
low glucose level

PLew_Gin Response constant for leucine production due to
low glutamine level

PLys_Gic Response constant for lysine consumption due to
low glucose level

Prys_Gin Response constant for lysine production due to
low glutamine level

PMer_Gle Response constant for methionine consumption
due to low glucose level

PMer_Gin Response constant for methionine production due
to low glutamine level

Pphe_Glc Response constant for phenylalanine consumption
due to low glucose level

PPhe_Gin Response constant for phenylalanine production
due to low glutamine level

PPro_Gle Response constant for proline consumption due to
low glucose level

Prro_Gin Response constant for proline production due to
low glutamine level

Pser_Gle Response constant for serine consumption due to
low glucose level

DPser_Gin Response constant for serine production due to
low glutamine level

Prir_Gle Response constant for threonine consumption due
to low glucose level

Priv_Gin Response constant for threonine production due to
low glutamine level

Priv_Gic Response constant for tryptophan consumption
due to low glucose level

Prip_Gin Response constant for tryptophan production due
to low glutamine level

Pryr_Gle Response constant for arginine consumption due
to low glucose level

Pryr_Gin Response constant for tyrosine production due to
low glutamine level

Pvai_Gie Response constant for valine consumption due to
low glucose level

Pval_Gin Response constant for valine production due to

low glutamine level
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Table 4.8: Notations for major variables in the complex CHO-IFNy model.

Variables Definition Units
AAX*® Amino acid concentration mM
AA* Effective amino acid concentration mM
Amm Ammonium (NH;") concentration mM
X Dead cell concentration 10%ells L
X, Total cell concentration 10%ells L’
X, Viable (living) cell concentration 10%ells L'
Fi, Flowrate of inlet stream containing glucose, Lh'
glutamine, & amino acids
Fineic Flowrate of pure glucose stream Lh'
Fou Flowrate of outlet stream Lh'
Gle Glucose concentration mM
Gley Effective glucose concentration mM
Gin Glutamine concentration mM
Glngy Effective glutamine concentration mM
IFNy Interferon-yconcentration mg L™
Lac Lactate concentration mM
U Intrinsic specific growth rate h'
Uy Specific death rate h'
NH; Ammonia concentration mM
gaa™* Specific consumption rate of amino acid mmole 10°cell’ h’!
G amm Specific production rate of ammonia mmole 10%cell” h”'
G Amm.rev Specific consumption rate of ammonia mmole 10°cell’ h”
qaGic Specific consumption rate of glucose mmole 10cell’ h”
qaiin Specific consumption rate of glutamine mmole 10°cell’ b’
qLac.Gle Specific lactate production rate from glucose mmole 10%cell' b
GLac.Gin Specific lactate production rate from glutamine mmole 10%cell” h”!
TiENy Specific production rate of IFNy mg 10%cell ' b
t time h
Vv bioreactor volume L
Xres,Gle Hypothetical response variable for low glucose -
concentrations
Xres, Gin Hypothetical response variable for low glutamine | -
concentrations
Remark:

- Amino acids other than glutamine: valine, leucine, isoleucine, methionine, phenylalanine,
tryptophan, threonine, lysine, histidine, alanine, glycine, proline, aspartic acid, glutamic acid,
asparagine, serine, tyrosine, cysteine, and arginine.

- %% : amino acid concentration other than glutamine (mM)
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Table 4.9: Concentration of gluose, glutamine and other amino acids in the inlet

streams.

Parameters Definition Linits
Glci, Feed glucose concentration in mmole L

glutamine-controlled fed-batch

cultures
Glc'y, Feed glucose concentration in mmole L

glucose-controlled fed-batch cultures
Glny, Feed glutamine concentration mmole L™
Val;, (valine) Feed valine concentration mmole L
Leu;, (leucine) Feed leucine concentration mmole L
Ile;, (isoleucine) Feed isoleucine concentration mmole L
Met;, (methionine) Feed methionine concentration mmole L
Phe;, (phenylalanine) | Feed phenylalanine concentration mmole L'
Trpi, (tryptophan) Feed tryptophan concentration mmole L
Thr;, (theronine) Feed threonine concentration mmole L
Lys;, (lysine) Feed lysine concentration mmole L
His;, (histidine) Feed histidine concentration mmole L
Ala;, (alanine) Feed alanine concentration mmole L
Glyi, (glycine) Feed glycine concentration mmole L’
Pro;, (proline) Feed proline concentration mmole L
Aspin (aspartic acid) | Feed aspartic acid concentration mmole L'
Gluy, (glutamic acid) | Feed glutamic acid concentration mmole L'
Asny, (asparagine) Feed asparagine concentration mmole L
Ser;, (serine) Feed serine concentration mmole L’
Tyri, (tyrosine) Feed tyrosine concentration mmole L’
Cysin (cysteine) Feed cysteins concentration mmole L'
Arg;, (arginine) Feed arginine concentration mmole L
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Chapter 5

— Parameter Estimation for the
Complex CHO-IFNY Model

5.1 Parameter Estimation Strategy

With a set of model equations and experiment data, the model parameter values
can be estimated such that the model predictions match experimental observation.
Various parameter estimation approaches including trial and error, least square method,
genetic algorithm, stochastic algorithm etc. had been used in the literature (Shuler et al.,
1979; Park et al., 1997, Mendes and Kell, 1998; Pinchuk et al., 2000; Frahm et al.,
2002b; Gadkar et al., 2003; Moles et al., 2003; Kutalik et al., 2004). Sometimes the
parameter estimation complexity was reduced by model linearization or assuming
certain relationships among parameters/variables (Shuler et al., 1979; Grosfils et al.,
2007). But the number of model parameters often exceeds the number of measured
variables in biological experiments that there exist multiple parameter solutions (Gadkar
et al., 2003). In the case of the CHO-IFNy model developed in Section 4.2, there are 192
parameters but only 26 measured cell culture variables. Thus, a strategy was developed

for the estimation of all those parameters and it is presented in this chapter.
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5.1.1 Framework of Parameter Estimation for Highly

Underspecified Model

The complex CHO-IFNY cell culture model developed in Section 4.2 consists of
parameters that can be classified into the following categories:

(1) Hypothesised parameters for cell culture responses at low levels of glutamine
and glucose

(2) Parameters based on engineering assumptions, stoichiometric ratios, or
estimable from literature data

(3) Directly measurable parameter

(4) Parameters that can be isolated from the model structure

(5) Parameters that are active in both batch and fed-batch conditions versus

parameters that are only active in certain fed-batch conditions

The first two types of parameters were estimated using mammalian cell culture data
reported in the literature plus certain engineering assumptions. For any parameter that
could be directly measured, individual experiment was carried out to obtain the
corresponding data. Some model equations only involve two variables which are both
quantifiable from the measured data. Thus, assuming there is no unknown interaction
with any third variable, the parameters can be ‘isolated’ from the rest of the model and
estimated more accurately based on the values of the two corresponding variables. For
the remaining parameters, those that are active in both batch and fed-batch conditions
were initially estimated using batch culture data; some parameters are only active in

fed-batch cultures were estimated using fed-batch culture data.

After an initial estimation of all parameter values, the relative importance of the
parameters with respect to IFNy production in batch cultures was quantified using
Global Sensitivity Analysis (GSA). The sensitivity of those fed-batch parameters could
not be easily quantified using GSA because different profiles of the inlet streams Fiy()
and Fj, (1) could result in different relative significance of the parameters but it is not
feasible to scan all possible profile patterns. Thus, all those fed-batch parameters with
non-zero influence on the model were considered ‘significant’ in the parameter

estimation stage. The possible effect of parameter uncertainty is evaluated in Chapter 6.
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The insensitive parameters were then fixed at their nominal values while the values
of sensitive parameters were refined using regression and dynamic simulation in
gPROMS. A schematic illustration of the parameter estimation process is shown in
Figure 5.1. The resulting set of parameter values was used for model-based optimisation

in the next chapter.

Figure 5.1: Schematic diagram showing the involvement of Global Sensitivity Analysis (GSA)
in the estimation of model parameter values.

5.1.1.1. Response Factors Parameters

The parameters for the hypothetical dimensionless cell culture response
variables X, G, and X,,6ic include a threshold value (7, ZGic) based on glutamine and
glucose concentration, an activation coefficient (rmaxyescin, Max,escic), and a
degradation rate (dyes Gins drescic) Of the response variables. Since such variables are not

measurable, 71max,es, g and 1mMax,., cic were set at a default value of 1.

75, was estimated as 0.7mM based on literature findings of an increase in
product synthesis in other mammalian cell-lines at glutamine concentration < 0.3mM
(Mancuso et al., 1998; Lee et al., 2003a) and the CHO-IFNy fed-batch cultures
performance which showed an increase in productivity at a tested level of glutamine
concentration up to 0.5mM. 7. was estimated as 0.5mM according to observation of
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the CHO-IFNYy fed-batch cultures that productivity decreased and the production of
lactate, a major byproduct of glucose, appeared to change from net secretion to net

consumption at glucose concentrations < ~0.5mM.

The values of d.; i, and dyy i were assumed to be the same. It was reported by
Altamirano et al. (2001) that CHO-tPA chemostat cultures subjected to low glucose
levels reached new steady-states with different productivities rapidly within several
hours. Thus, dycin and dye; G were estimated to be 1.2 h! using chemostat culture
simulations such that x,.s G O X5l Teached steady state in < 5 h when activated by
low concentration of glutamine or glucose respectively. The response factors parameters
were not analysed in the Global Sensitivity Analysis (GSA) because by definition they

are sensitive parameters in the model.

To address the uncertainty of the response factors parameters, especially 7, and
T which dictate the activation of X, 1, and X,.,ci, fed-batch simulation near the 7g,
glutamine concentration threshold was avoided and model-based optimisation in
Chapter 6 would be constrained at glutamine levels higher/lower than 7g;,. For glucose
levels, fed-batch simulation near 75, was unavoidable because the experimental range
of glucose concentration in fed-batch cultures varied around the value of 7. In order to
minimise any error due to such dilemma, the value of 7z, would be fine-tuned in the
parameter re-estimation stage in Section 5.1.1.7 if necessary. There was no problem
with 75, in the model-based optimisation as the optimal glucose levels were found to be
always above 7g; due to the fact that low glucose concentrations caused reduction in

productivity.

5.1.1.2. Engineering, Stoichiometric, and Literature-Based Parameters

Three model parameters are constant by definition or engineering estimation: pH,
[, and £ The pH of the bioreactor is controlled at pH7, fis a unit-time coefficient of
effective nutrient concentrations (Section 4.2.1.4: Equation M13) having a default value
of 1 h, €is an engineering parameter for specific ammonium production (Section 4.2.1.5:

Equation M34) and is fixed at 0.01 such that £<< 1.
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In the equations for specific production of byproducts (Section 4.2.1.5),
rMaxamm_ cin (Equation M34), rmaxamm gis.ser.asn (Equation M34), rmaxp,. cic (Equation
M36), and rmaxp, ¢ (Equation M37) represent the stoichiometric relationships
between the corresponding byproduct and nutrient source. Their values are 2, 4, 2, and 1

respectively (Altamirano et al., 2001).

The three engineering parameters and four stoichiometric factors discussed
above are not analysed in the Global Sensitivity Analysis (GSA) due to the fact that

their values are constant by default or engineering assumptions.

The critical concentrations of ammonia (NH3) and lactate in Equation M6 and
M10 of Section 4.2.1.2 represent the levels of byproducts beyond which there would be
significant inhibition of growth rate and increase in death rate. The value of NHj,, is
related to the measurable ammonium (NH,") concentration via Equation M5 (Section
4.2.1.2). It had been reported that CHO-IFNYy cell-line could tolerate ammonium
concentration up to about SmM and the culture was not affected by lactate concentration
as high as 17.5mM (Hayter et al., 1991). Observations of the CHO-IFNY cell culture
modelled in this current study also indicated a significant decrease in growth rate when
ammonium concentration reached ~5mM though no clear inhibitive level of lactate can
be deduced. Therefore, the values of NH;., and Lac,, are estimated to be 5SmM and

20mM respectively.

5.1.1.3 Directly Measurable Parameter

The spontaneous glutamine degradation rate, rygrn, in Equation MI18 (Section
4.2.1.4) can be measured directly by culturing cell-free medium in 37°C and monitor the
glutamine concentration. The value of rzg,, is measured to be 0.005 h'l. Detailed

calculation can be found in Appendix 5.
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5.1.1.4 Isolation of Parameters

The specific consumption rates of all essential amino acids (Section 4.2.2:
Equation 4.2.54 — 4.2.62) and glucose (Equation 4.2.31) are only related to the effective
concentration of each corresponding nutrient. Since both the specific consumption rate
and effective concentration can be calculated from measured experimental data and it
may be assumed that no third unknown variable is associated with each of the equations,
the equations were ‘isolated’ from the model and the corresponding parameters were
estimated individually based on relevant batch culture data up to the exponential growth
phase where the byproducts were still below inhibitory levels. An example for essential
amino acids is shown in Figure 5.2 where initial estimates of rmaxp, and Kp, were
obtained based on the data of specific threonine consumption rate versus average
threonine concentration. Another example for glucose is shown in Figure 5.3. The data
for tryptophan, one of the essential amino acids, were not able to be measured in the
experiment. The values of rmaxry, and Ky, were assumed to be the same as
phenylalanine which has the most similar molecular structure (see Appendix 4 for
amino acids structure). The estimates of parameters for specific consumption of

essential amino acids and glucose can be found in Table 5.1.

Qpy, VS average Thr
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Figure 5.2: Specific threonine uptake rate versus threonine concentration in CHO-IFNY batch
culture. Solid line represents initial estimation of the relationship between the two variables.
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Figure 5.3: Specific glucose uptake rate versus glucose concentration in CHO-IFNYy batch
culture. Solid line represents initial estimation of the relationship between the two variables.

The specific consumption rate equations of certain non-essential amino acids
may be assumed independent of other amino acids if (i) their excretion rate from cells is
negligible, (ii) any possible conversion from other amino acids may be assumed less
significant than the reverse conversion or being refined to the intracellular medium, (iii)
the time-profile of the amino acid in batch culture is monotonically decreasing. These
requirements are satisfied in the case of aspartic acid (Equation 4.2.66), asparagine
(Equation 4.2.68), and serine (Equation 4.2.69). An example is shown in Figure 5.4 for
aspartic acid where initial estimates of rmaxs, and K4y, were obtained. Glutamic acid
and arginine cannot be handled this way because the extracellular concentration of
glutamic acid in batch culture was as low as the measurement uncertainty (Figure 5.18d),
making any estimation of rmaxg, and K¢y, inconclusive; the time-profile of arginine in
batch culture had a wave-like pattern which may suggest a more complex
interconversion pattern which is not well understood (Figure 5.18c). The estimates of
parameters for specific consumption of aspartic acid, asparagine, and serine can be

found in Table 5.1.
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Figure 5.4: Specific aspartic acid uptake rate versus aspartic acid concentration in CHO-IFNy
batch culture. Solid line represents initial estimation of the relationship between the two
variables.

The specific IFNy production rate in the batch culture is shown in Figure 5.5.
Apart from the earliest data point at roughly 1 h which had a high mean value but also
very high uncertainty, the specific production rate appeared to be stable with time
throughout the batch culture. The maximum specific IFNy production rate, rmaxrny, in
Equation 4.2.86 was estimated within the shaded region in Figure 5.5 with an initial

guess of ~2 x 10° mg 10%cell™ h'.

For the maximum specific growth rates, fne and fineo, (Section 4.2.1.2:
Equation M8) and minimum specific death rate, £ i, (Section 4.2.1.2: Equation M10)
in the batch culture, certain assumptions may be made in the growth and death
equations in order to estimate their order of magnitude. Figure 5.6 shows the time-
profile of the intrinsic specific growth rate of the batch culture. The word ‘intrinsic’ is to
avoid confusion with the apparent specific growth rate which is the difference between
specific growth rate and specific death rate. Glucose and glutamine in the batch culture
were depleted around 68 h (Figure 5.18a). If the nutrients in the batch culture are
assumed to be abundant in the early half of the cell culture time such that their
corresponding terms in the specific growth rate equation tend to 1, an estimation can be
made for (s + Mnax2). If the amino acids are assumed to be still sufficient shortly
after glucose/glutamine depletion such that their corresponding terms remain close to 1,

the value of f,q can be roughly estimated. Similarly, an initial estimate for f4,;, was
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made based on the time-profile of the specific death rate in batch culture (Figure 5.7)
with an assumption that the byproduct concentration in the early cell culture time is
insignificant to affect death rate. The estimated values for s, fhnax2, and fymm are

0.01 h'l, 0.025 h'l, and 0.001 h! respectively. Detailed calculation is available in

Appendix 5.
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Figure 5.5: Specific production rate of IFNy in CHO-IFNy batch culture. The shaded region
represents the possible range for maximum specific production rate in batch condition.
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Figure 5.6: Intrinsic specific growth rate in CHO-IFNy batch culture where glucose and
glutamine were exhausted at ~68 h. The difference in specific growth rate before and after
exhaustion of glucose and glutamine was used for estimation of the maximum specific growth
rates.
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Figure 5.7: Concentration of dead cells in CHO-IFNY batch culture. The dotted line represents

linearization of dead cell concentration up to mid-exponential phase for estimation of minimum
death rate.

5.1.1.5 Regression of the Remaining Parameters

The remaining parameters were separated into those that are based on batch
cultures versus those that are related to low-glutamine/low-glucose responses in fed-
batch cultures. The former were estimated with batch culture data in gPROMS (Process
Systems Enterprise Ltd.) using a general maximum likelihood approach similar to in
Chapter 3. The latter were then estimated with data of glutamine-controlled and
glutamine-glucose-controlled fed-batch cultures using dynamic simulations. The

estimated values of all batch and fed-batch parameters are listed in Table 5.1.

5.1.1.6 Identification of Sensitive Parameters via GSA

Global Sensitivity Analysis (GSA) was used to identify parameters in the CHO-
IFNy model that are sensitive with respect to IFNY production. An introduction of
sensitivity analysis methods is available in Section 4.1.4.1. A total of 179 parameters
were analysed excluding 13 parameters discussed in Section 5.1.1.1 and 5.1.1.2. The

lower and upper bounds of parameter range were selected as follow:



Upper bound ---

* 2 times standard deviation for those isolated parameters (Section 5.1.1.4) that
were estimated via regression, e.g. rmaxy,

® A theoretical upper bound for the yield of certain non-essential amino acid from
other amino acid, e.g. rmaxry,_ppe.

® 220 times of the initially estimated value depending on the uncertainty of each

parameter.

Lower bound ---

e 10 for most positive parameters or a higher value in certain cases where more
information is available to judge the feasible lower bounds such as Amm,, and

~ Lac,.
o A theoretical lower bound for the negative response coefficients, e.g.

YmMaXres Ala_Gle-

A list of the lower and upper bounds for all the 179 parameters analysed in GSA can

be found in Table 5.1. The parameters were grouped into thirteen categories according

to their biological functions and parameter types:

1.

D A e R o

— =t =
W N = O

IFNYy production

Specific growth rate

Specific uptake rate of essential amino acids

Glutamine concentration

Specific death rate

Glucose concentration

Specific uptake rate of non-essential amino acids

Interconversions of amino acids

Formation of byproducts

Response parameters related to essential amino acids

Half-saturation constants for response parameters related to essential amino acids
Response parameters related to non-essential amino acids

Half-saturation constants for response parameters related to non-essential amino

acids



Table 5.1: List of grouped parameters of the complex CHO-IFNY model for Global

Sensitivity Analysis (GSA).

Group Parameter Initial Estimation Lower Bound Upper Bound | Units
(1-2 sig. fig.) (1-2 sig. fig.) | (1-2sig. fig)
[FNy FINAaxiFny 1.5E-05 1E-6 4E-5 mg 10° cell ' b
TMAXyes IFN_Gin 7 1 10 -
PIFN Gin 1 1E-6 10 -
IMAax resien cic | -1 -1 -1E-6 -
PIFN Gie 1 1E-6 10 -
Growth Mimaxt 0.01 1E-6 0.1 b
Monax2 0.025 1E-6 0.1 h!
K, Gic 0.0004 1E-6 0.004 mmole 10° cell’ !
K. Gin 0.0004 1E-6 0.004 mmole 10 cell " h'!
k,‘,,h_Nﬁj 00024 1E-6 0024 mmole L-]
K, Lac 25 1E-6 50 mmole L
K, vai 0.0002 1E-6 0.002 mmole 10° cell’ b
K, 1o 0.0002 1E-6 0.002 mmole 10 cell’ b’
K, i 0.0002 1E-6 0.002 mmole 10 cell’ h'!
Ko mer 0.0002 1E-6 0.002 mmole 10° cell”' h’!
K, phe 0.0002 1E-6 0.002 mmole 10 cell' h!
Ketrp 0.0002 1E-6 0.002 mmole 10 cell" h”!
K, mr 0.0002 1E-6 0.002 mmole 10 cell" h'!
Ke1ns 0.0002 1E-6 0.002 mmole 10 cell" h'!
K, mis 0.0002 1E-6 0.002 mmole 10 cell" h”!
K, are 0.0002 1E-6 0.002 mmole 10 cell " h”!
Ko 0.0002 1E-6 0.002 mmole 10 cell h”!
Koo 0.0002 1E-6 0.002 mmole 10° cell” h”!
P 0.2 1E-6 2 -
Essential rmaxvy 0.02 1E-6 0.64 mmole 10° cell Th!
amino aci.ds Kvai 1 1E-6 46.54 mmole L
consumption Iy, 0.02088 1E-6 0.53 mmole 10° cell" b
Kyier 0.933 1E-6 28.47 mmole L’
FMAX s 0.02844 1E-6 0.82 mmole 10 cell' h!
Kiys 1.373 1E-6 63.67 mmole L'
Fmaxy, 0.02528 1E-6 0.94 mmole 10 cell” h”!
K. 1.457 1E-6 74.94 mmole L
FMaxy e 0.02632 1E-6 7.93 mmole 10° cell T h”!
K en 1.365 1E-6 67.25 mmole L
TIAX e 0.02115 1E-6 0.99 mmole 10® cell Th
Kepne 1.351 1E-6 77.65 mmole L'
rmaxg, 0.02115 1E-6 0.99 mmole 107 cell" b’
Ky 1.351 1E-6 77.65 mmole L
FIAXTh 0.006279 1E-6 0.027479 mmole 10 cell" h'!
Kpr 0.07722 1E-6 2.55922 mmole L
FINAXgis 0.01217 1E-6 1.30817 mmole 10° cell” h”’
Khis 1.314 1E-6 171.314 mmole L
Glutamine rMaxg 0.7 1E-6 3 mmole 10 cell T h”!
Kgin 9 1E-6 44 mmole L
Kinnle 13 1E-6 63 mmole L
TiGin 0.005 1E-6 0.01 h'!
YMAX re5.Gin Glc 0 1E-6 1 -
pGln Glc 1 1E-6 10 -
Death Amm,, 5 3 7 mM
Lac,, 20 15 40 mM
kg vhs 0.0001 1E-6 0.001 mmole L™
ki tac 42 1E-6 84 mmole L
M min 0.001 1E-6 0.002 h'
M 0.008 1E-6 0.02 h'
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(Death PiGin 0.05 1E-6 1 -
[continue]) Duie 0.05 1E-6 I N
Glucose rmaxgy, 0.7 1E-6 2.31 mmole 10 cell" b’
Kgie 12 1E-6 40 mmole L
FINAX yes. Gle Gin 0 1E-6 1 -
PGic_Gln 1 1E-6 10 -
Non-essential TMaxy, 0.294 1E-6 5.88 mmole 10 cell" h'
amino acids | g, 0.365 1E-6 73 mmole L™
consumption FIAxXG, 0.1087 1E-6 2.174 mmole 107 cellT h
Koy 0.3126 1E-6 6.252 mmole L'
rmaxey, 1.6147 1E-6 32.3 mmole 10° cell” h”!
Kepo 3.788 1E-6 75.76 mmole L
rmaxg, 0.0794 1E-6 0.3534 mmole 10° cell" b
| K 0.5536 1E-6 3.29 mmole L'
FIAX Gy 0.212 1E-6 4.24 mmole 10° cell" h”!
Ko 2.84 1E-6 56.8 mmole L!
TIMAX 4, 0.02853 1E-6 0.233 mmole 10 cellTh!
Ksn 0.7116 1E-6 7.982 mmole L!
rImaxs,, 0.003691 1E-6 0.32 mmole 10 cellTh!
Kor 0.3903 1E-6 97.95 mmole L'
rmaxy,, 0.0204 1E-6 0.408 mmole 10° cell" h”'
Ko 0.757 1E-6 15.14 mmole L
FIOX g 0.253 1E-6 5.06 mmole 10 cell” h'!
Ky 13.9 1E-6 278 mmole LT
FMax, 0.0438 1E-6 0.876 mmole 10C cell Th'
Kire 10.57 1E-6 211.4 mmole L
Non-essential | gujumin 0.135 1E-6 1.35 mmole 10° cell” h’!
amino acids | gg, 0.0185 1E-6 0.185 mmole 10° cell " b
interconversion Tbromin 0.0777 1E-6 0.777 mmole 10° cell " b !
FMAXA Gle 0.2235 1E-6 0.5 mmole mmole™
FMAX A Gin 0.2205 1E-6 0.5 mmole mmole’!
IMAXGry Ser 0.1965 1E-6 0.8 mmole mmole’’
FMAXpr Giu 0.3996 1E-6 0.5 mmole mmole™’
IMAXpry Are 0.3996 1E-6 0.8 mmole mmole’’
FINGXTvr e 0.169 1E-6 1 mmole mmole’
FINAXCys ser 4.00E-05 1E-6 0.2 mmole mmole™’
Byproducts Kiae cie 0.4695 1E-6 4.695 mmole 10 cell T’
Kiue Gin 1.5522 1E-6 15.52 mmole 10° cell” h’!
FIRT g 0.01366 1E-6 0.02732 mmole 10 cell” b’
Kscate 0.04 1E-6 0.4 mmole 10° cell” k!
Ksan Gin 0.233 1E-6 0.466 mmole 10 cell” b’
Kwun is.Ser.am 1.78 1E-6 3.56 mmole 107 cell T i
i1 yp— 1E-6 mmole ™™ 1@ 107
6.00E-05 3E-4 cell’ !
FINAX e ren 0.054 1E-6 0.54 mmole 10° cell " h”!
Ki e ren 2.664 1E-6 26.64 mmole L
m 3 2 5 -
Prac_cle 50 1 100 -
le- Gin 40 1 80 -
Pl Gin 3 1E-6 10 -
Essential FIMAX o val_Gin 0 1E-6 1 -
amino acids FMAX res Lo Gin 0 1E-6 1 N
fed-batch =
response FMAX e 1ie_Gin 0 1E-6 1 -
coefficients FMAX o5, Met_Glin 0 1E-6 1 -
FMAX es, Phe_Gin -1 -1 -1E-6 -
FMQXye5,Tep_Gin 0 1E-6 1 -
FIRAX pes Thr_Gin 0 1E-6 1 -
P res Lys_Gin 0 1E-6 1 -
FINAX pes pis_Gin 0 1E-6 1 -




(Essential FINAX e Val Gle 0 1E-6 1
amino acids FINAX ey Lo Gl 0 1E-6 1
fzgl-)t())':l]tsceh FMAXres 1l Glc 0 1E-6 1
coefficients TG e, Met_Gle 0 1E-6 1
[continue]) TMAX 5, Phe_Glc 0 1E-6 1
ry naxre.r,Trp Gle 0 ]E-6 1
YMAX o5 Thr_Gic 0 1E-6 1
FIOX 15 Lys Gle 0 1E-6 1
IMAXres, His_Gle 0 1E-6 1
Es§ential. Oval_Gin 1 1E-6 5
amin0 245 | prey i 1 1E-6 5
response half- Phie_Gin 1 1E-6 5
saturation PMer Gin 1 1E-6 5
constants Pphe_Gin 0.5 1E-6 2.5
Prip Gin 1 1E-6 5
Prir_Gin 1 1E-6 5
PLys Gin 1 1E-6 5
PHis Gin 1 1E-6 5
Vai_Gle 1 1E-6 5
Prev Gie 1 1E-6 5
Piie_cle 1 1E-6 5
Ptes Gl 1 1E-6 5
PPrie Gic 1 1E-6 5
Prip_Gle ! 1E-6 5
Prir_Gle 1 1E-6 5
Pus Gie ! 1E-6 5
PHis Gie 1 1E-6 5
Non-essential YIAX pes Al Gin -1 -1 _1E-6
amino acids FINAX res.Glv Gin 1 1 1E-6
fed-batch YINGX 1o pro G ] N 156
Ezse%?irésignts THAX res.Asp Gl 0 1E-6 1
MAX res,Glu_Gin 1 1E-6 2
FMax res.Asn_Gin 0 1E-6 1
TMax yes.Ser_Gin 0 1E-6 1
TIAX res Tyr Gin 0 1E-6 1
FIMAX yes,Cvs Gin 0 1E-6 1
rmax res,Arg_Gln 0 1E-6 1
TIAX res Al Gle | -1 -1 -1E-6
FMAX res,Giv_Glc -1 -1 -1E-6
FMax res. Pro_Gle -1 -1 -1E-6
rmax res,Asp_Glc 0 1E-6 1
FMAx res iy gle | 9 1E-6 1
FMax yes Asn_Gic 0 1E-6 1
FMax yes Ser_Gice 0 1E-6 1
FINAX res. Tyr Gle 0 1E-6 1
FMAX res.Crs Gle 0 1E-6 1
FMAX res Are Gle 0 1E-6 1
Non-essential Diia_Gin 1 1E-6 5
P 1 1E6 5
response half- | Pprro_Gin 1 1E-6 5
saturation Phsp_Gin 1 1E-6 5
constants Do 1 F6 5
prn_Gl:: 1 1 E-6 5
Pser_Gin 1 1E-6 5
pf_\'r_Gln 1 1E-6 5
Pcys_Gin 1 1E-6 5
pArg_Gln 1 1E-6 5

176




(Non-essential i Gle 1 1E-6 5
response half- | PPre_Gic 1 1E-6 5
saturation Phasp_Gie 1 1E-6 5
constants G Gie 1 1E-6 5
[continue]) | Pa cic 1 1E-6 5
Pser Gic 1 1E-6 5
Pryr_Gic 1 1E-6 5
pCvs Gle 1 1E-6 5
pAr;z Gic 1 ]E'6 5
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The 13 parameter groups were subjected to GSA analysis with respect to IFNy
productivity. The normalised results are shown in Figure 5.8. A larger value of
sensitivity index indicates a higher relative significance of the parameter group. A cut-

off threshold of 0.01 was used to identify sensitive versus insensitive parameter groups.

The sensitivity indices in Figure 5.8 include higher-order interactions of each
parameter group with all other groups (Section 4.1.4.1: Equation 4.S14). A comparison
of the sensitivity indices with (S} and without (S) higher-order interactions for the 8
sensitive parameter groups is shown in Figure 5.9. Apart from during the early cell
culture time of ~10 h when both S and S, have similar magnitude, the values of Sy in
all the sensitive parameter groups are generally significantly higher than S, indicating

quantitatively the highly non-linear nature of the mammalian cell culture model.

Those parameter groups with normalised sensitivity indices > 0.01 were further
analysed using GSA to quantify the relative importance of each individual parameter
within those groups. A cut-off threshold of 0.05 (similar to the threshold in Section
4.1.4.2) was used to identify the sensitive individual parameters. The GSA results of
those 8 sensitive parameter groups are shown in Figure 5.10 — 5.17. The normalised

sensitivity indices also include higher-order interactions.
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Sensitivity IndeX

Figure 5.8: Normalised sensitivity index values for different parameter groups classified
according to biological functions.

IFN — IFNYy production

Growth — specific growth rate

EAAs — specific uptake rate of essential amino acids

Glutamine — glutamine concentration

Death — specific death rate

Glucose — glucose concentration

NEAAs — specific uptake rate of non-essential amino acids

NEAA cxn — non-essential amino acid conversion from other amino acids

Byproducts — formation of byproducts

EAA FB res — essential amino acid responses in fed-batch culture relative to batch culture
EAA FB Ks — half-saturation constants (K,) for EAA responses in fed-batch cultures
NEAA FB res — non-essential amino acid responses in fed-batch culture relative to batch culture
NEAA FB Ks — half-saturation constants (K,) for non-EAA responses in fed-batch cultures
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Figure 5.9: Comparison of S and S, for all sensitive parameter groups from GSA.
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Summary of Significant Parameters from GSA

Among the 179 parameters analysed by GSA, 38 were identified as sensitive
with respect to IFNYy productivity (Table 5.2). Most of them are related to growth and
consumption of important nutrients. For the byproducts that affect growth and death

rates, ammonium was found to be more influential than lactate for IFNYy production.

Table 5.2: List of sensitive parameters out of the 179 parameters analysed with GSA.

Sensitive Parameters from GSA | Parameter Groups
rIMaxryy IFNYy production

PAXyes IFN_Gin

PIEN Gin
Uonaxi Growth
Ema.\?

Kg.M.et
K;:,Phe
K g His
L
FMAXy,y Consumption of essential amino acids
KVaI
FMaxyse,
Kyter
rmaxy,
Klle
rMaxpeu
Ko
rmaxppe
KPhe
Fmaxry,
KTrp
rmaxy,
maxyis
KHis
YMAXGy Glutamine consumption
K
Kinh.Glc
Amm,, Death
kd,NHj‘
Hdmin
FIaxg. Glucose consumption
KGlc
FIIR gy Byproducts formation
Kicate

KAmm Gin

KAmm His,Ser,Asn
VI gAmm, rev
m
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The sensitivity indices of the individual parameters are not always stable with
cell culture time like the maximum specific IFNY productivity (rmaxry) in Figure 5.10
and the maximum specific growth rates (nuxs, Mnax2) in Figure 5.11. For example, the
indices of parameters for specific consumption of leucine (rmaxpe, Ki..) increase
significantly at later time of the batch culture (Figure 5.12) when the nutrient is less
abundant; similar increase also happens to parameters for glutamine (Figure 5.13) and
glucose (Figure 5.15) consumption. The parameters responsible for cell death (Figure
5.14) and byproducts formation (Figure 5.17) are significant in the later half of cell
culture time when byproduct concentrations become sufficiently high to affect cell
growth/death. The sensitivity indices of all the parameters for non-essential amino acid
consumption are generally close to zero (Figure 5.16) which has been observed to
happen due to rounding-up of small numerical values when the overall impact of the

parameter group on the model output is very small.

The estimated values of the 38 sensitive parameters were then refined using
either regression for batch parameters or dynamic simulations for fed-batch parameters
with all other insensitive parameters fixed at their nominal values. Among the 179
parameters analysed by GSA, there are about 76 cell culture response parameters that
are not active in batch condition and so could not be correctly identified as sensitive or
insensitive by the GSA. Any of these parameters having non-zero values are regarded as
significant during parameter estimation and their values were refined using dynamic

simulations. The values of all 192 model parameters are shown in Table 5.3.
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Figure 5.15: Normalised sensitivity index values for individual parameters that are related to
the specific uptake rate of glucose.
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Figure 5.16: Normalised sensitivity index values for individual parameters that are related to
the specific uptake rate of non-essential amino acids.
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Figure 5.17: Normalised sensitivity index values for individual parameters that are related to
the formation of byproducts.
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5.1.1.7 Parameter Values for the Complex CHO-IFNyModel

Table 5.3: List of estimated values of all 192 parameters in the complex CHO-IFNy

model.

Parameters Value Units
(1-2 sig. fig.)

)] 1 h
£ 0.01 -
e 0.5 mmole L
TGin 0.7 mmole L
Md,min 1x 10-3 h_l
Himaxt 1 X 10-2 h'l
HMinax2 2.5x 10_2 h_]
Amm,, 5 mmole L
Kpta 7 mmole L
KAmm Gin 2 x 10‘4 mmole IO-GCEH-[ h-]
K Hisserasn 7x 107 mmole 10°cell "h
Karg 11 mmole L
K 0.71 mmole L
Kasp 0.55 mmole L
Kews 14 mmole L
k(l.lju' 42 mmole L-l
kg nu3 2x 107 mmole L
L 3x 107 mmole 10°cell ' h’!
K, oo 3x 107 mmole 10°cell” h’
K..ci 42 x 107 mmole 10%cell" h'!
K, Gin 42 x 107 mmole 10%cell b
K, is 2.8x107 mmole 10%cell Th
K, e 2.8x107 mmole 10%cell T b
L 2.8x107 mmole 10°cell' h!
Ko 24x 107 mmole 10%cell T h'’
Ky per 2.8 x 107 mmole 10°cell” b
K, phe 2.8x107 mmole 10°cell’ b’
Ky nr 2.8x107 mmole 10%cell’ h
K, 1 2.8x 107 mmole 10°cell" h’!
K1y 3x 107 mmole 10°cell " h
K, val 2.8x 107 mmole 10 cell” h’'
Kaie 6.3 mmole L
Kgi 8.5 mmole L
Ko 2.8 mmole L
Ko 0.5 mmole L~
Kis 0.75 mmole L
Ky 1.2 mmole L~
Kinbic 14 mmole L
KinjLac 25 mmole L
K NH3 2x10° mmole L’
KLar rev 2 mmole L_[
Kiac Gie 1x 107 mmole 10 cell T h’
Koo o 1.5x10° mmole 10%cell ' h'
Kieu 1 mmole L™
Kiys 1.1 mmole LT
Kiter 0.7 mmole L
Kppe 0.9 mmole L
Kpro 7 mmole L
Kr('nlc 2X 106 mmole IO_GCCH_I h-]
K., 0.39 mmole L
Krpr 0.077 mmole L~
Ky 0.76 mmole L
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Ky 0.9 mmole L'
Kvai 0.8 mmole L
Lac,, 20 mmole L
m 3 -
pH 7 -
GAlamin 2x ]0_5 mmole 10_60611-1 h_l
Gly.min 2x 107 mmole 10 cell” b
4 Pro.min 7.8 x 10-D mmole 10-6C611_1 h-[
Yd.Gin 5x 10-3 h-l
Frag 8.4x10° h'
FMAX res Aln_Gle -1 -
FMAX o5 Are Glc 0 -
FMax res Asn_Gie 0 -
Ymax yes Asp_Gic 0 -
TMax res,Cys_Gie 0 -
FIMAX res,Gin_Gle O -
FMax yes Giu_Gic 0 -
'Mmax res Giy_Gic -1 -
TMMAXx yes.His Gic 0 -
FMAx o510 Gl 0 -
TIMAX yes.Leu Gle 0 -
TFMax yes.Lys_Gic 0 -
Fmax res Me:_Gie 0 -
Fmax res, phe_Gic 0 -
FMax res.pro_Gie -1 -
TIMAX res Ser Gle 1 -
FMAX yes 10r_Gle 0 -
FMax res, rp_Glc 0 -
FAX res Tvr_Gle 0 -
FMAX yes.val_Gle 0 -
rmaxa, 0 mmole 10 cell " 1!
MAXal Gle 5x 107 mmole mmole”’
FMAXAlq Gin 1x 107 mmole mmole!
FMAXpAmm Gin 2 -
FMAXamm_His.Ser.Asn 4 -
rmax,,, 44x10° mmole 10cell h!
Maxsy, 2.9x10° mmole 10°cell’ h”
max,g, 7.9x10° mmole 10°cell' h
FINAXc,, 25x 107 mmole 10%cell " b’
FINAXCys Ser 5% 107 mmole mmole”’
rmaxc; 8x10* mmole 10°cell b’
rmaxg, 9x 107 mmole 10%cell” !
rmaxg, 2.1x10" mmole 10°cell ' h’!
FIaxgy 1.1x 107 mmole 10%cell” !
FINAXG, Ser 2x 10" mmole mmole”
FMaXy;s 25x107° mmole 10cell ' h!
FMAX Ny 15x 107 mg 10°cell b’
rmaxy, 3.5x 107 mmole 10°cell " h’!
FINAX] e rev 5.4x 107 mmole 10%cell " b
FMAX1ac Gie 2 -
FMAX ae Gin 1 -
FINaX v, 4x107° mmole 10°cell !
FIAX 32x 107 mmole 10%cell’ b
FMaXye, 2.1x 107 mmole 10°cell’ b
FMaXp 2.1x10° mmole 10 cell " h”!
rmaxe,, 1.6x 107 mmole 10%ell” h!
rmaXpr, Are 4x10! mmole mmole!
FMAXpry Gy 4x107 mmole mmole”’
T o5 Al_Gin -1 -

0 -

r’naxres./\rg Gin

188




YMAXyes, Asn_Gin

FNAX o5 Asp_Gln 0 -
TMAX,65.Cvs Gin -1 -
FINAXyes. Gl 1 h'
FMAXyes,Gle Gin 0 -
FMAX o5, Gin 1 h!
FMAXy5.Glu Gl 1 -
YMAXyes Giv_Gin -1 -
I'MAXyes His_Gln -1 -
'MAXyes IFN_Gic -1 -
T o5 IFN Gin 9 -
FMAXyes, tie_Gin -1 -
TMAX o5, Lew Gin -1 -
'MAX,es, Lys_Gin -1 -
FMAX 05 Mer Gin -1 -
FMaXyes, phe_Gin -1 -
FMAXyes, Pro_Gin -1 -
YMaQXyes,Ser_Gin -1 -
FIMAX 05, 1hr Gin -1 -
FIMAX o5, Top_Gln -1 (as Phe) -
IMAXyes 1vr_Gin -1 -
FMAXres Val Gin -1 -
rmMaxs,, 2x 107 mmole 10%ell h
rmaxyy, 2x 107 mmole 10%cell T h
rmaxy, 2.1x10° mmole 10°cell’ h
FIAX Ty, 2x 107 mmole 10°cellT b
FIAXTyr phe 2x 107 mmole mmole™’
rmMaxyy 3x 107 mmole 10%¢cell T h!
PR A 1.1x10° mmole 10ell” h’!
FI g 2x 10° mmole"™ L™ 10%cell " h!
Xyes.Gie 1.2 h'
Xres.Gin 1.2 h'
Phia_Gic 0.1 -
la_Gin 0.1 -
‘Amm_Gin 1 -
Pare_Gle 1 -
Phrg_Gln 1 -
Pasn_Gie 1 -
Pasn_Gin 1 -
| Pase_Gic 1 -
Asp_Gin 1 -
Poss Gic 1 -
Lcys Gin 0.01 -
PiGie 2 -
LdGin 5x 107 -
Le 7x 107 -
Laic Gin 1 -
Lcin_Gie 1 N
| P Gic 1 -
PGiu_Gin 1 -
Pch Gl 1 -
PG Gin 0.1 -
PHis Gl ! N
PHis Gin 0.05 -
DIEN Gle 0.03 -
PIEN Gin 1 -
Plie Gle 1 -
Piie_Gin 0.1 -
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Plac Gic 30
El.ar Gin 40
PLey Gic 1
PLeu_Gin 0.1
Pus Gl 1
pl,\'s Gin 01
| PMes Gic 1
PMei_Gin 0.05
Prre_Gic 1
PPhe_Gin 0.1
pPrn Gl 1
Prro Gin 0.5
Per Gie 0.01
pSer Gin 001
hr_Gle 1
Prir Gin 0.05
rp_Gle 1
,OT o _Ghn 1
Prvr_Gie 1
Prvr_Gin 0.01
Val_Glc 1
Pval_Gin 0.5

190




Table 5.4: List of degrees of freedom in the CHO-IFNY cell cultures.

Degrees of Freedom Value (2 sig. fig.) Units
Glc,, 500 mmole L
Glc’y, 220 (40g/L) mmole L
Gin;, 100 mmole L
Val,, (valine) 45 mmole L
Leu;, (leucine) 45 mmole L’
Ile,, (isoleucine) 4.2 mmole L
Met,, (methionine) 2.3 mmole L’
Phe;, (phenylalanine) 2.2 mmole L7
Trp,, (tryptophan) 0.44 mmole L
Thr,, (theronine) 4.5 mmole L’
Lys;, (lysine) 5.0 mmole L
His,, (histidine) 1.5 mmole L
Ala;, (alanine) 0.5 mmole L
Gly,, (glycine) 25 mmole L
Pro;, (proline) 1.5 mmole L’
Asp;, (aspartic acid) 2 mmole L
Glu,, (glutamic acid) 1 mmole L'
Asn;, (asparagine) 2 mmole L
Ser;, (serine) 5 mmole L
Tyr;, (tyrosine) 2.1 mmole L
Cys;, (cysteine) 2 mmole L~
Arg;, (arginine) 7.0 mmole L
F,(t) varying LhT
Fiﬂ_jl{‘(t) Varying L h_l
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5.3 R-Square Analysis of Model Performance

5.3.1 Analysis of Experiment Data

In this section, the performance of the complex CHO-IFNY model is analysed for
batch and fed-batch cultures where the nutrient supplementation time-profiles are

available. The quality of model predictions is partly quantified using R-square:

R - 2l =" 5.1)
2 (x=3)?

where x;;,: simulated value from model
x: data from experiment

X : mean value of x

However, when the value of x is controlled at constant levels that

Z:(x—)_c)2 tends to zero or the measurement error, 6,,, of x is comparable with

(x—X)*, the standard R-square analysis may fail to reflect the closeness of model

prediction. This is the case for many measured variables in the fed-batch cultures.

2
mod

Therefore, a modified R-square equation (R’ , ) is developed as follow:

Xy =)’

sim

V[ X —,\‘|>9m

sin

R =1- -
2, (=37

- x‘ > 6, would reject any

(5.2)

where the condition V]x X —x’ term if it is less than 6,,,.

sim
For the cases that R’ , is used instead of R’, the percentage of data points lying

within a narrow range of simulation results would be used to identify variables that

remain nearly constant throughout the cell culture time.

Estimation of 6,

The measurement error for amino acids was estimated from the glutamine data
which were analysed by both biochemical analyser and HPLC (Wong et al., 2005). The

average value of @, for glutamine for fed-batch cultures was 0.05mM (Appendix 6).
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This was assumed to be the measurement error for all other amino acids in fed-batch
cultures. The measurement error for glucose is assumed to be 0.1mM because the
variation of glucose concentration in fed-batch cultures was larger than that of amino

acids.

Identification of Outlying Initial Amino Acid Concentrations in Fed-Batch Data

Some of the measured values of initial concentration of amino acids in fed-batch
cultures were found to be problematic when subjected to mass balance analysis. Test
simulations were done with the specific growth rate set to O and viable cell
concentration set to 0" (X, cannot be exactly zero as it is the denominator of many
specific consumption quantities in the model). As the virtual system was set not to
consume amino acids, those amino acids that the cell cannot produce (Table 4.1) must
show a higher concentration than the real experiment data. Any initial concentrations
that violate this, or when the first experimental measurement was significantly lower
than subsequent measurements to an extent that cannot be compensated by production
of non-essential amino acids by the cells, were classified as inaccurate and were
assigned new postulated values with the help of simulations of the real system. Those

inaccurate initial amino acid concentrations are highlighted in Appendix 6.

Remarks for Simulation Diagrams

Simulation results of all the 27 variables in the CHO-IFNY batch and fed-batch
cell cultures are shown in Figure 5.18a — 5.24e. The uncertainties of batch data are
based on Wong et al. (2005). Fed-batch duplicate experiments are treated individually
because the nutrient supplementation time-profiles were not identical despite the set-
points of the feedback controllers were the same. Thus, uncertainties of the fed-batch

data are not depicted in the corresponding diagrams.
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5.3.2 Model Performance

A list of R-square and modified-R-square values for all 26 measured variables is
shown in Table 5.5. The simulation performance in CHO-IFNYy batch culture is
compared against six sets of fed-batch cultures with the glutamine and/or glucose
feedback controller being set at five different values. For the ease of reference to each of

the six fed-batch cultures, the following notations are used in this section:

® ‘0.1mM Fed-batch’ refers to the low-glutamine fed-batch culture with glutamine
feedback controller set-point at 0.1mM.

e ‘1" 0.3mM Fed-batch’ refers to the Ist duplicate experiment of the low-
glutamine fed-batch culture with glutamine feedback controller set-point at
0.3mM.

e 2" 0.3mM Fed-batch’ refers to the 2nd duplicate experiment of the low-
glutamine fed-batch culture with glutamine feedback controller set-point at
0.3mM.

® ‘0.5mM Fed-batch’ refers to the low-glutamine fed-batch culture with glutamine
feedback controller set-point at 0.5mM.

® ‘0.3,0.7mM Fed-batch’ refers to the low-glutamine and low-glucose fed-batch
culture with glutamine feedback controller set-point at 0.3mM and glucose
feedback controller set-point at 0.7mM.

* °0.3,0.35mM Fed-batch’ refers to the low-glutamine and low-glucose fed-batch
culture with glutamine feedback controller set-point at 0.3mM and glucose

feedback controller set-point at 0.35mM.

It should be noted that the concentration of the controlled variables in the fed-batch
cultures may not stay constant at the set-point values throughout the cell culture. The
concentration of tryptophan was not able to be measured in the CHO-IFNY cell culture
experiment but the simulation results of tryptophan concentration would be discussed

towards the end of this section.
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Table 5.5: Summary of R-square and modified-R-square values for batch and fed-batch

CHO-IFNY cell cultures. (Refer to p.175 for notations of fed-batch cultures)

Batch| 0.1mM 1%0.3mM | 2"°0.3mM | 0.5mM 0.3,0.7mM | 0.3,0.35mM
Fed-batch | Fed-batch | Fed-batch [ Fed-batch | Fed-batch { Fed-batch
R? Ror] %in | RZor| %in | RZor] %in | RZor] % in | R2or] % in | RZor| % in
Rzmod :3\/12 Rzmod :3\/12 RZmod :3\/12 Rzmod :101\/? Rlmod :3\2 R?'mod ;?\/12
IFNy 094 10.85 0.87 0.98 0.87 0.78 0.84
Viable cell 095 | 0.70 0.52 0.87 0.81 0.66 0.54
Total cell 0.98 0.46 0.93 0.98 0.94 0.92 0.95
Dead cell 0.80 | -L04 0.66 -0.07 -0.03 0.11 0.13
Glutamine 099 |-136|55% | 0.24 | 82% | -4.86| 57% | -1.54 | 67% | -1.43 | 57% | -0.18 | 83%
Glucose 098 | -0.64| 8% -0.751 56% | -1.07 | 71% | -0.16 | 60% | 0.66 | 73% | 0.83 | 73%
Ammonium | 0.92 } 0.65 0.54 0.42 -0.48 0.07 0.62
Lactate 093 |-210 0.41 -0.54 0.70 0.64 0.85
Isoleucine 024 1087 | 92% | -0.27 | 88% | -0.39 | 100%} 093 | 93% } 0.92 | 93% | 0.89 | 67%
Leucine 039 1093 | 82% | 0.15 | 88% | 0.90 | 100%] 095 | 87% | 0.94 | 86% | 0.83 | 50%
Methionine | 0.56 | 0.91 | 100%| 0.99 | 100%] -0.51 | 69% | 0.60 | 100%]| 0.89 | 100%] 0.89 | 100%
Valine 042 | -390 18% | -0.48 | 88% | 0.03 | 100%[ -1.69 | 36% | 0.46 | 92% | 0.79 | 92%
Phenylalanine | 024 ] -0.46| 91% | -0.38 | 88% | 0.11 | 100%| 0.80 | 100%| 0.33 | 93% | 0.98 | 100%
Threonine 0.79 | -16.0| 55% | -1.09 | 73% | -0.74 | 79% | -2.53 | 50% | -2.10 | 62% | -1.56 | 73%
Lysine 0121078 | 82% | -073|75% | -1.71| 85% | 0.83 | 80% | 0.51 | 29% | 0.88 | 67%
Histidine 029 }-257]91% | -0.20 | 100%| 1.00 | 100%| 0.39 | 100%| -1.34 | 79% | 0.97 | 100%
Arginine 018 1-10.7| 17% | -11.8 | 27% | -301| 69% | -6.40| 29% | -10.0| 50% | -17.0| 42%
Tyrosine 0.10 | 043 | 91% { 0.21 | 75% | 0.62 | 100%| 0.20 | 67% | 0.42 | 38% 031 | 18%
Cysteine 0.47 0.89 | 73% | 037 | n/a 0.91 | 100%] 0.55 | 36% | 0.23 | 62% | n/a n/a
Alanine 044 [ 074 [ 25% | 093 [ 53% | 085 | 29% | 0.70 | 33% | 0.43 | 21% | -0.92 | 17%
Aspartic acid ] 0.99 1.00 | 100%] 1.00 | 100%] 1.00 | 100%} 1.00 | 100%]| 0.90 | 100%]| 0.84 | 100%
Glutamic acid | 0.44 | 0.96 | 100%] 0.34 | 93% | 0.92 | 100%] 0.85 | 93% | 0.99 | 100%| 1.00 | 100%
Asparagine 0.65 0.95 | 100%| 0.52 | 93% | 0.77 | 100%| 1.00 | 100%| 0.85 | 93% | 0.80 | 92%
Serine -0.60 | -299 | 55% | 0.21 | 93% | 0.96 | 100%]} 0.33 | 67% | -0.27 | 64% | -4.61 | 17%
Glycine 0.49 063 | 50% | 4.65| 18% | -4.19| 21% | -0.50] 60% | 0.54 | 36% | 0.89 | 50%
Proline 0121044 | 42% | 031 | 29% | 0.52 { 29% | -040| 27% | 0.37 | 21% | -3.78 | 17%
Remark:

(1) n/a: data not available or incomplete data for the corresponding analysis.
(2) *: for glucose, ‘% in £1mM’ was analysed instead of 0.2mM due to larger fluctuations

in glucose concentration compared to amino acids.

(3) R? (or R%p0q) values < 0.40 and “% in +0.2mM’ (or 1mM for glucose) values < 50%
are underlined.
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IFNy and Cell Concentrations

The model predictions of IFNYy concentration in batch and fed-batch cultures are
shown in Figure 5.18a — 5.24a. The R-square values range from 0.78 to 0.98, indicating

that the simulation is generally in good agreement with experiment data.

The cell concentrations are also shown in Figure 5.18a — 5.24a. The total cell
concentrations (X,) are closely predicted with R-square > 0.9 in batch and most fed-
batch cultures except in ‘0.lmM Fed-batch’ culture where X, was over-predicted
towards the end of the cell culture time with an R-square value of 0.46 (Figure 5.19a).
The R-squares for viable cell concentration (X,) vary between 0.52 and 0.95. The values
of X, in some fed-batch cultures are over-predicted near the end and are more
significant in ‘1™ 0.3mM Fed-batch’ and ‘0.3,0.35mM Fed-batch’ cultures where the R-
square values are 0.52 and 0.54 respectively. Deviations in X, and X, are reflected in the
dead cell concentration (X,) which has R-square values of 0.80 and 0.66 in batch and
‘1" 0.3mM Fed-batch’ cultures respectively but the R-square values for X, are -1.04 —
0.13 in other fed-batch cultures.

Glutamine

The glutamine concentration is well simulated in batch culture with R-square
equals to 0.99 (Figure 5.18a). The modified-R-square values for glutamine in fed-batch
cultures range from -4.86 to 0.24 with 55 — 83% of data lying within £0.2mM of the
simulation (Figure 5.19a — 5.24a). Most of the deviations in fed-batch cultures take
place near the end of the cell culture time when the glutamine levels increased beyond
the set-point values. Only in ‘0.1mM Fed-batch’ culture there is significant
underestimation in specific glutamine consumption in the early culture time leasing to
significant over-prediction of glutamine concentration during the first 50 h (Figure

5.19a).

196



Glucose

Glucose concentration is closely simulated in batch culture with R-square equals
to 0.98 (Figure 5.18a). In fed-batch cultures, most of the modified-R-square values are
in between -0.75 — 0.83 with 56 — 73% data lying within +1mM of the simulation
(Figure 5.20a — 5.24a). There are major deviations during about 30 — 100 h of the ‘1%
0.3mM Fed-batch’ and 2™ 0.3mM Fed-batch’ cultures where glucose concentration
was over-predicted by about 2mM but model predictions during subsequent cell culture
time are in agreement with experiment data (Figure 5.20a & 5.21a). In the ‘0.1mM Fed-
batch’ culture, significant over-prediction of glucose level occurred at 20 — 90 h, giving
a modified-R-square value of -0.64 with only 8% of data lying within £1mM of the
simulation (Figure 5.19a). Such over-predictions in the model might be caused by the
assumption that the byproduct inhibition constants for the specific consumption rate of
all nutrients are the same (Section 4.2.1.2: Equation M6). It may be necessary to assign
separate byproduct inhibition constants for glucose consumption. But a larger set of
model parameters with the same small number of measured variables would further

increase the amount of multiple solutions that could match the experiment data.

Ammonium

The R-square value for ammonium is 0.92 in batch culture (Figure 5.18b) and
0.42 — 0.65 in most fed-batch cultures (Figure 5.19b — 5.21b & 5.24b), except being -
0.48 and 0.07 in ‘0.5mM Fed-batch’ and ‘0.3,0.7mM Fed-batch’ cultures respectively
(Figure 5.22b & 5.23b). The initial accumulation rate of ammonium in all fed-batch
cultures appeared to be higher than the model predictions (Figure 5.19b — 5.24b). The
subsequent trend of ammonium time-profiles in ‘0.1mM Fed-batch’, 2" 0.3mM Fed-
batch’, and ‘0.3,0.35mM Fed-batch’ cultures are correctly followed by the model
(Figure 5.19b, 5.21b, 5.24b). But the ammonium concentration in ‘1" 0.3mM Fed-
batch’, ‘0.5mM Fed-batch’, and ‘0.3,0.7mM Fed-batch’ cultures showed a decreasing
trend after mid-culture time and then gradually increased again near the end of the cell

cultures (Figure 5.20b, 5.22b, 5.23b).

Only the initial under-prediction of ammonium accumulation in ‘0.1mM Fed-

batch’ culture (Figure 5.9b) could be explained by the deviation in the corresponding

197



initial glutamine concentration (Figure 5.19a). The simulations of glutamine
concentration in all other fed-batched cultures are mostly within +0.2mM of the
experimental measurement until the late exponential growth phase (Figure 5.19a —
5.24a). It is suspected that spontaneous degradation of glutamine in the medium before
it was used for the fed-batch cultures might have caused the actual initial ammonium
concentration to be higher than the measured values. The unexpected decrease of
ammonium concentration in some of the fed-batch cultures cannot be explained by any
known mechanism in the literature. In general, the model is able to capture the increase
in ammonium concentration in batch and fed-batch cultures, though there are certain
detailed dynamics of ammonium production revealed in some of the fed-batch cultures
(transient decrease in ammonium concentration) )that would require further knowledge

to understand the underlying mechanisms.

Lactate

Lactate concentration is well predicted in the batch culture with R-square value
equals to 0.93 (Figure 5.18b). The R-square values in most fed-batch cultures are 0.41 —
0.85 (Figure 5.20b & 5.22b — 5.24b) but are -0.54 and -21.0 in 2™ 0.3mM Fed-batch’
and ‘0.1mM Fed-batch’ cultures respectively (Figure 5.19b & 5.21b) which are caused
by deviations in glucose prediction in the corresponding exponential growth phase. The
reduction in lactate concentration in the glucose-controlled fed-batch cultures are well
simulated by the model in Figure 5.23b and 5.24b. The over-prediction of lactate
concentration in certain fed-batch cultures did not have significant effect on cell growth

or IFNYy productivity since lactate is much less toxic than ammonium to the cells.

Isoleucine

Isoleucine appeared to be over-predicted between 20 — 70 h in the batch culture,
giving an R-square value of 0.24 in batch (Figure 5.18b). The modified-R-square values
in most fed-batch cultures are 0.87 — 0.93 with 67 — 93% data lying within +0.2mM of
the simulation (Figure 5.19b & 5.22b — 5.24b). Although the modified-R-squares in ‘1
0.3mM Fed-batch’ and 2™ 0.3mM Fed-batch’ are -0.27 and -0.39 respectively, 88 —

100% data are lying within £0.2mM of the simulation which indicates most of the
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experiment data in those culture do not show much variation with respect to time

(Figure 5.20b ~ 5.21b).

Leucine

The model performance for leucine is similar to isoleucine that the R-square in
batch culture is 0.39 with over-prediction by 0.5 — 1 mM during mid-culture time
(Figure 5.18b). The modified-R-squares are 0.83 — 0.95 in most fed-batch cultures with
50 — 100% data lying within £0.2mM of the simulation (Figure 5.19b & 5.21b — 5.24b).
The modified-R-square of the ‘1* 0.3mM Fed-batch’ culture is 0.15 but 88% of data are
lying within 20.2mM of the simulation (Figure 5.20b).

Methionine

The R-square for methionine in batch culture is 0.56 (Figure 5.18b). The
modified-R-squares in most fed-batch cultures are 0.60 — 0.99 with 100% of data within
+0.2mM of the simulation (Figure 5.19b, 5.20b & 5.22b — 5.24b) except in 2" 0.3mM
Fed-batch’ culture where the methionine level was under-predicted by up to 0.4mM
after mid-culture time, causing the modified-R-square to drop to -0.51 in 69% data lying

within £0.2mM of the simulation (Figure 5.21b).

Valine

Valine has an R-square value of 0.42 in batch culture (Figure 5.18b). In most
fed-batch cultures, the modified-R-square values are -0.48 — 0.79 with most data (88 —
100%) lying within £0.2mM of the simulation (Figure 5.20b, 5.21b, 5.23b, 5.24b). But
m ‘0.ImM Fed-batch’ and ‘0.5mM Fed-batch’, valine concentrations are under-
predicted during most of the cell-culture time by up to ~0.3mM (Figure 5.19b, 5.22b). It

is not certain why such fluctuation in model performance occurs in the case of valine.
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Phenylalanine

The R-square value for phenylalanine in batch culture is 0.24 due to over-
prediction of up to 0.5mM during mid culture time (Figure 5.18c). The phenylalanine
levels in fed-batch cultures are closely predicted until the death phase where the
measured concentrations become higher than the simulation (Figure 5.19¢ — 5.24c). The
modified R-square values for all fed-batch cultures are -0.46 — 0.98 with most of the

data (88 — 100%) lying within £0.2mM of the simulation (Figure 5.19¢ — 5.24c).

Threonine

The R-square value for threonine in batch culture is 0.79 (Figure 5.18c). Only
three fed-batch cultures have high percentage of data lying close to the simulation: the
modified-R-squares are -1.56 —-0.74 in ‘1™ 0.3mM Fed-batch’, 2™ 0.3mM Fed-batch’,
and ‘0.3,0.35mM Fed-batch’ cultures with 73 — 79% data within £0.2mM of the
simulation (Figure 5.20c, 5.21c, 5.24c¢). In the ‘0.1mM Fed-batch’ culture, 55% of data
are within +0.2mM of the simulation and the modified-R-square value is -16.0 (Figure
5.19¢). In ‘0.5mM Fed-batch’ and ‘0.3,0.7mM Fed-batch’ cultures, the modified-R-
squares are -2.53 and -2.10 respectively with 50 — 62% data within £0.2mM of the
simulation (Figure 5.5.22¢ & 5.23c). Threonine concentrations are significantly under-
predicted during the death phase of all fed-batch cultures, suggesting its maintenance

consumption might be insignificant relative to other nutrients.

Lysine

The lysine concentration in batch culture was over-predicted in batch culture by
up to about 1mM, causing the R-square value to be -0.12 (Figure 5.18c). The lysine
concentration in the experimental measurement decreased rapidly during the first 50 h
and then fluctuated around 1mM until the end of cell culture time. It is doubtful that
lysine, being one of the essential amino acids for cell growth (Table 4.1), showed no
significant consumption during the exponential growth phase at 50 — 90 h. This also

occurs to the experimental data of isoleucine, valine, phenylalanine, and histidine.
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In fed-batch cultures, most of the modified-R-squares are -1.71 — 0.88 with 67 — 85% of
data lying within £0.2mM of the simulation (Figure 5.19¢ — 5.22¢ & 5.24c) except in
‘0.3,0.7mM Fed-batch’ culture where the modified-R-square is 0.51 with 29% of data
lying within £0.2mM of the simulation (Figure 5.23c).

Histidine

The R-square value for histidine in batch culture is 0.29 (Figure 5.18¢c). The
modified-R-squares for all fed-batch cultures are between -2.57 — 1.00 with 79 — 100%
of data lying within £0.2mM of the simulation (Figure 5.19¢ — 5.24c). There are under-
predictions in concentration of histidine in ‘0.1mM Fed-batch’, ‘1* 0.3mM Fed-batch’,
and ‘0.5mM Fed-batch’ cultures in the death phase by up to 1mM (Figure 5.19c, 5.20c,
5.22¢); and in ‘0.3,0.7mM Fed-batch’ culture in the death phase by up to 0.2mM
(Figure 5.23c). But in 2" 0.3mM Fed-batch’ the histidine level was well simulated
throughout the cell culture (Figure 5.21c) and there is no significant deviation in the
‘0.3,0.35mM Fed-batch’ culture (Figure 5.24c). Thus, it is inconclusive regarding the

maintenance consumption of glutamine.

Arginine

The wave-like trend of arginine in batch culture is not able to be captured by the
model, resulting in an R-square value of -0.18 (Figure 5.18c). Arginine is one of the
non-essential amino acids that can be produced from several other amino acids (Figure
4.10). The modified-R-square values in fed-batch cultures are all negative in the range
of -30.1 — -6.4 with only 17 — 69% of data lying within +0.2mM of the simulation
(Figure 5.19c — 5.24c). There are under-predictions in arginine concentration in the
death phase of fed-batch cultures by up to ~ImM, suggesting that the maintenance
consumption of arginine might be negligible. Arginine is also a growth-stimulating
amino acid (together with tyrosine and cysteine) that its absence would cause specific
growth rate to drop significantly (Table 4.1). Although there are deviations in the
predicted arginine levels in the death phase, the predicted values remain positive in all
batch and fed-batch cultures. Thus, the effect of such deviations on cell growth

prediction should be insignificant.
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Tyrosine

The R-square value of tyrosine in batch culture is 0.10 due to overprediction by
up to 0.5mM during mid-culture time (Figure 5.18c). Half of the fed-batch cultures are
well simulated with 75 — 100% of data lying within £0.2mM of the simulation and
modified-R-square values being 0.21 — 0.62 in ‘0.1mM Fed-batch’, ‘1** 0.3mM Fed-
batch’, and ‘2" 0.3mM Fed-batch’ cultures (Figure 5.19c — 5.21c¢). But in ‘0.5mM Fed-
batch’, ‘0.3,0.7mM Fed-batch’, and ‘0.3,0.35mM Fed-batch’ cultures, only 18 — 67% of
data are within £0.2mM of the simulation (Figure 5.22¢ — 5.24c¢). The modified-R-
square values of these three fed-batch cultures are 0.20 — 0.42 due to over-predictions

by up to ~0.5mM during mid-culture time or towards the end of the cell culture.

Cysteine

The R-square value for cysteine in batch culture is 0.47 (Figure 5.18d). In the
fed-batch cultures, 2 out of 6 data sets are incomplete (Figure 5.20d & 5.24d). Among
the complete fed-batch data, the ‘0.lmM Fed-batch’ and 2™ 0.3mM Fed-batch’ are
closely simulated with modified-R-squares being 0.89 and 0.91 respectively with 73%
and 100% of data lying within £0.2mM of the simulation (Figure 5.19d & 5.21d). The
modified-R-squares of ‘0.5mM Fed-batch’ and ‘0.3,0.7mM Fed-batch’ cultures are
lower (0.55 and 0.23 respectively) with only 36% - 62% of data lying within £0.2mM of
the simulation due to over-predictions by up to ~0.5mM (Figure 5.22d — 5.23d).
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Alanine

Alanine is one of the amino acids being actively produced by the CHO-IFNy
cells. Its R-square value in batch culture is 0.44 due to over-prediction during mid-
culture time by up to ~1.5mM and under-prediction near the end of the cell culture by
up to ~2mM (Figure 5.18d). The modified-R-square values for most fed-batch cultures
are in the high range of 0.7 — 0.93 though only 25 ~ 53% of data are within £0.2mM of
the simulation (Figure 5.19d — 5.22d). The modified-R-squares in ‘0.3,0.7mM Fed-
batch’ and ‘0.3,0.35mM Fed-batch’ cultures are in the low range of 0.43 and -0.92
respectively with only 21% and 17% data lying within +0.2mM of the simulation
(Figure 5.23d & 5.24d). However, the major variation in the patterns of alanine in

various fed-batch cultures is already captured by the model.

Aspartic acid

The aspartic acid concentration is very well simulated in all batch and fed-batch
cultures. The R-square value for batch culture is 0.99 and the modified-R-squares for
fed-batch cultures are 0.84 — 1.00 with 100% of data lying within +0.2mM of the
simulation (Figure 5.18d — 5.24d). The consumption pattern of aspartic acid appeared to

be very stable in batch and fed-batch conditions.

Glutamic acid

The R-square value for glutamic acid in batch culture is 0.44 due to the time-
profile being very close to zero throughout the cell culture (Figure 5.18d). The glutamic
acid levels in fed-batch cultures are well simulated with 93 — 100% of data lying within
+0.2mM of the simulation and modified-R-square values of 0.34 — 1.00 (Figure 5.19d —
5.24d). The pattern of glutamic acid consumption for CHO-IFNY cells is very similar to

aspartic acid.
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Asparagine

The R-square value for asparagine in batch culture is 0.65 due to over-prediction
during mid-culture time by up to ~0.5mM (Figure 5.18d). In the fed-batch cultures, 92 —
100% of data are within £0.2mM of the simulation and the modified-R-square values
are in between 0.52 — 1.00 (Figure 5.19d - 5.24d). There are under-predictions in

asparagine concentration in the death phase of most fed-batch culture by up to ~0.1mM.

Serine

Serine has an R-square value of -0.60 in batch culture due to over-prediction
during mid-culture time by up to ~ImM and under-prediction near the end of the cell
culture by up to ~1mM (Figure 5.18d). The levels of serine in ‘1** 0.3mM Fed-batch’
and 2" 0.3mM Fed-batch’ cultures are well simulated with 93% and 100% of data
respectively within £0.2mM of the simulation and modified-R-square values of 0.21
and 0.96 respectively (Figure 5.20d & 5.21d). But in ‘0.1mM Fed-batch’ culture, only
55% of data are within +0.2mM of the simulation and the modified-R-square is -29.9
due to under-prediction in the death phase by up to ~ImM (Figure 5.19d). In ‘0.5mM
Fed-batch’, ‘0.3,0.7mM Fed-batch’, and ‘0.3,0.35mM Fed-batch’, there is over-
prediction of serine concentration during mid-culture time by up to ~0.7mM, causing
the modified-R-square values to be -4.61 — 0.33 with 17 — 67% of data lying within
+0.2mM of the simulation (Figure 5.22d — 5.24d). The consumption pattern of serine
appeared to be highly dynamic. Because it is a non-essential amino acid, such deviation

has no significant effect on cell growth and IFNy productivity.

Glycine

Glycine, together with proline, are the other two non-essential amino acids being
significantly produced by the CHO-IFNy cells. The R-square for glycine in batch
culture is 0.49 (Figure 5.18e). The modified-R-squares in fed-batch culture are generally
low in the range of -4.65 — 0.63 with only 18 — 60% of data lying within £0.2mM of the
simulation (Figure 5.19¢ — 5.23e). The deviations are in the form of either under-

predictions during the death phase (‘0.1mM Fed-batch’, ‘0.5mM Fed-batch’, and
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‘0.3,0.7mM Fed-batch’) or over-predictions throughout most of the cell culture time
(‘1% 0.3mM Fed-batch’ and ‘2" 0.3mM Fed-batch’). But in “0.3,0.35mM Fed-batch’
culture, the glycine level was well simulated with modified-R-square being 0.89 and

50% of data lying within +0.2mM of the simulation (Figure 5.24e).
Proline

The model performance for proline is similar to glycine. The R-square for
proline in batch culture is -0.12 due to under-prediction during mid-culture by up to
0.2mM and over-prediction in the death phase by up to ~0.6mM (Figure 5.18e¢). In fed-
batch cultures, only 17 — 42% of data are within £0.2mM of the simulation and the
modified-R-square values are in the range of -3.78 — 0.52 (Figure 5.19e — 5.24e). The
proline concentrations are over-predicted during mid-culture time in ‘1% 0.3mM Fed-
batch’, 2" 0.3mM Fed-batch’, and ‘0.3,0.35mM Fed-batch’ cultures and under-
predicted in the death phase in ‘0.ImM Fed-batch’, ‘1™ 0.3mM Fed-batch’, 2™ 0.3mM
Fed-batch’, ‘0.5mM Fed-batch’, and ‘0.3,0.7mM Fed-batch’ cultures. The model is
unable to capture the variations in proline production and consumption. But as a non-
essential amino acid, this did not have significant effect on the major output variables of

the model.

Tryptophan (experiment data not available)

The model simulations of possible tryptophan time-profiles for batch and fed-
batch cultures are shown in Figure 5.18e — 5.24e. The initial tryptophan concentration is
an average value of the initial concentration of other amino acids. The time-profiles of
tryptophan are generally similar to other essential amino acids in the corresponding
batch/fed-batch cultures. The unavailability of tryptophan data led to an uncertainty
regarding its contribution to cell death during the death phase of the batch/fed-batch
cultures. Tryptophan is an essential amino acid (Table 4.1) so a lack of it would cause
growth rate to cease and may trigger cell death. In the simulations, tryptophan is still
available at the end of the batch CHO-IFNY culture but reaches a low but non-zero level
in all fed-batch cultures in the death phase. It is recommended to improve measurement

capability in future experiments so that all essential amino acids are monitored.



Hypothetical response variables (x,.;,6in & Xres.Gic)

There are two hypothetical response variables in the model: X6, (Figure
5.25(1)-(vii)) and X5 (Figure 5.26(i)-(vii)) which respond to the concentration of
glutamine and glucose respectively. The two variables do not directly represent any
signalling molecules in the mammalian cell but serve as ‘soft sensors’ for the
assumptions (that the cell culture ‘switches’ to a different metabolic pattern when the
concentration of the two dominating nutrients is low; and the ‘switch’ is step-like) made
in this CHO-IFNy model. The values of x,.; i are positive in most of the fed-batch
cultures but X, 1S only active in two fed-batch cultures when the glucose feedback
controller set-point was set at 0.7mM and 0.35mM respectively. The overall behaviour
of these ‘sensors’ is up to expectation as they are able to activate metabolic changes in

the mathematical model based on model assumptions.

Conclusions

In general, the model is able to simulate the main trends of key variables including INFy,
viable and total cell, glutamine, glucose, ammonium, essential amino acids, and growth-
stimulating amino acids in the batch and fed-batch CHO-IFNY cell cultures. Though
some of the fine details of dynamic responses may not be well followed in the
simulations, e.g. the unexpected decreasing trend in ammonium concentration in some
of the fed-batch cultures, and the lack of maintenance consumption of certain amino
acids during the death phase in fed-batch cultures etc., the major cell culture responses

in low-glutamine and/or low-glucose conditions are able to be captured by the model.
In the next chapter, dynamic model-based optimisation is applied to optimise the IFNy

productivity. The possible effects of parameter uncertainty are evaluated using

statistical analysis and the results are discussed.
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Figure 5.18a: Simulation of IFNYy, glutamine, glucose, and cell concentrations of CHO-IFNy
batch culture and comparison with corresponding experiment data.
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Figure 5.19b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine
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Figure 5.19d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and
serine concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.1mM and
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Figure 5.19e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNy fed-
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Figure 5.20b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3mM (1st
experiment) and comparison with corresponding experiment data. R? (or R%yq) values < 0.40
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of initial concentration of ammonium and amino acids respectively.)
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Figure 5.20c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3mM (1st
experiment) and comparison with corresponding experiment data. R4 values < 0.40 and ‘%
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Figure 5.20d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and
serine concentrations of CHO-IFNY fed-batch culture with glutamine set-point at 0.3mM (1st
experiment) and comparison with corresponding experiment data. or R%,q values < 0.40 and
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Figure 5.20e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNy fed-
batch culture with glutamine set-point at 0.3mM (1st experiment) and comparison with
corresponding experiment data. Tryptophan data was not available due to problems with HPLC
analysis (an initial concentration of 0.5mM was used which was an average among other amino
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Figure 5.21a: Simulation of IFNYy, glutamine, glucose, and cell concentrations of CHO-IFNy
fed-batch culture with glutamine set-point at 0.3mM (2nd experiment) and comparison with

corresponding experiment data. R (or R%04) values < 0.40 and ‘% in +0.2mM’ (or £1mM for
glucose) values < 50% are underlined.
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Figure 5.21b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3mM (2nd
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and ‘% in £0.2mM’ values < 50% are underlined. (Refer to text and Appendix 6 for discussion
of initial concentration of ammonium and amino acids respectively.)
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Figure 5.21c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine
concentrations of CHO-IFNY fed-batch culture with glutamine set-point at 0.3mM (2nd
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batch culture with glutamine set-point at 0.3mM (2nd experiment) and comparison with
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Figure 5.22d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and
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Figure 5.22e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNY fed-
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Figure 5.23a: Simulation of IFNy, glutamine, glucose, and cell concentrations of CHO-IFNy
fed-batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.7mM and
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Figure 5.23b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine
concentrations of CHO-IFNYy fed-batch culture with glutamine set-point at 0.3mM and
glucose set-point at 0.7mM and comparison with corresponding experiment data. R? (or R%od)
values < 0.40 and *% in 20.2mM’ values < 50% are underlined. (Refer to text and Appendix 6
for discussion of initial concentration of ammonium and amino acids respectively.)
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Figure 5.23c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine
concentrations of CHO-IFNY fed-batch culture with glutamine set-point at 0.3mM and
glucose set-point at 0.7mM and comparison with corresponding experiment data. R%y.q values
< 0.40 and ‘% in £0.2mM’ values < 50% are underlined. (Refer to Appendix 6 for discussion of
initial concentration of amino acids.)
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Figure 5.23d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and
serine concentrations of CHO-IFNY fed-batch culture with glutamine set-point at 0.3mM and
glucose set-point at 0.7mM and comparison with corresponding experiment data. R%,,oq values
< 0.40 and ‘% in 0.2mM’ values < 50% are underlined. (Refer to Appendix 6 for discussion of
initial concentration of amino acids.)
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Figure 5.23e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNY fed-
batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.7mM and
comparison with corresponding experiment data. Tryptophan data was not available due to
problems with HPLC analysis (an initial concentration of 0.5mM was used which was an
average among other amino acids in fed-batch cultures). R?,,4 values < 0.40 and ‘% in
+0.2mM’ values < 50% are underlined.
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Figure 5.24a: Simulation of IFNY, glutamine, glucose, and cell concentrations of CHO-IFNy.
fed-batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.35mM and
comparison with corresponding experiment data. R* (or R%,eq) values < 0.40 and ‘% in
10.2mM’ (or £1mM for glucose) values < 50% are underlined.
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Figure 5.24b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine
concentrations of CHO-IFNY fed-batch culture with glutamine set-point at 0.3mM and
glucose set-point at 0.35mM and comparison with corresponding experiment data. R? (or R%peq)
values < 0.40 and ‘% in 20.2mM’ (or £1mM for glucose) values < 50% are underlined. (Refer
to text and Appendix 6 for discussion of initial concentration of ammonium and amino acids

respectively.)
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Figure 5.24c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine
concentrations of CHO-IFNY fed-batch culture with glutamine set-point at 0.3mM and
glucose set-point at 0.35mM and comparison with corresponding experiment data. R4 values
< 0.40 and ‘% in £0.2mM’ values < 50% are underlined. (Refer to Appendix 6 for discussion of

initial concentration of amino acids.)
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Figure 5.24d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and
serine concentrations of CHO-IFNY fed-batch culture with glutamine set-point at 0.3mM and
glucose set-point at 0.35mM and comparison with corresponding experiment data. R4 values
< 0.40 and ‘% in £0.2mM’ values < 50% are underlined. (Refer to Appendix 6 for discussion of
initial concentration of amino acids.)
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Figure 5.24e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNY fed-
batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.35mM and
comparison with corresponding experiment data. Tryptophan data was not available due to
problems with HPL.C analysis (an initial concentration of 0.5mM was used which was an
average among other amino acids in fed-batch cultures). R4 values < 0.40 and ‘% in
+0.2mM’ values < 50% are underlined.
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Figure 5.25(i)-(iv): Time-profiles of the hypothetical response variable for glutamine
concentration (X,.,q,) for (i) Batch, (i) ‘0.1mM Fed-batch’, (iii) ‘1* 0.3mM Fed-batch’, and
(iv) 2" 0.3mM Fed-batch’ cell cultures. (Notations can be found in Section 5.3.2)
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Xres,Gin

0.5
-
E 0.4 /."'L il'“\ ,‘,u/
5 AN
b '{.’ Y
2 03 p 3
= A
2 ) /
z A, W
g 024/ N ,Jl‘
= ! LU
g |
E 01 y’“,r
-

0.0

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Time (h)

(vii) Fed-batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.35mM

Figure 5.25(v)-(vii): Time-profiles of the hypothetical response variable for glutamine
concentration (X, gr,) for (v) ‘0.5mM Fed-batch’, (vi) ‘0.3,0.7mM Fed-batch’, and
(vii) *0.3,0.35mM Fed-batch’ cell cultures. (Notations can be found in Section 5.3.2)
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Figure 5.26(i)-(iv): Time-profiles of the hypothetical response variable for glucose
concentration (X i) for (i) Batch, (ii) ‘0.1mM Fed-batch’, (iii) ‘1™ 0.3mM Fed-batch’, and
(iv) 2" 0.3mM Fed-batch’ cell cultures. (Notations can be found in Section 5.3.2)
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Chapter 6
— Optimisation of the Nonlinear

CHO Model with Secondary-binary

Variables

In Chapter 5, a strategy was presented for estimation of parameter values of the
complex CHO cell model that involved 192 parameters and 29 ordinary differential
equations. With the selected parameter values, the model could then be subjected to

model-based optimisation of the dynamic system.

6.1 Dynamic Optimisation Methods

The topic of dynamic optimisation encompasses all systems in which the
variable of interest is time dependent and the optimisation involves transient state. The
focus of this chapter is non-linear dynamic biological systems. Thus, only dynamic
optimisation methods applicable to non-linear models are discussed. In the following
sections, several popular dynamic optimisation approaches are introduced. The
incorporation of integer variables in dynamic optimisation is briefly presented as mixed-
integer dynamic optimisation (MIDO) was applied in Chapter 3 to optimise a simple
hybridoma cell culture model. All the dynamic optimisations carried out in this work
were done in gPROMS (Process Systems Enterprise Ltd., 2008). Thus, the dynamic
optimisation algorithms available in gPROMS are also discussed.
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6.1.1 Common Approaches for Continuous Dynamic Optimisation

There are numerous methods being developed in the literature to solve dynamic
optimisation problems. Generally these methods can be grouped into two main

categories: variational approach and variable discretisation.

The variational approach (also known as indirect method) involves finding a solution of
a classical necessary conditions for optimality obtained from the Pontryagin’s
maximum principle (Cervantes and Biegler 1999; Schlegel et al., 2005) which is quoted
below from Pontryagin et al. (1962) and Wolfram MathWorld (2008):

Let u(?), ty<t <1, be an admissible control such that the corresponding trajectory x(f)
which begins at the point xq at the time 7y passes, at some time #; , through a point on
the line II'. In order that u(s) and x(f) be optimal it is necessary that there exist a
nonzero continuous vector function Y(¢) = (y(7), wi(?), ... , ¥,(1)) corresponding to u(r)
and x(f), such that:
(1) For every 1, 19<t <1, the function H(\Y(1), x(r), u) of the variable u € U
attains its maximum at the point u = u(t):

H(y (1), x(t),u(r)) = max H (y (1), x(t),u)

(2) At the terminal time #; the relations yy(z;) < 0 and H(y(t;), x(t)), u(t;)) =0
are satisfied.

"Line II: In a vector space X that contains state variable x(¢), let Il be a line in X passing
through the point x = (0, x;) and parallel to the axis made up of all the points (£, x;) where &
is arbitrary.

The differential algebraic equations formulated from the optimality conditions can be
solved with different methods: single shooting, multiple shooting, collocation on finite
elements and finite differences etc. (Cervantes and Biegler 1999). But it can be difficult
to find a solution when there are inequality constraints and other complexities (Banga et
al., 1997; Cervantes and Biegler 1999; Biegler et al., 2002). The Single shooting
method requires input of initial conditions for forward numerical integration of the DAE
system to obtain time profiles of the state variables (Schlegel et al., 2005). The term
‘single-shooting’ arises from the single integration of the dynamic model over the entire
horizon. The discretisation of the control profiles is often piecewise polynomial
approximation (Schlegel et al., 2005). Multiple shooting and collocation methods are
also used to explicitly discretise the state variables in some of the discretisation

approaches (Cervantes and Biegler 1999) so they are discussed later on in this section.

The discretisation approach can be further classified into partial discretisation and full
discretisation. Sometimes the partial/full discretisation approaches are categorised
according to the solution strategy: single shooting, multiple shooting, and collocation

(Schlegel et al., 2005) instead of the treatment of the variables. Partial discretisation
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only discretise the control profiles. It is used in dynamic programming and sequential
approach (Cervantes and Biegler 1999). Dynamic programming is a mathematical
theory of multi-stage decision processes for solving problems exhibiting the properties
of overlapping subproblems (problems that can be broken down into smaller parts
which are reused multiple times) and optimal substructure (problems of which the
globally optimal solution can be constructed from locally optimal solutions of
subproblems) (Bellman, 1957; Wikipedia, 2008). Some literature would classify
dynamic programming separately from sequential approach due to their different
solution strategies (Barton et al., 1998). Iterative dynamic programming (IDP) is often
used for the solution of dynamic optimisation problems (Luus 1993a,b,c; Dadebo and
McAuley 1995; Cervantes and Biegler 1999). There is a high dimensionality problem
associated with the IDP algorithm though it is useful to cross-check the results of small
problems when the global optimum is unknown (Cervantes and Biegler 1999).
Stochastic search algorithm has also been used to find the optimal solution in non-linear

optimisation (Banga et al., 1997; Rodriguez-Acosta, et al., 1999).

Sequential approach is also known as control parameterisation method (Sargent and
Sullivan, 1978; Kraft, 1985). In sequential approach, only the control variables are
discretised. The control variables are represented by piecewise polynomials and
optimisation is done with respect to the polynomial coefficients (Biegler et al., 2002;
Barton et al., 1998). The differential algebraic equation (DAE) system is solved using a
DAE solver, e.g. single shooting method (Schlegel et al., 2005), in every iteration and
the optimal control parameters are found using a nonlinear programming (NLP) solver
(Cervantes and Biegler 1999; Vassiliadis et al., 1994a,b).

Full discretisation approach discretises both the state and control profiles which
generate a large scale nonlinear programming (NLP) problem. The resulting large-scale
NLP is often solved using successive quadratic programming (SQP) algorithm
(Cervantes and Biegler 1998; Cervantes and Biegler 1999; Biegler et al., 2002) which
uses Newton’s method for unconstrained minimisation. Full discretisation is used in
simultaneous approach. Both sequential approach and simultaneous approach are
sometimes called direct methods as the discretisations directly transform the infinite
dimensional dynamic optimisation problem into a finite dimensional nonlinear program
(NLP) (Barton et al., 1998). In the simultaneous approach, the DAE system is only
solved at the optimum point instead of every iteration in the sequential approach. There
are two types of SQP methods to solve the NLP in simultaneous approach: full space
SQP for problems with many degrees of freedom and reduced space SQP for problems
when the number of state variables is much larger than number of control variables
(Cervantes and Biegler 1999; Cervantes and Biegler 2000).
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There are mainly two methods to discretise the state variables explicitly in the
simultaneous approach: multiple shooting and collocation. Multiple shooting method is
similar to single shooting method except the time horizon in multiple shooting is
divided into subintervals and the DAE system is integrated separately in each
subinterval so the state variables are also guessed at several intermediate time points
(Cervantes and Biegler 1999; Biegler et al., 2002; Leineweber et al., 2003a,b). In
collocation method, spline functions (piecewise polynomial curves are used to
approximate the state and control variables (Neuman and Sen, 1973; Birkhoff and de
Boor, 1965; Ahlberg et al., 1967). The continuous time problem is converted into an
NLP by approximating the continuous profiles as a family of polynomials on finite
elements and the coefficients of these polynomials and element sizes

become decision variables in a large-scale NLP. (Tsang et al., 1975; Biegler 1984;
Cuthrell and Biegler 1987; Tieu et al., 1995; Barton et al., 1998; Cervantes and Biegler
1999).

The dynamic optimisation approaches described above are to provide a general idea of
some of the many different strategies that have been used to solve non-linear dynamic
optimisation problems. The aim of this work is to apply and adapt one of these existing
algorithms to optimise a biological cell culture. Thus, next section will focus on the

optimisation software used for this study and the available algorithms.

6.1.2 Dynamic Optimisation with/without Integer Variables in
gPROMS

Mixed-Integer Dynamic Optimisation

The presence of binary degrees of freedom in an otherwise continuous dynamic
optimisation process introduces more challenges to the optimisation strategy. A detailed
review of existing solution approaches for mixed-integer dynamic optimisation (MIDO)
can be found in Bansal et al. (2003). Below is a brief description of methods used to
solve MIDO problems in the literature including the one used in gPROMS.

The binary variables can be approximated by variable space partitioning or functions
which remove the discrete property of the optimisation problem (Samsatli et al., 1998).
For example, the binary variables can be treated as switching parameters which take
discrete values in different variable regions defined by inequality constraints (Bhatia
and Biegler, 1997). Alternatively, smooth approximation functions can be applied to
represent the binary variable, y, with a function in terms of continuous variable x.

E.g. in the following function,
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y= %[tanh((ﬂ -x)+1]

the binary variable is defined to be 1 for any positive values of x except when x = 0. But
the switching parameter method could result in large model size; and the smooth
approximation method does not always lead to integral values of the binary variable
(Samsatli et al., 1998; Bansal et al., 2003).

A Branch and Bound framework was proposed by Androulakis (2000) which defines
families of solution algorithms that operate within a search tree and perform an
enumeration of the alternatives without examining all the 0/1 combinations of the
binary variables. This technique typically involves solving a large number of dynamic
optimisation problems, making its application limited to small MIDO problems (Bansal
et al., 2003).

The MIDO problem can also be handled using generalised Benders decomposition
(GBD) where it is decomposed into a series of primal and master problems that the
master problems decide new binary configurations for subsequent primal problems
where the binary variables are fixed. The dynamic optimisation in the primal problems
can be solved with reduced space approach to give an upper bound of the solution while
the lower bound is obtained from the master problems (Mohideen et al., 1997a; Sharif et
al.,, 1998; Schweiger and Floudas, 1998; Bansal et al., 2002). Bansal et al. (2003)
developed a new algorithm based on GBD and outer approximation (OA)/ equality
relaxation (EA) for solving general MIDO problem and can also handle time dependent
binary variables. The original binary variables are relaxed but are still forced to take
integral values by an addition of new binary variables. It shares a limitation of most
GBD methods that when the optimisation problem is non-convex or highly non-linear,
the algorithm may exclude potentially feasible choices of binary variables from the
solution set (Bansal et al., 2003). Many other numerical solution approaches for MIDO
in the literature are based on decomposition principles, but differ in the treatment of the
differential algebraic equation system (Bansal et al., 2003; Barton 1998; Floudas, 1995;
Chachuat et al., 2005). The method by Bansal et al. (2003) is the basis for the mixed-
integer non-linear programming (MINLP) solver in gPROMS and is further discussed in

next section.

gPROMS Optimisation Algorithms

The dynamic optimisation was carried out in gPROMS version 3.0.3 (Process Systems
Enterprise Ltd., 2008). 