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Abstract 

Mammalian cell cultures are valuable for synthesis of therapeutic proteins and 

antibodies. They are commonly cultivated in bioindustry in form of large-scale 

suspension fed-batch cultures. The structure and regulatory responses of mammalian 

cells are complex, making it challenging to model them for practical process 

optimisation. The adjustable degrees of freedom in the cell cultures can be continuous 

variables as well as binary-type variables. The binary-type variables may be irreversible 

in cases such as cell-cycle arrest. The main aim of this study was to develop a general 

model for mammalian cell cultures using extracellular variables and capturing major 

changes in cellular responses between batch and fed-batch cultures. The model 

development started with a simple model for a hybridoma cell culture using first-

principle equations. The growth kinetics was only linked to glucose and glutamine and 

the cell population was divided into three cell-cycle phases to study the phenomenon of 

cell-cycle arrest. But there were certain deficiencies in predicting growth rates in the 

death phase in fed-batch cultures although it was successful to simultaneously optimise 

a combination of continuous and binary-irreversible degrees of freedom. Thus, the 

growth kinetics was further related to amino acids concentration and cellular responses 

to high versus low concentration of glutamine and glucose based on a Chinese hamster 

ovary cell-line where amino acids data were available. The model contained 192 

parameters with 26 measured cell culture variables. Most of the sensitive parameters 

were able to be identified using the Sobol' method of Global Sensitivity Analysis. The 

model could capture the main trends of key variables and be used to search for the 

optimal working range of the controllable variables. But uncertainties in the sensitive 

model parameters caused non-negligible variations in the model-based optimisation 

results. It is recommended to couple such off-line optimisation with on-line 

measurements of a few major variables to tackle the real-time uncertain nature of the 

complex cell culture system. 
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Chapter 1 

— Introduction and Objectives 

1.1 Mammalian Cell Cultures in Bioindustry 

Mammalian cell cultures take a wide range of forms depending on the cell types 

and culturing methods. Some examples include adhesive tissue cells grown on 2-

dimensional plates or 3-dimensional scaffolds, cells encased in gel-like beads grown in 

nutrient-rich solution, and suspension individual cells grown in well-mixed stirred-tank 

reactors. The last method is commonly used in the bio-pharmaceutical industry to 

produce antibodies and recombinant proteins from mammalian cell hosts on a large 

scale. 

A typical series of processes involved in the development of a new biological 

drug is shown in Figure 0.1. Cells which have been made to be capable of producing 

the product of interest (procedure dependent on products) are screened to select high 

producers. Then the nutrient composition, i.e. media, of the cell culture is optimised to 

enhance productivity by testing a wide selection of combinations. After that, the cell 

culture is grown in larger bioreactors and further degrees of freedom, e.g. nutrient 

supplementation time-profile, reactor operation mode (batch/fed-batch/continuous/ 

perfusion) etc., are decided. Finally, the bioreaction is scaled-up to produce the drug in 

large quantity. 



Media Lob.scalc f i M n i y 
CeU-liiies Cell. bioreaction J>roductiou 

de\-elopment selection 

Fig.1.1: Major steps involved in production of biopharmaceuticals using mammalian cell host. 

The decisions made for most of the degrees of freedom are often fully dependent 

on experiment results. For mammalian cell cultures which are expensive and grow 

much slower than bacteria, heavy experimentation can significantly increase cost and 

time to market. The overall market of recombinant DNA therapeutics, for example, is 

projected to grow from US$41.7 billion in 2006 to US$52.2 billion in 2010 (Pavlou and 

Reichert, 2004). With such a valuable market, there is much benefit in terms of profit 

and efficiency if some of the selection steps can be done more rapidly at a lower cost. 

The lab-scale bioreaction stage is a suitable candidate for computational simulations 

since the well-agitated cell culture can be considered homogeneous and no major 

changes in media composition is involved at this process development stage. However, 

simulations are rarely used to model the biological dynamics of cell cultures in 

bioindustry. The main reason is a lack of suitable mathematical models, which is 

discussed in the next section. 

1.2 Current Limitations in Cell Culture Simulations 

Many mathematical models have been developed to describe a single biological 

cell or an entire cell culture. The majority of the models are for bacterial systems due to 

their simple nutritional demand, ease of growth, and less complex cellular structures. 

Among those mammalian cell culture models, assumptions of sufficient availability of 

essential amino acids are often made for model simplification purposes, so the models 

cannot accurately predict cell culture dynamics when amino acids, which are excluded 

in most of the models, are exhausted in the media. However, when a mammalian cell 

model is trying to represent the biological complexity in great detail but the number of 

model parameters far exceeds the number of practically measurable variables, there will 



be many possible sets of parameter values that can satisfy the experimental results so 

that there is difficulty in estimating the true values of the parameters. Thus, there is 

often a trade-off between the extent of biological detail in a model and the accuracy of 

the estimated values of the model parameters. 

Although modelling of biological systems has a long history, the development of 

biological models applicable to real industrial processes is still in its infancy. Current 

computational involvements in biological processes are in the areas of physical or 

chemical property analysis, especially during scale-up of bioreactors. There is 

significant potential for simulations of the biological properties of cell cultures to assist 

understanding the cellular system and even to optimise it more efficiently. It is hoped 

that the work from this thesis can provide a small contribution towards achieving such a 

goal. 



1.3 Thesis Aim and Objectives 

The aim of this study is to develop an in silico modeUing platform to simulate 

and optimise a lab-scale mammalian cell suspension culture producing biological drug. 

In particular, the fact that some degrees of freedom encountered in mammalian cell 

cultures are not continuous but are binary-irreversible or switch-like has been taken into 

account during development of model structures and optimisation strategies. The 

detailed objectives are as follows: 

(1) To develop a simple first-principle dynamic mammalian (hybridoma cells) 

suspension culture model which includes cell cycle distribution, and a strategy to 

optimise two common degrees of freedom: nutrient supplementation time-profile and 

cell cycle arresting time where the former is continuous and the latter is binary-

irreversible. 

(2) To construct a tractable batch and fed-batch mammalian (CHO cells) suspension 

culture model which includes amino acids essential for cell growth, which has so far 

been neglected in most mammalian culture models due to the difficulty of amino acids 

measurement and parameter values estimation. Secondary switch-like variables will be 

introduced to model an 'alternation' in cell culture behaviours observed between batch 

and fed-batch cultures. 

(3) To develop a strategy for systematic estimation of model parameter values of a 

complex non-linear biological model (CHO cells) with large degrees of freedom for 

parameter values. 

(4) To computationally optimise the supplementation time-profiles of two dominating 

nutrients, glutamine and glucose, which affect the secondary switch-like variables in the 

CHO cell suspension culture model developed in order to maximise drug yield. The 

significance of parameter values uncertainty will also be analysed. 



1.4 Chapters Outline 

This thesis is divided into seven chapters. Chapter 2 presents certain 

fundamental biological features related to this study and provides a literature review of 

the practical concerns in biological drug production and existing mathematical cell 

culture models. Chapter 3 develops a simple first-principle model for hybridoma cells 

suspension culture producing monoclonal antibodies (MAbs) and applies a mixed-

integer dynamic optimisation (MIDO) algorithm to simultaneously optimise the nutrient 

supplementation time-profile and cell cycle arresting time of fed-batch cultures. 

Chapter 4 attempts to expand the first-principle model to include amino acids which 

significantly affect growth of mammalian cells. Chinese Hamster Ovary (CHO) cells 

producing interferon-gamma (IFNy) were used to provide experiment data. The CHO 

cell culture exhibited an alteration in growth pattern when cultured under controlled low 

concentrations of glutamine and glucose. This behaviour was simulated using two 

secondary switch-like variables. In Chapter 5, the large number of model parameters of 

the CHO cells model developed at the end Chapter 4 was estimated using a combination 

of parameter isolation, parameter estimation using gPROMS (Process Systems 

Enterprise Ltd., 2008), and Global Sensitivity Analysis (GSA). Optimisation of the 

supplementation time-profiles of glutamine and glucose to maximise IFNy yield using 

this model is presented in Chapter 6 with analysis of the possible effects of uncertainty 

in sensitive parameters. Finally, overall conclusions and possible future work are 

discussed in Chapter 7. 



Chapter 2 

Background & Literature Review 

2.1 Background 

This section aims to provide an introduction for mammalian cells that is 

important for the understanding of some biological concepts in subsequent chapters. 

The cells involved in this work are only individual suspension cells that are non-

adherent to any surface or other cells, thus they do not form clusters. The internal 

structure of mammalian cells is highly organised and the nutritional requirement is more 

complex than other simpler organisms such as bacteria. In the following paragraphs, the 

basic cell structure, growth requirements, cell division process, cell death mechanism, 

and major types of drug products synthesised by mammalian cells are discussed. 

2.1.1 Structure of the Mammalian Cell 

Microfilaments s 

Peroxisome V 

iUitochondrion 

Centrioles 

IVIicrotubuies 

Lysosome 

Fiageilum 

Nuclear 
envelope 

Chromatin 
Nucleolus 

Ribosomes 

Plasma 
membrane 

- N U C L E U S 

Rough 
endoplasmic 
reticulum 

Golgi appara tus Smooth endoplasmic 
reticulum 

Figure 2.1: A eukaryotic cell showing major typical structures. (Source: Bergin 2008) 



Mammalian cells are a type of eukaryotic cells. Eukaryotic cells possess a 

membrane enclosed nucleus (Bailey and Ollis, 1986). Mammalian cells are one of the 

most complex forms of eukaryotic cells with highly specialised internal compartments. 

A general diagram of eukaryotic cell is shown in Figure 2.1. The only main difference 

between mammalian cells and Figure 2.1 is the absence of flagellum in the former 

which enables movement of single-cell organisms. The major internal elements in a 

mammalian cell include the nucleus, mitochondria, peroxisomes, centrioles, lysosomes, 

endoplasmic reticulum (ER), Golgi apparatus, ribosomes, microfilaments and 

microtubules, and the plasma membrane. Below is a brief description of each element 

according to Campbell and Smith (2000) and Alberts et al. (2002): 

Nucleus: Contains DNA organized into separate chromosomes which consist of 

chromatin (DNA-protein complex). The nuclear envelope has nuclear pores for transfer 

of substances into and out of the nucleus. The nucleolus is the site for processing 

ribosomal ribonucleic acids (RNAs) and their assembly into ribosomes. 

Mitochondrion: Contains a small amount of mitochondrial DNA. The mitochondrion is 

responsible for production of adenosine triphosphate (ATP). It consists of an outer and 

inner membrane. The inner membrane is highly folded to increase surface area for 

exchange of substances. The mitochondrion is also involved in catabolism of fatty acids 

and controlling calcium level in the cell. 

Peroxisome: Contains oxidative enzymes to eliminate hydrogen peroxide produced by 

fatty acid oxidation and free radicals or to oxidise other toxic molecules. 

Centrioles: Responsible for organisation of cellular elements including the nucleus 

during cell duplication. 

Lysosome: Contains proteolytic enzymes for controlled digestion of macromolecules, 

e.g. obsolete cellular parts and macromolecules taken up from extracellular fluid. 

Endoplasmic Reticulum (ER): A network of membranes which can be further 

classified into rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum 

(SER). The RER bears ribosomes on the surface for protein synthesis. The SER is 

responsible for synthesis of complex lipids and control of calcium ion concentration. 

Golgi apparatus: Responsible for further addition of carbohydrates to proteins after 

they have been synthesised in the ER and subsequent transport of proteins to their final 

destinations. 
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Ribosome: A large and complex structure containing proteins, RNA, and magnesium 

ions. It is responsible for synthesis of polypeptides. 

Microfilaments and Microtubules: Part of a lattice structure providing structural 

support to the cell. 

Plasma Membrane: Made up of double-layer lipids. It contains various surface 

receptors and is responsible for selective transport of substances across the cell. 

Within the complex cellular structure, a large number of reactions take place to 

convert nutrients into energy, proteins, enzymes, cell mass etc. and break down or 

excrete unwanted molecules in order to maintain survival of the cells. In mathematical 

modelling of mammalian cells, simplification is often necessary to overcome the 

bottleneck of incomplete biological knowledge and the impossibility to measure all 

molecules within the system unless only a small part of the cell is considered. 

2.1.2 Nutritional Requirement of Mammalian Cells 

A typical medium for cultivation of mammalian cells mainly contains glucose, 

glutamine, other amino acids, salts, and vitamins (Alberts et al., 2002). Penicillin-

streptomycin and phenol red are also added to prevent bacterial contamination and 

indicate pH respectively. Serum is often used to stimulate cell growth but there is a 

gradual preference to exclude it from the medium because it is chcmically undefined, its 

quality varies depending on its source, and it could be a source of virus contamination 

(Keay, 1978; Spier 1997; Jayme and Smith, 2000; Birch and Racher, 2006). 

Mammalian cells have a narrow pH tolerance around about pH7 beyond which the cell 

viability would be significantly affected. For example, a hybridoma cell-line studied by 

Miller et al. (1988) had an optimum pH of 7.1 - 7.4. The standard cultivation 

temperature and air composition is 37°'C and 5% COi (Alberts et al., 2002). Many 

modelling studies have focused on glucose, glutamine, and sometimes other amino 

acids because they are the major sources of energy and cell mass (Bree and Dhurjati, 

1988; Batt and Kompala, 1989; Dalili et al., 1990; Duval et al., 1991; Lourenco da Silva 

et al., 1996; Jang and Barford, 2000a,b; Simon and Karim, 2002; Provost and Bastin, 

2004). Other cell culture variables have also been studied: temperature (Laszio and Li, 

1985; Hahn and Shiu, 1985; Abravaya et al., 1991; Fox et al., 2004), pH (Osman et al., 



2001), osmotic stress (Oh et al., 1993; Wu et al., 2004), and shear stress (Frangos et al. 

1988; Kretzmer and Schugerl, 1991). 

2.1.3 Cell-Cycle 

G„ 
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S 

Figure 2.2: Illustration of the major phases in mammahan cell-cycle. 

The growth of mammalian cells can be divided into several stages: Gi, S, G?, 

and M (Alberts et al., 2002). In the Gi phase, enzymes for DNA replication are being 

synthesised. When the cell is ready to initiate DNA replication, it enters the S phase 

where the chromosomes are duplicated. In the G? phase, the cell is preparing for cell 

division and necessary proteins including microtubules are being synthesised. The cell 

is separated into two daughter cells in the M (mitosis) phase, after which they either 

enter Gi phase or a specialised resting state known as Go. Cells in the Go phase do not 

participate in cell growth. The cycle contains two restriction points: one at the end of the 

Gi phase which decides whether to replicate its DNA, and another one at the end of the 

Gt phase which decides whether to initiate mitosis (Pardee, 1974; Campbell and Smith, 

2000). An illustration of cell-cycle for mammalian cells is shown in Figure 2.2. Further 

details about the relationship between cell-cycle and productivity can be found in 

Chapter 3. 



2.1.4 Apoptosis 

Cell death in mammalian cell cultures is caused predominantly by a mechanism 

known as apoptosis or programmed cell death (Moore et al., 1995; Goswami et al., 

1999). The definition of apoptosis aims to exclude cell death that results from external 

agents such as toxins which cause cells to swell and burst by a process called necrosis 

(Campbell and Smith, 2000). Apoptosis is controlled by a set of pathways shown in 

Figure 2.3 (Rowe and Chuang, 2004). There are three pathways that regulate cell fate: 

extrinsic, intrinsic, and cell survival pathways. 
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F i g u r e 2 . 3 : A n o v e r v i e w of c e l l u l a r p a t h w a y s r e g u l a t i n g a p o p t o s i s ( R o w e a n d C h u a n g , 2 0 0 4 ) . 

The extrinsic pathway is induced when death receptors on the cell surface, e.g. 

Fas, are triggered. Binding of a ligand (FasL) to Fas results in binding of the cytosolic 

death domain of the receptor to an adaptor protein {FADD) containing a death domain 

which subsequently activates the effector caspases for apoptosis. The intrinsic pathway 
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senses the integrity of the mitochondria, which is maintained by the Bcl-2 family 

containing pro-apoptotic and anti-apoptotic members. The ratio of the pro- and anti-

apoptotic Bcl-2 family members is regulated by molecules including p53. If the ratio of 

the Bcl-2 family members tips towards the pro-apoptotic side, the mitochondria's 

membrane integrity decreases and the pro-apoptotic factors, such as cytochrome c, are 

released which eventually initiate apoptosis. The cell-survival pathway starts with the 

activation of cell-surface receptors such as TrkB by growth factors. The anti-apoptotic 

pathways including PI3K/Akt and MEK/ERK are then activated to suppress the intrinsic 

pathway (Rowe and Chuang, 2004). Such detailed understanding of the apoptotic 

pathways, however, does not enable the apoptotic mechanism to be modelled easily 

from the fundamental level because the candidates involved in the apoptotic pathways 

are highly connected to other genetic/metabolic networks in the cell. As a result, models 

that aim to describe cell death behaviour of mammalian cells without involving the 

highly interconnected cellular signalling networks would make use of extracellular 

variables such as nutrient and by-product concentrations. Although such methods 

sacrifice certain details at the molecular level, it is often more applicable for analysis 

and optimisation of industrial bioreactors. 

2.1.5 Antibodies & Recombinant Proteins 

Antibodies are produced by lymphocytes or spleen cells upon detection of 

antigens. These cells normally have a limited life-span in cell culture (Alberts et al., 

2002). Kohler and Mil stein (1975) derived stable antibody-producing cell-lines known 

as hybridomas by fusion of a mouse myeloma (immortalised cancerous lymphocyte) 

and mouse spleen cells from an immunised donor. The antibodies produced by a 

hybridoma cell-line are identical because they are clones of a single parent cell. Thus, 

the product is also called monoclonal antibodies (MAb). The method of producing 

hybridoma cell-lines has been widely used for synthesis of antibodies (James and Bell, 

1987). Alternatively, antibodies can also be produced using recombinant technology 

described below (Birch and Racher, 2006). 

Proteins with therapeutic applications can be expressed in mammalian cells by 

transfecting the cells with vectors, such as non-pathogenic viruses and lipid reagents 

(Makrides, 2003; Masson et al., 2003), that contain the DNA sequence of the 
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therapeutic proteins (Andersen and Krummen, 2002; Wurm, 2004). An example from 

this study is interferon-y (IFNy) which is normally produced by T-cells or lymphocytes 

in humans. Its gene sequence is inserted (or 'recombined') into the genes of Chinese 

Hamster Ovary (CHO) cells, one of the most widely used mammalian cell-lines for 

therapeutic protein production (Werner et al., 1992; Chu and Robinson, 2001; 

Kaufmann, H. and Fussenegger, 2003), and this gives rise to the name 'recombinant 

protein'. Recombinant proteins are produced in mammalian cells in the same way as 

other cellular proteins except that they are not needed for normal functions of the cells 

and would be secreted to the extra-cellular medium (Campbell and Smith, 2000). 

Both monoclonal antibodies and recombinant therapeutic proteins are valuable 

drug products. Monoclonal antibodies have a global market that is predicted to increase 

from US$5.4 billion in 2002 to US$16.7 billion in 2008 (Reichert and Pavlou, 2004; 

Pavlou and Belsey, 2005). Similarly, recombinant DNA therapeutics has a projected 

increase in market value from US$41.7 billion in 2006 to US$52.2 billion in 2010 

(Pavlou and Reichert, 2004). Thus, there is a high incentive among the bioindustry and 

academic research groups to improve production efficiency and reduce costs. In this 

research, it was intended to enhance the understanding of cell culture dynamics and 

efficiency of selection of nutrient supplementation time-profiles and/or cell-cycle arrest 

time using mathematical modelling. A review of cell culture processes and modelling 

approaches is presented in next chapter followed by discussion of model developments 

for a hybridoma cell-line producing monoclonal antibodies and a Chinese Hamster 

Ovary (CHO) cell-line producing IFNy. 
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2.2 Literature Review 

2.2.1 Cell Hosts & Bioreactors for Synthesis of Biopharmaceuticals 

Possible Hosts for Biopharmaceuticals 

Biological drugs can be produced by mammalian cell cultures as well as bacteria, 

filamentous fungi, yeast, insect cells, transgenic plants, and transgenic animals (Verma 

et al., 1998; Makrides and Prentice, 2003). The major advantages of mammalian cell 

cultures over most other hosts are proper folding of proteins, high quality glycosylation 

(an enzymatic process linking saccharides to proteins/lipids to give characteristic 

biochemical and biophysical properties/functions), and extensive post-translational 

modifications (Electricwala, 1992; Verma et al., 1998; Makrides and Prentice, 2003; 

Stoger et al., 2003; Wurm, 2004). 

Bacteria and filamentous fungi grow much faster with lower costs than 

mammalian cells but they lack certain glycosylation or post-translational machinery and 

the protein folding are often incorrect (Marino, 1989; Verma et al., 1998; Joosten et al., 

2003; Ma et al., 2003). Yeast has a more advanced protein folding mechanism than 

bacteria and, apart from sharing the low cost attractiveness as bacteria, is capable of 

glycosylation of proteins. But its glycosylation is not the same as those found in 

mammalian cells (Kukuruzinska et al., 1987). Insect cells are able to produce 

functionally active drug products (zu Putlitz et al., 1990; Maeda, 1989). However, insect 

cells are incapable of carrying out complex forms of glycosylation as in mammalian 

cells (Kuroda et al., 1986; Marino, 1989; Verma et al., 1998; Ma et al., 2003). 

Transgenic plants have advantages in terms of low production costs, high scale-up 

capacity, good product quality, and low risk of virus contamination (Ma et al., 2003; 

Stoger et al., 2003). But the glycosylation structures provided by transgenic plants have 

minor differences when compared with mammalian cells and this could potentially 

change the activity of the product (Ma et al., 2003). Transgenic animals are the most 

similar hosts to mammalian cell cultures. The animals involved are mainly 

mouse/livestock and there is a longer production timescale than mammalian cell 

cultures due to the slow animal growth (Echelard and Meade, 2003; Ma et al., 2003). 

But the use of transgenic animals is still a relatively new technology. Until now, 
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mammalian cell cultures remain a popular and well established method in the 

bioindustry (Chu and Robinson, 2001; Joosten et al., 2003; Wurm, 2004). 

Fed-batch Processes versus Batch & Perfusion 

There are many possible methods to run suspension cell cultures. Some basic 

modes include batch, fed-batch, continuous, and perfusion stirred tank bioreactors. 

Other more complex bioreactors such as dialysis membrane, hollow fibre, 

electrophoretic bioreactor etc. had also been used for cell culture studies (Portner et al., 

1994; Chang et al., 1995; Mancuso et al., 1998; Schwabe et al., 1999; Frahm et al., 

2003). Perfusion and hollow fibre bioreactors are able to achieve higher cell yield and 

product concentration than batch/ fed-batch cultures (Stoll et al., 1995; Yang et al., 2000; 

Kretzmer, 2002). Continuous culture is similar to perfusion except the cells in the outlet 

stream are not retained in the continuous mode. Thus, continuous culture is not popular 

for mass production of therapeutic proteins/ antibodies due to significant cell loss. 

Perfusion is sometimes referred to as a continuous process based on the continuous inlet 

and outlet streams which should not be confused with the continuous operation mode 

discussed above. Dialysis membrane and electrophoretic bioreactor allow selective 

removal of metabolic byproducts which are toxic to cell cultures so the productive time 

can be extended (Chang et al., 1995; Frahm et al., 2003). 

Despite the fact that batch and fed-batch cell cultures yield a relatively lower 

cell density and product concentration, there are several reasons making them more 

favourable in therapeutics production. Contamination, process consistency, length of 

process validation, and reactor down time are key factors affecting the quality of 

product, production costs, and time to market (Werner et al., 1992; Xie and Wang, 

1997). The most frequent sources of contamination are the media supply and sampling 

system (Werner et al., 1992). Thus, the contamination risk is relatively lowest in batch 

cultures and, due to simplicity in the process control, there is high consistency in the 

process output and flexibility for implementation in multipurpose facilities (Xie and 

Wang, 1997; Kretzmer, 2002). Fed-batch cultures share most of the advantages of batch 

cultures plus higher cell and product yields because of nutrient supplementation so they 

are more attractive when compared to batch cultures (Bibila and Robinson 1995). As all 

bioprocesses must have their identity, purity, safety, genetic stability, and productivity 
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characterized and validated within and beyond the fixed production time scale, 

perfusion bioreactors are more expensive and time consuming to be licensed for 

production (Werner et al., 1992; Kretzmer, 2002). In terms of reactor down time for 

maintenance and decontamination, perfusion system and other more complex 

bioreactors require much longer period than batch/ fed-batch bioreactors. Together with 

the concern that transformed cell-lines might show genetic instability in long-term 

cultures due to possible variations in their chromosomes (Werner et al., 1992), batch 

and fed-batch processes are the most widely used modes in the bioindustry (Bibila and 

Robinson 1995; Xie and Wang, 1997; Birch and Racher, 2006; Whitford 2006). As fed-

batch cultures enjoy higher yields than batch cultures, the former is an important and 

interesting area for process optimisation studies. 

2.2.2 Modelling Mammalian, Yeast, and Microbial Cell Cultures 

2.2.2.1 Modelling Bacterial and Yeast Cells 

Due to the relative simplicity of the structure of bacterial cells among all other 

living organisms, bacteria were those early candidates to be modelled mathematically. 

Models that focused on the genetic regulations of bacteria commonly assumed the rate-

limiting step was at the transcriptional level where activated genes were copied into 

mRNAs (McAdams and Arkin, 1998) although there were suggestions that the 

translational level, where the mRNA 'templates' were used to synthesize proteins, or 

mRNA/ protein degradation had a stronger regulation over the activity of the gene 

products (Neidhardt et al., 1990; Moat et al., 2002). In order to build a genetic model, it 

is necessary to know much detail about the connectivity in the gene network. The 

activities of gene had been modelled using Boolean (on/off) algebra. For example, 

Kauffman (1974) studied the lactose (lac) operator of Escherichia coli (E. coli) and 

examined the response of the operator to saturating/minimum concentrations of its 

controlling molecular variables. Since a repressor is bound to the operator only when 

another substance, allolactose, is absent, '0' was used for the unbounded state and ' 1' 

for the bounded state of the operator. 

Lee and Bailey (1984a, 1984b) described quantitatively the regulation of 

expression of the lac operon and lac promoter-operator function in E. coli. The model 
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was genetically structured such that a nucleotide sequence change affecting 

transcription initiation at the lac promoter-operator would influence one or few 

corresponding model parameters. Such model incorporated a translational efficiency 

factor to account for translational control. A different way of genetic modelling was 

described by Collado-Vides (1989) that a 'language' known as transformational-

grammar approach was used to describe the genome organization and regulation of gene 

expression. But this approach did not gain as much popularity as other mathematical 

methods because it was not directly usable for prediction purposes. 

Genetic regulation had also been modelled as a circuit. The most typical 

example is bacterial phage-X which is a virus that infects bacteria which was modelled 

using a combination of differential algebraic equations and on/off logic gates (Reinitz 

and Vaisnys, 1990; Chung and Stephanopoulos, 1996; McAdams and Shapiro, 1995). 

Genetic circuit can be combined with Boolean logic to form a Boolean threshold logic 

paradigm (Thieffry and Thomas, 1995; Thomas, 1973; Thomas, 1991; Thomas et al., 

1995; Prokudina et al., 1991; Tchuraev, 1991). The modelling equation has a general 

form as: 

% J - (2. ] ) 

where x, is the concentration of the /-th protein species, k is the rate of protein 

production when the gene type i is 'on', and kji is the degradation rate constant for 

protein type i. F, represent step-functions, assumed to equal '0' or '1' depending on the 

concentration of Xj relative to threshold values determined by the kinetics of the 

promoter sites. More details were discussed by McAdams and Arkin (1998). 

With the accumulation of knowledge about the interactions between nutrient 

concentrations and genetic expressions for bacteria, genetic models of bacterial 

metabolisms could be formulated with greater details. Kremling and coworkers 

(Kremling et al., 2000; Kremling and Gilles, 2001a; Kremling et al., 2001b) proposed a 

decomposition of complex metabolic networks into manageable smaller functional units 

based on three criteria: (1) common physiological task; (2) common genetic units; (3) 

and common signal transduction network. In each functional unit, metabolic pathways 

were divided into a metabolic and a genetic regulatory sub-network. The regulatory 

network described the local signal transduction in the unit and the biosynthesis of the 

specific enzymes, while the metabolic network described the metabolic flux affected by 
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enzyme catalyzed reactions. Such approach has been applied to E. colics glucose and 

lactose metabolism (Kremling et al., 2001b), sucrose and glycerol metabolism (Wang et 

al., 2001), and tryptophan biosynthesis (Schmid et al., 2004). Modelling of 

transcriptional and translational regulations often make use of algebraic and ordinary 

differential equations (Axe and Bailey, 1994; Laffend and Shuler, 1994a) although it is 

also possible to use stochastic simulation to capture the randomness in gene networks. 

Common computational methods for modelling genetic regulatory systems have been 

reviewed in details from the use of binary logic to differential algebraic equations and 

stochastic kinetics (McAdams 1998; Hasty et al., 2001). The choice of method is 

dependent on the level of knowledge of the gene network and the type of prediction 

required from the model. 

2.2.2.1.1 Genetic Network Inference 

As bacterial systems are studied experimentally at the genetic level, it is important 

to understand how the genes are related to each other. There are various ways to infer 

the genetic network connectivity from gene expression data. Some common methods 

are discussed in the following paragraphs. The interconnections among genes are 

commonly estimated from changes in gene expression level upon introduction of 

disturbances, e.g. gene over-expression, gene deletion, change in cell culture conditions 

etc. Depending on the number of genes involved in the system, the scale of gene 

network inference can range from an order of 10 to 10,000. It is important to be aware 

that genes are not only regulated by other genes, but also proteins and other factors in 

many cases. Thus, the gene network alone is insufficient though valuable for 

understanding the entire mechanism of the genetic regulation. Below is a summary of 

common methods for inference of gene connectivity with a couple of literature 

examples for each method. 

Steady-State vs. Transient-State Gene Expression after Perturbation: 

When a perturbation is introduced into a gene network, the change in gene 

expression can be measured at transient-state or steady-state. Tegner et al. (2003) 

identified a simple network topology by analyzing the steady-state changes in gene 

expression resulting from the systematic perturbation of a particular node in the 
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network. The perturbations were delivered around a steady-state so that the 

network dynamics could be projected onto a general linear mapping model. The 

linearised mapping model for gene x,- around a steady-state a, was: 

dx-
T.—^ = —Y•{x•—a|) + [w•^(x^-a^) + w•2ix^-a2) + ...+ w•J^(x^-a^)]+P• , i= I...N 

at 
(2.2) 

where ti was the time-scale; N was the total number of genes; % was the 

degradation rate of the i-th mRNA; Wy was the effective gene-to-gene coupling 

coefficient between the /-th and j-th genes; P,- was a ramp function representing the 

perturbation. At steady-state, the above equation became: 

0 = w',, (x, - a j ) +w',2 (%2 - a , ) + ... + w'.f̂  - a ^ ) (2.3) 

where y! and w/,- were combined into w',/, leaving only N' unknown parameters. It 

was further assumed that cellular networks had a sparse topology which would 

make some w'y to be zero. This constraint reduced the search space and the 

number of computations since N was replaced by k,„a_x where k,„ax « N. 

A similar method for construction of a first-order gene and protein regulatory 

network using only steady-state expression measurements was discussed by 

Gardner et al. (2003). The use of steady-state gene expression avoids/minimizes 

the complication of noise which would be maximal at transient-state. But for very 

large networks, the required number of perturbation can still be unfeasibly huge. 

Hoon et al. (2002) suggested fitting a linear system of differential equations to 

the transient-state gene expression data to infer the gene network. The approach 

was similar to that above, except the differential terms were non-zero and were 

estimated from transient-state data. They also proposed a formal way of estimating 

the non-zero coefficients by using Akaike's Information Criterion which took into 

account the number of estimated parameters and the likelihood of the estimated 

model. Transient-state gene expression data potentially contains rich information 

of gene interactions, though it shares a similar disadvantage as above for large 

networks. The decision between steady-state and transient-state data is likely to be 

based on the nature of specific experiments. 

MacCarthy et al. (2005) used a simple enumerative reconstruction method based 

on a discrete dynamic system model to study how microarray experiments 
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involving global perturbations could be designed to obtain reasonably accurate 

gene network reconstructions. The method was tested on artificial gene networks 

with biologically realistic in/out characteristics. For a system of N genes, the state 

of each gene S i { i - 1, N) was represented by binary values O(OFF) and 1(0N). 

Each gene state was assigned a default ON/OFF state 0, e [0,1]. The gene 

interactions were described by an x TV matrix C, where Q e [-1, 0, +1], 

representing positive[+l], zero[0] or negative[-l] influence of gene j on gene /. The 

state of the z'-th gene at the next time-step was determined by a balance of positive 

versus negative inputs which were ON at the previous time-step. Discrete model 

has an advantage over continuous model that integer computation is faster than 

floating point computation. However, the description of gene states being discrete 

may not well represent the continuous nature of gene expression in many cases. 

Sinsular Value Decomposition: 

Singular value decomposition (SVD) aims at reverse-engineering the gene 

network connectivity based on gene transcription data via matrix transformation 

(Alter et al., 2000; Holter et al., 2001). Yeung et al. (2002) discussed in details a 

scheme to reverse-engineer gene networks on a genome-wide scale using a 

relatively small amount of gene expression data from microarray experiments. 

They used SVD supplemented by extra conditions based on biological knowledge 

to construct a family of candidate solutions and then used robust regression to 

identify the solution with the smallest number of connections as the most likely 

solution. Such algorithm had an order of log(AO sampling complexity but an order 

of / / computational complexity, where N is the number of genes. 

Firstly, SVD was used to construct a set of feasible solutions that are consistent 

with the measured data and then use robust regression to select the sparsest one as 

the solution. E.g. for a system operating near steady-state where the dynamics 

could be approximated by a linear system of ordinary differential equations: 

Xi{t)^-XjX,{t) + ^W..Xj{t) + b.{t) + ^Xt) , for i = 1,2, (2.4) 

where x,- was the concentration of the j-th mRNA, Xt was the self-degradation rates, 

bi was the external stimuli, and represented noise. The matrix element, Wij , 

consisted of real numbers that described the type and strength of the influence of 
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the ;th gene on the i-th gene, with a positive sign for activation and negative sign 

for repression. Then in experiment, a prescribed stimulus {bj, 6?, ..., was 

applied and the concentrations of all N different mRNAs were measured. After 

repeating the procedure for M times, the results could be tabulated as: 

^ NxM 

X\ X f .. 

.. 

V /v /v •• N y 

(2.5) 

The original equation could be rewritten as: Zwxm = > where 

the noise was neglected and the self-degradation rate was absorbed into Wij, i.e. Ay 

= Wij - SijAij. The goal of the reverse engineering was to use the measured data B, X, 

and X to deduce A and hence W. Because SVD leads to non-unique solutions, 

additional constraints were needed to isolate the true solution from the entire 

family of solutions. These constraints may come from knowledge of the biological 

system. 

Singular value decomposition offers a way to infer complex gene networks from 

a reasonably small number of samples. But the order of computational complexity 

increases exponentially as networks become large. 

Clusterins: 

Clustering is a method that groups together genes with similar expression 

patterns over time. This approach is likely (though not always) to group genes that 

specialize on certain cellular functions of interest. It is useful in uncovering the 

function of novel genes when they are co-expressed with genes functionally known 

(Eisen et al., 1998; Tamayo et al., 1999; Tavazoie et al., 1999). Many different 

clustering methods has been suggested and the choice depends on how the results 

are to be used (D'haeseleer et al., 2000; Herrero et al., 2003). For data that 

naturally falls into distinct groups and is well separated, all clustering methods 

produce the same gene clusters. But if the data is more uniformly distributed, each 

algorithm places the cluster boundaries differently (Bittner et al., 1999). 
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Genetic Alsorithm and Genetic Prosrammins: 

Genetic algorithm optimises model parameters of a pre-defined set of equations 

that generate an expression pattern that is most similar to the given experimental 

results (Iba and Mimura, 2002; Pan et al., 2002). It can be used, for instance, to 

optimise parameters of enzymatic regulation in a model of metabolic network 

based on an objective (Oilman and Ross, 1995) or to select the optimal parameter 

values to describe experiment data of a genetic model. For example, if a system 

could be described by a set of differential equations of the following form (Ando et 

a l , 2 0 0 2 X 

= ,i=\,2,...,n (2.6) 
at j=x 

which is an S-system (a type of power-law formalism) where X, was a state 

variable. The first term on the right represented all influences that increased X,; the 

second term represented all the influences that decreased Then genetic 

algorithm could be used to optimise the unknown parameters oCj, /3i, gij, and hij. 

Genetic programming is an extension of genetic algorithm. The improvement in 

genetic programming is that no pre-defined set of system equations is needed to 

start with (Sugimoto et al., 2005; Koza, 1994). Instead, state variables are selected 

randomly to fit experimentally observed results. As an example, let's consider the 

following general form (Ando et al., 2002): 

^ = x j ,z = i , 2 , . . . , » (2.7) 
at 

where X, was the state variable and n was the number of observable components. 

Genetic programming could then evolve the differential equations from the 

observed time series of the state variables. Although genetic programming is 

effective in finding the suitable structure, it is sometimes difficult to optimise the 

parameters, such as constants or coefficients of the polynomials. This is because 

the ordinary genetic programming simply uses randomly generated constants. To 

overcome such difficulty, Ando et al. (2002) introduced a least mean square 
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method to improve selection of model candidates based on the least mean square 

fitness of each model to the experimental data. 

Styczynski and Stephanopoulos (2005) commented on genetic algorithm as 

being initialization-dependent and thus potentially unreliable for determining a 

final network structure, but served as an excellent purpose for algorithms that need 

a few strong candidates. Genetic programming, being an improved version of 

genetic algorithm, requires all relevant state variables of a system to be known in 

order to generate a true model of the system. For large networks, the presence of 

unknown state variables is unavoidable; and the large number of state variables 

involved is like to affect the computational efficiency. 

There are also other gene network identification methods such as the ensemble 

method used by Battogtokh et al. (2002) which identified an ensemble of models 

consistent with, and constrained by, the available RNA and protein profiling data based 

on Monte Carlo simulation techniques. The idea behind such method was the fact that 

biologically realistic models are often parameter rich and data poor even with the advent 

of RNA and protein profiling. It was applied in a chemical reaction network responsible 

for regulation of a gene cluster in bread mould and successfully identified an ensemble 

of models fitting available RNA profiling data of the gene cluster. The applicability of 

this method for other organisms would depend on the simulation complexity involved if 

all possible models that would fit the data have to be explored. Hoon et al., (2002) used 

differential equations and the Akaike's Information Criterion (a method for 

determination of network sparseness) to infer gene regulatory networks from gene 

expression data. 

With the availability of DNA arrays and computational analysis, much progress 

have been made towards understanding the genetic networks of simple organisms, 

especially for yeast (Cho et al., 1998; Spellman et al., 1998; Ogawa et al., 2000; Kel et 

al., 2001; Guelzim et al., 2002; Lee et al., 2002; Wang et al., 2002). For example, Wang 

et al. (2002) analyzed yeast cell gene expression profiling under various environmental 

and genetic perturbations and were able to construct transcription modules with good 

predictions. Cho et al. (1998) found in budding yeast that 416 out of 6220 monitored 

mRNA had cell cycle-dependent periodicity. Spellman et al, (1998) identified 800 yeast 

genes that were related to cell-cycle regulation and found that more than half of them 
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responded to G1 cyclin Cln3p or B-type cyclin Clb2p. Guelzim et al. (2002) 

summarized 909 genetic or biochemical interactions among 491 yeast genes based on 

available databases and an earlier work by Svetlov and Cooper (1995). Kel et al. (2001) 

created a program to locate binding sites of transcription factors of the E2F family 

which are key regulators of cell cycle (for eukaryotic organisms) and some new E2F 

target genes were successfully identified. The fact that many studies has focused on 

yeast cells is related to the availability of microarray chips for gene expression analysis 

of yeast. Developments in DNA microarray technology will enable similar studies to be 

carried out on more complex organisms. 

A general feature of all the genetic modelling methods mentioned so far is that all 

of them described a small part of the virus/bacteria. Application for an entire cell would 

only be possible when all the connectivity details in the whole genome are well 

understood. Insufficient current biological knowledge at the genetic control of an entire 

cell is a bottleneck for immediate application of such approach to a whole-cell level. 

2.2.2.1.2 Metabolic Modelling of Bacterial/Yeast Cells 

Monod-Tvpe Models 

Not all bacterial cell culture models were directed towards the genetic level. The 

overall growth and metabolic activities of bacterial cells are more suitably modelled 

using variables that can be easily measured in the cell cultures. A common structure of 

bacterial growth kinetics is named after Monod (1949) who proposed a first order 

saturation relationship between the growth rate and concentration of a single nutrient: 

(2.8, 

where R is the growth rate, C is the concentration of nutrient, Rk is the rate limit for 

increasing concentrations of C, C/ is the concentration of nutrient at which the rate is 

half of the maximum. 
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Inhibition Models 

Inhibition relationship between specific growth rate and concentration of nutrient 

has been applied in bacterial suspension cell cultures with a single nutrient source (Aiba 

et al., 1968; Jackson and Edwards, 1975; Tan et al., 1996; Canovas et al., 2002). In 

bacterial cell cultures, inhibitions of growth by the biomass concentration and 

sometimes product concentration have been observed (Aiba et al., 1968; O'Neil and 

Lyberatos, 1990). For example, O'Neil and Lyberatos (1990) used three types of 

biomass inhibition model for a continuous yeast culture: 

Contois model: u = (2.9) 
B- x + s 

A • 5 
Competitive inhibition model: ji — (2.10) 

B * C s 

A • s 
Non-competitive inhibition type model: jl — (2.11) 

{B + s)- (C + x) 

where jU,,,: maximum specific growth rate 

/ / : specific growth rate 

5 : residual substrate concentration 

% : biomass concentration 

A, B, C : model parameters 

An example of product inhibition is shown below for a yeast culture producing 

ethanol from glucose (Aiba et al., 1968): 

= ^ (2.12) 

where p : ethanol (product) concentration 

5 : glucose concentration 

jUo: specific growth rate when p = 0 

fj.: specific growth rate 

ki : empirical exponent 

K,: saturation constant 

24 



Some growth kinetics of bacterial cultures involves a nutrient inhibition term at 

high concentrations. A commonly used substrate inhibition kinetics takes the following 

form (Andrews et al., 1968): 

i + ^ + A 

where p.: maximum specific growth rate 

fj.: specific growth rate 

S : limiting substrate 

Ks: saturation constant 

K,: inhibition constant 

The specific growth rate in bacterial cultures has also been modelled as 

proportional to the nutrient transport rate (Kremling et al., 2001b). Bailey and Ollis 

(1986) have provided a detailed introduction of various equations for biomass 

production in bacterial and yeast cell cultures. 

Metabolic Flux Analysis 

As cell metabolism is controlled by gene expression, small metaboUc networks 

such as the central carbohydrate metabolism and amino acid synthesis have been 

modelled dynamically with connection to the genetic regulation (Kremling and Gilles, 

2001; Schmid et al., 2004). But dynamic simulations (involving the time-differential of 

variables) are limited to small networks where the kinetic relationship among the 

variables has been characterised. For genome-scale metabolic networks, most of the 

existing models make use of steady-state assumption to avoid the use of un-

characterised kinetic equations. The metabolites are connected in the model using linear 

stoichiometric relations or Michalis-Menten-type equations and their concentrations 

(which are not measured) are assumed to be independent of time. The main focus of 

those models is the flux of metabolites in all of the metabolic reactions. Thus they are 

known as flux balance analysis (FBA) or metabolic flux analysis (MFA) (Christensen 

and Nielsen, 1999). MFA has been used to interpret the reconstructed metabolic 

network of numerous bacteria including E. coli, yeast, and Haemophilus influenzae 

(Pramanik and Keasling, 1997; Schilling et al., 1999; Edwards and Palsson, 2000; 
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Schilling and Palsson, 2000; Covert et al., 2001; Edwards et al., 2001; Papin et al., 2002; 

Schuster et al., 2002; Allen and Palsson, 2003; Famili and Palsson, 2003; Fong et al., 

2003; Forster et al., 2003; Price et al., 2003; Duarte et al., 2004; HeiTgard et al., 2004; 

Papin et al., 2004a; Papin et al., 2004b; Shimizu 2004; Riascos et al., 2005; Puchalka et 

al., 2008). It can qualitatively estimate the metabolic network properties, such as the 

growth potential of mutant bacterial strains (Edwards and Palsson, 2000) and potential 

gene knock-out targets for metabohc flux improvement (Puchalka et al., 2008). MFA 

can also be applied on signal transduction networks (Papin and Palsson, 2004). 

Sinsle-Cell Models 

Models describing the detailed metabolic kinetics of an entire bacterial cell have 

been studied (Shuler et al., 1979; Domach et al., 1983; Peretti and Bailey, 1986; Jeong 

and Ataai, 1990; Jeong et al., 1990). For instance, Shuler et al. (1979) modelled the 

dynamic details of protein synthesis, degradation, transportation, and metabolite 

conversion and transport in Escherichia coli cells. The cell content was grouped into 

five main categories (protein, RNA, DNA, cell envelope, and glycogen) each having its 

precursors (amino acids, ribonucleotides, deoxyribonucleotides, cell envelope 

precursors, and glucose). Most of the rate kinetics were assumed to be Monod-type. The 

model was able to describe known phenomenon of the cell culture but the values of 

many kinetic parameters could not be estimated with high confidence. There appears to 

be a trade-off between the complexity of cell culture models and the confidence level of 

parameter values. Thus, many cell culture models tend to simplify the cell system using 

various assumptions in order to reduce the difficulty in parameter estimation. 

S-system Models 

When the cell culture is operated at steady-states, it is often possible to simplify the 

kinetic equations of growth and metabolism. A popular choice of equation is the S-

system which makes use of power-law model structure (Kitayama et al., 2006). As 

discussed earlier in Genetic Algorithm (Equation 2.6), S-system represents the rate of 

change of a variable (X,) in terms of the multiple of factors causing an increase in Xi less 

the multiple of factors causing a decrease in X,. In the equation below, Oj and Pi are 

positive real coefficients; gij, and hjj are the exponentials of the factors affecting X,. 
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^ = (2.14) 
dt ;=I j=\ 

Below is an example of growth kinetics for Escherichia coli perfusion cell culture 

using S-system equation (Alvarez-Vasquez et al., 2002): 

/ Y = . CF*' c (2.15) 

where / i : specific growth rate 

G : glycerol concentration 

X : biomass concentration 

/̂ maxg: maximum anaerobic specific growth rate 

But for cell cultures that do not reach steady-state, e.g. batch and fed-batch 

cultures, S-system is a less appropriate choice as its approximation is likely to miss out 

certain cell culture dynamics. 

Cybernetic Modelling 

A new approach of modelling genetic regulation via replacing genetic expression 

terms by 'cybernetic' variables has been described by Vamer and Ramkrishna (1999a; 

1999b). It was postulated that metabolic network had physiological objectives; and 

genetic alteration did not alter the presumed goals of the genetic network which are in 

place because of millions of years of evolutionary pressure. This approach was 

originally used to model genetic regulation of nutrients uptake 

(substitutable/complementary) of bacteria assuming such organisms had a goal to 

maximize growth. For example: 

(i) The elementary cybernetic variable that governs the allocation of critical 

resources for enzyme synthesis for a siibstitutable process follows from the 

matching law and is given functionally by: 

u.=-^ ,j=l,2,...,k (2.16) 

I ' - , 
f = ] 

where /}• denotes the jth specific reaction rate and the index k denotes the number of 

enzymes competing for resources from the same pool. The elementary cybernetic 
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variable that governs enzyme activity for a substitutable process follows from the 

proportional law and is given by: 

v . = — , / = 1, 2, ^ ;7 = 1,2, ^ (2.17) 

(ii) The functional form of the elementary cybernetic variable that governs the 

allocation of critical resources for a complementary process follows from the 

matching law and takes the following form: 

W, = = 1 , : 2 , z C2.18) 

where pk+i denotes the specific level of product being produced by rk and the 

index z denotes the number of enzymes competing from the same elementary 

resource pool. The elementary cybernetic variable that governs the activity of the 

jth key enzyme belonging to a complementary elementary pathway follows from 

the proportional law which is as follows: 

v,.= \ \ ^ ,i=l,2, ...,zj=l,2, •..,z (2.19) 

For bacteria, it has been shown that the assumption of growth maximization was 

useful in predicting genetic regulation (Venkatesh et al., 1997; Edwards et al., 2001). 

The Cybernetic approach has been applied to bacterial cell models (Kompala et al., 

1986; Straight and Ramkrishna, 1991; Ramakrishna et al. 1996; Vamer and Ramkrishna, 

1998) but there is no solid evidence that other higher organisms, e.g. mammalian cells, 

would have the same objective. Below is an example of microbial multiple substrate 

growth kinetics being modelled using the cybernetic approach (Kompala et al., 1984): 

= (2.20) 

where / / : specific growth rate 

jUi: growth coefficient 

e,: specific level of key enzyme i 

Si: substrate i concentration 

Ki: Michaelis constant for substrate i 

Vi: Cybernetic variable for substrate i 
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Other Types of Bacteria/Yeast Cell Culture Models 

The mathematical model structures discussed in previous sections are systematic 

modelling methods commonly used in the literature for microbial and yeast cell cultures 

when there is a single carbon source (or multiple substrates in Equation 2.20). Other 

types of equations have also been used, such as a discrete model to describe an 

asymmetric metabolic response to a shift-up versus shift-down of the specific growth 

rate (Lievense et al , 1989), experimental interpolation (Oh et al, 1993), powered 

Monod equations, multi-substrate growth kinetics using summation of the consumption 

of each carbon source, and logarithmic kinetics etc. Kovarova-Kovar and Egli (1998). 

The effects of pH and temperature which are usually fixed in cell cultures have also 

been included in the growth kinetics by Leroy and Vuyst (2003). They are outside the 

main focus of this study and so will not be discussed in detail. 

2.2.2.1.3 Mathematical Classification of Cell Culture Models 

Structured Un-structured 

Segregated / \ Deterministic 

Un-segregated Stochastic 

Figure 2.4: Schematic diagram for different types of models of cell cultures. 

Cell culture models can be classified as structured versus un-structured, 

segregated versus un-segregated, and deterministic versus stochastic (Figure 2.4). 

Structured models take into account the realistic multi-components inside a cell (e.g. 

mitochondria, lysosome, nucleus etc.) and include transportation of metabolites and 

molecules to and from these components (Barford, 1990a; Barford, 1990b; Rizzi et al., 
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1997); but un-structured models assume a simplified homogeneous cellular unit 

(Tziampazis and Sambanis, 1994; Bailey 1998; Sidoli et a]., 2004). Segregated models 

treat the cell population as heterogeneous, i.e. each cell may operate at a different state 

relative to other cells; but un-segregated (also called distributed) models assume a 

homogeneous population so the actual heterogeneity is averaged into a single state 

(Tsuchiya et al., 1966; Tziampazis and Sambanis, 1994; Bailey 1998). Deterministic 

models predict an exact value of model variables at any specific time; but stochastic 

models use probability functions to predict the likelihood of different values for each 

model variable (Tsuchiya et al., 1966). Stochastic models are particularly useful for 

events that the inducing molecules have low copy number (N") (Elowitz et al., 2002; 

Kierzek et al., 2001; Blake et al., 2003), causing the occurrence of a reaction or signal 

transduction to be uncertain even when those molecules are present. But when # is large, 

the average of the predictions from a stochastic model will tend towards the output from 

a deterministic model. 

A cell culture model can take any combinations of the three categories discussed 

above (also illustrated in Figure 2.4). For example, a model can be un-structured, un-

segregated, and deterministic; or structured, segregated, and stochastic etc. The choice 

is dependent on the property of the system of interest, level of biological understanding, 

types of data available, and the goal of modelling. Un-structured models are often used 

(instead of structured models) when the details of reactions in intracellular 

compartments is less important than metabolites/proteins excreted into the extracellular 

medium (e.g. suspension cell cultures producing valuable proteins). Segregated models 

are used (instead of un-segregated models) if there is at least one important 

heterogeneous cell culture characteristic affecting a desirable ccllular property (e.g. 

protein synthesis dependent on cell-cycle phase distribution). For 

deterministic/stochastic models, the latter is relatively more applied for genetic 

networks (Kepler and Elston, 2001; Elowitz et al., 2002). Gene expression is not always 

a continuous process which can be deterministically described by differential equations 

(Kaem et al., 2005; Sails and Kaznessis, 2005). Arkin et al. (1998) noted that 

fluctuations in the rate of gene expression could produce highly erratic time patterns of 

protein production in individual cells and wide diversity in instantaneous protein 

concentrations across cell populations. McAdams and Arkin (1997) simulated the 

processes of gene expression which showed that random pattern of expression of 

competitive effectors can produce probabilistic outcomes in switching mechanisms that 
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select between alternative genetic regulatory paths. The result could be a partitioning of 

the cell population into different phenotypes as the cells follow different paths. But 

metabolic networks and cell growth are generally modelled deterministically as the cost 

of computational time is often very high. Although there has been study of stochastic 

simulations of bacterial metabolic networks indicating the possibility that the 

randomness of gene expression can propagate to the metabolic level (Puchalka, J. and 

Kierzek, 2004), experimentally such randomness is not explicitly observed in metabolic 

data. 

2.2.2.1.4 In Silico Cells 

In order to model an entire cell without the limitation that some genes are still 

not well understood, hypothetical cells with 'minimum' number of genes to sustain 

normal cell functions have been proposed. One of those minimum gene sets has been 

developed into a 'whole-cell' modeUing software known as E-CELL (Ishii et aL, 2004; 

Kikuchi et al., 2003; Tomita et al., 1999; Takahashi et al., 2004), The genes in E-CELL 

are mostly based on the smallest bacterial genome Mycoplasma genitalium (Eraser et al., 

1995). Many major cellular activities are modelled in E-CELL though some of the 

reaction kinetics are simplified. Enzymes and proteins are modelled to degrade 

spontaneously over time. The protein synthesis is implemented by modelling the 

molecules necessary for transcription and translation, namely RNA polymerase, 

ribosomal subunits, rRNAs, tRNAs, and tRNA ligases. The model cell does not need to 

switch the genes on and off so it does not have any regulatory factors. The E-CELL 

software is a valuable tool for the study of cell behaviours (Tomita, 2001a; Tomita, 

2001b; Takahashi et al., 2003; Takahashi et al., 2004; Kikuchi et al., 2003; Sugimoto et 

al., 2005). 

Similarly, Castellanos et al (2004) proposed a genetically and chemically 

detailed model of a 'minimal cell' based on a 'coarse-grain' parameter computer model 

of E. coli. The equations for metabolisms were formulated by writing pseudo-chemical 

reactions that included the relationship between the nucleotides inside the cell; 

developing kinetic relationships that reflect the metabolic pathways; and including 

metabolic control using the concentration of the chemical components as signals. Those 

kinetic relationships were typically semi-empirical in form and reflected the known 

factors modulating activity. But there were no direct experimental data to test the model, 
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so available data from several bacterial organisms were used only for determining 

whether the overall model response was physiologic in nature or not. There are many 

software tools for cell system simulations, e.g. VCell (Schaff et al., 1997; Slepchenko et 

al., 2003), SmartCell (Dublanche 2006), CellDesigner (Funahashi et al., 2003) etc. 

Computational studies of gene and metabolic networks enable testing of hypotheses and 

screening of possible network alternatives before doing further wet-lab experiments. In 

silico simulation of hypothetical cells is a valuable tool for investigation of cellular 

dynamics without the presence of unknown interactions or noise. 

2.2.2.2 Mammalian Cell Culture Modelling 

There are many similarities between mammalian and bacterial/yeast cells. Some 

of the growth and nutrient consumption kinetics for mammalian cell cultures are 

adapted from bacterial and yeast models. All of the modelling methods discussed in 

Section 2.2.2.1 for bacterial and yeast cell cultures can theoretically be applied on 

mammalian cell cultures either directly or with modifications. However, some of those 

methods tend to be more favoured than others for mammalian cell cultures. 

2.2.2.2.1 Monod-Type Kinetics 

The Monod-type kinetics is the most popular relationship between the nutrients 

concentration and specific growth rate of mammalian cell cultures and it has been 

modified in various ways to suit the mammalian cells' requirement of more than one 

nutrient (Portner and Schafer, 1996). Models that describe mammalian cell proliferation, 

nutrients metabolism, and antibody production etc. has mainly focused on the influence 

of a few major nutrients and by-products upon those cellular activities (Bree and 

Dhurjati, 1988; Batt and Kompala, 1989; Dalili et al., 1990; Bakker et al., 1996; da 

Silva et al., 1996; Zeng and Deckwer, 1999; Jang and Barford, 2000b; Fox et al., 2004; 

Provost and Bastin, 2004; Teixeira et al., 2005). Some of these models provide insights 

into the mechanisms of how relevant enzymes, proteins, and substrates (nutrients/wastes) 

are involved in various cellular activities. An example of such kind of growth kinetics is 

shown below: 

U - U ( \( [GLi¥] u ^£lac . (2 21) 
+ [GfJV] av,..*+LAJkOkr] /cv, , n - r i v i c ] 
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where Jang and Barford (2000b) related the specific growth rate, // (h"'), of batch/fed-

batch cultures of murine hybridoma AFP-27 cell-line to the concentration of glucose 

{[GLC]), glutamine ([GLA^), ammonium ([GLC]), and lactate ([GLC]). In the equation 

above, //max (h"') is the maximum specific growth rate; Kgt (mM) and K î,, (mM) are the 

half-saturation constants of glucose and glutamine respectively; Klamm (mM) and Khac 

(mM) are the growth-inhibition constants of the byproducts ammonium and lactate 

respectively. This type of growth kinetics is commonly used in batch/fed-batch 

mammalian cell culture models (Zeng et al., 1998a) but sometimes the concentration of 

the byproducts are not linked to the specific growth rate (Heidemann et al., 1998; Frahm 

et al., 2003). But the growth rate in continuous cultures is typically directly related to 

the dilution rate (Suzuki and Ollis, 1989; Zeng, 1996) because both the specific growth 

rate and dilution rate are equal at steady-states. 

Modifications of the Monod-type kinetics also appear in mammalian cell culture 

models. Below is an example for mouse hybridoma CRL-1606 batch cultures taking 

into account the effect of serum and cell concentration on growth rate (Glacken et al., 

1988^ 

1 

i + -
K, 

l + -
K, 

(2.22) 

where j l : specific growth rate 

^max : maximum specific growth rate 

S : serum level 

G : glutamine concentration 

X : cell concentration 

A : ammonium concentration 

L : lactate concentration 

(Ks)o: initial value of Monod constant in serum 

Kg : Monod constant for glutamine 

Ka : inhibition constant for ammonium 

Kl : inhibition constant for lactate 

Some models include amino acids in the growth kinetics. For instance, Duval et 

al. (1991) related a general 'amino acids' term (a lumped variable for several amino 

acids) to the growth of hybridoma cells VO 208 & 6H2 batch and semi-continuous 
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cultures supplemented with extra amino acids; (Simon and Karim, 2002) measured 

amino acid concentrations in Chinese hamster ovary batch cultures and identified 

asparagine and glutamine as important for the growth model. But it is not common to 

include amino acids in the growth kinetics due to the difficulty in measuring all of the 

amino acids in the cell cultures. 

Cell growth is not always the main interest in mammalian cell modelling. Bibila 

and Flickinger, (1991a) detailed the heavy and light chain synthesis steps for 

monoclonal antibody (MAb) production in a mouse hybridoma cell-line. They also 

modelled the transient steps of MAb synthesis from the endoplasmic reticulum to Golgi 

apparatus and their excretion into the medium (Bibila and Flickinger, 1991b). The main 

purpose of those models was to study the secretion of MAb in order to optimise the 

production rate (Bibila and Flickinger, 1992a; Bibila and Flickinger, 1992b). 

2.2.2.2.2 Single-Cell Models 

The dynamics of metabolic reactions at a whole-cell level is important for 

understanding the overall response of mammalian cells to different physiological 

conditions. Thus, some mammalian cell models have focused upon the details of the 

dynamics of all known metabolic reactions (Wiechert, 2002; Haag et al., 2003; Sidoli et 

al., 2004). Wu et al. (1992) had described a detailed single-cell model for CHO-Kl 

cells by lumping cell components into several major groups and modelled their 

interactions (similar to Shuler et al. (1979) for a single bacterial cell model in Section 

2.2.2.1.2). The equations involved material transport across cell membrane, nutrient 

metabolism, formation of macromolecules, ATP, DNA, RNA, and byproducts etc. But 

many parameter values were taken from other cell types which may not reflect the 

actual property of CHO cells. Sanderson (1997) and co-workers (Sanderson et al., 1995; 

1997; 1999) had simulated the major metabolic pathways of hybridoma cells detailing 

the glycolysis pathway, pentose phosphate pathway, mitochondrial citric acid cycle, 

glutaminolysis pathway, and amino acid interconversions etc. for optimisation of 

antibody synthesis. It is a challenge to apply highly detailed intracellular models to 

industrial cell culture processes due to the difficulty to monitor intracellular variables. 

Cell-cycle signalling mechanism which affects cell growth is another aspect of 

mammalian cell (as well as yeast) which has been modelled in detail (Novak et al., 1998; 
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Novak and Tyson, 2004) but these models are often too complex for the purpose of cell 

culture process optimisation. 

2.2.2.2.3 Population Balance Models 

Population balance is used in segregated models (Section 2.2.2.1.3) that the 

heterogeneity in the cell population with respect to certain characteristic is taken into 

account (Uchiyama and Shioya, 1999; Sidoh et al., 2004; Henson 2005; Mantzaris, 

2005). It is mainly applied in mammalian cell cultures instead of bacterial cultures due 

to the slower growth rate and higher experimentation cost of the former which make 

optimisation of the segregation behaviour more beneficial. A general equation for cell 

population balance was discussed by Mantzaris et al. (1999; 2001a; 2001b; 2001c) 

based on Fredrickson et al. (1967) and Ramkrishna (1979) for continuous cell cultures: 

dN(x,t) 
• + V^[r(x,S) • A^(x,0] + r(x,S) • N{x,t) + D • N{x,t) 

p(x,y,S)-N(y,t) dy 

where N(x,t) : time-dependent state of cell population 

X : physiological state vector of a cell 

S : state vector of nutrient environment 

y : physiological state vector of a dividing cell 

r : single-cell growth rate 

D : dilution rate 

r- . cell division rate 

p : probability density function 

The above equation can be simplified with assumptions to simple ordinary differential 

equations. A simple population balance model of the cell-cycle was used by Nielsen et 

al. (1997) to explain the phenomenon in animal cell culture (and microbial systems) that 

cell number dynamics lag behind biomass dynamics. Population balance model is a 

more accurate representation of the actual heterogeneity among cells in cell cultures. 

But the additional complexity of the model structure may hamper the predictive 

capability of the cell culture models. 
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2.2.2.2.4 Multiple Steady-State Models 

'Multiple steady-states' was defined by Qu et al. (2003) as multiple solutions of 

mathematical representation of the biological system at steady state. In many 

mammalian continuous cell culture experiments, it has been observed that the cell 

culture history can occasionally switch the cells to a different steady-state for the same 

final cell culture input conditions. Europa et al. (2000) studied hybridoma MAK cells in 

continuous culture. Those cells pre-grown in fed-batch culture versus cells from batch 

culture gave different steady-state cell density and metabolite concentration after both 

cultures were switched to continuous culture. A similar phenomenon was reported by 

Follstad et al. (1999) in hybridoma CRL-1606 chemostat cultures. Smolen et al. (1998) 

attempted to develop a conceptual framework for investigating the function of genetic 

regulatory systems. Simple kinetic models that incorporate known feature of genetic 

regulatory systems, e.g. phosphorylation of transcription factors, crosstalk, feedback etc., 

were used and multiple stable steady-states were manifested that brief perturbations 

could switch the model between these states. 

There has been attempts to model the multiple steady-states (under identical 

input conditions) exhibited by mammalian cells using the cybernetic approach discussed 

in Section 2.2.2.1.2 (Namjoshi et al., 2003; Namjoshi et al., 2005; Guardia et al., 2000). 

The Cybernetic approach has been modified to model the partially substitutable, 

partially complementary nature of glucose and glutamine metabolism in mammalian 

cells (Namjoshi et al , 2003; Guardia et al., 2000). The model by Guardia et al was able 

to predict two steady-states (though more than two steady-states were expected in real 

cases); and the model by Namjoshi et al captured three experimentally observed steady-

states. The model by Namjoshi et al has been repeated and the simulation results are 

shown in Figure 3.3 and 3.4. It involves roughly 30 parameters and 26 variables (of 

which 12 are cybernetic variables) describing a simplified network of mammalian cell 

growth and glucose/glutamine metabolism. The cybernetic approach is able to capture 

the multiple steady-states behaviour of mammalian cells but it requires a large quantity 

of model parameters to describe a small number of cell culture behaviour (about 30 

parameters for the lactate production and total cell concentration in the model of 

Namjoshi et al. (2003)). When the ratio of parameters to measured variables is large, the 

parameter estimation from experimental data will result in numerous sets of possible 

solution which are difficult to discriminate. 
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2.2.2.2.5 Other Types of Mammalian Cell Models 

Mammalian cells have been modelled with diverse types of equation structure. 

Some are based on empirical correlations such as the power-law equation for serum 

degradation in hybridoma CRL-1606 fed-batch cultures used by Glacken et al. (1989). 

The level of ATP in mammalian cells has also been incorporated into the growth 

kinetics using exponential equation (DiMasi and Swartz, 1995). Signalling pathway 

models consisting of first-order, second-order, Monod-type, Michaelis-Menten, and 

stochastic kinetics are used to describe the details of various sensing mechanisms in part 

of a mammalian cell (Schroder et al., 1999; Fussenegger et al., 2000; Takahashi et al., 

2002; Hatakeyama et al., 2003) and also similarly for insect cells (Reusing et al., 1982). 

Genome-scale linear metabolic models have also been made for mammalian cells 

(Sheikh et al., 2005) but they are less common than bacterial/yeast cells (Section 

2.2.2.1.2) due to the complexity of mammalian genomes. Metabolic flux analyses for 

the central mammalian metabolic pathways have provided much valuable information 

towards the flux distribution of important metabolites at steady-states (Zupke and 

Stephanopoulos, 1995; Xie and Wang, 1996; Altamirano et al., 2001) though the 

dynamic details, such as variation of nutrient consumption ratio and byproduct yield 

(Zeng et al., 1998b), are missing. Metabolic network modelling for red blood cells 

(RBC) has exceptionally assumed simple kinetic relationship (due to a lack of nucleus 

and thus metabolic regulation at the genetic level in RBC) to model the metabolic 

characteristics dynamically (Lee and Palsson, 1992; Jamshidi et al., 2001; Kuchel 2004) 

as well as the oxygen transport kinetics to and from RBC (Beyer et al., 2002). There is 

no universal standard of model structure for each specific mammalian cell system. The 

choice of model for mammalian cultures is generally based on the purpose of modelling 

and the amount of data available. 
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2.2.3 Appl icat ions of Mode l -Based Optimisat ion in Cell Cultures & 

Bioindustrial Processes 

There are not many cases in the bioindustry that mathematical models are used 

to predict cell culture productivity of proteins and drugs. Although computational 

measurement tools are extensively used to monitor the states of cell cultures, the use of 

those data for prediction of cell culture dynamics is generally missing. Some of the 

adopted control methods are simple unstructured models, engineering judgement, 

artificial neural networks, fuzzy logic, expert systems, and adaptive control (Luttmann 

et al., 1985; Semones and Lim, 1989; Lenas et al., 1997; Guan and Kemp, 1999; 

Hammond and Hammond, 2001; Portner et al., 2004; Juhen and Whitford, 2007). The 

latter three methods require a considerable size of experiment data to test or train the 

control systems which would be expensive when the experimentation cost is high. A 

common practice for mammalian cell cultures is experimental optimisation with limited 

variations in the adjustable variables (Clark and Hirtenstein, 1981; Suzuki and Ollis, 

1990; McKinney et al., 1995; Cheng et al., 1997; Chuppa et al., 1997; Gorfien et al., 

2003). The use of mathematical models to improve or optimise cell cultures is still 

mainly at the research stage (Parulekar and Lim, 1985; de Tremblay et al., 1993; Fu and 

Barford, 1994; Portner et al., 1996; Roubos et al., 1997; Dhir et al., 2000; Lavric et al., 

2006). For example, Gadkar et al. (2003) developed a cybernetic model for poly-/?-

hydroxybutyrate (PHB) production in perfusion cultures of Alcaligenes eutrophus. The 

model was interfaced to a model predictive control algorithm to optimise PHB 

productivity by adjusting the dilution rate and recycle ratio. Cheema et al. (2002) 

applied genetic programming to develop a model for gluconic acid production from 

glucose in bacterial batch culture using historic process input-output data. The model 

was then used to optimise cell culture productivity. Frahm et al. (2002, 2003) used a 

model-based adaptive control strategy to optimise the nutrient feeding time-profiles at 

the same time that the fed-batch mouse hybridoma cell cultures were operating. It is a 

common practice to use simple cell culture models to estimate the amount of nutrient 

required to achieve a particular growth rate or to maximise product yield (Xie and Wang, 

1994; Zhou et al., 1995; Zhou et al., 1997b; Jang and Barford, 2000a; Kontoravdi et al., 

2007). Other degrees of freedom for model-based optimisation include temperature 

(Fox et al., 2004) and osmolarity (Ho, 2007). When the cell culture models are linear, 

e.g. metabolic network models, the system is optimised via linear optimisation 

(Hatzimanikatis et al., 1996a,b; Riascos et al., 2005). Non-linear cell culture models are 
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either linearised before model-based optimisation or are optimised via non-linear 

methods (Torres et al., 1997; Rodriguez-Acosta, et al., 1999; Alvarez-Vasquez et al., 

2000; Marin-Sanguino and Torres, 2000). Non-linear optimisation methods will be 

discussed in greater detail in Chapter 6. 

Concerns about Hydrolysis/Proteolysis of Products 

The loss of antibodies or recombinant proteins in cell cultures due to hydrolysis 

or proteolysis (due to proteolytic enzymes released from dead cells) is seldom studied. 

Goldman et al. (1997) analysed the proteolytic cleavage of recombinant human 

interferon-y produced by Chinese hamster ovary cells during batch culture. It was found 

that the proteolysis of interferon-y increased towards the end of the cell culture 

especially during the death phase, resulting in higher heterogeneity of the peptide 

change and a reduction in biological activity. When the time length of cell culture is 

increased to achieve higher product concentration, there is also a possibility that protein 

hydrolysis/proteolysis will become more significant. In practice, the viability of cells is 

monitored and the cell culture would be terminated once the viability drops below 

certain level. A high viability threshold should be able to minimize the side effect of 

longer cell culture time on product quality. 
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2.2.4 The Dynamic Nature of Biological Cell Cultures 

M a n y dynamic proper t ies in bacter ial , yeast, and m a m m a l i a n cell cul tures h a v e 

been observed in exper iments . In bacter ia l cultures, the transcription t ime-prof i les of the 

s a m e promoters have been observed to have s ignif icant ly d i f fe rent t ime- lag and 

m a x i m u m fo ld increase w h e n the cells were cul tured in nutr ient-r ich versus min imal 

m e d i u m (Marques et al., 1994). Yeas t is one of the mos t s tudied cel l - type at the gene 

level. The global-scale gene response in yeast has been studied at d i f fe rent 

concent ra t ions of g lucose (Yin et al., 2003) and it was f o u n d that m o r e genes 

respons ib le fo r amino acids metabol i sm, carbon metabol i sm, energy, protein synthesis , 

cel lular t ransport were up regula ted at low glucose concentra t ion (0 .01%) relat ive to 

m e d i u m (0 .1%) and high (1%) levels (Figure 2.5). 

Table 1. Proportion of ORFs In each functional category that showed ^twofold regulation In response to different glucose signals." 

Functional categories All ORFs 

0.01 % Glucose 0.1% Glucose 1.0% Glucose 

Functional categories All ORFs Up Down Up Down Up Down 

1. Metabolism 17% 44% 18% 30% 14% 27% 14% 
1.1 Amino acids 3% 3% 2% 7% 2% 0% 2% 
1.2 Nitrogen and sulphur 1% 0% 1% 1% 0% 1% 1% 
1.3 Nucleotides 2% 3% 2% 4% 2% 4% 1% 
1.4 Phosphate 1% 0% 0% 0% 0% 1% 0% 
1.5 Carbon 6% 38% 7% 16% 8% 0% 9% 
1.6 Lipids and fatty-acids 3% 0% 4% 3% 2% 4% 2% 
1.7 Vitamins and cofactors 1% 0% 1% 1% 0% 1% 0% 
1.8 Secondary metabolism 0% 0% 0% 0% 0% 0% 0% 

2. Energy 4% 16% 8% 11% 7% 6% 10% 
3. Cell cycle and DNA processing 10% 0% 8% 5% 5% 5% 4% 
4. Transcription 12% 6% 11% 6% 0% 0?Q 7% 
5. Protoin syntho&k 6% 36% 5% 35% 2% 28% 2% 
6. Protein fate 0% 6% 10% 4% 5% 4% 7% 
7. Cellular transport 8% 10% 7% 3% 5% 5% 5% 
8. Cellular communication-'slgnal transduction 1% 0% 0% 1% 1% 1% 1% 
Q. Cell rescue 4% 3% 5% 4% 3% 4% 2% 

10. Interaction with cellular environment 3% 3% 4% 2% 2% 2% 2% 
11. Cell fate 7% 0% 8% 2% 5% 3% 4% 
12.Transposable elements 2% 0% 0% 1% 0% 1% 0% 
13. Cellular organization 3% 0% 4% 2% 2% 3% 2% 
14. Subcellular localization 35% 76% 39% 65% 20% 57% 20% 
15. Protein activity regulation 0% 0% 0% 0% 0% 0% 0% 
16. Proteins witii binding functions 0% 0% 0% 0% 0% 0% 0% 
17. Transport facilitation 5% 19% 5% 3% 4% 5% 4% 
1 &. Classification not yet clear cut 2% 0% 1% 2% 5% 1% 1% 
19. Unclasstfied proteins 37% 6% 36% 15% 22% 14% 18% 

Number of ORFs'' 6450 32 238 191 294 352 366 

a. ORFs can belong to more than one functional category in the MIPS database (http://mips.gsf.de/pmyyBast/CYGD/db/ind8x.hlml; January 
2 0 0 3 ) . 
b. Expressed as percentage of number of ORFs belonging to each functional category. 
c. Total number of ORFs regulated by each glucose signal are given. 

Figure 2.5: Data of global-scale gene response of a yeast cell culture exposed to low, medium, 

and high concentration of glucose (Yin et al., 2003). 
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The glucose sensing pathway in yeast is one of the most studied cellular 

signalling mechanism. Gelade et al. (2003) summarised three different pathways in 

yeast related to glucose availability: 

- Figure 2.6(a) shows the repression of genes related to respiration, gluconeogenesis, 

and metabolism of alternative carbon sources by high glucose concentrations; 

- Figure 2.6(b) illustrates the Snf3/Rgt2 glucose-sensing pathway 

(i) When there is no glucose, the transcription factor Rgt] forms a complex with 

Mthl and Stdl causing the transcription of the hexose transporters for 

glucose to be inactivated the presence of glucose inactivates Rgtl and 

initiates transcription of HXT1-HXT4 transporters; 

(ii) High concentration of glucose would further enhance the expression of 

HXTl. 

- Figure 2.6(c) shows the Gprl/Gpa2 glucose-sensing pathway. High glucose 

concentration activate cAMP production in a glucose-phosphorylation-dependent 

manner resulting in activation of protein kinase A (PKA) which affects many cellular 

functions including carbon metabolism, stress resistance etc. 

Gluconeogenic gene expression 
Respiratory gene expression 
GAL and MAL gene expression 

[ G p a z ] [ Hxk ] 

No glucose High glucose 

Mthl Stdl 

Glucose 
phosphorylation 

High glucose Low glucose CAMP ATP 

Gal83|8mi 
Mini Stdl 

Msn4 

High glucose High and low glucose 

Gpn 1— —( Hxt 

i 
Glucow 

phosphoiylatlon 

Trehalose and 
glycogen content 

STRE-controlled r Growth and 
ceA-cydeppooMWlon 

Figure 2.6: Simplified glucose-response pathways in yeast (Gelade et al., 2003). 

The glucose-dependent expression of hexose transporters in yeast is clearly 

demonstrated by the study of Ozcan and Johnston (1995) who showed experimentally 
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that some hexose transporters are more strongly expressed at low glucose 

concentrations and vice versa (Figure 2.7). 

200 

g 100 

MX?/ 

M 40 6a 
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Figure 2.7: Level of HXT gene expression for different hexose transporters in yeast at different 

glucose concentrations (Ozcan and Johnston 1995). 

The responses in the glucose-signalling pathways in yeast can be caused by 

either the extracellular glucose concentration or glucose flux. A dependency of the 

signalling pathways on the extracellular glucose concentration but not glucose flux has 

been observed in yeast (Meijer et al., 1998; Ozcan et al., 1998) and Escherichia coli 

(Phue et al., 2005). The overall availability of glucose is also likely to affect cell culture 

dynamics as shown in the experimental results of Tweeddale et al. (1998) that the types 

and levels of metabolites produced by Escherichia coli grown in chemostat cultures 

with different dilution rates (same glucose concentration in the inlet stream) were 

reproducibly different. 

Nutrient concentration is also found to affect mammalian cell cultures. 

Altamirano et al. (2001) studied chemostat cultures of Chinese hamster ovary (CHO) 

cells producing tissue-type plasminogen activator (tPA). A decrease in the concentration 

of glucose in the inlet stream resulted in an increase in the specific growth rate and 

specific uptake rate of glutamine and some amino acids but a decrease in the specific 

tPA production rate. Interestingly, the response of a mouse hybridoma cell-line to 

reduction in the glutamine concentration in the inlet stream (in chemostat cultures) was 

dependent on how fast the extracellular glutamine concentration was reduced (Mancuso 

et al., 1998). Rapid reduction in the feed glutamine concentration from 4mM to OmM 

for a short time which caused a rapid drop in residual glutamine from 0.67mM to OmM 

had a strong stimulation for the specific antibody production rate. But a slow reduction 

in the feed glutamine concentration from 2.4mM to 1.2mM which caused a gradual 

decrease in residual glutamine from 0.30mM to O.OSmM has no significant effect on the 
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antibody synthesis rate. Similar observation was also reported for Escherichia coli that 

an abrupt reduction of the dilution rate in continuous or fed-batch culture triggered 

accumulation of the sigma factor (Teich et al., 1999) or degradation of ribosomal 

RNA (Rinas et al., 1995) but gradual changes fail to induce these responses (Teich et al., 

1999; Rinas et al., 1995). 

Jang and Barford observed an increase in specific antibody production rate and a 

decrease in the lactate yield from glucose in fed-batch cultures of a mouse hybridoma 

cell-line operating at very low specific growth rates (2000a). The study by Teich et al. 

(1999) about the stringent response and general stress response (which are related to 

nutrient limitation) in Escherichia coli may provide an explanation: the regulators 

ppGpp and cf of both responses were monitored in glucose-limited fed-batch and 

continuous cultures; both regulators responded significantly to a fast shift in glucose 

level but less when the change was gradual. It has been shown in the case of myeloma 

cells that the regulation of fluxes in the central metabolism can be regulated by 

activation/deactivation of the enzymes instead of at transcription of translation levels 

(Vriezen and van Dijken, 1998). The detailed mechanism of cellular response of both 

bacterial/yeast and mammalian cells to nutrient concentrations is still not well 

understood although the phenomenon has been observed for decades. Such cellular 

response would be useful for antibody/recombinant protein synthesis if the resulting 

effect is an increase in the specific product synthesis rate and at the same time the 

specific growth rate is not compromised. 
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Other Types of Stress for Cell Cultures 

Nutrient limitation can be regarded as a 'stress' for cell cultures. There are many 

other types of stress that can be imposed on bacterial, yeast, and mammalian cells but 

they are outside the scope of this study. Below are several physical and chemical 

stresses that have been studied in cell cultures: 

(i) Temperature change: 

Mammalian cells including Chinese hamster fibroblasts, HeLa cells, and 

Chinese hamster ovary (CHO) cells have been reported to develop thermo-tolerance 

after being heated up to 41 - 45 °C and hsp70 transcription was reported to increase in 

the case of HeLa cells (Hahn and Shiu, 1985; Laszlo and Li, 1985; Abravaya et al, 

1991). A reduction in cell culture temperature has caused and increase in the 

productivity of CHO cells due to elevated mRNA levels responsible for recombinant 

protein synthesis (Fox et al., 2004; Bollati et al., 2005) Fox et al., 2005). A detailed 

review of the physiological responses is made by Wick and Egli (2004) regarding the 

heat-shock and cold-shock phenomena in Escherichia coli which should have certain 

similarity with mammalian cells. 

(ii) pH change: 

The operating pH of cell cultures is typically around pH 7. Osman et al., (2001) 

studied pH shifts in a range of pH 6.5 - 9.0 in GS-NSO myeloma cell cultures. 

Maximum specific growth rate was observed after the pH was shifted to pH 7.3 - 7.5 

and glucose consumption was found to increase with increasing pH. The cell cultures 

were able to return to original growth and metabolic behaviour after pH recovery. 

(iii) Osmotic stress change: 

A shift-up in cell culture osmolarity was found to increase the specific 

productivity (Wu et al., 2004), culture longevity (Oh et al., 1993), or amino acid 

metabolism (Cherlet and Marc, 1999) in mammalian cells and activation of myelin 

basic protein phosphorylation kinases in tobacco cells (Mikolajczyk et al., 2000). The 

effects appear to be cell-type dependent and may not always be associated with an 
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increase in cell culture productivity. In certain case the effect of osmolarity on 

productivity did not indicate a clear upward or downward trend (Kimura and Miller, 

1996X 

(iv) Shear stress change: 

Shear stress on cells is caused by interaction with the reactor and agitator and it 

varies with the reactor designs, e.g. stirred tanks, shake flasks, roller bottles, bubble 

columns etc. (Henzler 2000). An increase in shear stress caused higher metabolite 

production by human umbilical vein endothelial cells (Frangos et al, 1988) but a 

negative effect on cell viability for baby hamster kidney (BHK) cells has been reported 

(Kretzmer and Schugerl, 1991). The shear stress in cell cultures is typically maintained 

low because cell viability has a significant impact on product quality. 

(v) Stress due to recombinant protein production: 

The production of recombinant proteins in Escherichia coli has been shown to 

compete for protein resources with cell growth (Hoffmann and Rinas, 2004). The 

additional energy required to synthesize recombinant protein was also reflected by 

higher maintenance substrate consumption in recombinant protein producing cells 

(Hoffmann and Rinas, 2004). Such stress is unavoidable in cell cultures producing 

foreign proteins. 

(iv) Chemical stress: 

The presence of highly oxidative compounds, e.g. superoxide anions, hydrogen 

peroxide etc., cause oxidative stress to cell cultures and can damage DNA and proteins (Moat et 

al, 2002; Arrigo et al., 2005). But these compounds are normally absent from cell cultures that 

are used to produce antibodies and recombinant proteins. 
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Summary 

Biological cell cultures are full of diversity in terms of growth characteristics, 

applications for synthesis of various products, and responses to different types of stress 

in the surrounding environment. There is an equally wide range of mathematical models 

in the literature describing cell culture properties from the genetic level to the whole cell 

level with different extent of complexity. Modelling is becoming more popular in the 

biological world but there are still many challenges to be overcome when applying 

traditional mathematical and engineering approaches on cell cultures of which the full 

properties are yet to be explored. 
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Chapter 3 

— Hybridoma Culture Cell-Cycle 
Modelling & Optimisation 

Mammalian cell culture modelling often focus upon choosing the best nutrient 

supplementation strategy for a fixed type of culturing mode (batch/fed-

batch/continuous/perfusion). However, there are other degrees of freedom involving 

discrete selections, e.g. arresting cell growth, triggering a change in metabolism, 

stepping-up osmolarity, switching cell culture temperature etc., that are encountered in 

cell culture processes. It is important to develop a modelling and optimisation 

framework to handle both continuous and discrete degrees of freedom of dynamic cell 

cultures simultaneously to enable efficient analysis and improvement of the productivity. 

Two types of discrete degrees of freedom are studied in this work: cell-cycle arrest and 

metabolism alteration in hybridoma and CHO-IFNy cell cultures respectively. The cell-

cycle modelling for hybridoma cells is presented in this chapter followed by the CHO-

IFNy cell culture model in Chapter 4. 
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3.1 Cell-Cycle & Productivity Modelling 

3.1.1 Relationship between Cell-Cycle and Productivity 

Mammalian cells reproduce by self-duplication which involves four cell-cycle 

phases: Gj, S, Gz, and M (Figure 3.1). Cells in the Gi phase enter the S phase where 

DNA replication takes place when the cell culture environment is favourable and the 

required cellular signals are present. Then in the G? phase the cells prepare themselves 

for division and finally in the M phase each cell is separated into two. There is a 

dormant phase called Go that the cells do not participate in the cell-cycle. The cell-cycle 

is regulated by various cyclins, cyclin-dependent protein kinases, and protein complexes 

(Pines and Hunter, 1989; Norbury and Nurse, 1992; Gu et al., 1992; Lew and Reed, 

1993; Fussenegger and Bailey 1998; Kohn, 1999; Ekholm and Reed, 2000; Simon et al., 

2001; Barre and Perkins, 2007) which govern the initiation and progression of each cell-

cycle phase. Many studies had been done to identify which of the cell-cycle phases is 

the most productive in terms of antibody and recombinant protein synthesis. Cherlet et 

al. measured cell DNA content and antibody content on the surface of hybridoma AFP-

27 cells using flow cytometry analysis and found that the Gi cells showed a lower 

specific antibody secretion rate than the Go/M cells (Cherlet et al., 1995). Al-Rubeai and 

Emery studied TB/C3 murine hybridoma cells synchronised by thymidine block and 

measured antibody synthesis using pulse-labelling (Al-Rubeai and Emery, 1990). The 

rate of synthesis was at maximum during the G / S phases and the specific antibody 

production rate was increased when cells were arrested and maintained in the late Gi/S 

phases (Al-Rubeai and Emery, 1990). Kromenaker and Srienc studied various AFP-27 

cell-lines and found that the accumulation of antibody in the cells was highest in the G| 

phase and lowest in the Gi/M phase; and the specific antibody secretion rate increased 

when specific growth rate decreased (Kromenaker and Srienc, 1991; Kromenaker and 

Srienc, 1994a,b). Al-Rubeai et al. compared specific antibody productivity of 3 different 

hybridoma cell-lines (TB/C3, PQXBl/1, 1.13.17) at the growth phase and death phase 

of the cell cultures but there was no consistent trend in the specific productivity between 

the two phases among those cell-lines (Al-Rubeai et al., 1992). 
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G, 

Figure 3.1: Illustration of the major phases in mammalian cell-cycle (same as Figure 2.2). 

Comparisons done by Lloyd et al. for the productivity of a wide range of 

mammalian cells including hybridoma and CHO cells showed variations in the phase(s) 

of maximal expression, e.g. G q / G i , G i , Gi /S , or G^/M, for different cell-lines and 

promoters (Lloyd et al., 1999; Lloyd et al., 2000). Thus, the most productive cell-cycle 

phase appeared to be dependent on the cell type and each cell-line and product of 

interest should be studied independently to determine the cell-cycle phase of maximal 

product expression. The growth arrest had also been reported to increase specific 

productivity in other mammalian cell-lines (Mazur et al., 1998; Seifert and Phillips 

1999; Watanabe et al., 2002; Ho, 2007) apart from the hybridoma cell-lines discussed 

above. It is important to understand and model such cell-cycle and growth dependency 

of productivity systematically in order to fully utilize this potential to improve product 

yield. 

3.1.2 Cell-Cycle Modelling 

Cell-cycle modelling can be grouped into two main categories: population 

balance of each cell-cycle phase versus modelling the detailed phase transition 

regulation by growth factors. Population balance approach models the number or 

fraction of cells in Gi, S, G2, and M phases as a function of growth rate (Suzuki and 

Ollis, 1989; Nielsen et al., 1997; Cain and Chau, 1998; Uchiyama and Shioya, 1999; 

Faraday et al., 2001; Basse et al., 2003). Phase transition regulation approach takes into 
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account the detailed connections of cycling, cyclin-dependent kinases, transcription 

factors, and inhibitors etc. that regulate the progression of cells across each cell-cycle 

phase (Novak and Tyson, 1997; Obeyesekere et al., 1997; Novak et al., 1998; Aguda 

and Tang, 1999; Hatzimanikatis et al., 1999; Chen et al., 2000; Cross et al., 2002; 

Deineko et al., 2003; Qu et al., 2003; Tyson et al., 2003; Novak and Tyson, 2004). The 

population balance method has a simpler model structure, making the model 

computationally less demanding. It can potentially be connected to other cellular 

functions such as metabolisms of major nutrients, though the model equations are often 

specific to particular cell types which cannot be directly applied to other cell cultures, 

e.g. the yeast cell-cycle model by Uchiyama and Shioya (1999) and the human tumour 

cell-cycle model by Basse et al. (2003). Whereas the phase transition regulation method 

provides deep insight into the detailed biological mechanisms governing the cell-cycle 

process but there would be difficulties in expanding the model due to its complexity. 

Optimisation of biological cell cultures using mathematical models has mainly 

been performed in bacterial or yeast cultures (Modak et al., 1986; Lim et al., 1986; 

Chen and Hwang, 1990) due to their simple nutrient requirement. Most of the objectives 

in model-based bacterial/yeast culture optimisation are feed rate profiles of nutrients 

(Modak et al., 1986; Lim et al., 1986; Park and Ramirez, 1988; San and Stephanopoulos, 

1989; Chen and Hwang, 1990; Lee and Ramirez, 1994) which are variables that can 

take any continuous values. Mammahan cell cultures are by nature more complex than 

bacteria and yeast so their optimisation is often highly dependent on experiments. In the 

context of cell-cycle distribution which can be manipulated by addition of chemicals in 

a one-off manner, the incorporation of logic-type binary variable is an interesting and 

useful application to be explored. In the next sections, the development of a 

mathematical cell-cycle model for a hybridoma cell cultures and application on 

optimisation of both continuous and logic-type degrees of freedom is discussed and the 

model prediction is compared with experiment results. 

50 



3.2 Development of Cell-Cycle Model for Hybridoma 

CRL-1606 

In this section, modelling and optimisation of a mammalian suspension cell 

culture based on first-principles and population balance for off-line optimisation of 

time-varying and logic-type degrees of freedom was carried out. The population in 

various phases of the cell-cycle ( G q / G i , S , G I / M ) was tracked in the model and the 

specific productivity of each sub-population was taken into account. Control of fed-

batch biological cultures sometimes involve not only continuous variables such as 

nutrient supplementation rate but also logic-type variables such as, in cell-cycle, the 

growth-arrest time which has a binary irreversible property. The aim of this work is to 

develop a comprehensive cell-cycle model for a hybridoma culture producing 

monoclonal antibody and design a mathematical strategy to incorporate binary 

irreversible variables into the dynamic optimisation strategy. The ability to 

computationally optimise such system would save experimentation time since fewer 

combinations of the two types of degree of freedom are required to be tested in wet lab. 

3.2.1 Model Structure 

3.2.1.1 Development of Model Equations 

The equations for cell growth, death, nutrient uptake, and major metabolism 

were modified from Kontoravdi et al. (2005), Jang and Barford (2000b), and Tatiraju et 

al. (1999). The model was further developed in this study to include description of cell-

cycle sub-populations and the changes are detailed below. The cell-cycle representation 

was based on the yeast model of Uchiyama & Shioya (1999) and the tumour cell model 

of Basse et al. (2003) but adapted using first-principles to suit the replication rate of 

hybridoma cells which is dependent on more factors than yeast cells and slower than the 

tumour cells. Equations 3.2 - 3.5 express viable cell concentration (X,.) in terms of cells 

in G q / G i , S, and GG/M phases. The G? phase and M phase were treated as one group 

because they both have twice the DNA content of a non-growing cell making them 

undistinguishable from each other under common cell-cycle analysis methods with flow 

cytometry. As a simplification in notation, G q / G i cells will be indicated as Gi unless 
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otherwise stated. Detailed definition of all variables and parameters can be found in 

Section 3.2.6. 

Cell culture volume: 

dV 
— F- — F — F 

in ' ou! sam 

The effect of volume increase by addition of concentrated nutrients on the 

residual concentration of cells, nutrients, product, and byproducts was negligible in this 

hybridoma cell culture experiment. Thus, an approximation of volume independency 

was made in the mass balance equations of the concentration of cells, nutrients, product, 

and byproducts. But this assumption could not be made in Chapter 4 for the CHO-IFNy 

fed-batch cell cultures as the feedback controller in those experiments could add 

significant volume of nutrients to the cell cultures. Sampling caused a negligible 

reduction in volume and did not disturb the concentration of substances. 

Cell-Cvcle & Cell Concentrations: 

= ^G1 + + ^G2/M (3.2) 

^ = 26. - A,. Xg, - (3.3) 

= ^1 • ^G1 ~ ^2 ' ^ S ^ Md ' ~ (3-4) 

^ ^ = ^2 '^S ~Md -^GUM - ( - ^ ) ' ^G2/M (3-5) 

Assuming any possible cell lysis is negligible: 

(3.6) 
at 

(3.7) 

Since = {/j. -/i^) • X , k], k2, b can be expressed in terms of / j : 
dt 

+ (3.8) 
y 

V / 

/ f ^ 

CUM \ ^ J 

(3.9) 

(3.10) 
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where Xj is fraction of cells in cell-cycle phase i. x, is related to the specific growth rate 

(Uchiyama & Shioya, 1999; Slater et al., 1977) and are expressed as follow: 

_ (3.11) 
log 2 

a, (3.12) 
log2 

JCcz/Af ==1 --JCci - J:, (3.1:3) 

where d, represents the fraction of cells in cell-cycle phase i when specific growth rate 

is zero; and ts and tarn represent the time-length of the S phase and G2+M phase 

respectively. 

Antibody synthesis: 

— = / ( V ) • {QuAkCl • ^G1 + QmABJ • + QlHAkGl/M ' ^G2/M ) ~ ' [MAb] (3.14) 

0 , V > V.,.. 

where / (v ) 1 
, v < i ^ 

2 _j_ ^MAb 

(3.15) 

V 

QMAh,G\ ~ (3'l 'QMAh,GlA y2 ' Gl.2 ) 

QMAh.S = ( } ] 'QMAIj.SA +^2 'QlHAb.Sa^ (3.16) 

QMAb,G2IM —(^1 ' QMAh.GHMA J2 ' QMAh,G2lM,2^ 

Equations 3.14 - 3.15 take into account the production of MAb by each cell-

cycle phase. The introduction of viability, v, in the specific MAb productivity, QmAh, 

was based on the results of Glacken et al. (1988a) which demonstrated that cell culture 

productivity of hybridoma CRL-1606 was affected by low viability. It was also 

observed in our experiments that specific productivity decreased for this cell-line during 

death phase. The model has used binary variables, yi and y2, when parameter values are 

affected under cell-cycle arrest condition (Equation 3.16). This is further discussed in 

the cell-cycle arrest session below. 
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Glucose/lactate consumption/production: 

n = E [Glc] 

Qlac ~ ^maxluc.glc ' Qgk (3.18) 
^lac,gk + [GkU 

The specific glucose uptake rate, Qgic, and specific lactate production rate, 2/«c> 

were modified from Kontoravdi et al. (2005) based on results of the test fed-batch 

culture showing both specific glucose consumption rate and lactate yield decreased 

when glucose reached a level much lower than that in batch cultures. Thus in Equation 

3.17 - 3.18, Qgic and Qiac are proportional to glucose concentration. 

Ammonium production: 

Qamm âmm,glii Qgln (3.19) 

The specific ammonium production rate, Qamm, was proportional to the specific 

glutamine consumption rate, Qgi,,. 

Cell growth/death: 

- (3.20) 

jUd= — ,n>l (3.21) 
2_|_( ^y\^<l.amm\ + 2^d.amml 

[Anim\ \ J 

The model has used binary variables, yj and >'2, when the parameter values are 

affected under cell-cycle arrest condition which is discussed in Equation 3.28 - 3.29. 

Equation 20 uses multiplicative terms to represent the dependence of the specific 

growth rate on various substrates and by-products. This equation structure is commonly 

used to describe cell growth although growth itself is not a multi-order 'reaction' and 

the effects of by-product inhibition (from Amm and Lac) may not be fully independent 

from other variables in the growth kinetics. The biological details of growth inhibition 

by toxic by-products require further experimental investigation to identify, for example. 
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whether the inhibition mechanism is competitive or non-competitive and the possibility 

of a more mechanistic structure for the growth kinetics. 

The equations for the specific glutamine consumption rate, and the mass 

balance equations for glucose, glutamine, lactate, and ammonium are the same as 

Kontoravdi et al. (2005): 

[Cfk-L (3.22) 

= --(2;,. [(3/%],, - [Gb] (3.23) 

= (3 24) 

[(3/%]--:^^ .̂. [/kmn] (3.25) 

C3.:26) 
^x.gln 

3.2.1.2 Cell-Cycle Arrest Simulation 

Two binary variables were used to activate/inactivate parameters of which the 

values were affected by the cell-cycle arrest. In Equation 3.28 - 3.29, yj represents 

activation of parameters during normal condition and represents activation of 

parameters during arrested condition. 

72 = 
0 , f < f , 

( ^2&) 
1 

f i = 1 - - ^2 (3^!9) 

where ta is the cell-cycle arrest time which can be any positive real value. 
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3.2.2 Materials and Methods 

3.2.2.1 Batch and Fed-batch Cultures 

The hybridoma CRL-1606 cell-line (ATCC) producing IgGl monoclonal 

antibody (MAb) against human fibronectin was used. Batch cultures were inoculated 

with mid-exponential phase cells at 1.5-2.0 x 10^ cell ml ' in 100 ml medium containing 

DMEM (GIBCO) supplemented with 25 mM glucose and 4 mM glutamine (GIBCO), 

2.5% v/v Calf Bovine Serum (ATCC) and 1% v/v Penicillin-Streptomycin (10,000 units 

of penicillin and 10,000 |ug of streptomycin per ml stock (GIBCO)). The shake-flask 

cultures were incubated at 37°C, 5% CO2, 100% humidity, and 120 rpm. Samples were 

taken every 8 hrs. The batch culture started with 6 replicates and half of them were 

arrested with 0.5% v/v Dimethyl Sulfoxide (DMSO) (Wang et al, 2004) of >99.7% 

pure sterile stock (Sigma) at 44 hrs. Fed-batch cultures were performed in triplicates 

with the same initial conditions as the batch cultures. In the test fed-batch culture, 

concentrated glutamine (Sigma) at 200 mM was added twice a day after the glutamine 

in the original culture was depleted. Fed-batch cultures for model validation were 

carried out following a computationally optimised feeding strategy and were arrested 

with 0.5% DMSO at certain time. Three different cell-cycle arrest times at 78 hrs, 96 hrs, 

and 126 hrs which gave similarly high yield in the simulations were tested in separate 

fed-batch cultures. The feed contained DMEM (GIBCO) with 200 mM glutamine 

(Sigma) and 500mM glucose (Sigma). All of the arrested fed-batch cultures were 

carried out in triplicates. 

3.2.2.2 Cell Culture Analyses 

Cell concentration and viability were determined with a Neubauer 

haemocytometer (Assistant) by employing the dye exclusion method with trypan-blue 

(Sigma, 0.4% w/v stock). The trypan-blue stock solution was diluted ten times in PBS 

(GIBCO) solution before use. Each suspension cell sample from cell culture flask was 

diluted 2 - 8 times with working solution of trypan blue and then one drop was put onto 

the haemocytometer with a glass slide. The number of cells was counted in five out of 

nine 1mm squares (four corners and centre) on the haemocytometer under a microscope 
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(Lica). The average number of cells per 1mm square corresponds to the amount of cells 

in every 10^ ml. 

Glucose, glutamine, lactate, and ammonium were detected using a BioProfile 

200 analyser (Nova Biomedical) pre-calibrated with internal standards of different range 

of substrate/metabolite concentration. Cells were fixed with 50% v/v ethanol and 

stained with PBS (Gibco) solution containing 50 |J.g/ml propidium-iodide of Img/ml 

stock (Sigma), 25 M-g/ml RNase Type I-A (Sigma) for cell-cycle analysis using an Epics 

Altra flow cytometer (Beckman Coulter). The flow cytometer was calibrated using 

Flow-Check fluorospheres (Beckman Coulter) and then the cell samples were measured 

at 605-615nm wavelength. The data were analyzed for cell-cycle distribution using 

Cylchred software (Cytonet UK). Antibody concentration was measured using an 

enzyme-linked immunosorbent assay (ELISA) modified from Kontoravdi (2007). 

Microplates (Coming) were coated with 100|il of l|ig/ml anti-human fibronectin 

antibody from rabbit (Sigma) in each well overnight at 4°C. After blocking non-specific 

binding with 250-300)J,l per well of 0.5% w/v casein (BDH), each well was incubated 

with 100)11 of 0.2|ag/ml human fibronectin (Chemicon) for 1 hour. The plates were then 

incubated with lOOp] of diluted samples per well in triplicates and separately with 

lOOjutl per well of serial dilutions of the standard antibody anti-human fibronectin 

antibody from mouse (Sigma) in duplicates for 2 hours. This was followed by 

incubation with lOOpf per well of 0.64)Ltg/ml of anti-mouse Fc antibody from goat 

(Sigma) for 1 hour. Afterwards, lOOpl per well of TMB (Sigma) solution with 0.2 pl/ml 

of fresh 30% H2O2 (Sigma) was added and the reaction was stopped with 50pi of 2.5 M 

sulphuric acid (BDH) after 10-45 minutes. Absorbance was measured at 450 nm with an 

ELX 808 Ultra Microplate Reader (Bio-Tek Instruments Inc.). A detailed ELISA 

protocol is available in Appendix 1. 
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3.2.2.3 Parameter Estimation 

The model was implemented in gPROMS ModelBuilder 3.0.3 (Process Systems 

Enterprise Ltd.). Model parameters were estimated using a general maximum likelihood 

approach in gPROMS mainly based on the normal and arrested batch culture data. Data 

from the test fed-batch culture were used to estimate the parameters for glucose 

consumption and lactate production as glucose dropped to a lower level in fed-batch 

cultures than batch cultures. The maintenance consumption of glucose was estimated 

using glucose consumption data in the death phase of fed-batch cultures. 

The specific antibody productivities in the G/, S, and GVM phases were 

estimated based on the cell-cycle distribution analysis, the average specific antibody 

productivity, QMAI?, measured from ELISA, and the viable cell concentration in the batch 

and test fed-batch cultures. The QMAB in the early exponential phase was found to be 

relatively lower than in the mid-exponential phase; and there was no significant change 

in QhiAh in the early death phase but a reduction at low viability in mid- and late death 

phase. Since G, cells are more abundant than S and G2/M cells in the early exponential 

phase — the opposite is true in the mid-exponential phase — G] cells are assumed to be 

less productive than S and GI/M cells. This assumption is only applicable for the CRL-

1606 cell culture tested in this work as the relationship between cell-cycle and 

productivity had been reported to be cell-line and promoter dependent (Al-Rubeai and 

Emery, 1990; Al-Rubeai et al., 1992; Lloyd et al., 1999). There were multiple solutions 

for the specific productivities of each cell-cycle phase as a result of the number of 

measured variables for antibody production being less than the number of the 

corresponding model parameters. Thus, the system was simplified by a further 

assumption based on the trend of cell-cycle related specific productivity reported in the 

literature that the specific product secretion rate is highest in Gi/M phase followed by 5 

phase and G; phase (Lloyd et al., 1999; Lloyd et al., 2000). It is assumed that QMAKGI is 

twice smaller than QuAb.s', and QMAB.S is the same as QMAH.G2/M-

The time-length of each cell-cycle phase was estimated based on the study of 

Volpe and Eremenko that most mammalian cells grown at 37°C have cell-cycle phases 

ranging in 6 - 9 h for S, 2 - 5 h for G?, 1 - 2 h for M, and 0 - 3 0 + h for G, (Volpe and 

Eremenko, 1973). 
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There are 13 differential equations (% G,. MAAcy, 

MAbG2M, Glc, Gin, Lac, Amm) and 26 parameters in the model, of which 7 parameters 

{Kj^amm, Umax, Yx.gk, Yx.gin, QMAb.Gh QmAh.s, QMAh,G2/M) W e r e affected by cell-cycle arrest. 

The values of those affected parameters were programmed to switch automatically in 

the model when the cell-cycle arresting chemical was introduced. 

3.2.3 Productivity Optimisation 

As a case study for product yield optimisation, the amount of feed, Fin(t), and the 

cell-cycle arrest time, were varied while all other conditions, e.g. initial conditions, 

feed compositions, time intervals etc., were fixed. For practical purpose, the time 

interval was fixed to be a repeating cycle of 6 h 6 h 12 h. The objective was to 

maximize MAb yield by increasing the longevity and productivity of the cell culture. 

The model-based optimisation was done using a mixed-integer dynamic optimisation 

(MIDO) algorithm (Bansal et al, 2003) implemented in gPROMS with a grid of 

different initial values for the two degrees of freedom concerned (F„,(r) and /„)• Further 

discussion of the literature background of MIDO is available in Chapter 6. A total of 

100 different combinations of initial conditions of Fi„(t) and ta were analysed. The 

optimised profile of FUt) and ta with the highest antibody yield was selected for 

experimental validation. Two more fed-batch cultures were performed with the same 

optimised Fi„{t) but two different values of to investigate if the model was able to 

predict the cell culture variations. 

3.2.3.1 Model Transformation for Optimisation 

In order to carry out simultaneous optimisation of and Fi„(t), Equation 3.28 

and ta were transformed into Equation 3.30 — 3.33. The cell culture time was divided 

into sub-intervals and a>i was a degree of freedom that can be either 0 (normal condition) 

or 1 (arrested condition) in each short time interval. Equation 3.31 - 3.33 translated the 

'decision' of Q)i into a binary value for y? and this decision is irreversible from 0 to 1 

when 0)1 is set at 1 at anytime in the history of the cell culture. 
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a ) , = O o r l (3 30) 

= (3 J1) 

ft) 
'2 

^ ( a + w j 
(3J2) 

J'z =4% (3.33) 

where Mq)» 1, S« 1 such that Equation 3.32 would saturate rapidly once coj was first 

set to 1. In the above optimisation, ^ = 1 0 Ma)= 10''. A schematic diagram showing 

the role of the binary variable in the model simulation and optimisation" is shown in 

Figure 3.2. 
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F i g u r e 3.2: Schematic diagram of the proposed mixed-integer dynamic simulation and 

optimisation framework. The parameter values of the cell-cycle model with continuous and 

binary variables are estimated using experiment data. During dynamic simulation, the binary 

variables are dependent on the cell-cycle arrest time ( f j which is fixed. In the mixed-integer 

dynamic optimisation (MIDO), the dependency of the binary variables is changed to a binary 

number COj which can be either o or 1 in any time interval. The first instance that coj becomes 1 

will cause to switch f rom 0 to 1 and vice versa for y, permanently regardless of the 

subsequent values of cOi in later t ime intervals. The optimised profile of and cell-cycle 

arrest t ime with the highest M A b yield was tested by experiment. 
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3.2.4 Results & Discussion 

3.2.4.1 Deviations in the Original Model 

The main trends of the concentration of viable cell, monoclonal antibody, 

glucose, lactate, glutamine, ammonium and the distribution of cell-cycle in the batch 

and test fed-batch cultures were able to be simulated accurately by the model (Figure 

3.3 - 3.10). However, there are significant deviations in the prediction for the optimised 

arrested fed-batch cultures which make it necessary to re-evaluate the original model 

structure. In the optimised arrested fed-batch cultures, the viable cell concentrations 

appeared to be significantly overpredicted (Figure 3.11) though the predicted antibody 

concentrations were close to the experiment data (Figure 3.12). For example, the viable 

cell concentration of the optimised fed-batch culture arrested at 96 h was over-predicted 

by up to about 1.2 x 10® cell L'̂  in the death phase and the peak viable cell 

concentration was higher than the experimental result by 0.3 x 10® cell L"'. The over-

prediction for the optimised fed-batch cultures arrested at 78 h and 126 h followed 

similar trends. 
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Figure 3.3: Viable cell concentration in batch and test fed-batch hybridoma cell cultures. 
Symbols represent experiment data and lines represent model simulation. 
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Figure 3.4: Monoclonal antibody (MAb) concentration in batch and test fed-batch hybridoma 
cell culture. Symbols represent experiment data and lines represent model simulation. 
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Figure 3.5: Cell-cycle distribution in batch hybridoma cell cultures. Symbols represent 
experiment data and lines represent model simulation. 
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Figure 3.9: Glucose and lactate concentration in test fed-batch hybridoma cell culture. 
Symbols represent experiment data and lines represent model simulation. 

66 



a o 
'•C & 
g 
u 
§ 
u 
lU 
a 

O 

Glutamine Fed-batch 
Glutamine Fed-batch simulation 
Ammonium Fed-batch 
Ammonium Fed-batch simulation 

0 20 40 60 80 100 120 

Time (h) 
Figure 3.10: Glutamine and ammonium concentration in test fed-batch hybridoma cell culture. 
Symbols represent experiment data and lines represent model simulation. 
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Figure 3.11: Viable cell concentration in optimised arrested fed-batch hybridoma cell culture 
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Figure 3.13: Ammonium concentration in batch, test fed-batch, and optimised arrested fed-
batch hybridoma cell cultures. 
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A comparison of the toxic byproducts concentrations revealed that the 

ammonium concentration in the arrested fed-batch cultures reached a significantly 

higher level than in the batch and test fed-batch cultures. The maximum levels of 

ammonium in the batch, test fed-batch, and optimised arrested fed-batch cultures were 

3mM, 6mM, and 8mM respectively (Figure 3.13). Thus, the growth rate appeared to be 

inhibited more strongly at higher levels of ammonium that was not tested in the batch 

and fed-batch culture data used for parameter estimation. The growth and death kinetics 

were modified to incorporate the accelerated growth inhibition and death initiation by 

ammonium at higher concentrations. The inhibition term of ammonium in the growth 

kinetics in Equation 3.20* became 4th-order instead of first-order to represent a sharper 

decrease in growth rate when ammonium concentration is beyond its half-saturation 

inhibition level. The second term in the death kinetics in Equation 3.21* represents the 

acceleration of death rate at high ammonium concentration. Equation 3.34 takes into 

account that the presence of glutamine could increase the cells' tolerance of ammonium, 

thus reducing death rate. The ammonium yield from glutamine was also found to be 

non-linear at high ammonium concentration and it is represented by the third term in 

Equation 3.19* which takes into consideration that the ammonium yield from glutamine 

decreased at high concentration of ammonium. 

Q = ^ [Gl^ 
' (y , + % * 

(3.17*) 

The maintenance consumption, frigid for glucose in Equation 3.17* was initially 

considered negligible due to observations in batch cultures that Q î,- dropped to zero in 

the death phase. However, in all of the fed-batch cultures a significant consumption of 

glucose was observed throughout the death phase. Thus is restored and it is 

assumed that the glucose uptake mechanism in batch cultures might be affected when 

glutamine is depleted. 

Qa„„„ = Ya„„n,sl,. ' Q,l„ ^ (3.19*) 
[Amm] 1 + 
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A/ l̂ d max 

[AOTOT] 

w h e r e / ( G / « ) = i + - ^ 

1 -
K ^ 

inh, gin 
[Gin] 

1 + -

1 + 
K., 

[Amm] 

,n,m > 1 (3.21*) 

(3.34) 

The new model has 31 parameters due to 5 new parameters being introduced: 

(Equation 3.17*), Krev,amm (Equation 3.19*), K'damm (Equation 3.21*), m (Equation 

3.21*), and (Equation 3.34). 

Because of changes in part of the equations in the model, the values of 8 

parameters from the old model were affected: K,,amm (Equation 3.20*), 7,,̂ ,/,, in normal 

and arrested culture (Equation 3.26), a, (Equation 3.27), or, (Equation 3.27), n 

(Equation 3.21*), (Equation 3.21*), and Kgic (Equation 3.20*). All the parameter 

values can be found in Table 3.2 at the end of Section 3.2.4. 

3.2.4.2 Results of the Adjusted Model 

3.2.4.2.1 Growth and Cell-Cycle Distribution 

The new simulation results for cell concentrations in batch and test fed-batch 

cultures are shown in Figure 3.14. The simulated viable cell concentrations in the batch 

cultures were well predicted as the original model (Figure 3.3) though there was a mild 

under-prediction of the peak viable cell concentration of the test fed-batch culture by 0.2 

X 10® cell L"' (Figure 3.14). The monoclonal antibody (MAb) concentrations of the 

batch and test fed-batch cultures in Figure 3.15 also followed the experiment data. The 

higher simulated MAb concentration in the batch cultures in Figure 3.15 than in Figure 

3.4 was resulted from a slightly higher simulated viable cell concentration using the 

new model. The new cell-cycle distribution for batch cultures in Figure 3.17 was very 

similar to Figure 3.5. But in Figure 3.18, the predicted cell-cycle distribution of the Gj 

and S phase in the test fed-batch culture was significantly different from the experiment 

data. Investigation into the original model predictions revealed that the old total cell 

concentration for test fed-batch culture was significantly overpredicted (Figure 3.19). 

Thus, the original apparent simulation success in the cell-cycle distribution of the test-
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fed-batch culture in Figure 3.6 was caused by an overpr-ediction in the growth rate. 

Traditionally, the dead cell concentration was considered to be less important than the 

viable cell concentration because most cell culture models assume dead cells to be non-

productive which means their concentration would not affect the predicted productivity. 

With the correct prediction of total cell concentrations using the new model, the 

simulated G; phase relative population was over-predicted and the S phase relative 

population was under-predicted in the test fed-batch culture between 50 - 100 h with a 

deviation of 10 - 20% (Figure 3.18); and in the optimised arrested fed-batch cultures 

such deviation was between 70 - 170 h (Figure 3.20). The G.JM phase relative 

population remained at 10 - 20% throughout all fed-batch cultures. The cell-cycle 

distribution data of the optimised arrested fed-batch cultures did not show significant 

differences among various cell-cycle arrest time (?„) which was also reflected in the 

simulation (Figure 3.20). 

The cell-cycle distribution in the batch cultures showed a dynamic variation in 

the Gi and S phase relative population throughout the whole cell culture time (Figure 

3.17). The G2/M phase relative population was more stable in between 10 - 20% before 

and during exponential phase and then dropped to 5 — 10% during death phase. The 

introduction of 0.5% DMSO at 44 h to arrest the batch culture resulted in an increase in 

G] phase relative population by roughly 10% and a corresponding decrease in S phase 

by a similar extent. The G2/M phase data did not show significant difference between 

the normal and arrested culture though the simulation results showed a slight reduction 

of the G2/M phase relative population in the arrested culture by about 2%. There 

appeared to be a lag of about 10 h between the data and model prediction at the early 

culture time particularly for G; and S phases. 

As mentioned above, the cell-cycle equations in the adjusted model with correct 

total cell concentration predictions were not able to predict the higher percentage of 

cells in the S phase and lower percentage in the G/ phase after mid-exponential phase of 

all the fed-batch cultures (Figure 3.18 & 3.20). About 10 — 20% more cells appeared to 

remain in the S phase in the fed-batch cultures during death phase than in the batch 

cultures (Figure 3.17, 3.18, 3.20). Current knowledge about the dynamic variation of 

mammalian cell-cycles in the literature is very limited. There might be a change in the 

time-length of the cell-cycle in the late-exponential and death phase of the fed-batch 

cultures due to growth inhibition by lactate/ammonium. The time lag between the cell-
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cycle data and simulation results in the first 10 h of the cell culture time indicated the 

presence of an adaptation period right after inoculation. This can be addressed in the 

model by introducing a time delay in the cell-cycle equations. 

3.2.4.2.2 Metabolism 

The adjusted model followed the changes in glutamine and ammonium 

concentrations in all of the batch and fed-batch cultures (Figure 3.27 - 3.30). The 

glucose concentration is also well simulated (Figure 3.23 - 3.25) but the measured 

lactate concentration in the optimised arrested fed-batch cultures was unexpectedly low 

(Figure 3.26). It was surprising that the lactate concentration in the optimised arrested 

fed-batch cultures did not increase beyond 35 mM despite ongoing consumption of 

glucose in all of the 9 shake-flask cultures performed. Lactate production in mammalian 

fed-batch cultures had been reported to level-off despite continuous glucose 

consumption (Zhou et al., 1997a) or in some cases a transient net consumption was 

observed (Zhou et al , 1997b). The metabolic pattern of lactate production may have 

changed at the later stage of the fed-batch cultures. The deviation in the prediction of 

lactate concentration did not have a significant effect on the prediction of viable cell 

concentration and productivity because lactate has a much lower impact on the growth 

kinetics than ammonium. As the viable cell concentration is dependent on the levels of 

nutrients and byproducts, it is encouraging that most of them were properly simulated 

by the model. 
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3.2.4.2.3 Antibody Productivity 

The average specific antibody productivities, Qmai,, of the batch and test fed-

batch cultures are shown in Figure 3.16. The mean 2ma/> data of the arrested batch 

culture after cell-cycle arrest at 44 h was higher than that of the normal batch culture in 

4 out of 6 analyzed time points, so the arrested culture had higher productivity than the 

normal culture. The Qmab of the test fed-batch culture at 7 h was significantly lower 

than that between 20 - 40 h (Figure 3.16). As the Gj phase was more dominant in the 

early few hours of cell culture time than in 20 - 40 h (Figure 3.18), the experiment data 

indicated a relatively higher specific productivity in the S or G2/M phase than the G] 

phase. The corresponding QmaI} of the batch cultures were inconclusive about the 

relative specific productivity between the early exponential phase and mid-exponential 

phase due to a higher measurement uncertainty. The batch and fed-batch cultures in this 

study had identical initial medium compositions and similar inoculum density. Thus, 

their specific antibody productivity, Qmai,, should be the same in the early hours of the 

cell culture before any disruption by DMSO at 44 h or later on the addition of nutrients. 

During the death phase, the mean Qmai, of the batch cultures appeared to drop though 

that of the test fed-batch culture did not decrease significantly (Figure 3.16). The 

simulation captured the relative trend of QMAh with a two-fold reduction in the death 

phase when viability was low and a higher specific productivity when the cells were 

arrested. 

Various cell-cycle phases had been reported to have the highest antibody 

production rate, depending on the cell-lines studied (Ho, 2007; Cherlet et al., 1995; Al-

Rubeai and Emery, 1990; Lloyd et al., 1999; Lloyd et al., 2000). Kromenaker and 

Srienc studied several AFP hybridoma cell-lines and suggested there was a net 

accumulation of antibodies in Gi phase but a net secretion in G2+M phase (1991; 1994a; 

1994b). Lloyd et al. (2000) showed the specific productivity of four different 

mammalian cell-lines had the same trend that specific productivity increased from G| to 

5 and to Gg/M. The simulation results of antibody concentration, MAb, with an 

assumption of the relative values of QMAh.Gi , Qmab.s , and QmaiiGI/m discussed in the 

Modelling section was able to follow the different MAb yields in the batch and fed-

batch cultures. In terms of growth phase dependency of specific productivity, i.e. 

whether QMAb is higher in the growth phase or death phase, it had been shown to be cell-
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l ine dependen t (Al -Rubea i et al., 1992). T h e hyb r idoma cell-l ine used in this study 

appeared to be less product ive in the death phase. 

T h e M A b yield in the opt imised arrested fed-ba tch cul tures reached about 3.5 g 

L ' as compared to about 2.5 g in the initial fed-ba tch cul ture and approximate ly 1.3 

g L"' in the arrested batch cul tures (Figure 3.15 & 3.22). The arrested ba tch cul ture 

achieved a h igher M A b concentra t ion than batch cul ture and this is re f lec ted in the 

s imulat ion with the ad jus ted mode l a l though the s imulated values are slightly h igher 

than the data by 0.2-0.3 g L'^ towards the end of cul ture t ime (Figure 3.15). T h e M A b 

yield f r o m the test fed-ba tch cul ture was approximate ly twice the amount in the ba tch 

cul tures. T h e M A b concentra t ion in the opt imised arrested fed-ba tch cul tures reached 

3.4 g L"^ (±0.2 g L'^) wi th no s ignif icant d i f fe rences a m o n g the cul tures arrested at 

d i f fe ren t t imes (Figure 3.22). T h e s imula t ion result was able to capture this trend with a 

negl igible decrease in the predic ted M A b yield when the cel l -cycle arrest t ime (?„) 

increased f r o m 78 h to 126 h. 
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Figure 3.14: Viable and total cell concentration in batch and test fed-batch hybridoma cell 
cultures with simulation from the adjusted model. 

74 



DJ3 
S 
§ 

I a o u 
X5 < 

0.0 

MAb Batch (normal) 
MAb Batch (arrested) 
MAb Fed-batch 
MAb Batch (normal) simulation 
MAb Batch (arrested) simulation 
MAb Fed-batch simulation 

2.564-3 

2.064-3 

1.5e4-3 -

1.064-3 

5.064-2 -

0 20 40 60 80 100 

Time (h) 
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Figure 3.16: Specific monoclonal antibody productivity (QMAb) in batch and test fed-batch 
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Figure 3.21: Viable and total cell concentration in optimised arrested fed-batch hybridoma 
cell cultures with simulation from the adjusted model. Three different cell-cycle-arrest time (?„) 
are illustrated. 
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Figure 3.23: Glucose and lactate concentration in batch hybridoma cell cultures with 
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Figure 3.24: Glucose and lactate concentration in test fed-batch hybridoma cell culture with 
simulation from the adjusted model. 
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Figure 3.26: Lactate concentration in optimised arrested fed-batch hybridoma cell cultures 
with simulation from the adjusted model. Three different cell-cycle-arrest time (f„) are 
illustrated. 

81 



a 
0 

2 

1 
E3 
O 

u 

0 
0 

Glutamine Batch (normal) 
Glutamine Batch (arrested) 
Glutamine Batch (normal) sim 
Glutamine Batch (arrested) sim 
Ammonium Batch (normal) 
Ammonium Batch (arrested) 
Ammonium Batch (normal) sim 
Ammonium Batch (arrested) sim 

20 40 60 80 100 

Time (h) 
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Figure 3.28: Glutamine and ammonium concentration in test fed-batch hybridoma cell cultures 
with simulation from the adjusted model. 
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3.2.4.2.4 MIDO Optimisation 

T h e M I D O resul ts f r o m the ad jus ted mode l using 100 d i f fe rent combina t ions of 

the initial guess of Finit) prof i le and cel l -cycle arrest t ime (?„) subjec ted to the 

constra ints d iscussed in the Sect ion 3.2.3 gave rise to numerous local op t ima of M A b 

yield ranged 2650 - 3040 m g L"'. T h e op t imum result with the h ighes t M A b yield had a 

cel l -cycle arrest t ime, ta, at 60 h (Figure 3.31), which is earl ier than the op t imum 

es t imated f r o m the old model of which the value of ta was at 126 h. 

T h e deve loped model has assisted to evaluate numerous combina t ions of 

nutr ient supplementa t ion prof i les and cel l -cycle arrest t imes to ident i fy the best poss ib le 

prof i les of the two degrees of f r eedom. The n u m b e r of r andom exper iments required for 

ident i f icat ion of the opt imal process condi t ions has been s ignif icant ly reduced . The 

accuracy of the M I D O opt imisat ion result is dependent on whe ther the mode l can 

suff ic ient ly represent the system fo r the who le range of variable values encountered . 

T h e old mode l which as sumed a f i rs t -order inhibit ion of growth and a s imple second-

order e f fec t on death by a m m o n i u m over-predic ted the viable cell concentra t ion in the 

arrested fed-ba tch cultures, resul t ing in an inaccurate opt imal cel l-cycle aixest t ime at 

126 h instead of 60 h f r o m the new model . The viable cell concentra t ion in the arrested 

fed-ba tch cultures reached its peak at 90-100 h. Thus the opt imisat ion result suggested 

cel l -cycle arrest be fo re the peak viable cell density is reached. As there is a t rade-off 

be tween s lower cell g rowth and h igher specif ic product ivi ty in the arrested cells, the 

mixed- in teger mode l -based opt imisat ion of fers an advantage to isolate impor tant ranges 

of the control lable variables. Such s imulat ion/opt imisat ion strategy can reduce t ime and 

cost in the search for the opt imal cul ture condi t ions. T h e new incorporat ion of a binary 

i r reversible var iable to opt imise ce l l -cycle-dependent product ivi ty has been very useful 

in this case study on hyb r idoma culture. This me thod can be applied to other 

combina t ions of b inary and cont inuous control variables in cell cultures. 
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Table 3.1: Degrees of f r eedom in the s imulat ion of the hybr idoma cell culture. 
Degrees of Freedom Values Units 
F;„ 0 (initial value) Lh- ' 
Pom 0 Lh"' 

0 (initial value) L h ' 
500 mM 

[ Gln]i„ 200 mM 
ta 44 h 

Table 3.2: Parameter values for the cel l-cycle model of the hybr idoma cell culture. 

Parameters Values Units Reference 
7 (**newpara) mM _ 

^d,amm normal: 2.6; arrested: 2.0 
(old model: 2.4) 

mM -

&0096 h ' Kontoravdi 2007 
Kgic 0.1 

(old model: 0.5) 
mM -

Kgi„ 0.075 mM Kontoravdi 2007, 
Jang & Barford 2000b 

K/.lac 171.756 mM Kontoravdi 2007 
2.5 
(old model: 28.5) 

mM -

0.5 C^'^-newpara) mM -

^lac. sic 4 mM -

Km Ah 80 % -

K Oslc 16 mM" -

Krev.anim 6 (**newpara) mM -

fyiglc 4e - l l (**-newpara) mmoloic cell"' h"' -

11 2 
(old model: 2.5) 

- Kontoravdi 2007, 
Jang & Barford 2000b 

m 2 (**newpara) - -

QMAh.GI normal: 1.8e-8; arrested: 2.58e-8 mg cell"' h"' -

QMAb.G2/M normal: 2.8e-8; arrested: 4.0e-8 mg cell"' h"' -

QMAh.S normal: 2.8e-8; aiTested: 4.0e-8 mg cell"' h"' -

fci/M 2 h -

ts 7 h -

^anim.tlln o^a molanim mol oin -

^max lac.nlc 2 moliac mor'oic -

^x,glc normal: 6.5e7; arrested: 4.1e7 cell mmoloic"' -

Yx,gln normal: 8e8; 
(old model: 4.7e8) 

arrested: 7e8 
(old model: 2.5e8) 

cell mmolgin"' -

OCl 5e- l l 
(old model: le-15) 

mmolgin cell"' h"' -

CCi 0.6 
(old model: 4) 

mM -

0IG3 h"' -

Hmax normal: 0.048; aiTested: 0.02 h"' -

Vcr 80 % -

dci/M 0.04 - -

0s 0.07 1 -
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3.2.5 Conclusions of the Cell-Cycle Model 

T h e deve loped mode l was able to predict the cell cul ture dynamics for mos t of 

the m a j o r var iables in all the ba tch and fed-ba tch cul tures studied. T h e two selected 

degrees of f r e e d o m in the h y b r i d o m a cell culture: nutr ient addit ion prof i le and cel l -cycle 

arrest t ime, were computa t ional ly opt imised s imul taneously based on the mode l and 

initial exper iment data. A m o n g all the cell cul tures pe r fo rmed , the monoc lona l ant ibody 

yield in the arrested fed-ba tch cul tures was about 3.5 g L"' which was roughly 4 0 % 

higher than in the test f ed-ba tch culture. W i t h the opt imisat ion results, only three sets of 

arrested fed-ba tch cul tures were pe r fo rmed fo r val idat ion instead of carrying out a lot 

m o r e exper iments to select the bes t control strategy f r o m . Fur ther work is necessary to 

unders tand the change in metabol ic pattern fo r lactate product ion and cel l -cycle 

distr ibution in fed-ba tch cul tures which appeared to be s ignif icant ly d i f ferent f r o m that 

in ba tch cul tures. It would also be interest ing to invest igate d i f fe rent cell cul ture initial 

condi t ions and h igher degrees of f r e e d o m in this mode l -based opt imisat ion. 

Overal l , with the aid of mode l predict ions, f e w e r exper iments were needed in 

order to explore the poss ible l imits of the cell cul ture product ion capaci ty. In the 

opt imised fed-ba tch culture, the cul ture l i fe- t ime was ex tended as indicated by the X,, 

peak ing at about 100 h whi le the cor responding peaking t ime fo r the initial fed-ba tch 

and ba tch cul tures were about 90 h and 65 h respect ively; and the M A b yield reached 

-3 .5x10^ m g L"' as compared to -2 .5x10^ m g L ' in the initial fed-ba tch culture and 

-1 .3x10^ m g L ' in the ba tch cultures. T h e fac t that the original model over-predic ted 

certain cell concent ra t ions in fed-ba tch cul tures and the ad jus ted mode l slightly under-

predic ted viable cell concentra t ion in a test fed-ba tch culture indicated in def ic iency in 

the growth kinet ics . In this cel l -cycle model , only two ma jo r nutrients, g lucose and 

g lu tamine , is related to the specif ic g rowth rate a l though there are other amino acids that 

are essential fo r g rowth be ing supp lemented to the cell culture. This will b e addressed in 

Chap ted 4 where a m i n o acids are mode l l ed explicit ly fo r a C H O - I F N y cell-l ine. 
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3.2.6 Notations for the Cell-Cycle Model of Hybridoma Culture 

T a b l e 3 .3: N o t a t i o n s f o r the ce l l -cyc le m o d e l of the h y b r i d o m a cul ture . 

Symbol Definition Units 
[Amm] ammonium concentration m M 
b transition rate of cells f rom G/ to S h"' 
F,„ inlet f lowrate Lh" ' 

Pom outlet f lowrate Lh" ' 
sampling rate Lh" ' 

fGkV glucose concentration m M 
[Glc]j„ feed glucose concentration mM 
[Gin] glutamine concentration m M 
[ Gln]i„ feed glutamine concentration m M 

^ d,amm half-saturation constant for high ammonium inhibition on 
death rate 

m M 

k, transidon rate of cells f rom S to G-,/M h-' 

k2 transition rate of cells f rom G2/M to Gj h-' 
half-saturation constant for ammonium inhibition on death rate m M 

^d,amm2 half-saturation constant for ammonium inhibition on death rate 
in arrested culture 

m M 

degradation rate of glutamine h-' 

Kgic half-saturation constant of glucose on growth rate m M 
half-saturation constant of glutamine on growth rate mM 
inhibition constant of ammonium on growth rate mM 

Kl.lac inhibition constant of lactate on growth rate mM 

^mh,gln inhibition constant of glutamine on death rate via increasing 
[Amm] tolerance 

mM 

^lac,glc half-saturation constant for lactate production with respect to m M 

KMAI) inhibition constant for MAb production with respect to cell 
viability 

% 

K^Oek half-saturation constant for glucose uptake mM" 

^rev, amm inhibition constant of ammonium on ammonium yield f rom 
glutamine 

m M 

[Lac] lactate concentration mM 
m exponential order in death kinetics -

]MAb] monoclonal-antibody concentradon m g L ' 

/JZu/c maintenance consumption of glucose mmol cell ' h"' 

mill,, maintenance consumpdon of glutamine mmol ce i r ' h"' 

n exponential order in death kinetics -

specific ammonium producdon rate mmol ce l l ' h"' 
specific glucose uptake rate mmol cell"' h"' 

Qlac specific lactate production rate mmol ce i r ' h"' 

QMAI) average specific M A b production rate mg cell"' h"' 

QMAI).! specific M A b production rate of cell-cycle phase i mg cell"' h"' 

t t ime h 

h cell-cycle arrest time h 

ts , tG2/M Time-length of the S phase and G?+M phase respectively h 

V viabihty % 

V Cell culture volume L 

Vcr critical viabilitv % 

^Ch ^S, 

XG2/M 
concentrations of viable cells in Gq/Gi, S, and Gi/M phase 
respecdvely 

cell L"' 

Xi fraction of cells in cell-cycle phase i -



Xv viable cell concentration cell L ' 
yi binary variable for normal culture condition -

y2 binary variable for arrested culture condition -

ammonium yield from glutamine mmol mmol" 
^max lac.t;lc maximum lactate yield from glucose mmol mmoF' 

^x.elc cell yield from glucose cell mmol"' 

^x.kln cell yield from glutamine cell mmol"' 

ai maximum maintenance consumption of glutamine mmol cell"' h"' 

% half-saturation constant for maintenance consumption of 
glutamine 

mM 

y" specific growth rate h ' 

Pd specific death rate h ' 

max maximum specific death rate h"' 
maximum specific growth rate h-' 

f^max2 maximum specific growth rate in arrested culture h ' 
0, fraction of cells in cell-cycle phase i when growth rate is zero -

CO, binary degree of freedom for optimisation of ta -

Oh, CO} continuous variables for optimisation of ta -
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Chapter 4 

— Model Development for CHO-

IFNy Cell Culture Including Amino 

Acids & Cellular Regulations 

As concluded in the previous chapter, amino acids except glutamine are often 

not considered in mammahan cell culture models though certain amino acids are known 

to be essential for growth. This is partly due to the difficulty in measuring the 

concentration of all amino acids in the cell culture; and partly because of the complexity 

of models that attempt to track the relationship between growth and amino acids 

concentration as well as interconversions of amino acids. In Section 4.1 of this chapter, 

a simple amino acid model is created for a mammalian cell-line (Chinese hamster ovary 

cells) commonly used in the bioindustry. The model was able to simulate cell growth, 

product synthesis, and consumption/production of most amino acids but certain 

insufficiency was noticed when applying such model to fed-batch cell cultures. As a 

result, a more detailed model is developed in Section 4.2 taking into account certain 

changes in the cell culture dynamics when the cells are subjected to a different condition 

in the cell culture medium. The model in Section 4.2 is further analysed in Chapter 5 

and subsequently used for model-based optimisation in Chapter 6. 
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4.1 A Simple Amino Acid Model for CHO-IFNy Culture 

4.1.1 Cell-Line & Experiment Setup 

Data of Chinese hamster ovary (CHO) cell-line producing recombinant human 

interferon gamma (IFNy) adapted to serum-free suspension culture were kindly 

provided by Dr. Danny Wong (Bioprocessing Technology Institute, BTI-A*Star, 

Singapore). The cell culture experiment was performed in serum-free and protein-free 

media (Wong et al., 2005). Detailed methodology has been described in Wong et al. 

(2005). The CHO-IFNy cells were cultivated in 4 L stirred-tank bioreactors at 37°C and 

pH 7 in batch and fed-batch conditions. The fed-batch cultures were controlled at low-

glutamine or low-glutamine plus low glucose conditions using on-line feed-back 

controllers with different set-points of glutamine and glucose concentrations. The 

dynamic feed profile records were only available for at least one of each fed-batch 

conditions tested; (i) O.lmM glutamine set-point, (ii) 0.3mM glutamine set-point, (iii) 

0.5mM glutamine set-point, (iv) 0.3mM glutamine set-point plus 0.35mM glucose set-

point, and (v) 0.3mM glutamine set-point plus O.VmM glucose set-point. Concentrated 

nutrient stream containing glutamine, glucose, and other amino acids were used to 

supplement the fed-batch cultures. Analyses of glucose, glutamine, and lactate were 

carried out using a biochemical analyser; ammonium was detected using UV 

spectrophotometry; IFNy concentration was analysed using enzyme-linked 

immunosorbent assay (ELISA), and amino acid concentrations were measured using 

reverse-phase HPLC (Wong et al., 2005). A total of 19 amino acids were measured: 

alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine, 

histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, 

threonine, tyrosine, and valine. Tryptophan was not able to be measured due to technical 

problems in resolving its peak in the HPLC analysis (personal conversation with Dr. 

Danny Wong). 
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4.1.2 Model Development 

4.1.2.1 Essential Amino Acids for Mammalian Cell Cultures 

Mammalian cells are known to be unable to synthesise certain amino acids 

which must be supplemented in the cell culture to sustain cell growth. A comparison of 

the essential amino acids of several mammalian cell types is shown in Table 4,1. 

The lists of amino acids that cannot be produced by mammalian cells appear to 

be cell-line dependent (Table 4.1). It should be noted that the data for murine hybridoma 

TB/C3 by Simpson et al. (1998) did not distinguish between amino acids that the cells 

cannot produce versus growth-stimulating amino acids that cen be synthesised from 

other amino acids. To avoid confusion, 'essential amino acids' will be used to refer to 

amino acids that cannot be synthesised by mammalian cells for the rest of this chapter. 

There are several common essential amino acids for all the cell-lines in Table 4.1: 

lysine, tryptophan, methionine, threonine, and leucine. Chinese Hamster Ovary (CHO) 

cells are genetically closer to mouse (murine) and human than other organisms (refer to 

Appendix 3 for linage relationship). Thus, those amino acids that are essential or 

growth-stimulating for human and murine hybridoma TB/C3 have been assumed to be 

important for the growth of CHO cells. Several literature studies have reported partial 

lists of essential or non-essential amino acids for various CHO cell-lines: CHO-IFNy 

chemostat cell cultures studied by Hayter et al. (1992) showed net productions of 

glutamic acid, aspartic acid, serine, and alanine at various steady-states, indicating they 

are non-essential amino acids; Heal and McGivan (1997) reported tryptophan, histidine, 

and phenylalanine to be essential for CHO-Kl cells; Altamirano et al. (2001) studied a 

CHO cell-line producing tissue-type plasminogen activator (tPA) in chemostat and 

alanine, glycine, and aspartic acids were produced by the cells; the CHO-IFNy cell 

culture modelled in this chapter showed net productions of alanine, glycine, and proline. 

All these examples are in agreement with the lists of essential/growth-stimulating versus 

non-essential amino acids of human and murine hybridoma TB/C3. The amino acids 

considered in the growth kinetics of CHO-EFNy are indicated in Table 4.1. 
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Table 4.1: Comparison of essential versus non-essential amino acids for different 

mammalian cells reported by Morgan (1958) and Simpson et al. (1998). 

Mammalian Organisms Model 

(A 
eg 
1 
A 
C 

6 
1 
J 

1 

K i 
a 

2 a a 
IS 

IE tl j "3 
•a 
< 

a 
i 'O 

'C 

ft 

illl 
< 8 &.5 

Arginine E E E E E nE,S nE,S E* V 
Histidine E E E E E E nE E V 
Lysine E E E E E E E E' V 
Tryptophan E E E E E E E E V 
Phenylalanine E E E E E E E n/a V 
Tyrosine E E E E E nE nE,S E* V 
Cysteine E E E E E nE nE,S E* V 
Methionine E E E E E E E E V 
Serine nE nE nE nE E nE,S nE nE -

Threonine E E E E E E E E V 
Leucine E E E E E E E E V 
Isoleucine nE E E E E E E E V 
Valine E E E E E nE,S E E V 
Glutamic acid inh nE nE nE nE nE nE nE -

Aspartic acid inh nE nE nE nE nE nE nE -

Alanine inh nE nE nE nE nE nE n/a -

Proline inh nE nE nE nE nE nE nE -

Hydroxyproline inh nE nE nE nE nE nE n/a -

Glycine nE nE nE nE nE nE nE nE -

Glutamine nE E E E E n/a n/a E energy source 
Asparagine n/a n/a n/a E n/a n/a n/a nE -

Remarks: 

E; Essential amino acid (cannot be produced by cells) 
nE: Non-essential amino acid 
S: Stimulating (enhance growth rate because of a slow rate of synthesis by the organism) 
inh: Inhibitory 
n/a: Not available 
*: Simpson et al. (1998) did not classify between essential amino acids that the cells cannot 

produce versus growth-stimulating amino acids that can be produced from other amino 
acids. 
Summarised by Morgan (1958) from experiments of Eagle (19.55a; 1955b), Eagle et al. 
(1956), Haff et al. (1956), Kidder and Dewey (1945), McCoy et al. (1956), and Rose et al. 
(1954). 
Data from Simpson et al. (1998) depleting amino acids one at a time in chemostat cultures 
of hybridoma TB/C3 and studied cell viability after 48h of removal of each amino acid. 

(I) 

(2) 
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4.1.2.2 Structure of Model Equations 

In this section, all the variables and parameters are summarised in Section 4.1.6 

with detailed definition. 

Specific Growth Rate 

The specific growth rate of CHO-IFNy cell culture is related to the 

concentrations of glucose, glutamine, and essential/growth-stimulating amino acids 

discussed in Section 4.1.2.1 except tryptophan which was not able to be measured in the 

experiment. It is assumed that the concentration of tryptophan never dropped to zero in 

the cell cultures and the effect of tryptophan on specific growth rate (//) is less 

significant than other essential amino acids. 

( _ \ R [GLC]-[GLN] 

^ [VAL] • [LRA] • [THR] • [///5'] • [ILE] • [PHE] 

+ M ) ' { K , „ + M K + [ILE])-{K^„^, + [PHE]) 

[LEU] • [MET] • [A/?G] • [TYR] • [ e r e ] 

• {K,,,+[LEU])IK,,,^,+[MET])IK^^„^+[ARG])IK,^.^+[TYR])-{K,^^^^ +[CYS])_ 

(4.1.1) 

where (h"') is the minimum specific growth rate, //,„(„ (h"') is the maximum specific 

growth rate, Ki represents the Monod-type constant of nutrient i which is the 

concentration of i to have half of the maximum stimulation on specific growth rate. 

In the above equation, glucose and glutamine are separated from other amino 

acids because the CHO-IFNy batch culture appeared to exhaust glucose and glutamine 

earlier than the amino acids and cell growth did not stop when there was no 

glucose/glutamine in the cell culture medium (Figure 4.1). The role of the minimum 

growth rate (//mm) is to compensate for possible under-estimation of ju due to any under-

prediction of amino acid concentrations. 
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Volume 

Assuming the sampling volume is negligible relative to the flowrates of the inlet 

stream(s): 

dV 
— = Fin + Pgk - (4-1.2) 

The effect of volume increase by addition of concentrated nutrients on residual 

concentration of cells, nutrients, product, and byproducts is taken into account by 

modelling the total amount of each substance in the mass balance. 

Specific Death Rate 

The relationship between specific death rate (/4/) and ammonium concentration 

{[AMM\) proposed by Ludemann et al. (1994) was adopted for CHO-IFNy cells with the 

inclusion of another toxic by-product lactate ([LAC]). Detailed explanation of the death 

rate equation can be found in Section 4.2.1.2 (Equation MIO). The values of critical 

concentration of ammonium and lactate ([AM7k/]„- and [LAC\r) were estimated based on 

findings by Hayter et al. (1991) that CHO cell-line could tolerate ammonia 

concentration up to about 5mM and was not affected by lactate concentration as high as 

17.5mM. 

K. + d.amm h rAT. . + | : L 4 q - [ L 4 q ^ j 

AT. d,amm 

w 
d,lac 

^djac 
(4.1.3) 

where ([AMM] - [AMM]„) = 0 and {[LAC] - [LAC]cr) = 0 if [AMM] < [AMM]„ and 

[LAC] < [LAC]cr respectively. 

Cell Concentrations 

= (4.1.4) 

. y - r,,,, . X, V - . X, (4. ] .5) 

Xi=X^, + X^ (4.1.6) 
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where X,., Xj, and X, (cell L"') are the viable, dead, and total cell concentrations 

respectively. Possible loss of dead cells is represented by (h"') in Equation 4.1.4. A 

more detailed discussion of cell lysis can be found in Section 4.2.1.2. 

Glucose ([GLC]) 

Gg/c - (4.1.8) 
^ x,gk 

where Qgic (mmol cell"' h'^) is the specific consumption rate of glucose, (L h'^) is 

the flowrate of glucose-containing stream, Ŷ ,gic (cell mmole"') is the cell yield from 

glucose, Mgic (mmol cell"' h"') is the maintenance glucose consumption. 

Amino Acids 

The interconversions of amino acids is based on discussions with Dr. Yih Yean 

Lee (BTI-A*Star, Singapore) based on their experimental results and the list of essential 

amino acids discussed in Section 4.1.2.1 that cannot be synthesised by mammalian 

cells. Below is a list of interconversions of amino acids included in this simple amino 

acid model: 

Arginine ^ Glutamic acid 

Arginine ^ Proline 

Arginine Aspartic acid 

Asparagine Aspartic acid 

Asparagine <- Arginine 

Cysteine Serine 

Glutamic acid Proline 

Glutamic acid <- Histidine 

Glutamic acid <- Glutamine 

Glycine Serine 

Proline Arginine 

Tyrosine <- Phenylalanine 
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Glutamine (IGLNl): 

^ - [CZJV]. V + f; , . [GIJV],, - . [GIJV] (4.1.9) 

Qgh = -TT^ Mgi„ + Ygi„,f.i„ • Qgu, (4.1.10) 

where Qgi„ (mmole cell"' h"') is the specific consumption rate of glutamine, /v,g/„ (h"') is 

the spontaneous glutamine degradation rate, (cell mmole"') is the cell yield from 

glutamine, Ygin̂ gu, (mmole mmole"') is the yield of glutamine from glutamic acid, 

(mmole cell"' h"') is the specific consumption rate of glutamic acid, M /̂„ (mmole cell"' h" 

') is the maintenance glutamine consumption, «/ (mmole cell"' h"') is the maximum 

maintenance consumption of glutamine and m (mM) is the corresponding half-

saturation constant. 

The specific consumption/production rate, Q, , is negative for consumption and 

positive for production of species i. The sign of Yj/Qi , where Yjj is the yield of amino 

acid j from i , is dependent on the sign of g, of the specific cell culture studied. Two 

exceptions occur for glutamate and arginine as their specific consumption/production 

rates altered between net consumption and net production in batch CHO-IFNy culture. 

As a simphfication, it is assumed that the sign of is positive and the sign of Yj, IS 

negative. 
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Below are the mass balance and specific consumption equations for other amino 

acids starting from the essential/growth-stimulating amino acids. 

Valine (fVALl): 

d{[VAL]v) 
dt = [KdLLl, - j f . , .[%4jL] (4.1.12) 

Q v a l - - T ^ ^ (4.1.13) 
x,val 

Lysine (fLSYl): 

di\LYS\v) 
dt 

= G , , - j f , . - H J F . - [ z - y s L ( 4 . 1 . 1 4 ) 

(2/y, =--77^^- (4.1.15) 
Xjy.1 

Threonine (ITHRl): 

d^HR\v) 
dt 

= JT,, [TTZR],, - - f ; . , [TfAC] (4.1.16) 

Q , k r = - ^ (4.1.17) 
^ x,thr 

Histidine (fHISJ): 

d{[HIS]v) 
dt 

.JT, 1/ + f ; . . [ f f / s ] (4.1.18) 

Q h i s - - ^ ^ (4.1.19) 
^ X, his 

Isoleucine (fLEUl): 

d{[lLE]v) 
dt 

==(%„ JC, + f ; . LOLCL (4.1.20) 

Q i i e = - ^ (4.1.21) 
^ x,ile 
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Phenylalanine (fPHEl): 

d{[PHE]-V) 
dt - . K y - - Y ? * , [ f f f E ] (4.1.2:2) 

Q p h e = - ^ ^ (4.1.23) 
x,phe 

Leucine (fLEUl): 

d{[LEU]-V) 
dt 

= Gw - y (4.1.24) 

Q i e u = - ^ ~ (4.1.25) 
^ x,leu 

Methionine ([MET!): 

di\MET\v) 
dt - jf,, - y - Bk%%rL - J".* - [A%%r] (4.1.2(5) 

Q m e , = - ^ ^ (4.1.27) 

Arsinine (fARGl): 

d{[ARG]w) 
dt 

= 2*2 ' ' y + [/Ufc;] (4.1.28) 

Y ârg,/?m Qpro ^dsg,asp Qasp (4.1.29) 

Tyrosine (fTYRl): 

c ? ( [ r y / ? ] y ) 

dt 
( 2 o r - - y [77%] (4.1.3C)) 

Q,yr - ~ ' i r ' Qphe (4.1.31) 

Cysteine (fCYSl): 

6 / ( [ c y ^ ] . y ) 

dt 
= 2 ^ - jr,, - y + - [c)?;],,, - - k:y.s] (4.1.32) 

Qcys - Kys,.uT ' Q.scr (4.1 .33) 
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Alanine ([ALA]): 

-y + f",. - [/U^A],. --jG.,, -[/LLdJ (4.1.3'*) 
at 

& , , = - T r - + '̂ ,„„ (4.135) 

x.ala 

where raia.x (mmole cell"' h"') represents a specific production rate of alanine from cells 

as there are many possible amino acid sources for alanine, making it difficult to track all 

the sources. This is also the case for aspartic acid and glutamic acid below. 

Asparasine ([ASND: 

= + - M (4.1.36) 
at 

0 =— Y Q (4.1.37) 

Aspartic acid (fASPJ): 

t / ( [ A 5 P ] - y ) 

dt 

M 

- ] (4.1.38) 

Qasp - K^p,ug • Garg + (4.1 39) 
Y 

J,a J/) 

Glutamic acid (f GLU]).' 

.[(aLf/] (4.1.40) 

x.ghi 

Glycine (IGLYl): 

= (2,h,. AT,, 1 / + f , . [GLir l , - ( 4 . 1 4 : % ) 

Q g l y ^ ' i r ^Sly.ser-Qser (4.1.43) 
x,giy 
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Proline ([PROD: 

d{[PRO\v) 
dt 

= 6 , , . . . y + f ; , . [ f / ( o l , - . [ f ( 4 . 1 . 4 4 ) 

Qpm Y '^'^pro.glii Qglu ^pw,3rg ' Qarg (4.1.45) 

Serine (fSERl): 

di[SER\v) 
dt 

= . j f , . y + j f , . [SZZRL . [&!%?] (4.1.4(3) 

/« 
- G,,, (4.1.47) 

Y x,ser 

Byproducts 

Lacta te {[LAC]) is p roduced mainly dur ing me tabo l i sm of glucose. Thus , the 

speci f ic product ion rate of lactate, Qiac ( m m o l e cell"' h"'), is l inked to specif ic g lucose 

consumpt ion rate (Ggk) via a te rm represent ing lactate yield f r o m glucose, Yiucgk 

(mmole m m o l e ' ' ) . 

= [LAC] (4.1.48) 

Qiac ~ ^lac.glc ' Qgic (4.1.49) 

Ammonium {[AMM]) is mainly produced from metabolism of glutamine and 

spontaneous glutamine degradation {rd.gi,,)- The specific production rate of ammonium, 

Qamm (mmolc Cell ' h '), is related to specific glutamine consumption rate (2^,/,,) via a 

term representing ammonium yield from glutamine, Yamm.gin (mmole mmole"'). 

. [jjkwwr] (4.1.50) 

Qamm âmm,g}n Qgln (4.1.51) 
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IFNy 

A simple equation is used to relate the production of IFNyto viable cell concentration; 

d([IFN]-V) 
dt 

- = [/FAT] (4.1.52) 

where rif^ (mg cell"' h"') is the average specific production rate of IFNy. 

4.1.3 Model Parameter Estimation 

The model contains 67 parameters with 26 measured variables. The parameter 

values were estimated in gPROMS (Process Systems Enterprise Ltd.) using a general 

maximum likelihood approach similar to in Chapter 3. Below are the parameter values 

for the CHO-IFNy batch culture. 

Table 4.2: Parameter values of the simple amino acid model for batch culture of CHO-

IFNy cells. 

Parameter Value Units 
[AMM]„ 5 mM 

Karg 6 x l & " mM 
mM 

5 X 10- mM 

^djac 4.5 mM 

Kglc 1.5 X 10 ' mM 
Kgl„ 2.2 X 10"' mM 

^his 5 x 10"' mM 

Kue 2 5 x 1 0 ^ mM 

^leu 2 x l & 2 mM 

Klys 1 X 10"- mM 

^mel 8 x l & 3 mM 

^phe 4 x 1 0 " mM 

K,hr 5 X 10"' mM 
K,yr 1 X 1 0 " ' mM 

1.5 X 10"' mM 
20 mM 

Mglc 1 X 10"" mmole cell"' h"' 

^ala,x 5.5 X 10 " mmole cell"' h"' 

^asp.x 2 x lO 'G mmole cell'' h"' 

^glu.x 4 x 10"" mmole cell"' h"' 

^d.gln 9 x l & 3 h"' 

^frag 1 X 10"' h"' 

^amm,gln 1.2 mmole mmole"' 

Yarg.asp 1 X 10"' mmole mmole"' 
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Yarg.glu 1 X 1 0 - mmole mmole"' 
y 1 X 1 0 " ' mmole mmole"' 
y 1 X 10- mmole mmole"' 
Yasp,arg 1 X 1 0 ' ^ mmole mmole"' 

^cv.s\ser 1 X 10"' mmole mmole"' 
ygln,}>lu 1 X 1 0 ' mmole mmole"' 
Yglu,arg 1 X 1 0 " ' mmole mmole"' 
yglu.gln 7 X 10"' mmole mmole"' 
yglujus 5 X 10"' mmole mmole' 
yglu,pm 1 X 10"- mmole mmole"' 

^ghuser 6.5 X 10"' mmole mmole"' 
yiac.glc 1.5 mmole mmole"' 

Ypro,arg 6 X 10"' mmole mmole"' 
ypro,gIu 5 X 10"' mmole mmole' ' 
yser.gly 1 X 1 0 " ' mmole mmole' ' 

5 X 10"' mmole mmole' ' 
y.XMla 1 X 1 0 ' cell mmole"' 

2 x 1 ^ cell mmole"' 

^XMSn 1.5 X 10' cell mmole"' 
y.x.asp 1.1 X 1 0 ' cell mmole"' 
y 6 x 1 ^ cell mmole"' 

^x.glc 7.7 X 1 0 ' cell mmole"' 
yx,gln 8 x 1 ^ cell mmole"' 
yx,glu SUSxlO^ cell mmole"' 

^x.gly 1.6 X 10' cell mmole"' 
4.6 X 10' cell mmole"' 

Yxjle 2 X 10' cell mmole' ' 
1.5 X 10' cell mmole"' 

r̂,/v.v 1.3 X lOf cell mmole"' 

^x./nei 5 2 x 1 0 * cell mmole"' 

^x.phe 4.1 X 10' cell mmole"' 
y 2 . 1 x 1 0 * cell mmole"' 
y 2.5 X 10* cell mmole' ' 

Yx.ihr 1.8 X 10* cell mmole"' 

Yx,r.r 2x5x10* cell mmole"' 

Yx.\'a! 3 x 1 ^ cell mmole"' 
aj 2 x 10"" mmole cell"' h"' 

0-2 2 mM 
5 x 1 0 ^ h"' 
2 X 10"' h"' 
L O x l O ^ h"' 

^IFN 1.8 X 10"" mg cell"' h"' 

The simulation results of the CHO-IFNy batch culture using the parameter 

values in Table 4.2 are shown in Figure 4.1 for the concentrations of IFNy, viable and 

total cell, glutamine, glucose, isoleucine (example for essential amino acid), alanine 

(example for non-essential amino acid), ammonium, and lactate. The model is able to 

follow the trends of all major variables. However, there are significant deviations in all 
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fed-ba tch cul tures unless certain pa ramete r values were changed for each individual f ed -

batch culture. A compar i son of f ed-ba tch cul ture s imulat ion results us ing pa ramete r 

values f r o m Tab le 4 .2 versus parameters individual ly adjus ted by trial and error is m a d e 

in Figure 4 .2 - 4.7. T h e af fec ted parameters are l isted in Table 4 .4 in Sect ion 4.1.4.2. 

T h e d iscrepancy in the predict ions of I F N y and cell concentra t ions of fed-ba tch cul tures 

w h e n ba tch pa ramete r values were used indicated certain changes had occurred in the 

cell cul ture when the cul t ivat ion me thod was changed f r o m batch to low-g lu tamine / 

low-g lucose fed-ba tch . 

In order to systematical ly ident i fy the mode l pa ramete rs that a f fec t the 

predict ion of product ivi ty , Global Sensit ivi ty Ana lys i s (GSA) was p e r f o r m e d to 

quan t i fy the relat ive inf luence of each paramete r upon the mode l predic t ion of cell 

g rowth . In next section, an overv iew of exis t ing sensit ivity analysis me thods is 

presented fo l lowed by an appl icat ion of G S A on the s imple amino acid mode l of the 

C H O - I F N y cell culture. 
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Figure 4.1; Simulations of the simple amino acid CHO-IFNy model for batch culture and 
comparison with the corresponding experiment data. 
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Figure 4.2: Simulations of the simple amino acid CHO-IFNy model for fed-batch culture with 
glutamine set-point at O.lmM using parameter values from batch culture versus adjusted new 
parameter values. Circles represent experiment data. 

106 



IFNy Viable & Total cell 

• IFNy 
Simulation (batch para) 
Simulation (new para) 

/* 

" 
1 

100 ISO 
Time (h) 

Glutamine 

i 2H 
U 

1 -

• Glutamine (HPLC) 
o Glutamine (bio-analyser) 

Simulation (batch para) 
Simulation (new para) 

P? 1-^ ^ 
1M 

Time (h) 

Isoleucine 

• Isoleucine 
Simulation (batch para) 
Simulation (new para) 

• 

• • 

IW 
Time (h) 

Ammonium 

• Ammonium 
Simulation (batch para) 
Simulation (new para) 

le+10 

9e+9 

8e+9 
J 7e+9 

S, 6e+9 

•a 5e+9 

4e+9 
c 
= 3e+9 

u 2e+9 

le+9 

0 

• Viable cell (Xv) cone. 
^ Total cell (Xt) cone. 

Xv sliii (new para) 

y ' ' ^ A ^ 

/ i • 

y V 
% 

r -
M I N ^ 2% 

Time (h) 

Glucose 

Glucose 
Simulation (batch para) 

• Simulation (new para) 

y 
A 

M IW 
Time (h) 

Alanine 

200 250 

• Alanine 
Simulation (batch para) 
Simulation (new para) 

/ 

/ . 
/ 

/ . 
/ ' " " " " " 

0 SO 100 150 200 250 
Time (h) 

Lactate 

• Lactate 
Simulation (batch para) 
Simulation (new para) 

/ 
/ 

/ 
/ A 

/ 
* # 

Time (h) Time (h) 

Figure 4.3: Simulations of the simple amino acid CHO-IFNy model for fed-batch culture with 
glutamine set-point at 0.3niM (1st experiment) using parameter values from batch culture 
versus adjusted new parameter values. Circles represent experiment data. 
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Figure 4.4: Simulations of the simple amino acid CHO-IFNy model for fed-batch culture with 
glutamine set-point at 0.3mM (2nd experiment) using parameter values from batch culture 
versus adjusted new parameter values. Circles represent experiment data. 
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Figure 4.5: Simulations of the simple amino acid CHO-IFNy model for fed-batch culture with 
glutamine set-point at O.SmM using parameter values from batch culture versus adjusted new 
parameter values. Circles represent experiment data. 
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Figure 4.6: Simulations of the simple amino acid CHO-IFNy model for fed-batch culture with 
glutamine set-point at 0.3mM and glucose set-point at 0.7mM using parameter values from 
batch culture vs. adjusted new parameter values. Circles represent experiment data. 
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4.1.4 Parameter Sensitivity Analysis 

4.1.4.1 Sensitivity Analysis Methods & the Method ofSoboV 

T h e relat ive impor tance of mode l parameters with respect to mode l outputs can 

b e analysed by varying the parameter values to see how the outputs are a f fec ted . The 

me thods for sensitivity analysis can be c lass i f ied into screening, local sensitivity, and 

global sensit ivity (Saltelli et al., 2000) . Screening me thods rank the input fac tors in the 

order of impor tance but do not quant i fy the exact percentage of in f luence that each input 

fac tor has on the total output (Campolongo et al., 2000) . Local sensit ivity analysis 

me thods ei ther numer ica l ly vary the input fac tors within a small interval around a 

nomina l value or directly solve the di f ferent ia t ion of output variables with respect to 

input fac tors (Turanyi and Rabi tz , 2000) . A s the local sensit ivity analysis me thods do 

not explore the who le range of poss ible values of the input factors , it is not sui table for 

non- l inear mode l s which are c o m m o n in dynamic biological systems. 

Global sensit ivity analysis (GSA) me thods vary the input fac tors over their 

ranges of exis tence and relate their impor tance to the output uncertainty. It evaluates the 

e f fec t of each input fac tor while all other fac tors are varied as wel l (Saltelli et al., 2000). 

Bo th s a m p h n g - b a s e d me thods and var iance-based me thods can be used for GSA. 

Sampl ing-based me thods sample the who le domain of the input factors . But certain a 

priori k n o w l e d g e of the mode l is required to select an appropriate distr ibution of the 

input fac tors within their ranges (Helton and Davis , 2000) . This knowledge may be the 

fac t that the mode l is l inear or at least monotonic , or the in format ion about the relat ive 

impor tance of the variables. Var iance-based me thods use var iance to indicate the 

s ign i f icance of input factors . There are several approaches to evaluate the var iance, all 

of which include calculat ing the fo l lowing quanti ty with or without h igher order 

in teract ions of input fac tors (Saltelli et al., 1999; Chan et al, 2000); 
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var* [ f ; (y | jr)] | (4S.1) 

or 

va r ; , [E (y |X) ] 
(4S.2) 

var (y) 

or other combinat ions of the numerator and denominator in Equat ion 4S.2, In Equat ion 

4S.1 & 4S.2, y is the output variable, X is the input factor, E{Y\X) is the expectat ion of 

y conditional on a f ixed value of X, and var% is the variance taken over all possible 

values of X. 

Correlat ion ratio method, Fourier ampli tude sensitivity test (FAST) and Sobol' 

method are of ten used in G S A to measure the variance. Correlation ratio is a simple 

way to evaluate the importance of an input factor. It is equivalent to the f irst-order 

sensitivity indices in F A S T and Sobol' method (Chan et al, 2000). F A S T was first 

proposed by Cukier et al. (1978) involving the use of t ransformation funct ions to 

translate the probabili ty density of the variation of input factors into an 5-space in order 

to convert the ^-dimensional integral in the input factor space into a one-dimensional 

integral in 5-space. The F A S T method is model independent and it calculates the higher 

order terms of interactions of input factors though the number of model evaluations 

required is of ten large (Saltelli et al., 1999; Haaker, 2004). But it is important to use an 

appropriate set of t ransformation funct ion for F A S T and the best choice is up to the user 

(McRae et al., 1982). The Sobol' method is an alternative to F A S T but does not involve 

any user-selected t ransformation (Sobol', 2001). The method of Sobol' was used in the 

sensitivity analysis of the simple amino acid CHO-IFNy model in Section 4.1 and the 

more complex C H O - I F N y model in Chapter 5. Below is a detailed description of the 

Sobol ' method (Sobol', 2001). 

Sobol' Method for Global Sensitivity Analysis (GSA) 

If a funct ion / ( x ) can be integrated and x = (xi, . . . , x„) is a point in an n-

dimensional unit hypercube with a range of 0 - 1, the f u n c t i o n / ( x ) can be decomposed 

into summands of increasing dimensionali ty as the fol lowing: 
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/ ( x , , . . . ,%,)=/(,+%] EA 
.V=l /] 

= A + Z + Z A ( + / u X ^ J 
/=l i< j 

Equat ion 4 .S3 is valid if: 

^ = ' I " " ' 

A consequence of Equation 4.S4 is that the r ight-hand-side terms in Equat ion 4.S3 can 

be expressed as integrals o f / ( x ) . For example: 

= (4.S5) 

I fix)Y[dx;^ = /o + / , . (x.) (4.S6) 
k^i 

I / (x) Yl^^k = /o + fi (^,) + f j (^J ) + fij ) (4. S7) 
k*'J 

and so on. 

Assuming that / ( x ) can be square integrated (i.e. the integral of the square of the 

funct ion over the whole interval of the unit hypercube is finite), the total variance, D, of 

the f u n c t i o n / ( x ) can then be calculated f rom: 

^ (x )a fx- /g (4.S8) 
f=l f=I 

The global sensitivity indices can be def ined as: 

D . . 
5" (4_S9) 

'i •••'s 2 ) 

Because ^ = X ' 
J=l <fg 

Z S s (4.S10) 
J=] 
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w h e r e 0 < 5- ^ < 1. If the sensi t iv i ty i ndex of an input f ac to r is c lose to zero , the f ac to r 

h a s n o s ign i f i can t i m p a c t on the ou tpu t va r i ab le of in teres t wi th in its pos s ib l e r ange of 

var ia t ion . T h e oppos i t e is t rue if the sensi t iv i ty i n d e x is c lose to one . 

SoboV Sensitivity Indices for a Subset of Input Factors 

If X is cons i s t ed of t w o subse t s of var iab les y and z, such that: 

y = (4 .S11) 

and z is the set oin-m c o m p l e m e n t a r y var iab les . T h e n , the va r i ance c o r r e s p o n d i n g to y 

is: 

Z A , , , (4 .S12) 
.v=l 

T h e total v a r i a n c e c o r r e s p o n d i n g to y a l so i n v o l v e s the in te rac t ions b e t w e e n y and z 

e x c e p t the v a r i a n c e of z: 

Z);" = = j D - - D , (4 .S13) 

D'"' 

5 ' ^ " ' = ^ (4 .S14) 

Thus, o < ^ y < 1 . 

A n i m p l e m e n t a t i o n of the SoboF G S A m e t h o d c o d e d in C + + and l inked to 

g P R O M S f o r m o d e l so lv ing w a s k ind ly p r o v i d e d by Dr . Serge i K u c h e r e n c o (Cen t re f o r 

P r o c e s s S y s t e m s E n g i n e e r i n g , C h e m E n g Dept . , Imper i a l C o l l e g e L o n d o n ) . T h e C + + 

c o d e s e m p l o y e d a Sobol ' s e q u e n c e (Sobol ' , 1967; SoboF, 1976) f o r s a m p l i n g the 

p a r a m e t e r space . T h e Sobol ' s e q u e n c e has a u n i f o r m i t y p rope r ty f o r smal l n u m b e r of 

s a m p l e s and o p t i m a l u n i f o r m i t y of s a m p l e d is t r ibu t ion w h e n the l eng th of the s e q u e n c e 

t e n d s to in f in i ty w h i c h m a k e s it m o r e super io r than r a n d o m n u m b e r s (Chan et al., 2000) . 

T h e G S A ana lys i s resu l t s of the s i m p l e a m i n o ac id m o d e l f o r C H O - I F N y cell cu l tu re is 

d i s cus sed in the nex t sec t ion . 
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4.1.4.2 GSAfor the Simple Amino Acid CHO-IFNyModel 

In this section, the Sobol' method of Global Sensitivity Analysis (GSA) is used 

to analyse the relative importance of the parameters of the simple amino acid C H O -

IFNy model with respect to the viable cell concentration which directly affects the total 

product ion rate. The specific IFNy product ion rate (r//r^) was excluded f rom the G S A 

analysis because by definit ion it is a very significant parameter for the specific 

productivity of the cell culture. 

Due to the large number of parameters involved, they were grouped according to 

parameter types as shown in Table 4.3. 

Table 4.3: Parameter groups for Global Sensitivity Analysis (GSA) of the simple amino 

acid model for the CHO-EFNy culture. 

Group Parameter Tvpe 

1 M i n i m u m and m a x i m u m specific growth rates. 

2 Half-saturat ion constants relating amino acid concentrat ion to specific 

growth rate. E.g. K,hr (overall insensitive w.r.t. %,,) 

3 Parameters for specific death rate. E.g. AMMa-

4 Parameters for specific consumption of glutamine. E.g. 

5 Parameters for specific consumption of glucose. E.g. 

6 Cell yields f r o m amino acids. E.g. 

7 Specif ic production rates of non-essential amino acids. E.g. 

(overall insensitive w.r.t. X,,) 

8 Yield of non-essential amino acids f rom other amino acids. E.g. Yser,/^iy 

(overall insensitive w.r.t. Xy) 

9 Yield of byproducts f r o m energy sources. E.g. Yamm.gin 
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T h e parameters were varied by ± 1 0 0 % of their nominal values in Tab le 4.2. The 

sensit ivi ty indices were normal i sed to a range of 0 - 1 . A cut-off threshold of 0 .05 was 

used to separate the sensit ive pa ramete r groups (> 0.05) f r o m the insensi t ive pa ramete r 

g roups (< 0.05) . T h e individual pa ramete rs in each sensi t ive parameter g roup were then 

fu r the r analysed us ing G S A to ident i fy those parameters that have s ignif icant e f fec t s on 

the viable cell concentrat ion. The cut-off threshold of the sensitivity indices for the 

individual parameters was also 0.05. A total of 21 parameters out of 66 analysed 

paramete rs were ident i f ied as sensi t ive with respect to viable cell concentra t ion. Thus , 

overall there are 22 sensi t ive parameters including vifn that are s ignif icant ly a f fec t ing 

LFNy product iv i ty wi thin ± 1 0 0 % of their nomina l values. A m o n g the 22 sensi t ive 

parameters , 17 of t h e m require a change in values in order to b e able to correct ly 

s imula te the fed-ba tch C H O - I F N y cell cultures. T h e remain ing 5 unchanged sensi t ive 

paramete rs are: Kd,amm, Kd,iac, [AMMJc,-, [LACJc,-, and A list of parameters of which 

the values are d i f fe ren t be tween ba tch and fed-ba tch cul tures is shown in Tab le 4.4. 
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Table 4.4: List of sensitive parameters of the simple amino acid CHO-IFNy model 

identif ied by GSA. 

Parameters of which the Sensitive Normalised parameter 
values changed in FB parameters fluctuation* 

• 0 . 2 - 1 
^x.ek • 0 . 8 - 2 . 3 
Kgln - 0.05 - 1 

tJmax • 0 . 9 - 1 . 4 
Yx.elu • 0 . 6 - 1 
Y.X.IW - 1 - 7 . 7 
^x.cys - 1 - 6 7 
Y. - 1 - 3 ^ 
Y 
^ XMre 

e 1 - 10 
Yx.lhr • 1 - 11 
^x.eln • 0 . 8 - 1 . 1 
Yx.lvs • 1 - 6 . 2 
Y e 1 - 12 
YX, val • 1 - 6 . 7 
^x.his • 1 - 6 . 5 
Yx,phe • 1 - 7 . 3 
Yx.leu • 1—6 
YxMe • 1 - 7 . 5 
Yx.Dro - 1 - 4 8 
^x.aki - 1 - 100 
^x.cisn - 1 - 3 . 3 

- 1 - 6 3 
- 0 . 5 - 1 

^ala,x - 0.07 - 1 
Ylac,sic • 0 . 3 - 1 . 1 

^atnm.eln • 0 . 5 - 1 
- 0 . 5 - 1 
- 0 . 3 - 1 
• 0 . 6 - 2 . 3 

* Parameter fluctuation expressed as multiple of the corresponding nominal value in the batch 
culture. The range represented the lower and upper bounds of the parameter values in fed-
batch cultures after normalisation. 

** Parameter sensitive for product synthesis instead of viable cell concentration. 

Apar t f r o m 17 sensitive parameters having different values in fed-batch cultures, 

the values of 12 other insensitive parameters are also changed (Table 4.4) but the 

inf luence of the latter on productivity prediction is relatively negligible. The varied 

sensitive parameters are mainly related to specific growth rate, cell yield f rom most of 

the essential /growth-st imulat ing amino acids, and byproduct yields. The varied 

insensit ive parameters are mainly related to non-essential amino acids. The variation of 

certain parameters is much larger than the 2-fold range analysed in the GSA, e.g. one of 

the sensitive parameters, is changed up to 12-fold; and one of the insensitive 

parameters , is changed up to 100-fold. This revealed a highly dynamic nature of 

the mammal i an cell culture system. It would be necessary to model the cell culture in 
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greater details part icularly regarding any poss ib le changes in cellular regulat ions that 

migh t b e encountered in ba tch and fed-ba tch cultures. 

4.1.5 Conclusions of the Simple Amino Acid Model 

In Sect ion 4.1 it has been a t tempted to bui ld a s imple cell cul ture model 

inc luding amino acids to descr ibe the growth kinet ics and product ivi ty of a C H O - I F N y 

cell- l ine. T h e model started with s imulat ion of the batch cul ture and was able to capture 

the pat terns of all m a j o r variables. Bu t subsequent s imulat ions for f ed-ba tch cul tures 

revea led s ignif icant predict ion d iscrepancy unless the values of cer ta in mode l 

pa ramete rs were changed fo r each individual fed-ba tch cul ture. It is necessary to mode l 

the cell cul ture in greater details and include variat ions of the cell cul ture dynamics in 

ba tch / fed-ba tch cul tures that have been repor ted in the l i terature. 
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4.1.6 Notations for the Simple CHO-IFNy Amino Acid Model 

Table 4.5: Notat ions for the simple amino acid model of the CHO-IFNy culture. 

Symbol Definition Units 
Variables: 
[ct.ci.] jtj Feed concentration of amino acid (a.a.) mM 

Extracellular concentration of alanine mM 
[AMM] Extracellular concentration of ammonium mM 
[AMM] Ammonium concentration in inlet stream mM 
[ARG] Extracellular concentration of arginine mM 
[ASN] Extracellular concentration of asparagine mM 
/Agpy Extracellular concentration of aspartate (aspartic acid) mM 

Extracellular concentration of cysteine mM 
[GLC] Extracellular concentration of glucose mM 
[GLC]i„ Glucose concentration in inlet stream mM 
[GLN] Extracellular concentration of glutamine mM 
[GLU] Extracellular concentration of glutamate (gutamic acid) mM 
[GLY] Extracellular concentration of Glycine mM 
[HIS] Extracellular concentration of histidine mM 
[ILE] Extracellular concentration of isoleucine mM 
[LAC] Extracellular concentration of lactate mM 
[LEU] Extracellular concentration of leucine mM 

Extracellular concentration of lysine mM 
[MET] Extracellular concentration of methionine mM 
[PHE] Extracellular concentration of phenylalanine mM 
[PRO] Extracellular concentration of proline mM 
[SER] Extracellular concentration of serine mM 
[THR] Extracellular concentration of threonine mM 
[TYR] Extracellular concentration of tyrosine mM 

Extracellular concentradon of valine mM 
Pek Flowrate of glucose-containing stream Lh"' 
Fin Flowrate of concentrated amino acids stream Lh"' 
Foul Outlet flowrate Lh"' 
Mfx/n Maintenance consumption of glutamine mmole cell"' h"' 
Qainni Specific ammonium production rate mmole cell"' h"' 
Qgic Specific glucose consumption rate mmole cell"' h"' 
Qaln Specific glutamine consumption rate mmole cell"' h"' 
Qi Specific consumption/production rate of amino acid i mmole cell"' h"' 
Qlac Specific lactate production rate mmole cell"' h"' 
V Cell culture volume L 
X, Dead cell concentration cell L"' 
X, Total cell concentration cell L"' 
X, Viable cell concentration cell L"' 

M Specific growth rate h"' 

Md Specific death rate h"' 

Parameters: 
]AMM]„ critical ammonium concentration for specific death rate mM 
Karg Monod-type constant of arginine for specific growth rate mM 

f^cys Monod-type constant of cysteine for specific growth rate mM 

Kd,amm Effective concentration of ammonium to double the 
specific death rate 

mM 
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Kd.Iuc Effective concentration of lactate to double the specific 
death rate 

mM 

Kf,ic Monod-type constant of glucose for specific growth rate mM 
Kgln Monod-type constant of glutamine for specific growth rate mM 
f^his Monod-type constant of histidine for specific growth rate mM 
Kile Monod-type constant of isoleucine for specific growth rate mM 
Kleu Monod-type constant of leucine for specific growth rate mM 
Kjys Monod-type constant of lysine for specific growth rate mM 
K/net Monod-type constant of methionine for specific growth 

rate 
mM 

Kphe Monod-type constant of phenylalanine for specific growth 
rate 

mM 

Kihr Monod-type constant of threonine for specific growth rate mM 
K,yr Monod-type constant of tyrosine for specific growth rate mM 
Kval Monod-type constant of valine for specific growth rate mM 
/ L 4 C A , critical lactate concentration for specific death rate mM 

Mgic Maintenance consumption rate for glucose mmole cell"' h~' 

^ala,x Specific production rate of alanine from cell mmole cell"' h"' 

fasp.x Specific production rate of aspartate from cell mmole cell"' h"' 

^RIU.X Specific production rate of glutamate from cell mmole cell"' h"' 

^d.gln Degradation rate of glutamine h"' 

rfwK Rate of loss of dead cells h"' 

Yumm.gln Yield of ammonium from glutamine mmole mmole"' 

Yarg.usp Yield of arginine from aspartate mmole mmole"' 

Yarg.glu Yield of arginine from glutamate mmole mmole"' 

Ycirg,pro Yield of arginine from proline mmole mmole"' 

^asn,asp Yield of asparagine from aspartate mmole mmole" 

Ycisp.arg Yield of aspartate from arginine mmole mmole" 

YcYi„';er Yield of cysteine from serine mmole mmole"' 

^Siln.glu Yield of glutamine from glutamate mmole mmole"' 

Yglii.arf! Yield of glutamate from arginine mmole mmole"' 

Yf;lii,nln Yield of glutamate from glutamine mmole mmole"' 

Yfllu.his Yield of glutamate from histidine mmole mmole" 

Yglu.pro Yield of glutamate from proline mmole mmole ' 

Ygly.ser Yield of glycine from serine mmole mmole"' 

Yliic.glc Yield of lactate from glucose mmole mmole"' 

Ypro,ar>> Yield of proline from arginine mmole mmole"' 

Ypro.glu Yield of proline from glutamate mmole mmole ' 

Yser.gly Yield of serine from glycine mmole mmole"' 

Yfyr.phe Yield of tyrosine from phenylalanine mmole mmole" 

Yx,ala Cell yield from alanine cell mmole" 

Yx.urg Cell yield from arginine cell mmole"' 

Yx.asn Cell yield from asparagine cell mmole"' 

Yx.asp Cell yield from aspartate cell mmole"' 

YX,CYS Cell yield from cysteine cell mmole"' 

Yx.gic Cell yield from glucose cell mmole"' 

Yx,gln Cell yield from glutamine cell mmole"' 

Yx.glu Cell yield from glutamate cell mmole"' 

Yx.glv Cell yield from glycine cell mmole ' 

Yx.his Cell yield from histidine cell mmole"' 
Cell yield from isoleucine cell mmole"' 
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Yxjeu Cell yield from leucine cell mmole"' 
Yx,lys Cell yield from lysine cell mmole' ' 
Yx.met Cell yield from methionine cell mmole ' 
Yx.phe Cell yield from phenylalanine cell mmole"' 
Yx,pro Cell yield from proline cell mmole"' 

^x.ser Cell yield from serine cell mmole"' 
Yx.lhr Cell yield from threonine cell mmole"' 
Yxjyr Cell yield from tyrosine cell mmole"' 

Yx,val Cell yield from valine cell mmole"' 
ai Maximum maintenance consumption rate for glutamine mmole cell"' h"' 
ai Half-saturation concentration for glutamine maintenance 

comsumption 
mM 

[J-d.min Minimum specific death rate h"' 

l^min Minimum specific growth rate h"' 

l^max Maximum specific growth rate h"' 
riFN Specific production rate of IFNy mg cell"' h"' 
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4.2 A CHO-IFNy Model including Amino Acids & 

Cellular Regulations 

T h e main mot ivat ion of deve lop ing a more detailed growth and amino acid 

mode l fo r C H O - I F N y cell cul ture was the inabili ty of the s imple cell cul ture mode l 

deve loped in Sect ion 4.1 to predict bo th batch and fed-ba tch cell cul ture behav iours 

us ing the same set of pa ramete r values. In this section, the ev idence in the l i terature 

regard ing m a m m a l i a n cell cul tures exhibi t ing a change in cell cul ture dynamics is 

discussed. A n approximat ion has been in t roduced to incorpora te the variat ion be tween 

the ba tch and fed-ba tch C H O - I F N y cul tures into the mathemat ica l model . Cer ta in 

s impl i f ica t ions have also been m a d e to the mode l l ing of non-essent ia l amino acid 

consumpt ions and in terconvers ions in order to reduce the n u m b e r of under -spec i f ied 

parameters that have no s ignif icant in f luence upon cell densi ty and product ivi ty 

predict ions . 

4.2.1 Development of Model Equations 

4.2.1.1 Alterations in Cell Culture Dynamics 

A 'Shift' in Cell Culture Responses 

T h e response of cells to changes in nutr ient concentra t ion is bet ter unders tood 

for yeast cells than other cell cultures. In yeast cells, there are dist inct g lucose-sens ing 

pa thways provid ing 3 d i f ferent responses at d i f fe rent g lucose concentra t ions (Gelade et 

al., 2003) . A s shown in f igure 4.8, the Snf3/Rgt2 g lucose sensing pa thway is inact ive in 

the absence of g lucose and the Rgtl-Stdl-Mthl complex represses t ranscript ion of the 

HXT1-HXT4 genes responsib le for g lucose transport . The presence of g lucose 

inact ivates Rgtl via SCF-Grrl-mediated inact ivat ion and degradat ion of Mthl/Stdl and 

hyperphosphory la t ion of Rgtl, thus act ivat ing the HXT promoters . L o w glucose 

concent ra t ions cause Snf3 to tr igger the express ion of HXT1-HXT4\ whereas high 

g lucose concentra t ions cause Rgt2 to fu r the r enhance HXTl express ion (Gelade et al., 
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2003). A similar glucose-sensing mechan ism is also discussed by Ozcan and Johnston 

(1995), Dider ich et al. (1999), and Rol land et al. (2001) for yeast cells. 

No glucose 

Snf3 j — — — -f Rgt2 1. 

Mthi Stdl 

( R g t i ] 

I HXn-HXT4 

Low g lucose High glucose 

Mthi Stdl 

SCF-

HXT1-HXT4 Hxri 

Figure 4.8: The Snf3/Rgt2 glucose sensing pathway in yeast by Gelade et al. (2003). 

At the genetic level of yeast cells, high glucose concentrat ions were found to 

suppress genes responsible for the citric acid cycle which ful ly oxidises glucose into 

C O ] while producing ATP; and more genes responsible for amino acids metabolism, 

carbon metabolism, energy, protein synthesis, and cellular transport were up regulated at low 

glucose levels than high glucose levels (Yin et al., 2003). The effect of glucose 

signall ing in yeasts was also found to be only dependent on extracellular glucose 

concentrat ion but not g lucose f lux (Meijer et al., 1998; Ozcan et al., 1998). 

Mammal i an cell cultures also showed different responses to various levels of 

extracellular nutrient concentrat ions. For example, low glucose concentrat ion in a CHO 

chemostat culture producing t issue-type plasminogen activator (tPA) cuased an increase in 

viable cell concentration (Altamirano et al., 2001); low glucose/glutamine fed-batch cultures of 

a murine hybridoma cell-line showed a lower lactate yield from glucose and lower ammonium 

yield from glutamine (Zhou et al., 1997a); glutamine-l imited fed-batch cultures of a 

mur ine mye loma cell-line had higher cell yield f rom glucose, glutamine, and essential 

amino acids (Ljunggren and Haggst rom, 1994). Mancuso et al. (1998) had carried out a 

detailed study of the effect of glutamine concentration on perfusion cultures of murine 

hybridoma 4A2 cell-line producing IgG type antibody. It was found that a rapid removal of 
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f eed g lu tamine fo r a short t ime produced a rapid change in residual g lu tamine f r o m 

0 . 6 7 m M to be low 0 . 3 m M plus a strong st imulat ion of the specif ic and total ant ibody 

synthesis ; but a s low reduct ion in f eed g lu tamine concentra t ion which caused a s imilar 

reduct ion in residual g lu tamine f r o m O.SOmM to 0 . 0 8 m M did not increase ant ibody 

product ion rate. A n increase in cell densi ty and product ivi ty for a h u m a n embryon ic 

k idney cell-l ine in fed-ba tch cul tures with g lu tamine control led at 0.1 - 0 . 3 m M had also 

been observed (Lee et al., 2003a) which suggested m a m m a l i a n cells tend to respond to 

such range of g lu tamine concentra t ions dist inctively f r o m higher concentra t ions . At the 

genet ic level, Korke et al. (2004) demonst ra ted that the metabol ic state of m o u s e 

h y b r i d o m a M A K cells in cont inuous cul ture can be shif ted by cul ture the cells in low-

glucose fed-ba tch cul tures previous to initialtion of cont inuous culture; and the cells in 

the shi f ted state showed a s ignif icant ly lower lactate yield f r o m glucose. Genet ic 

express ion analysis of the shif ted culture indicated regulat ions of a large variety of 

genet ic func t ions had taken place including central metabol i sm, mi tochondr ia l t ransport , 

R N A b ind ing etc. (Korke et al., 2004) . 

Approximation Factor for Changes in Cell Culture Behaviour 

W h e n only high versus low range of concentrat ion of m a j o r nutr ients are the 

ma in interests of process design, i.e. the intermediate range of nutr ient concentra t ion 

provides no part icular advantage for enhanc ing product yield or quality, a system that 

behaves d i f ferent ly in the h igh versus low range of concentrat ion of ma jo r nutr ients may 

be descr ibed by the fo l lowing approximat ion: 

yd 

where % is a d imensionless quanti ty represent ing cell cul ture response, x, is cell cul ture 

variable, Tj is a hypothet ical threshold separat ing x/ into two regions, yt is a b inary 

var iable responsib le fo r act ivat ion/deact ivat ion of % depend ing on the value of x, such 

that: 

y,' 
0 
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A graphical illustration of the relat ionship between the hypothetical response 

and cell culture variable x, is shown below: 

Response 
• 

Rn--
Xi 

ti Ti 

Figure 4.9: Conceptual representation of the response factor. 

Since such ' s tep-change ' is an approximation of the sys tem's behaviour, Xi has 

an uncertainty range of t "] unless the change is known to be sharp around 

Such response factor is applied on glucose- and glutamine-controlled fed-batch 

cultures of CHO-IFNy versus batch culture. According to the glucose-sensing pathways 

of yeast cells reported by Gelade et al. (2003), there is a third signalling response at zero 

glucose concentrat ion that all glucose sensors and transporters became inactive. There 

are many similarities in the signalling network between yeast and mammal ian cells. 

Examples include the S n f l gene in yeast responsible for activating glucose-repressed 

gene and regulat ing fatty acid synthesis is structurally very similar to a mammal ian 

protein kinase A M P K responsible for glucose and lipid metabol ism (Carling et al., 1994; 

Mitchelhil l et al., 1994; W o o d s et al., 1994); and one out of three identified activating 

molecules of the S N F l kinase in yeast was able to activate mammal ian A M P K (Hong et 

al., 2003) which suggested funct ional conservation of signalling pathway between yeast 

and mammal i an cells. Thus, the binary variable in Equat ion RO is extended to include a 

third region for Glc = 0: 

71 

0, Glc = 0 

1, 0 < CZC < 

0, GZc > Tg,, 

( M l ) 
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where yj is the binary variable for glucose, Glc (mM) is glucose concentration in the 

cell culture, Tgic is the threshold level of glucose be low which certain cellular activities 

might appear to be shifted to a different trend. 

It is assumed that the cellular responses to different levels of glutamine have a 

similar structure as glucose: 

0, Gin = 0 

V , = 

0, GZn > 

where y? is the binary variable for glucose, Gin (mM) is glutamine concentrat ion in the 

cell culture. Tan is the threshold level of glutamine below which certain cellular 

activities might appear to be shifted to a different trend. 

The response funct ions for glucose and glutamine take the fo l lowing form: 

dt 

^ . log[l + y; ( T - G k ) ] -
dt 

where Xres.i is the hypothetical dimensionless response variable, nnaxrcsj^s an activation 

coeff icient , and dres.i (h"') is a degradation rate of the response. The logarithmic funct ion 

serves to restrict the upper limit of y, • - Glc) and y, • (Tcb Gfn) for large values 

of Tgic and Tcin but in this study the values of the two parameters are relatively small that 

the funct ion remains unsaturated. 

Because the response funct ions cannot be validated by cell culture data, the 

response variables x,,,,,g/c and g/„ are l inked to parameters that quant ify the changes 

be tween batch and glucose-Zglutamine-controlled fed-batch cultures. The usefulness of 

such response funct ions would then be judged by whether the overall model predictions 

are able to capture the trends of the cell culture dynamics under both batch and fed-

batch condit ions or not and this is discussed in Chapter 5. 
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4.2.1.2 Growth/Death Rate & Cell Lysis 

Specific Growth Rate 

A m m o n i u m is one of the byproduc t s that would inhibit cell growth and tr igger 

cell death (Ryll et al., 1994). Hayter et al. (1991) reported that an initial level of 4 . 5 m M 

a m m o n i u m inhibi ted the growth of C H O cells in ba tch culture but a level of 2 m M had 

no s ignif icant e f fec t ; the cell g rowth was also una f fec ted by an initial lactate 

concent ra t ion of 17 .5mM. Schlaeger and S c h u m p p (as cited in Hayte r et al., 1991) 

f o u n d in their study that 8 - 1 0 m M a m m o n i u m and 90 - 110 m M lactate were requi red 

to give 5 0 % inhibit ion of C H O cell growth. 

L u d e m a n n et al. (1994) s tudied a hyb r idoma cell-l ine and p roposed an equat ion 

s tructure fo r the toxic e f fec t of a m m o n i u m based on a threshold level of a m m o n i u m 

be low which the toxici ty wou ld be negligible. The specif ic growth rate was model led to 

be propor t ional to the fo l lowing equat ion: 

(Rl) 

where /:,• is an inhibi t ion constant , NH3 is the a m m o n i a concentra t ion in the med ium, 

NHscr is the critical level of a m m o n i a be low which {NHs - N H j a ) = 0. In this section, 

the symbol ' R ' is used to represent te rms and equat ions re fe renced f r o m other l i terature 

as opposed to equat ions for the C H O - I F N y mode l ( ' M ' ) . In the above equat ion, the 

concent ra t ion of a m m o n i a was used instead of a m m o n i u m (NH^"^) because a s ignif icant 

re la t ionship be tween the specif ic growth rate and NH3 was detected but not the total 

a m m o n i u m concentra t ion ( L u d e m a n n et al., 1994). A s the amount of dissociated NH3 in 

an a m m o n i u m solution is p H dependent , the Henderson-Hasse lbach equat ion was used 

to calculate NH3 concent ra t ion f r o m measu red values of NH4"^ concentrat ion: 

pH = pK^, + log (M5) 

T h e pKa value at 37°C is 9 .27 based on the equat ion of Edwards et al. (1975). The p H in 

the C H O - I F N y cell cul ture studied in this work was control led at p H 7 ( W o n g et al., 

2005) so the concentra t ion of NH3 and NH4"^ b e c a m e linearly related. If there were 

f luc tua t ions in the cell cul ture pH, Equat ion M 5 would have a more s ignif icant role in 

every t ime step of the model s imulat ions . 
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T h e inhibi t ive level of a m m o n i u m appeared to be cell-l ine dependent as 

d i f fe rent values had been repor ted fo r var ious types of cells and ranges f r o m less than 

I m M to about 5 m M had been repor ted (Glacken et al., 1986; Reuveny et al., 1986; 

Visek et al., 1972; Hassel l et al., 1991). 

Lac ta te is another m a j o r metabol ic byproduc t that %/ould inhibit g rowth rate and 

accelerate death rate in the cell culture. O m a s a et al. (1992) pe r fo rmed a detailed study 

towards the e f fec t of lactate on growth rate in a fed-ba tch hyb r idoma cell culture. It was 

tested whe ther replacing sodium lactate by sodium chlor ide would p roduce the same 

growth inhibi t ion. W h e n the osmot ic pressure was adjus ted to the same condi t ion as that 

of lactate using sod ium chloride, the specif ic growth rate showed the same degree of 

g rowth inhibi t ion (Omasa et al., 1992). Thus , it was the increase in osmot ic pressure 

caused by high lactate concentra t ion that induced an inhibit ion of specif ic growth rate 

(Kurano et al., 1990a; Kurano et al., 1990b; O m a s a et al., 1992); whereas a m m o n i u m 

started to inhibit cell g rowth at low concentra t ions be fo re osmolar i ty can b e a f fec ted 

(Kurano et al., 1990b). A s lactate is one of the ma jo r byproducts contr ibut ing to 

increas ing the osmot ic pressure, its concentra t ion is assumed to be proport ional to 

osmot ic pressure and the inhibi t ion equat ion ( R l ) has been ex tended to inc lude lactate 

concentra t ion: 

^inh.NH?, 
\ 

(NH^ - ) -k 

r 
(M6) 

where where ki„h,NH3 and kinh.iMc ( m M ) are inhibit ion constants of a m m o n i u m and lactate 

respect ively . Lac ( m M ) is the concentra t ion of lactate, Lac^r is the critical level of 

lactate be low which {Lac - LaCc) = 0. 

T h e growth inhibit ion of a m m o n i u m and lactate had been l inked to specif ic 

nutr ient consumpt ion indirectly by Jang and Bar fo rd (2000b) using the fo l lowing 

func t ion : 

^x.S 

where qs was the specif ic uptake rate of nutr ient S, Yx,s was the cell yield f r o m S, ms 

was the g rowth- independen t consumpt ion , and ju was a func t ion of glucose, g lutamine, 

a m m o n i u m and lactate. The same p h e n o m e n o n of a m m o n i u m inhibit ion upon qs can 
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also be model led directly by adding the inhibi t ion func t ion to the nutr ient uptake 

equat ion: 

(fs = p- C (R3) 
^ 

w h e r e S is the concentra t ion of nutr ient S, Ks is a half-s taurat ion constant fo r nutr ient 

consumpt ion , and finhiNHs, Lac) is def ined in Equat ion M6. The d i f fe rence be tween 

Equa t ion R 2 and R 3 is that the latter is not l inked to other growth l imit ing nutr ients . 

Equa t ion R 2 separated the specif ic nutr ient consumpt ion into growth related ijJ/Yx.s) and 

non-growth related {ms) terms. Equa t ion R 3 combines both growth and non-growth 

related consumpt ions into one overall term which tends to +m^ at low 

concent ra t ion of NH3 and/or lactate; but tends to a non-zero value of ms at h igh NH3 

and/or lactate concentra t ions . By us ing Equat ion R3, Xhe finhiNHj, Lac) func t ion would 

not appear directly in the specif ic growth rate equat ion. T h e growth inhibit ion e f fec t s of 

NH3 and lactate wou ld be executed in the mode l via a reduct ion in qs at high levels of 

byproducts . Equa t ion R 3 is an approximat ion of Equa t ion R 2 both relat ing the h igh 

byproduc t levels to a decrease in fl and qs. Such approximat ion is appropr ia te for (i) 

ba tch and fed-ba tch cul tures up to exponent ia l growth phase when all growth- l imi t ing 

nutr ients are still abundant ; and (ii) cont inuous and pe r fus ion cul tures when all growth 

l imit ing nutr ients are suppl ied in the f eed stream. This has an advantage of f e w e r mode l 

parameters be ing directly associated with the measurab le quant i ty qs, especial ly when 

the specif ic growth rate is l inked to all essential amino acids on top of g lucose and 

glutamine. A lower n u m b e r of parameters directly connected to a measurab le quanti ty 

(wi thout changing the biological relat ion) can reduce the n u m b e r of mult iple solutions 

in the pa ramete r es t imat ion stage. 

For the re la t ionship be tween specif ic growth rate (//) and essential nutrients, 

m a n y ba tch / fed-ba tch cul ture mode l s in the l i terature related / / to the extracel lular 

nutr ient concentra t ions us ing the fo l lowing equat ion structure: 

^ (R4) 

where S is the concentra t ion of a growth- l imi t ing nutrient and Kf,_s is a half -sa turat ion 

constant . In the equat ion above, / / is mode l led us ing Monod- type kinetics (Monod , 

1949) in t e rms of the nutr ient concentra t ion. However , in cont inuous cell cul ture it had 

been repor ted that the specif ic g rowth rate remained high when the extracel lular 
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concentra t ion of a rate- l imit ing nutr ient was c lose to zero (Al tamirano et al., 2001) . In 

con t inuous cell cul ture models , j i is o f ten l inked to the nutr ient supplementa t ion rate 

(dilution rate) instead of us ing Equa t ion R4. At s teady state, / / is equal to the di lut ion 

rate and the cell concentra t ion is related to the dilution rate (He idemann et al., 1998). 

T h e dilution rate in a ba tch cul ture is zero so a d i f ferent equat ion structure for /J. is 

requi red w h e n changing f r o m batch to cont inuous cul ture and vice versa. 

In this s tudy, it is p roposed that / / of a batch/ fed-ba tch / cont inuous cul ture can 

be related to the availabil i ty of the l imit ing nutrient in the fo l lowing fo rm: 

— (M7) 

where g, ( m m o l e lO'^cell"' h"') is the specif ic uptake rate of the l imit ing nutrient per unit 

cell, and Kg^ ŝ ( m m o l e lO'^ceir' h"') is a hal f -sa tura t ion constant . In a batch culture, the 

speci f ic uptake rate of a l imit ing nutrient is related to its extracel lular concentrat ion. But 

in a cont inuous culture, the dilution rate and compos i t ion of the inlet s tream also play a 

role in a f fec t ing the specif ic up take rate of the nutrient . For example , if the supply and 

consumpt ion of the l imit ing nutr ient in a cont inuous cul ture are equal such that at steady 

state the res idual nutr ient concentra t ion in the m e d i u m is c lose to zero, the specif ic 

nutr ient uptake rate wou ld remain posit ive. Thus , Equa t ion M 7 would predict a posi t ive 

speci f ic growth rate when Equat ion R 4 would predict a near-zero growth rate in f ed -

ba tch or con t inuous cultures. 

Equa t ion M 7 can be reduced to Equa t ion R 4 when ^ However , if 

qs is also a f fec ted by other substrate and by-products , e.g. 

q^ - ^ 3, Lac) • f ) (Equat ion M17) , the R.H.S. of Equat ion M 7 
K^+S 

bec omes : 

( D l ) 

A:,,, + / • /»., ( " f l J . i^c) • fix,,,) 

^ (D2) 

J + rmaxs • S 
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rmax^ • S 

+ (-
K.. 

(D3) 

A / , ( ^ ^ 3 , ^ c ) . / ) /„,,, ( M f 3 , L a c ) . / ) 

/ \ 

•S 

+ nnax^) • S 

K 
+ rmax^ 

(D4) 

+ 5 
^ ' /m/, ( ^ ^ 3 , ' ^ C ) . / ( % , » ) 

w h i c h w o u l d r e d u c e to a s i m p l e M o n o d - t y p e k ine t ics of S on ly w h e n the e f f e c t s of NH3, 

Lac, and Xres are neg l ig ib le . O t h e r w i s e qs is d e p e n d e n t on m o r e than o n e var iab le . T h e 

u p p e r l imi t of the d e p e n d e n t va r i ab le qs is b o u n d e d by the avai lab i l i ty of 5, the subs t ra te 

u p t a k e capac i ty , and the e f f e c t of the vi r tual r e s p o n s e var iab le 

U s i n g E q u a t i o n M 7 and a s s u m i n g e s sen t i a l / g rowth - s t imu la t i ng a m i n o ac ids 

(Tab le 4 .1) and g l u c o s e + g l u t a m i n e are the on ly g r o w t h - l i m i t i n g subst ra tes , the spec i f ic 

g r o w t h ra te e q u a t i o n is p r o p o s e d to b e the f o l l o w i n g : 

~ f^max\ n ^Iaa.) 1 + QgIc ^Gln 

Mnmxl ^g.Glc'^lcic ^f:,Gln 1 Gin 
(M8) 

/̂ maxl n 
Iaam 

+ /̂ max2 • n 
^AA.k 

\ 

IgIc lain 

(^g.G/r 9GIii\ 

( M 8 ' ) 

w h e r e k = Val, Leu, lie. Met, Phe, Trp, Thr, Lys, His, Arg, Tyr, or Cys ( c o m m o n 

essent ia l and g r o w t h - s t i m u l a t i n g a m i n o ac ids fo r m a m m a l i a n cel ls f r o m T a b l e 4.1) . 

Mmaxi (h ' ) is the m a x i m u m spec i f i c g r o w t h ra te a ssoc ia ted wi th e s sen t i a l /g rowth -

s t imu la t ing a m i n o ac ids , jU,„ax2 (h"') is the m a x i m u m spec i f i c g r o w t h ra te a ssoc ia ted with 

g l u c o s e and g lu t amine , and K'^^ck/Gin ( m m o l e 1 0 \ e i r ' h"') a re the appa ren t ha l f -

sa tu ra t ion cons t an t s of g r o w t h f o r a m i n o ac ids and g l u c o s e / g l u t a m i n e respec t ive ly and 

are e x p r e s s e d in t e r m s of the g l u t a m i n e r e s p o n s e var iab le {Xres.cin)'-

- ) 

w h e r e I - Val, Leu, He, Met, Phe, Trp, Thr, Lys, His, Arg, Tyr, Cys, Glc, or Gin. 

(M9) 
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Kgj (mmole lO'^cell ' h ' ) is the cor responding intrinsic half-saturat ion constant of 

g rowth for nutr ient I, is a hal f -sa tura t ion constant relating the cell cul ture response at 

low-g lu tamine concentra t ion to any poss ible reduct ion in K ' . T h e g lucose response 

var iable is not included in Equa t ion M 9 because no fur ther change in the growth pat tern 

was observed in low-g lucose-g lu tamine cul tures relat ive to low-g lu tamine cultures. 

W h e n the essential and growth-s t imula t ing amino acids are abundan t in the cell 

culture, Equat ion M 8 m a y b e interpreted as Equat ion M 8 ' which resembles c o m m o n 

growth kinet ics that only mode l g lucose and g lu tamine but not other amino acids. 

G lu tamine is not an i r replaceable energy source in m a m m a l i a n cell cul tures 

(Kurano et al., 1990b). Hansen and E m b o r g cul tured C H O cells p roduc ing t issue-type 

p l a sminogen act ivator ( tPA) in chemos ta t with h igher concentra t ion of asparagine than 

g lu tamine in the med ium, leading to a h igher consumpt ion rate of asparagine than other 

amino acids (Hansen and Emborg , 1994a). Al tami rano et al. (2001) replaced g lu tamine 

by g lu tamate in C H O chemos ta t cul ture p roduc ing tPA with no s ignif icant d i f fe rence in 

cell g rowth and tPA product ion . Thus , the role of g lu tamine in the equat ion above 

represents a domina t ing amino acid energy source in the m e d i u m that migh t be a 

d i f fe ren t candida te w h e n the m e d i u m compos i t ion is changed . 
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Specific Death Rate 

The specif ic death rate equation f r o m Ludemann et al. (1994) with an addition of 

a lactate term similar to equation M 6 is used in this model : 

^d.Lac 

\ 

1 — 

Pd.Gh '^^ris.Gln j Pd,Gk'^^n^Gk) 

(MIO) 
where jld ( h ' b is the specific death rate, //</,„„„ (h"') is the min imum death rate, kd_m3 and 

^d.hac (mM) are constants relating ammonium and lactate respectively to specific death 

rate. The last two terms on the right hand side relate cell culture responses (xres.cin and 

Xres.Gk) at low-glutaminc or low-glucose condit ions to changes in with p j cin and Pd,Gic 

being the corresponding half-saturation constants. 

Another type of equation using Hill funct ion to relate N H / concentration to 

death rate was proposed by Jang and Barf or d (2000). But Ludemann et al. (1994) had 

done a more in depth study into the death kinetics of mammal ian cells, so their equation 

structured was applied to the C H O - I F N y cell culture model . 

Cell Lysis 

Cell breakage can occur to dead cells (Jang and Barford, 2000b) or living cells 

(Georgen et al. 1993; Bakker et al., 1996) in mammal ian cell cultures and both had been 

called cell lysis in the literature. A study of the p H dependence of lysis of living cells in 

a cont inuous mammal ian culture by Georgen et al. (1993) reported that cell lysis was 

negligible at p H 7 but increased at p H 6.8. From our experience with the hybr idoma cell 

cultures studied in Chapter 3 that only a negligible amount of dead cells f ragmentat ion 

was observed, it is bel ieved that the lysis of living cells is dependent on cell-lines and 

culture conditions. The CHO-IFNy cell cultures were controlled at p H 7 (Wong et al., 

2005) and no significant decrease in total cell concentrat ion was observed in the batch 

and fed-batch cultures. Thus, only f ragmentat ion of dead cells is considered in this 

model : 

- y - fnm OVtll) 

where X j (lO^cells L"') is the dead cell concentrat ion and (h"') is the f ragmentat ion 

rate of dead cells. 
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4.2.1.3 IFNy Production 

T h e product ion of IFNy in the cell cul ture is model led using a s imple 

re la t ionship with the viable cell concentra t ion. Hayter et al. (1991) reported that in 

C H O - I F N y stirred batch cul tures I F N y product ion would cont inue in the absence of cell 

prol i ferat ion, suggest ing that the specif ic product ion rate in d i f ferent cel l -cycle phase 

migh t be similar. T h e mass ba lance of IFNy be low is l inked to g lu tamine and g lucose 

response variables {Xre.s.cin and 

'''^'^^es.lFN_Clr ' ^res.Glr _Gln ' ^res.Clii 
1 + -

PLFN_C]n +^rf.(,G/n 

(Ml 2) 

where IFNy {mg L"') is the concentration of IFNy, rmaxjfNy (mg 10"®ceir' h"') is the 

m a x i m u m IFNy specif ic product ion rate in ba tch culture, miaXresjFN_Gin and 

rmaXres,iFNj3ic are the m a x i m u m coef f ic ien t of product ivi ty r esponse to low-glu tamine 

and low-g lucose condi t ions respect ively, piFN_Gin & Pifn_gic are the half -s taurat ion 

constants of Xres.ain and Xres.ck on product iv i ty . 
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4.2.1.4 Consumption of Nutrients 

Glucose 

A n ' e f fec t ive concent ra t ion ' term is used to represent the amoun t of g lucose 

avai lable in the extracel lular m e d i u m in both batch and fed-ba tch cell cultures. F rom the 

mass ba lance of g lucose in a bioreactor , 

(G/c - y) 
dt 

= - G/C;, + F,, - GZcj, - - GZc - 9c,r ' ^ (D5) 

y . ^ + G/c. ^ = f;, . G/c, + . C/c, - - G/c - 9,, V (D6) 

dV 

A s s u m i n g ~ 0 w h e n (F,.,, + ) ~ 0 fo r a short t ime interval and Glc - Glcf. 

^ . G/c, + . G/c, - . G/c - g,, - X_, (D8) 

^ ^ . G/c, + . GZc, - . G/c, - g,, . X,. (D9) 
Glcj. -GlCf -Glc.̂  - - ^ - G l c . - q^,, -XJ-Ar (DIO) 

y ~ • Glc.„ + . G/c,„ - • GlCj - • X J • Ar + Glc. (D11) 

where G/c,- ( m M ) and Glcj- ( m M ) are the initial and f inal g lucose concentra t ion of the 

t ime interval respect ively. 

In a ba tch culture, Equa t ion D l l becomes : 

Glcf • X,, • At + Glc. (D12) 

For cont inuous cul ture under g lucose l imitation, = 0 , = 0 , and G/c, = 0, 
dt dt 

Glc J. = • Glc.^ + • G/C;„ - q^i^. • X^.)- At = 0 (D13) 

T h u s g lucose availabil i ty cannot be associated with residual g lucose concentra t ion in 

g lucose- l imi ted cont inuous culture. Instead, it has a lways been associated with the 

di lut ion rate (Z); D = — and inlet g lucose concentrat ion. 

In a fed-ba tch cul ture with nutr ient (e.g. g lucose) control led at very low 

concent ra t ion by a f eed-back control ler (e.g. 0 . 3 5 m M residual g lucose in one of the 
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C H O fed-ba tch exper iments in this study), the residual nutr ient concentra t ion is c lose to 

zero and thus cannot ref lect the actual availabil i ty of the nutrient. T h e specif ic g lucose 

consumpt ion rate, qcic, is of ten l inked to res idual g lucose concentra t ion in ba tch cul ture 

(e.g. us ing M o n o d kinet ics) s ince Glc > 0 until g lucose exhaust ion (Equat ion D12) ; but 

is l inked to dilution rate in cont inuous cul ture since G/c, and Glcj = 0 under g lucose 

l imitat ion (Equat ion D13) . For example , - C g , , ) ^^3 ^ C H O chemos ta t 

mode l by Al t ami rano et al. (2001) where and Cf ( m M ) are the concentra t ion at 

reactor inlet and outlet respect ively. T h e two di f ferent approaches of es t imat ing qcu-

cannot be cross-appl ied because Z) = 0 in ba tch cul ture and Glc can be zero in 

con t inuous culture. T h e c o m m o n pract ice of relat ing qcic to D, Z,., and g lucose 

inlet/outlet concentra t ion in cont inuous cul ture is a backward-ca lcu la t ion approach 

instead of a fo rward-pred ic t ion approach based on a mechanis t ic relat ion be tween qcu-

and g lucose availabili ty. In order to search fo r a general predict ive equat ion structure for 

qcic under ba tch / fed-ba tch /cont inuous condi t ions, it is p roposed in this study to relate 

qcic to the amoun t of g lucose in a cel l - f ree reactor (i.e. Z,,=0) dur ing t ime interval At. An 

e f fec t ive concentra t ion term represent ing the amount of g lucose avai lable in the cell 

cul ture within a unit t ime interval is thus expressed as fo l low: 

where G / q / j ( m M ) is the e f fec t ive g lucose concentra t ion, P (h) is one unit t ime interval, 

GlCin is the g lucose concent ra t ion in the inlet s tream F,„ (L h"') that also contains other 

amino acids (mM) , G/c',„ ( m M ) is the g lucose concentra t ion in the pure g lucose stream 

Fin,glc (L h"'). Glc ( m M ) is the g lucose concentra t ion in the cell culture. 

In the above equat ion, y?= 1 h by defaul t but this does not af fect the actual t ime 

interval of recalculat ing GlCejj. T h e s imulat ion would re-evaluate the e f fec t ive 

concent ra t ion every t ime w h e n a pulse of F,„ or occurs. Alternat ively, the 

s imula t ion t ime-s tep can be set equal to the t ime-width of a pulse of nutr ient 

supplementa t ion . In the absence of any inlet/outlet s t ream, the e f fec t ive g lucose 

concent ra t ion b e c o m e s the same as the residual g lucose concentra t ion in a batch 

si tuation. 

T h e same concept of e f fec t ive concent ra t ion is applied to all other s imulated 

nutrients; g lu tamine {Gin), val ine {Val), leucine {Leu), i soleucine {lie), meth ion ine 

{Met), phenylalanine {Phe), tryptophan {Trp), threonine {Thr), lysine {Lys), histidine 
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(His), a lanine (Ala), g lycine (Gly), prol ine (Pro), aspartic acid (Asp), g lu tamic acid 

(Glu), asparagine (Asn), serine (Ser), tyrosine (Tyr), cysteine (Cy^), and arginine (Arg). 

B e l o w are the e f fec t ive concentra t ion equa t ions for g lu tamine and other amino acids: 

+ (M14) 

= / ; - - + A/1, CW15) 

where i: Val, Leu, lie, Met, Phe, Trp, Tlir, Lys, His, Ala, Gly, Pro, Asp, Glu, Asn, Ser, Tyr, Cys, 

or Arg. 

C o m i n g back to glucose, the mass ba lance is as fo l low: 

y ) 

dt 

w h e r e qck ( m m o l e lO'^ceir ' h'^) is the specif ic consumpt ion rate of glucose. 

T h e speci f ic g lucose consumpt ion rate is model led as fo l low: 

( M l 7) 
^ air 

J _l_ "^'^^res.Gk _Gl,i res.Gin 
V PgIc _Gln ^res.Gln ^ 

where rmaxcic (mmole 10"®ceir' h ' ' ) is the m a x i m u m specif ic g lucose consumpt ion rate 

in ba tch culture, GlCe// ( m M ) is the e f fec t ive g lucose concent ra t ion def ined in Equa t ion 

M l 3 , Kgic ( m M ) is the half-saturat ion constant fo r g lucose consumption,yi„/,(A^//i, Lac) 

is an inhibi t ion func t ion de f ined in Equa t ion M6, rmaXres,Gic_Gin represents any poss ible 

e f fec t on g lucose consumpt ion in low-g lu tamine condi t ion and pGic_Gin is the 

cor responding hal f -sa tura t ion constant . 

Glutamine & Glutamine Decomposition 

Glu tamine would spontaneous ly d e c o m p o s e to pyr ro l idone carboxyl ic acid 

dur ing cell cul ture incubat ion at 37°C (Bray et al., 1949; Tr i tsch and Moore , 1962; 

Glacken et a l , 1986; Ozturk and Palsson, 1990). For example , Glacken et al. (1986) 

repor ted a f i rs t -order g lu tamine decompos i t ion rate constant of 0 .0048 h"' in f ruc tose 

m e d i u m with/wi thout 5 % foeta l calf se rum wi thour cells at 37°C and 10% CO2. Ozturk 

and Palsson (1990) s tudied the g lu tamine decompos i t ion with d i f ferent media 

compos i t ion and represented the relat ion be tween the decomposi t ion rate constant , k, 

and p H with the fo l lowing equat ion: 

\n(k) = a + b-pH (R5) 
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U s i n g t h e p a r a m e t e r va lues f r o m O z t u r k and Pa l s son (1990) , the d e c o m p o s i t i o n 

ra te cons t an t f o r severa l m e d i a at p H 7 w a s ca l cu l a t ed and s h o w n in T a b l e 4 .6 b e l o w . 

Table 4.6: C h e m i c a l d e c o m p o s i t i o n of g l u t a m i n e to a m m o n i a and py r ro l i done 

c a r b o x y l i c ac id s tud ied at 37°C and p H 6.8 - 7 .8 w i th d i f f e r en t m e d i a c o n t a i n i n g foe t a l 

b o v i n e s e r u m ( O z t u r k and Pa l s son , 1990) . 

Media a b k (at d H 7 ) r h - ' l 

I M D M -18 .31 (±1 .21) 1.685 (±0 .095 ) 0 . 0 0 1 5 

O P T I - M E M - 1 6 . 7 6 (±1 .11) 1.458 (±0 .065 ) 0 . 0 0 1 4 

D M E M - 1 7 . 0 7 (±1 .12 ) 1.478 (+0 .073 ) 0 . 0 0 1 2 

R P M I - 1 6 4 0 -13 .85 (±1 .19 ) 1.133 (±0 .055 ) 0 . 0 0 2 7 

H i g h e r r a n g e s of g l u t a m i n e d e g r a d a t i o n ra te h a d a lso b e e n repor ted . F o r 

e x a m p l e , S c h m i d and Ke l l e r ( 1992 ) d e t e r m i n e d tha t the g l u t a m i n e in a c o n t i n u o u s 

h y b r i d o m a cu l tu re at 37°C and p H ~7 in s e r u m - f r e e low pro te in l i p id - f r ee m e d i u m 

d e g r a d e d at - 7 . 5 % day"' ( - 0 . 0 3 h"'). A s u m m a r y m a d e by S c h n e i d e r et al. (1996) of 

g l u t a m i n e ha l f - l i ves r epo r t ed in va r ious l i te ra ture s h o w e d var ia t ions up to 10-fold. T h e 

g l u t a m i n e d e g r a d a t i o n ra te in the C H O - I F N y cell cu l tu res is a s s u m e d to b e cons t an t in 

the m o d e l s ince the s t i r red- tank r eac to r w a s con t ro l l ed at 37°C and p H 7 ( W o n g et al., 

2005 ) . B e l o w is the m a s s b a l a n c e and spec i f i c c o n s u m p t i o n ra te of g lu t amine ; 

- y ) 

A 
• = G/n,„ • - Gin • 

9Gb = 
rmaX(;,„ • 
^ Gh! 

K fnA,C/r 
f^inh.aic + y 

Ich, • ^ - ''.I.Gl,, G k - y ( M l 8) 

1 + -

Pcln 

(Ml 9) 

w h e r e I'dcin (h ' ) is the g l u t a m i n e d e g r a d a t i o n rate, rmaxQin ( m m o l e 10 cell h ) is the 

m a x i m u m spec i f i c g l u t a m i n e c o n s u m p t i o n ra te in b a t c h cul ture , Glneg and Glcejf ( m M ) 

are the e f f e c t i v e g l u t a m i n e and g lucose concen t r a t i on d e f i n e d in Equa t i on M 1 4 and 

M 1 3 respec t ive ly , Kinh.ck ( m M ) is a g l u c o s e inh ib i t ion cons t an t f o r g l u t a m m e 

c o n s u m p t i o n , Lac) is an inh ib i t ion f u n c t i o n d e f i n e d in E q u a t i o n M 6 , 

rmaXres.GinjOk r ep resen t s any poss ib l e e f f e c t on g l u t a m i n e c o n s u m p t i o n in l o w - g l u c o s e 

cond i t i on and painj j ic is the c o r r e s p o n d i n g ha l f - sa tu ra t ion cons tan t . 
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Other Amino Acids 

T h e amino acid ne twork cons idered in this model is based on that of a C H O cell 

cul ture f r o m Al tami rano et al. (2001) and a m o u s e hybr idoma cell cul ture f r o m Europa 

et al. (2000) together with discuss ions with Dr. Yih Yean Lee (BTI-A*Star , Singapore) . 

T h e mode l l ed in terconvers ions of amino acids are similar to Sect ion 4.1 except the 

excre t ion of aspart ic acid and g lu tamic acid are assumed to be ins ignif icant because 

their extracel lular concent ra t ions d ropped to zero rapidly in all ba tch and fed-ba tch 

cultures; and reversible convers ions are s impl i f ied into net convers ions based on the 

amino acid t ime-prof i les of the C H O - I F N y cultures. 

Ser Cys Glc 

/ Pyr 

cCoA 

oKG T—"^Glu 

SucCo 

Gin 

Amm 

«»P A,„ "=1 

Figure 4.10: Amino acid network for the general model of CHO-IFNy cell culture. 
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Overall Mass Balance: 

T h e mass ba lance of all amino acids is as fo l low: 

/LA,,, . --/lA, . - 4/u,, . JT,, 1/ 0VI2O) 

where qAAj ( m m o l e lO'^ceir ' h"') is the speci f ic consumpt ion rate of amino acid i , 

i = Val, Leu, He, Met, Phe, Trp, Thr, Lys, His, Ala, Gly, Pro, Asp, Glu, Asn, Ser, Tyr, 

Cys, or Arg. 

Essential Amino Acids: 

Since essential amino acids cannot be synthesised by the cells, the specif ic 

consumpt ion rate of all essential amino acids, q j ( m m o l e lO'^ceir ' h"'), is def ined to be 

related to their e f fec t ive concentra t ion {AAj^ejj [refer to Equat ion M 1 5 ] ) and the 

concent ra t ions of byproduc ts (fmhiNHs, Lac) [refer to Equat ion M6]) . Kj (mmole 10'® 

cell"' h"') is the half -sa turat ion constant fo r consumpt ion of a m n o acid j. miaXresj^Gin and 

rmaXresj^Gic represent any poss ible e f fec t of low-g lu tamine and low-g lucose condi t ions 

on qj and P j cin and P j cic are the cor responding half -sa turat ion constants . 

V P j _Ghi rcs.Glii ) 

J • r̂c.i.67r 

Pi_Gk ^m.Gk 

w h e r e j : Val, Leu, He, Met, Phe, Trp, Thr, Lys, or His (essential amino acids). 

A s discussed in Section 4.2 .1 .2 when the deve lopment of Equat ion M 6 was 

presented, an assumpt ion has been m a d e that the cells have a non-zero main tenance 

consumpt ion of all nutrients. T h e k n o w l e d g e of main tenance consumpt ion of amino 

acids in m a m m a l i a n cell cul tures in the l i terature is insuf f ic ien t to j u d g e which of the 19 

amino acids might not be c o n s u m e d when the specif ic growth rate is zero. The model 

pe r fo rmance will be discussed in Chapter 5 and any deviat ions caused by this 

assumpt ion will be highl ighted. 
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Non-essential Amino Acids: 

Alanine — 

A l a n i n e is p r o d u c e d f r o m p y r u v a t e w h i c h c o m e s f r o m near ly all a m i n o ac ids 

( f i gu re 4 .10) . T h e in t race l lu la r sources of a l an ine are a s s u m e d to b e f r o m spec i f i c 

c o n s u m p t i o n of the t w o d o m i n a t i n g nu t r i en t s g l u c o s e {qck) and g l u t a m i n e {qcin), and a 

n o n - n e g l i g i b l e b a c k g r o u n d p r o d u c t i o n ra te , qAia,mbi ( m m o l e l O ^ c e l l ' h ' ) . B e l o w is the 

p r o p o s e d equa t ion f o r spec i f i c a l an ine c o n s u m p t i o n : 

Imo 
^ ^ res,Atci_Gln ^res,Gin 

V 

I ' ^res.Gk ^ 

^ PaI«_GIc ^res.Glr y PAla_Gln ^res.GIn j 

(M22) 

w h e r e nnaxAia ( m m o l e lO'^cell"' h" ') is the m a x i m u m spec i f i c c o n s u m p t i o n ra te of 

a l an ine in b a t c h cul ture , Kaic, ( m M ) is the ha l f - sa tu ra t ion cons t an t f o r a l an ine 

c o n s u m p t i o n . Alae[f ( m M ) , rmaXres,Aia_Giii , rmaXres,Aia^Gic , PAia_Gin , and pAia_Gin are the 

e f f e c t i v e concen t r a t i on and r e s p o n s e coe f f i c i en t s / cons t an t s f o r a l an ine s imi la r to 

E q u a t i o n M 2 1 . rmaxAia_Gic ( m m o l e m m o l e " ' ) and nnaxAia_Gin ( m m o l e m m o l e " ' ) are the 

l inea r y ie ld c o e f f i c i e n t s of a l an ine f r o m g lucose and g l u t a m i n e respec t ive ly . 

In E q u a t i o n M 2 2 , qAia.min is l inked to the r e s p o n s e va r i ab les Xres,Gh, and x,„.g/c 

b a s e d on o b s e r v a t i o n of va r i a t ions of qAia.mm in the f e d - b a t c h C H O - I F N y cul tures . Such 

p h e n o m e n o n w a s no t f o u n d in the ca se of g lyc ine or p ro l ine w h i c h are the o ther t w o 

a m i n o ac ids b e i n g s ign i f i can t ly p r o d u c e d by t h e C H O - I F N y cel ls . T h e s ign of qAia 

w o u l d b e pos i t ive if spec i f i c c o n s u m p t i o n > spec i f i c p r o d u c t i o n and nega t ive in the 

oppos i t e case . 
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Glycine — 

Glyc ine is assumed to b e main ly p roduced f r o m serine plus a non-negl ig ib le 

background product ion rate, qciyMn ( m m o l e lO'^cel l ' h '): 

1 + -
PGh_Gln'^ ^re.sflln y V 

"Qciy.min " ^'^'^ly_Ser ' 1 Se. 
-\-6 11-1 u-K 

1 + -
Pch_ck +-^ra-.G/r (M23) 

where rmaxciy ( m m o l e 10 cell h ) is the m a x i m u m specif ic consumpt ion rate of 

g lycine in ba tch culture, Kciy ( m M ) is the half -sa turat ion constant fo r glycine 

consumpt ion . Gfyeff (mM), rmaXres,Gly_Gln , rmaXres.Gly_Glc , PGlyJSln , and PGly_Gln are the 

e f fec t ive concentra t ion and response coeff ic ients /cons tants for g lycine similar to 

Equa t ion M 2 1 . rmaxGiy_ser ( m m o l e mmole" ' ) is the l inear yield coef f ic ien t of glycine 

f r o m specif ic serine consumpt ion {qsa)-

Proline — 

Prol ine is a s sumed to be main ly p roduced f r o m glu tamic acid and arginine plus a 

non-negl ig ib le background product ion rate, qpro.mm (mmole 10 ®cell ' h '): 

1Pro= 1+ 
Ppro_Glii ^re.-;,Gln PPro_Gh ^res,Glc y (M24) 

Ipm.mm ^'^^^Pm_Ghi ' Ichi _Arg ' ̂ Arg 

where rmaxpr„ ( m m o l e lO'^cell"' h"') is the m a x i m u m specif ic consumpt ion rate of 

prol ine in ba tch culture, Kp,-,, ( m M ) is the half-saturat ion constant fo r prol ine 

consumpt ion . PrOejj (mM) , rmax,-es,Pw_Gin , rmaXres,Pw_Gic , PPm _Gin , and ppro_Gin are the 

e f fec t ive concent ra t ion and response coeff ic ients /constants fo r prol ine s imilar to 

Equa t ion M 2 1 . nnaxpwjj iu ( m m o l e m m o l e ' ) and rmaxpro_Arg (mmole m m o l e ) are the 

l inear yield coef f ic ien ts of prol ine f r o m specif ic consumpt ion of g lu tamic acid {qciu) and 

arginine {qArg) respect ively. 
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Aspartic acid — 

The excretion rate of aspartic acid into the extracellular medium is assumed to 

be negligible because the residual aspartic acid concentration decreased rapidly to zero 

in all batch and fed-batch cultures. Al though aspartic acid can be produced f rom 

asparagine (figure 4.10), this is assumed to take place at the intracellular level which 

would not be included in the model equation. 

_ rmax^^^ • 
/ 
J ̂  ^^^^^res,Asp_Gh) ^res.GIn 

PAsp_Gln ^res,Glii J PASP_GIC ^res,Glr y 

(M25) 

where miaxAsp (mmole 10"®ceir' h ' ) is the max imum specific consumption rate of 

aspartic acid in batch culture, Ka.,,, (mM) is the half-saturat ion constant for aspartic acid 

consumption. Aspe/j (mM), rmaXres.Asp_Gin , rmaXres,Asp_cic , PAsp_Gin , and pAspjsin are the 

ef fect ive concentrat ion and response coeff icients/constants for aspartic acid similar to 

Equat ion M21. 

Glutamic acid — 

Similar to aspartic acid, the excretion rate of glutamic acid is assumed to be 

negligible as the cellular consumpt ion rate of glutamic acid was dominat ing in the 

C H O - I F N y cultures. 

rmax^i, • G/% 

HGlu_Gln ' '^res,Glii J V , PgIu_GIc ^res.Glc J 

^ ^ ™Cl^res,Glu_Gln ' ̂ res,Glu 
PGlu_Gln ^ ^res,Gln y 

(M26) 

where nnaxciu (mmole 10"®ceir' h"') is the max imum specific consumption rate of 

glutamic acid in batch culture, ^c/« (mM) is the half-saturation constant for glutamic 

acid consumption. Gluejf (mWl), rmaXres.Giu^cin , nnax,-es,Giu_Gic , PGiu_Gin , and Pgiu_gih are 

the ef fect ive concentrat ion and response coeff icients/constants for glutamic acid similar 

to Equat ion M21 . 
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Asparagine — 

T h e p r o d u c t i o n of a spa rag ine f r o m aspa i t i c acid is a s s u m e d to b e less s ign i f i can t 

t han t h e r e v e r s e conve r s ion ( f igu re 4 .10) . T h u s , th is is no t i nc luded in the equa t ion 

b e l o w : 

rmax^^„ • Asn^^j 
1 + 

™'^\i'S.Asn__Gln ' ^res.Gln 

Pash Gin ^res,Gin 

1 + -
rmax^. rf.tG/r (M27) 

w h e r e miaxAm ( m m o l e lO'^cell"' h'^) is the m a x i m u m spec i f i c c o n s u m p t i o n ra te of 

a s p a r a g i n e in b a t c h cu l ture , ( m M ) is the ha l f - sa tu ra t ion cons t an t f o r a spa rag ine 

c o n s u m p t i o n . Asnejf ( m M ) , rmaXres,Am_Gln , rmaXres.Asn_Glc , PAsn_Gln , and PAsn^Gln a re the 

e f f e c t i v e concen t r a t i on and r e s p o n s e coe f f i c i en t s / cons t an t s f o r a spa rag ine s imi lar to 

E q u a t i o n M 2 1 . 

Serine — 

It is a s s u m e d tha t t h e c o n v e r s i o n of ser ine to g lyc ine is m o r e d o m i n a t i n g than 

the oppos i t e c o n v e r s i o n ( f igu re 4 .10) . T h u s , the spec i f i c c o n s u m p t i o n of ser ine t akes the 

f o l l o w i n g f o r m : 

1 + 
^res,Gin 

Pser_Gln ^res,Gln J 

1 + -
rmax. \ 

r« .^f r_C/r 

Pser_Clc ^re.M- y* 

(M28) 

w h e r e rmaxser (mmo\e lO'^celF^ h"') is the m a x i m u m spec i f i c c o n s u m p t i o n ra te of ser ine 

in b a t c h cu l ture , Kser ( m M ) is t h e ha l f - sa tu ra t ion cons t an t f o r ser ine c o n s u m p t i o n . Ser^u 

(mM), , /%er_Gh , and are the effective concentration 

and r e s p o n s e c o e f f i c i e n t s / c o n s t a n t s f o r ser ine s imi la r to E q u a t i o n M 2 1 . 
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Tyrosine — 

Tyros ine can b e p roduced f r o m phenyla lan ine (f igure 4.10). Be low is the 

specif ic consumpt ion rate of tyrosine: 

llyr 
rmax^^,. • Tyr^,^ 

i + -
rmax. 

PL'W 
1 + -

rmax 

Pryr_Gk ^n-s.Glr 

0W29) 

where nnaxTyr ( m m o l e lO'^cell"' h"') is the m a x i m u m specif ic consumpt ion rate of 

tyros ine in batch culture, Kjyr ( m M ) is the hal f -sa tura t ion constant fo r tyrosine 

consumpt ion . Tyr^jj (mM) , rmaXres,Tyi-_Gin , rmaXres.Tyr_Gic , PTyr_Gin , and pTyr_Gin are the 

e f fec t ive concentra t ion and response coef f ic ien ts /cons tants for tyrosine similar to 

Equa t ion M 2 1 . rmaxTyr_phe (mmole mmole" ' ) is the l inear yield coef f ic ien t of tyrosine 

f r o m specif ic phenyla lan ine consumpt ion {qphe)-

Cysteine — 

Cyste ine can be p roduced f r o m serine (f igure 4.10). The specif ic consumpt ion 

rate of cys te ine is as fo l low: 

1c\s ' 

f// 
1 + -

Pcys^Gln ^res,C 

^ '™'^ra-,Cy.s_CU ' ^rcs.Glc 
V Pcys_Glc'^ ^res.Gtc 7 

(M30) 

where rmaxcys ( m m o l e 10"®ceir' h"') is the m a x i m u m specif ic consumpt ion rate of 

cys te ine in ba tch culture, Kcys ( m M ) is the half-saturat ion constant for cys te ine 

consumpt ion . CySejf (mM) , nnax,-es.cys_Gin , rmaXres.cys_Gk , PcysjGin , and pcys_Gin are the 

e f fec t ive concent ra t ion and response coeff ic ients /cons tants for cysteine similar to 

Equa t ion M 2 1 . rmaxcys_ser ( m m o l e m m o l e ' ' ) is the l inear yield coef f ic ien ts of cysteine 

f r o m specif ic serine consumpt ion {qser)-
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Arginine — 

T h e product ion of arginine f r o m prol ine is a s sumed to be less s ignif icant than 

the reverse convers ion (f igure 4.10) . Thus , the specif ic arginine consumpt ion rate is 

mode l l ed as fo l low: 

^Arg 
I ^ _Gtn 

pAr^_Gln ^res.Gln 

^ ^ ' ^n-.s.Glr 

PA,-g_Ulr ^ 

w h e r e rmaxArg ( m m o l e lO'^cell ' h"') is the m a x i m u m specif ic consumpt ion rate of 

arginine in batch culture, ( m M ) is the half-saturat ion constant fo r arginine 

consumpt ion . Argejj (mM) , rmaXres.Ai-g_Gin , rmaXres.Argjsu- , PArg_Gin , and PArg_Gin are the 

e f fec t ive concent ra t ion and response coeff ic ients /cons tants fo r arginine similar to 

Equa t ion M 2 1 . 

4.2.1.5 Metabolic Byproducts 

Ammonium 

A m m o n i u m is one of the m a j o r metabol ic byproduc ts in the cell culture. Apar t 

f r o m g lu tamine and g lu tamic acid, a m m o n i u m is also p roduced f r o m metabol i sm of 

his t idine (His), serine (Ser), asparagine (Asn), lysine (Lys), meth ion ine (Met) , and 

t ryptophan (Trp) (Al tamirano et ah, 2001) . In a detai led study of C H O chemosta t 

cul ture metabol i sm by Al tami rano et al. (2001), the metabol ic f lux of His, Ser, and Asn 

was h igher than Lys, Met , and Trp at d i f ferent steady-states. Thus , His, Ser, and Asn 

were approx imated to b e the al ternative sources of a m m o n i u m product ion in the 

absence of g lu tamine in the C H O - I F N y cell cultures. Glu tamic acid was rapidly 

c o n s u m e d by the C H O - I F N y cells such that there was negl igible concentrat ion in the 

extracel lular med ium. Because g lu tamine was supp lemented more than glutamic acid by 

80 t imes in ba tch cul ture and by 100 t imes in fed-ba tch cultures, the contr ibut ion of 

a m m o n i u m product ion f r o m glutamic acid is a s sumed to be negligible. 

T h e specif ic a m m o n i u m yield f r o m amino acids is a s sumed to be proport ional to 

the specif ic consumpt ion of amino acids. T h e specif ic a m m o n i u m product ion rate also 

conta ins a non-negl ig ib le background product ion term, rrninAmm ( m m o l e lO'^cell ' h '), 
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which is based on observation that the ammonium production rate in CHO-IFNy batch 

culture remained positive when most ma jo r sources of ammonium had been exhausted. 

A limited number of studies in the literature suggested that the nitrogen in amino 

acids could end up in other non-essential amino acids instead of ammonium. It had been 

reported that the NH3 group in glutamate (glutamic acid), a major metaboli te f rom 

glutamine, can be channelled into alanine and aspartic acid via aminotransferase in rat 

lymphocytes and mouse tumour cells (Ardawi and Newsholme, 1982; Moreadi th and 

Lehninger , 1984). In the CHO-IFNy cell culture studied in this chapter, there was a 

singificant accumulat ion of alanine in all batch and fed-batch cultures; the ammonium 

accumulat ion also became less posit ive at high concentrat ion of ammonium despite 

ongoing consumpt ion of glutamine. Thus, a ' reverse ' reaction term, qAmm.rev (mmole 10 

®ceir' h"'), representing the possible channell ing of metaboli tes away f rom ammonium 

product ion is proposed for the mass balance of ammonium; 

. G/„ . V + ^ ). X, . V - . f . . (M32) 
dt 

where Amm (mM) is the ammonium concentration, rj.Gin (h"') is the spontaneous 

glutamine degradation rate. Gin (mM) is the glutamine concentration, and qAmm (mmole 

lO'^ceir ' h"') is the specific ammonium production rate. 

The equation for qAmm.rev is def ined as fol low: 

where rrninAmm.rev (mmole^'"""^ L"" lO'^cell ' h"') represents the min imum specific rate of 

metabol i te redirection away f r o m ammonium production, and m is an exponential of 

a m m o n i u m concentrat ion. 
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B e l o w is the p roposed equat ion fo r specif ic a m m o n i u m consumpt ion: 

I ' lain 

K Amni_Gln '^^Gln 
' Icht 

rma\ (lws+^Ser + lA.J 

(£+- lain 
) ' ^Amm_His,Ser,A.m Isei ^^Asi) 

PAmw_Ghi~^^res.Gli! y 
^.scale'^^Gln 

(M34) 

w h e r e rmaxAmm_Gin ( m m o l e mmole"^) is the s toichiometr ic m a x i m u m a m m o n i u m yield 

f r o m glu tamine and KAmm_Gin (mmole 10 ®cell' h ') is the cor responding half-saturat ion 

constant . Similarly, nnaxAmm_His,ser,Asn (mmole m m o l e ' ) is the s toichiometr ic m a x i m u m 

a m m o n i u m yield f r o m hist idine + serine + asparagine and KAmm_His.ser,A.m (mmole 10 

®ceir' h"') is the cor responding half -sa turat ion constant . Kscak (mmole lO ^cell'" h ') 

represents a low level of g lu tamine consumpt ion that wou ld cause the cells to consume 

other a m i n o acids, caus ing a change in the a m m o n i u m yield f r o m those amino acids. £ 

is a cons tant « 1 that prevents the denomina tor f r o m approaching zero when qci,,, qms, 

qser, and qAsn tend to zero. pAmm^cin is a response constant relat ing the cell cul ture low-

g lu tamine response (xres.Gin) to any poss ible fur ther reduct ion of qAmm-

Lactate 

W u et al. (1992) studied C H O - K l cells chemosta t s and used '^C radioisotope 

g lucose and g lu tamine to track the fa tes of g lucose and g lu tamine carbons. It was found 

that 6 8 - 8 1 % of g lucose carbon ended up in lactate, 14-23% of g lu tamine carbon ended 

up in lactate, 22 -64% of g lu tamine carbon b e c a m e amino acid and other 

mac romolecu le s of the cells, 5 - 8 % of g lu tamine degraded in the med ium, and the rest of 

g lucose and g lu tamine carbons were ful ly oxidised and ended up as CO2. Thus , 

g lu tamine is also contr ibut ing to the product ion of lactate in C H O cell cul tures apart 

f r o m g lucose and this is taken into account in the mode l . 

Un l ike a m m o n i u m , lactate consumpt ion by m a m m a l i a n cell cul tures is known to take 

p lace at low glucose concentra t ions ( G m u n d e r et al., 1988; Kurano et al., 1990a). Syrian 

hams te r k idney cells grown on microcarr iers in 2ml cell culture tube is reported to use 
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l ac ta te as an ene rgy sou rce w h e n all g l u c o s e w a s dep le ted ( G m u n d e r et al., 1988); C H O 

cell static cu l tu res s tud ied b y K u r a n o et al. ( 1990a ) con t inued to g r o w a c c o m p a n i e d 

wi th a d e c r e a s e in lac ta te concen t r a t i on a f t e r g lucose dep le t ion . T h u s , a lac ta te 

c o n s u m p t i o n t e r m is i nc luded in the m a s s b a l a n c e of lac ta te b e l o w : 

d{Lac • V) ^ y, • • Lac^ 
luic.GIc ^ 'iur.Gh, < T 

^ iMc.rer 

. Y - Z / Z C . F _ ( M 3 5 ) 
dt 

w h e r e qiac.cic ( m m o l e lO'^cell"' h"') is t h e spec i f i c lac ta te p r o d u c t i o n ra te f r o m g lucose , 

qiMc.Gic ( m m o l e lO'^cell"' h" ') is the spec i f i c lac ta te p r o d u c t i o n ra te f r o m g lu t amine , yi is 

a b ina ry var iab le assoc ia ted wi th g l u c o s e concen t r a t i on and is d e f i n e d in E q u a t i o n M l , 

rmaxuw.rev ( m m o l e lO '^ce i r ' h" ') is the m a x i m u m lac ta te c o n s u m p t i o n ra te at l o w 

c o n c e n t r a t i o n of g l u c o s e and Kiac.rev ( m M ) is the c o r r e s p o n d i n g ha l f - sa tu ra t ion cons tan t . 

In the e q u a t i o n s of spec i f i c l ac ta te p r o d u c t i o n ra te g lucose and g l u t a m i n e b e l o w , the 

lac ta te y ie ld f r o m g l u c o s e / g l u t a m i n e is a s s u m e d to b e p ropor t iona l to the spec i f i c 

c o n s u m p t i o n ra te of glucose(^G/c)/glutamine(^G/c): 

' ?G/c ^ _ 

\ ^Lac_Glc ^Glc y 

^res.Glc 
(PLac_Gk ^res.Glc) J 

0W36) 

/ \ A 
• qc,„ 

^Lac_Ghi 

9 c . GW37) 
(PLac_Gln + ^res,Gin ) 

where rmaxiac_Gk ( m m o l e m m o l e " ' ) is the m a x i m u m s to ich iomet r i c y ie ld of lac ta te f r o m 

g lucose , rmaxu,c_Gin ( m m o l e m m o l e " ' ) is the m a x i m u m s to ich iomet r i c y ie ld of lac ta te 

f r o m g l u t a m i n e . KLac_Gic ( m m o l e 10"®cell"' h"') is the ha l f - sa tu ra t ion cons tan t f o r lactate 

y ie ld f r o m g lucose , and KLac_Gin ( m m o l e 10"®cell"' h" ') is the ha l f - sa tu ra t ion cons t an t f o r 

l ac ta te y ie ld f r o m g lu t amine . pLac_Gic and puic_Gin are r e s p o n s e cons t an t s re la t ing the cell 

cu l tu re r e s p o n s e s {xres,Gic and Xres.Gin) at l o w - g l u c o s e and l o w - g l u t a m i n e leve ls to any 

pos s ib l e f u r t h e r r educ t i on of qiac.Gic and quw.cin r e spec t ive ly . 

A s u m m a r y of all t he m o d e l e q u a t i o n s that h a v e b e e n i n t roduced is ava i lab le in 

t h e nex t sec t ion . Th i s m o d e l con ta in s 192 p a r a m e t e r s of w h i c h the va lues are m o r e 

c h a l l e n g i n g to e s t ima te than in Sec t ion 4.1. In C h a p t e r 5, t hese 192 p a r a m e t e r s are 

d iv ided in to d i f f e r e n t ca t egor i e s and a p a r a m e t e r e s t ima t ion s t ra tegy is d e v e l o p e d f o r 

th i s l a rge m o d e l . Th i s sect ion (Sec t ion 4 .2) is in c o n j u n c t i o n with C h a p t e r 5 w h e r e the 

m o d e l p red ic t ion p e r f o r m a n c e is eva lua t ed . P l e a s e r e fe r to the nex t c h a p t e r f o r a 

de ta i l ed d i scuss ion of the p a r a m e t e r e s t ima t ion m e t h o d and m o d e l s imula t ion resul ts . 
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4.2.2 Model Equations Summary 

Overall volume: 

= Pin + ^in.glc " P'aut ( 4 . 2 . 1 ) 

(Note: It is assumed that the sampling colume is neghgible relative to the flowrates of and 

Cell concentration: 

= V (4.2.2) 
at V 

X, . V - . X, . y - . X, (4.2.3) 
Of 

Z = X +X, (4.2.4) 

G/c,̂  = yg. (G/c,, . + G/c,:. . - GZc - - ^ ) + G/c (4.2.5) 

Effective Nutrient concentrations for addition of small amount of concentrated nutrients: 

— + Glc. — 
y " y y 

GZm,̂  = yg. (GZn,, - - GZn. : ^ ) + G/n (4 2.6) 

= P • (M,. , ; • ~ - M • + M " 4 .2.25) 

where ; : Val, Leu, lie, Met, Phe, Trp, Thr, Lys, His, Ala, Gly, Pro, Asp, Glu, Asn, Ser, Tyr, Cys, or Arg. 

Cellular regulation responses: 

0, Glc = 0 

1, 0 < GZc < Tcfr >'l = 1 (4.2.26) 

y? = 

0, G k > Tg,, 

0, Gin = 0 

1, 0 < GZn < Tck 
0, Gin > Tg,,, 

(4.2.27) 

diXres.GIc) _ , Jog[l + - Glc)] - (4.2.28) 
A 

di.x. . log[l + • (Tc,„ - Gin)] - (4.2.29) 
at 
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Nutrients uptake: 

(i) G l u c o s e 
d(GZc y ) 

dt 
= G/c,.„ • F,. + G/c,.,, • - Glc • F„„, - q^,,. -X^.-V 

Icic 
rmax^,^ • Glc^jj 

^Glc 
k :„K \ru 1. 

1 + 
res.Clf _ain ' ^res.Cln 

Pck _Gln ^res.aln ) 

\^inh.NHi + ^NH3 j \^mh.lMC ^Lilt: J 

(4 .2 .30) 

(4 .2 .31) 

(4 .2 .32) 

(ii) G l u t a m i n e 
( f ( G / n . y ) 

dt 
= Gln.„ • F,.„ - Gin • F„„, - q^,,, ' GZn • V 

?67;i 
rmaxci„ • Gln^jj 

^ Gill 

K mA.G/r 

V ^inh.Gk + ^ 
1 + -

rmax s.ain_Glc '^res.Gk 
Pain _Gk ^rcs.Gk 

(4 .2 .34) 

(4 .2 .33) 

A 

(iii) A m i n o ac ids 
d (A4 , y ) 

dt 
= ^A„.i • P-m - • Pou, - ^AAJ • ^ 

( 4 . 2 . 3 5 - 4 . 2 . 5 3 ) 

where /: Val, Leu, He, Met, Phe, Trp, Thr, Lys, His, Ala, Gly, Pro, Asp, Glu, Asn, Ser, Tyr, Cys, or Arg. 

/ w ( A r # 3 , Z a c ) 
•J.'// 

1 + 
_Gln ' ^res.GIn 

Pj_Gln ^rcs.GIn 
\+-

where j : Val, Leu, He, Met, Phe, Trp, Thr, Lys, or His (essential amino acids). 

_Ck ' ^m.Gk 
Pj_Gk ^ns.Gk y 

(4 .2 .54 - 4 .2 .62 ) 

lAk, = 
rinaxAic ' 
K + Ala„rr ^ Aki.ih 1 + 

^'^^res.Ahi_Gln ' ̂ ra.GIn 
\ 

PAh_Gln ^rcs.Gk 
\ + 

• JTliaX^I^^ UI^. ' ^^'^^Aki_Gln ' ^Gln 

' ^ra.Glr 
PAki_Gk ^ics.Gk 

(4 .2 .63) 

9 G t = -
rmax^i^. • 

^Gh ^^X./7 
1 + 

PGIy^GIn 
1 + 

PGh_Gk ^rcs.Gk y 

-9G,).m,n-n?KWGh_.%r 9*r 

rmaxp„, • 
1 + 

Ppro_G!n ^res.Gin ) 

1 + 
^" '̂̂ rc.i.Pro_67r ' ̂ yg.Gk 

PPra_Glc ^res.Glr j 

Ipro.min _Glu ''3Glu _Arg ' 1 Arg 

(4 .2 .64) 

(4 .2 .65) 
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nnax^,^ • Asp^^j f rmax,.^^.^^^ ci,rXn..Gi,, ] L «.(;/, I ntLi^ . -̂1 ^ ,.i 
1 + 

pAsp^Clr ^rcs.Glr y 

_ rmaxci. GZw^ 

1 + 
\^ pAsp_Gln ^res^Ghi J \ 

^ ( . '""^'^•^ra.C/u.C/r •-^ra.G/r 
1 H 

' ^res.GIn 1 + 
Palu_ain'^ ^res.Ght / PGIu_Glr ^res.GIt y 

^'^^'^^•es.Asn_Gln ' ^res.GIn . ^'^^^cs.Asn_Glc ' ^re.s.Glc . ] +-1 + 
pAsn^Gln ^res.Gln J \ 

1 + 
pAsn_G(c ^res.GU- j 

•4! 

^^^^res.Sci _Glii ' ^res.Ght . ^'^'^ra.Sc-r_Gli ' ^res.Glr 
. j -I 1 + 

^rcs.GIc y Pser_Gk 

f 
1 + 

^ PSer_G\n ^resX^ln J \ 

^ ^ ^flT-^^resJyr_alc ' ^res.Gk 
— . I -j — 1 + 

^ PTyr_ain'̂ ^ins,Ghi J V. pTyr_Glc ^re.i.Glr y 

nnax^y^ • Cys^jj f nnax^^^ cys_Gh ' ̂ res.Gi,, 1 f . '™^..C)._G,r' 
1H 

Pcys_Gln ^ ^res^Gln J ^ 

1 + 
Pcys^Gk ^res,Gir j 

f'naX^rg • ^>'S,fJ I • ^rc-s.GIn ^ ^ "naX^.s.Arg^Clr ' ^rcs.Glr 
1 + 

PArg_Glti ^re,y,G//; y PArg_Glc ^res.Gk y 

(4 .2 .66) 

(4 .2 .67) 

(4.2.68) 

(4.2.69) 

- rma.Xiy^. j,ij^, • qpj^^, 

(4 .2 .70) 

9.kr 

(4 .2 .7 ] ) 

(4 .2 .72) 

^AW3 -

Byproducts: 

0 , 

NH3-NH3^^, NH3>NH3^,. 

NH3 = Amm • 1 0 ' - , a s s u m e p H ~ 7 .0 

d{Amm • V) 
dt 

= r̂ ,Gh GZn. V + (g^^^ - ) X , V - Amm - F,, 

^Am 

• Amm" 

K, ,+fe, 

,m>l 

' ^Gln 

+ 
(g + Qain 

^scale'^iGb 

) ^Aiiini_His.Ser,Asi> ~^^Asii^ 

(9m+9.Srr + 9/, 

(4 .2 .73) 

(4 .2 .74) 
(4.2.75) 

(4 .2 .76) 

(4.2.77) 

1 — 

pAnttfi_ Gin "̂ rc V.07/J 

(4 .2 .78) 

153 



D,_ac = 
0 , Lac < Lac^.^ 

Lac - Lac^.^, Lac > Lac^^. 

d{Lac • V) 
dt Iloc.GIC '^lLac,G\n 

• Lac 
• X-V - Lac • F, 

rmaXj^^ jj!^ ' ^ o v r 

K \ --&fC_C/r ' iWr y 

_C/;i • ^C(i 

+ laic 
1 - -

\ 

^ Ulc_Gln + ^ain 
1-

PIm! _Gic ^res.Glc j 
X 1 •^res.GIn 

PUic^Gln ̂ re.-;,Gln j 

• ?C/r 

^Gln 

(4 .2 .79) 

(4 .2 .80) 

(4 .2 .81) 

(4.2.82) 

Growth: 

n lAA.k 
f 
2 _|_ P'nuixl Igu lain 

\ 

' y 
(4.2.83) 

/^m(Ul ̂ g,Gk IGU ^s.Glli'^^GIn 
where k : Val, Leu, lie. Met, Phe, Trp, Thr, Lys, His, Arg, Tyr, or Cys (essential and growth-stimulating 
amino acids). 

(4.2.84) 
Pg ^res.GIn 

where I: Val, Leu, He, Met, Phe, Trp, Thr, Lys, His, Arg, Tyr, Cys, Glc, or Gin. 

T h e second te rm on the right h a n d side of Equa t ion 4 .2 .84 is to account fo r any poss ib le 
c h a n g e in the ha l f -sa tura t ion cons tants in l ow g lu tamine fed-ba tch cul tures . 

Death: 

Pel =Pd.m„ • 
^d.U •"<• y 

1 - -

Pd.Gln + ^res.Gln 
1 - -

PtLGIr + ^res.Gk 
(4 .2 .85) 

Product synthesis: 
j ( / F A y V) 

dt 
= X , V- 1+ 

^'^esJFN_Gln ' ̂ res.Gln 
PlFN_Gln '^^res.Gln 

1 + 
_Glc ' ̂ res.GIc 

PlFN_Glr '^^resflk y 
(4.2.86) 
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4.2.3 Notations for Complex CHO-IFNy Model with Amino 
Acids 
Table 4.7: No ta t ion of pa rame te r s f o r the c o m p l e x C H O - I F N y mode l . 

Parameters Definition Units 

d One unit-time hr 

£ Engineering constant for Amm spec, production rate -

Tbk Response threshold for Glc mmole L"' 

Response threshold for Gin mmole L"' 
Minimum specific death rate h-' 

fi/naxl Maximum specific growth rate dependent on 
essential/growth-stimulating amino acids 

h-' 

l^maxl Mmaximum specific growth rate dependent on 
glucose & glutamine 

h"' 

Amiflcr Critical ammonium concentration mmole L ' (= mM) 
Degradation rate of of x,.„,g;c h ' 
Degradation rate of of Xr„,G/n h ' 

KAU} Half-saturation constant for alanine consumption mmole L"' 
Half-saturation constant for the Amm yield f rom 
glutamine 

mmole lO'^'celf' h"' 

^Amm_His,Ser,A!<n Half-saturation constant for the Amin yield f rom 
histidine + serine + asparagine 

mmole 10'^cell"' h"' 

Half-saturation constant for arginine consumption mmole L ' 

^Am Half-saturation constant for asparagine 
consumption 

mmole L ' 

f^Asp Half-saturation constant for aspartic acid 
consumption 

mmole L"' 

Kc\s Half-saturation constant for cysteine consumption mmole L"' 
Inhibition constant of lactate for cell death mmole L ' 

k-<l.NH3 Inhibition constant of ammonium for cell death mmole L"' 

^H.Arg Half-saturation constant of arginine for cell 
growth in batch culture 

mmole lO'^cell ' h"' 

f^g.Cys Half-saturation constant of cysteine for cell 
growth in batch culture 

mmole lO'^cell"' h"' 

Half-saturation constant of glucose for cell growth 
in batch culture 

mmole lO'^celf' h"' 

Kg Gin Half-saturation constant of glutamine for cell 
growth in batch culture 

mmole lO'^celF' h"' 

Kg.His- Half-saturation constant of histidine for cell 
growth in batch culture 

mmole lO ^'ceir' h"' 

Kg. He Half-saturation constant of isoleucine for cell 
growth in batch culture 

mmole lO^cell ' h"' 

Kg, Leu Half-saturation constant of leucine for cell growth 
in batch culture 

mmole lO'^cell ' h"' 

Kg.Lys Half-saturation constant of lysine for cell growth 
in batch culture 

mmole 10"^cell"' h"' 

Kg,Mel Half-saturation constant of methionine for cell 
growth in batch culture 

mmole 10"^ceir' h"' 

Kg,Phe Half-saturation constant of phenylalanine for cell 
growth in batch culture 

mmole 10"^ceir' h"' 

Kg,Thr Half-saturation constant of threonine for cell 
growth in batch culture 

mmole ]0"^celt"' h"' 

Kg,Trp Half-saturation constant of tryptophan for cell 
growth in batch culture 

mmole lO'^'cell"' h"' 
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Kgjyr Half-saturation constant of tyrosine for cell 
growth in batch culture 

mmole lO '^cell ' h"' 

Kg.vui Half-saturation constant of valine for cell growth 
in batch culture 

mmole lO '^cell ' h"' 

KgIc Half-saturation constant for Glc uptake mmole L 

Kcin Half-saturation constant for glutamine 
consumption 

mmole L 

KGIU Half-saturation constant for glutamic acid 
consumption 

mmole L 

KGIV Half-saturation constant for glycine consumption mmole L 
Half-saturation constant for histidine consumption mmole L ' 

ATfk Half-saturation constant for isoleucine 
consumption 

mmole L ' 

^iijh,Glc G l u c o s e inhib i t ion cons tan t f o r g lu t amine 
c o n s u m p t i o n 

mmole L 

^inh,Lac Inhibition constant of lactate for nutrient 
consumption 

mmole L 

kinh.NHS Inhibition constant of ammonium for nutrient 
consumption 

mmole L ' 

KLac, rev Half-saturation constant of lactate for lactate 
consumption at low glucose level 

mmole L"' 

KlacJSk Half-saturation constant for lactate yield f rom 
glucose 

mmole lO'^celf' h"' 

^Lac_Gln Half-saturation constant for lactate yield from 
glutamine 

mmole lO'^cell"' h ' 

Half-saturation constant for leucine consumption mmole L ' 

KLVS Half-saturation constant for lysine consumption mmole L"' 

^Met Half-saturation constant for methionine 
consumption 

mmole L"' 

Kphe Half-saturation constant for phenylalanine 
consumption 

mmole L"' 

Half-saturation constant for proline consumption mmole L ' 

f^scale Half-saturation constant responsible for scaling 
down KAmm His. Ser. Am at low Icvcls of qcb, 

mmole lO'^cell"' h"' 

Kser Half-saturation constant for serine consumption mmole L ' 

Knr Half-saturation constant for threonine 
consumption 

mmole L"' 

Krrp Half-saturation constant for tryptophan 
consumption 

mmole L"' 

Kjvr Half-saturation constant for tyrosine consumption mmole L ' 

Kval Half-saturation constant for valine consumption mmole L"' 
Critical lactate concentration mmole L"' 

m Exponential of Amm for qAmm.rev in the mass 
balance of ammonium 

pH pH of cell culture -

Background specific production rate of alanine mmole lO'^cell ' h ' 
Background specific production rate of glycine mmole lO'^cell"' h ' 
Background specific production rate of proline mmole lO'^cell"' h ' 

fd,Gln Degradation rate of glutamine ( h f ' ) h-' 
Rate of fragmentation of dead cells h ' 

nnaxA!a Maximum specific alanine consumption rate mmole 10'''ceir' h ' 

rmOXAla Gic 
Linear yield coefficient of alanine from glucose mmole mmole"' 

nnOXAla Gin 
Linear yield coefficient of alanine from glutamine mmole mmole"' 

rJnClXAnim_Gln Maximum stoichiometric ratio of ammonium 
from glutamine 

mmole mmole"' 
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Maximum stoichiometric ratio of ammonium 
from histidine + serine + asparagine 

mmole mmole ' 

nnaxArii Maximum specific arginine consumption rate mmole lO'^cell ' h"' 

rmaxArn Maximum specific asparagine consumption rate mmole lO'^celf' h"' 
Maximum specific aspartic acid consumption rate mmole lO'^cell"' h ' 

rmaxcy^ Maximum specific cysteine consumption rate mmole lO'^cell ' h"' 
Linear yield coefficient of cysteine from serine mmole mmole"' 

rmcucQic maximum specific consumption rate for Glc mmole 10"''cell"' h ' 

rmaxQin Maximum specific consumption rate of glutamine mmole 10"^ceir' h"' 

rmaxaiu Maximum spec, glutamic acid consumption rate mmole 10"'^ceir' h"' 

nTiciX(jiy Maximum specific glycine consumption rate mmole 10'^cell"' h"' 
Linear yield coefficient of glycine from serine mmole mmole"' 

imaxjii. Maximum specific histidine consumption rate mmole 10"^ceir' h"' 

y Maximum specific production rate for IFNy mg 10 "cell"' h ' 

rmaxjie Maximum specific isoleucine consumption rate mmole IO"'^ceir' h"' 

mtClXi^c, rev Maximum specific lactate consumption rate at low 
glucose level 

mmole 10"^ceir' h"' 

rjiiciXi^a c_Gi c Maximum stoichiometric ratio of lactate from 
glucose 

mmole mmole"' 

TTflO-Xjn c GIn Maximum stoichiometric ratio of lactate from 
glutamine 

mmole mmole"' 

maxuu Maximum specific leucine consumption rate mmole 10"'cell"' h ' 

maxi,,, Maximum specific lysine consumption rate mmole 10"'cell"' h ' 

nnaxMe! Maximum specific methionine consumption rate mmole 10"'ceir' h"' 

rmaxpi,e Maximum spec, phenylalanine consumption rate mmole lO ^'cell"' h"' 

rmaxpro Maximum specific proline consumption rate mmole 10"''ceir' h"' 
Linear yield coefficient of proline from arginine mmole mmole"' 

VlJlClXpfojQiii Linear yield coefficient of proline from glutamic 
acid 

mmole mmole"' 

rniClXresMa^G Ic Maximum response coefficient for alanine 
consumption due to low glucose level 

T17lCiXfi;i^Ala_G(n Maximum response coefficient for alanine 
consumption due to low glutamine level 

y'ffl(^X!-cs.Arg_G!c Maximum response coefficient for arginine 
consumption due to low glucose level 

n7KXXj-^s,Afg-G!ii Maximum response coefficient for arginine 
consumption due to low glutamine level 

fyytClXres,Asn_G Ic Maximum response coefficient for asparagine 
consumption due to low glucose level 

117lClXj-es.Asn_Gh-i Maximum response coefficient for asparagine 
consumption due to low glutamine level 

TTitClXres.AspJJlc Maximum response coefficient for aspartic acid 
consumption due to low glucose level 
Maximum response coefficient for aspartic acid 
consumption due to low glutamine level 

Cys_G!€ Maximum response coefficient for cysteine 
consumption due to low glucose level 

nnClX fi; ̂ ^ Cys_Ght Maximum response coefficient for cysteine 
consumption due to low glutamine level 
Activation coefficient of Xres.ck h"' 

flJldX)'^'^' Glc^Gln Maximum response coefficient for glucose 
consumption due to low glutamine level 
Activation coefficient of .xv„.Gin h ' 

CSn_G!t' Maximum response coefficient for glutamine 
consumption due to low glucose level 
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Maximum response coefficient for glutamic acid 
consumption due to low glucose level 

-

rmcix (jiit_Giii Maximum response coefficient for glutamic acid 
consumption due to low glutamine level 

niJO-X )•(><;_ Gly_Glc Maximum response coefficient for glycine 
consumption due to low glucose level 

-

HlKXXj-es, Gl\_Gln Maximum response coefficient for glycine 
consumption due to low glutamine level 

-

nil ClXres,H's_Glc Maximum response coefficient for histidine 
consumption due to low glucose level 

-

miUXyes, His_Gln Maximum response coefficient for histidine 
consumption due to low glutamine level 

r}naX,es,IFN_Gic Maximum response coefficient for IFNy 
production due to low glucose level 

midXfesJFNjGhi Maximum response coefficient for IFNy 
production due to low glutamine level 

TTTlQXff;^ lle_Glc Maximum response coefficient for isoleucine 
consumption due to low glucose level 

TiflQ-XfQ^^^ Jle_Gln Maximum response coefficient for isoleucine 
consumption due to low glutamine level 

nnOXyf-^ l^(;u_Gic Maximum response coefficient for leucine 
consumption due to low glucose level 

ntlClXres, LeujGIn Maximum response coefficient for leucine 
consumption due to low glutamine level 

T}TlClXfes,Lys_Glc Maximum response coefficient for lysine 
consumption due to low glucose level 

fl7lQ.Xyes,Lys_Gln Maximum response coefficient for lysine 
consumption due to low glutamine level 

T17lClXy(>s \f(;l_GlC Maximum response coefficient for methionine 
consumption due to low glucose level 

TTf10JCres,Met_Gln Maximum response coefficient for methionine 
consumption due to low glutamine level 

miClXfes, Ph eJJ Ic Maximum response coefficient for phenylalanine 
consumption due to low glucose level 

miClXfx's,Fhe_Gln Maximum response coefficient for phenylalanine 
consumption due to low glutamine level 

TlTlClXfi;^ PfojGic Maximum response coefficient for proline 
consumption due to low glucose level 

miClX,-(^^Pro_Gln Maximum response coefficient for proline 
consumption due to low glutamine level 

f'fflClXre.s,Ser_Glc Maximum response coefficient for serine 
consumption due to low glucose level 

rfflClXff;^^ Ser__Gln Maximum response coefficient for valine 
consumption due to low glutamine serine 

T17lClX](;>i^ Thr_Glc Maximum response coefficient for threonine 
consumption due to low glucose level 

TlllQ^Xres, 'I'hr_Gln Maximum response coefficient for threonine 
consumption due to low glutamine level 

TllJOXjes, Trp_Glc Maximum response coefficient for tryptophan 
consumption due to low glucose level 

TiyXaXj-es, Tr}y_Gln Maximum response coefficient for tryptophan 
consumption due to low glutamine level 

mtOXjes, TyrjGlc Maximum response coefficient for tyrosine 
consumption due to low glucose level 

rJ7tClXf-f>^_ T\r_Gtn Maximum response coefficient for tyrosine 
consumption due to low glutamine level 
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/ Val_Glc Maximum response coefficient for valine 
consumption due to low glucose level 

-

nilCLXfi;^ Vai_Gln Maximum response coefficient for valine 
consumption due to low glutamine level 
Maximum specific serine consumption rate mmole lO'^cell"' h"' 

NNAXRHR Maximum specific threonine consumption rate mmole lO'^cell"' h"' 

RMAXJRN Maximum specific tryptophan consumption rate mmole lO'^cell"' h"' 

NNAXTYR Maximum specific tyrosine consumption rate mmole lO ^'cell"' h"' 

rrnciXfyr_phe Linear yield coefficient of tyrosine from 
phenylalanine 

mmole mmole' ' 

RMAXVAI Maximum specific valine consumption rate mmole 10"^cell"' h"' 
Background specific production rate of Amm mmole lO'^cell"' h"' 
M i n i m u m specif ic rate of metabol i te 
redirect ion away f r o m Amm product ion 

mmole"'" 'L"" 10" 
''cell ' h ' 

pAlaJ3k Response constant for alanine consumption due to 
low glucose level 

PAIa_.Gln Response constant for alanine production due to 
low glutamine level 

PAmm_Ght Response constant for ammonium production due 
to low glutamine level 

PArg_Glc Response constant for arginine consumption due 
to low glucose level 

PArg_Gln Response constant for arginine production due to 
low glutamine level 

PAsnJJk 
Response constant for asparagine consumption 
due to low glucose level 

PAsn_Gln 
Response constant for asparagine production due 
to low glutamine level 

PASP_GIC 
Response constant for aspartic acid consumption 
due to low glucose level 

PAsp_Gln 
Response constant for aspartic acid production 
due to low glutamine level 

PCys_Glc Response constant for cysteine consumption due 
to low glucose level 

PCys_Gln 
Response constant for cysteine production due to 
low glutamine level 

Pd.Glc 
Response constant for cell death due to low 
glucose level 

Pd.Gln 
Response constant for cell death due to low 
glutamine level 

A Response constant of nutrients for cells growth 
due to low glutamine level 

PGlc_Gln 
Response constant for glucose production due to 
low glutamine level 

PGh_Glc 
Response constant for glutamine consumption due 
to low glucose level 

PGIUJGIC Response constant for glutamic acid consumption 
due to low glucose level 

pGlu_Gln 
Response constant for glutamic acid production 
due to low glutamine level 

PGly_Glc 
Response constant for glycine consumption due to 
low glucose level 

PGly_Gln 
Response constant for glycine production due to 
low glutamine level 

PHis__Glc 
Response constant for histidine consumption due 
to low glucose level 
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PHis_Gln Response constant for histidine production due to 
low ^lutamine level 

-

PlFNJSlc Response constant for IFNy production due to low 
glucose level 

PlFN_Gln Response constant for IFNy production due to low 
glutamine level 

PUe_Gk Response constant for isoleucine consumption due 
to low glucose level 

Plle_Gln Response constant for isoleucine production due 
to low glutamine level 

PImc^GIC Response constant for lactate production due to 
low glucose level 

PtacJjln Response constant for lactate production due to 
low glutamine level 

pLeu_Glc Response constant for leucine consumption due to 
low glucose level 

PLeu_Gln Response constant for leucine production due to 
low glutamine level 

PLys_Glc Response constant for lysine consumption due to 
low glucose level 

PLysJJln 
Response constant for lysine production due to 
low glutamine level 

pMel_Ck Response constant for methionine consumption 
due to low glucose level 

PMei_Gln Response constant for methionine production due 
to low glutamine level 

Pphe_Gk Response constant for phenylalanine consumption 
due to low glucose level 

pPhe__Gln Response constant for phenylalanine production 
due to low glutamine level 

PPm_Glc 
Response constant for proline consumption due to 
low glucose level 

PProJJln 
Response constant for proline production due to 
low glutamine level 

PSer_Gk 
Response constant for serine consumption due to 
low glucose level 

PSer_Gln 
Response constant for serine production due to 
low glutamine level 

Prhr_Gk Response constant for threonine consumption due 
to low glucose level 

PThr_Gln 
Response constant for threonine production due to 
low glutamine level 

Prrp^Gk 
Response constant for tryptophan consumption 
due to low glucose level 

Prrp_Gin 
Response constant for tryptophan production due 
to low glutamine level 

PryrJJk Response constant for arginine consumption due 
to low glucose level 

Pryr_Gln 
Response constant for tyrosine production due to 
low glutamine level 

PVaLGk 
Response constant for valine consumption due to 
low glucose level 

PvaLGhi Response constant for valine production due to 
low glutamine level ' 
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Table 4.8: Nota t ions fo r m a j o r var iables in the complex C H O - I F N y model . 

Variables Definition Units 
A4** Amino acid concentration mM 

A A , / * Effective amino acid concentration mM 
Amm Ammonium concentration mM 

X, Dead cell concentration lO 'ce l l sU' 

X, Total cell concentration lO 'ce l l sL ' 

X,. Viable (living) cell concentration lO 'ce l l sU' 

Fi„ Flowrate of inlet stream containing glucose, 
glutamine, & amino acids 

Lh"' 

Pin elc Flowrate of pure glucose stream Lh"' 

Foul Flowrate of outlet stream L h ' 

G k Glucose concentration mM 

Glcgff Effective glucose concentration mM 

GZn Glutamine concentration mM 

Ghleff Effecdve glutamine concentration mM 

IFNy Interferon- yconcentrati on m g L ' 

Lac Lactate concentration mM 

U Intrinsic specific growth rate h"' 
Specific death rate h ' 
Ammonia concentration mM 

444** Specific consumption rate of amino acid mmole lO'^celf' h"' 
Specific production rate of ammonia mmole lO'^celf' h"' 
Specific consumption rate of ammonia mmole 10"''cell"' h"' 

QGIC Specific consumption rate of glucose mmole lO'^celf' h"' 

Qchi Specific consumption rate of glutamine mmole lO'^cell"' h"' 
Specific lactate production rate from glucose mmole lO'^celf' h"' 
Specific lactate production rate from glutamine mmole lO'^cell"' h"' 

Specific production rate of IFNy mg IQ-'ceir' h ' 

t time h 

V bioreactor volume L 
Hypothetical response variable for low glucose 
concentrations 

-

Hypothetical response variable for low glutamine 
concentrations 

Remark: 
- Amino acids other than glutamine: vaUne, leucine, isoleucine, methionine, phenylalanine, 

tryptophan, threonine, lysine, histidine, alanine, glycine, proline, aspartic acid, glutamic acid, 
asparagine, serine, tyrosine, cysteine, and arginine. 

- * * : amino acid concentration other than glutamine (mM) 
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Table 4.9: Concentra t ion of gluose, g lu tamine and other amino acids in the inlet 

s t reams. 

Parameters Definition Units 
GlCin Feed glucose concentration in 

glutamine-controlled fed-batch 
cultures 

mmole L ' 

Glc'in Feed glucose concentration in 
glucose-controlled fed-batch cultures 

mmole L"' 

Gbin Feed glutamine concentration mmole L"' 
Valin (valine) Feed valine concentration mmole L"' 
Leuin (leucine) Feed leucine concentration mmole L"' 
IlCin (isoleucine) Feed isoleucine concentration mmole L"' 
Metin (methionine) Feed methionine concentration mmole L ' 
PhCjn (phenylalanine) Feed phenylalanine concentration mmole L"' 
Trpin (tryptophan) Feed tryptophan concentration mmole L"' 
Thrin (theronine) Feed threonine concentration mmole L"' 
Lysin (lysine) Feed lysine concentration mmole L ' 
Hi Sin (histidine) Feed histidine concentration mmole L"' 
Alain (alanine) Feed alanine concentration mmole L ' 
Glyin (glycine) Feed glycine concentration mmole L"' 
PrOin (proline) Feed proline concentration mmole L ' 
Aspin (aspartic acid) Feed aspartic acid concentration mmole L"' 
GlUin (glutamic acid) Feed glutamic acid concentration mmole U ' 
Asnin (asparagine) Feed asparagine concentration mmole L"' 
Serin (serine) Feed serine concentration mmole L ' 
Tyrin (tyrosine) Feed tyrosine concentration mmole L"' 
CySin (cysteine) Feed cysteins concentration mmole L"' 
Argin (arginine) Feed arginine concentration mmole L"' 
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Chapter 5 

— Parameter Estimation for the 
Complex CHO-IFNy Model 

5.1 Parameter Estimation Strategy 

W i t h a set of mode l equat ions and exper iment data, the model parameter values 

can be es t imated such that the mode l predict ions ma tch exper imenta l observat ion. 

Var ious parameter es t imat ion approaches including trial and error, least square method , 

genet ic a lgori thm, s tochast ic a lgor i thm etc. had been used in the l i terature (Shuler et al., 

1979; Park et al., 1997; M e n d e s and Kell, 1998; P inchuk et al., 2000; F r ahm et al., 

2002b; Gadka r et al., 2003; M o l e s et al., 2003; Kuta l ik et al., 2004) . Some t imes the 

pa ramete r es t imat ion complex i ty was reduced by mode l l inearizat ion or assuming 

certain re la t ionships a m o n g parameters /var iables (Shuler et al., 1979; Grosf i l s et al., 

2007) . But the n u m b e r of mode l parameters of ten exceeds the n u m b e r of measured 

var iables in biological exper iments that there exist mul t ip le parameter solutions (Gadkar 

et al., 2003) . In the case of the C H O - I F N y mode l deve loped in Sect ion 4.2, there are 192 

parameters but only 26 measu red cell cul ture variables. Thus , a strategy was developed 

fo r the es t imat ion of all those paramete rs and it is presented in this chapter . 
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5.1.1 Framework of Parameter Estimation for Highly 

Underspecified Model 

T h e c o m p l e x CHO-LFNy cell cul ture model developed in Section 4 .2 consis ts of 

pa ramete rs that can b e classif ied into the fo l lowing categories: 

(1) Hypo thes i sed parameters for cell cul ture responses at low levels of g lu tamine 

and g lucose 

(2) Paramete rs based on engineer ing assumpt ions , s toichiometr ic ratios, or 

es t imable f r o m li terature data 

(3) Direct ly measurab le parameter 

(4) Pa ramete r s that can be isolated f r o m the model s tructure 

(5) Paramete rs that are act ive in both batch and fed-ba tch condi t ions versus 

paramete rs that are only active in certain fed-ba tch condi t ions 

T h e first two types of parameters were es t imated using m a m m a l i a n cell culture data 

repor ted in the l i terature p lus certain engineer ing assumpt ions . For any parameter that 

could be directly measured , individual exper iment was carr ied out to obtain the 

cor responding data. S o m e mode l equat ions only involve two variables which are both 

quant i f iab le f r o m the measu red data. Thus , a s suming there is no unknown interact ion 

wi th any third variable, the parameters can be ' i solated ' f r o m the rest of the mode l and 

es t imated m o r e accurately based on the values of the two cor responding variables. For 

the r emain ing parameters , those that are act ive in both batch and fed-ba tch condi t ions 

were initially es t imated using ba tch cul ture data; some parameters are only active in 

fed-ba tch cul tures were es t imated using fed-ba tch cul ture data. 

A f t e r an initial es t imat ion of all pa rameter values, the relat ive impor tance of the 

parameters with respect to IFNy product ion in ba tch cultures was quant i f ied using 

Global Sensit ivi ty Analys is (GSA). The sensit ivity of those fed-ba tch parameters could 

not be easily quant i f ied us ing G S A because d i f ferent prof i les of the inlet s t reams Fin(t) 

and Fi„^gic(t) could result in d i f ferent relat ive s igni f icance of the parameters but it is not 

feas ib le to scan all poss ible prof i le pat terns. Thus , all those fed-ba tch parameters with 

non-zero in f luence on the mode l were cons idered ' s igni f icant ' in the parameter 

es t imat ion stage. T h e poss ible e f fec t of parameter uncer ta inty is evaluated in Chapter 6. 
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T h e insens i t ive p a r a m e t e r s w e r e t h e n f i x e d at their n o m i n a l va lues wh i l e the va lues 

of sens i t ive p a r a m e t e r s w e r e r e f i n e d u s i n g r eg res s ion and d y n a m i c s imula t ion in 

g P R O M S . A s c h e m a t i c i l lus t ra t ion of the p a r a m e t e r e s t ima t ion p roces s is s h o w n in 

F i g u r e 5.1. T h e resu l t ing set of p a r a m e t e r va lues w a s used f o r m o d e l - b a s e d op t imisa t ion 

in the n e x t chap te r . 

1 r " 1 
Dvnamic cell 1 Batch & culture model 1 I Fed-batch data j 

X ' i__ . — _ 
Preliminaiy model 
parameters (p r̂) 

GSA 

Sensitive parameters 
(P2V,f) 

arameter re-estimation 

Insensitive parameters 
(p j f - i ' a j ) 

fi-xed at nominal values 

Dynamic optimisation 
of fin W. fin _sic(i) 

time-pro flies 

Figure 5.1: Schematic diagram showing the involvement of Global Sensitivity Analysis (GSA) 
in the estimation of model parameter values. 

5.1.1.1. Response Factors Parameters 

T h e p a r a m e t e r s f o r the hypo the t i ca l d i m e n s i o n l e s s cell cu l tu re r e sponse 

va r i ab l e s Xres.Gin and Xres.Gk inc lude a th re sho ld va lue (%/„, tcic) b a s e d on g l u t a m i n e and 

g l u c o s e concen t r a t ion , an ac t iva t ion c o e f f i c i e n t {nnaxres.cin, nnaxres.cic), and a 

d e g r a d a t i o n ra te (dres.gi,,, dres.ok) o f t he r e s p o n s e var iab les . S ince such var iab les are not 

m e a s u r a b l e , rmaxres.oin and rmaxres.oic w e r e set at a de fau l t va lue of 1. 

Tcin w a s e s t ima ted as 0 . 7 m M b a s e d on l i tera ture f i n d i n g s of an inc rease in 

p r o d u c t syn thes i s in o ther m a m m a l i a n ce l l - l ines at g l u t a m i n e concen t r a t ion < 0 . 3 m M 

( M a n c u s o et al., 1998; L e e et al., 2 0 0 3 a ) and the C H O - I F N y f e d - b a t c h cu l tu res 

p e r f o r m a n c e w h i c h s h o w e d an inc rease in p roduc t iv i ty at a tes ted level of g l u t a m i n e 

concen t r a t i on up to 0 . 5 m M . Tgic w a s e s t i m a t e d as 0 . 5 m M acco rd ing to obse rva t ion of 
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the CHO-IFNy fed-batch cultures that productivity decreased and the production of 

lactate, a ma jor byproduct of glucose, appeared to change f rom net secretion to net 

consumpt ion at glucose concentrat ions < ~0 .5mM. 

The values of dres.cin and were assumed to be the same. It was reported by 

Al tamirano et al. (2001) that CHO- tPA chemostat cultures subjected to low glucose 

levels reached new steady-states with different productivit ies rapidly within several 

hours. Thus, dres.cin and were est imated to be 1.2 h ' using chemostat culture 

simulations such that x,-es,Gin or x,-es.Gic reached steady state in < 5 h when activated by 

low concentrat ion of glutamine or glucose respectively. The response factors parameters 

were not analysed in the Global Sensitivity Analysis (GSA) because by definit ion they 

are sensitive parameters in the model . 

To address the uncertainty of the response factors parameters , especially and 

tcic which dictate the activation of x,es,Gin and Xres.ok, fed-batch simulation near the 

glutamine concentrat ion threshold was avoided and model-based optimisation in 

Chapter 6 would be constrained at glutamine levels higher/ lower than Tg/„. For glucose 

levels, fed-batch simulation near Tck was unavoidable because the experimental range 

of glucose concentrat ion in fed-batch cultures varied around the value of tck- In order to 

minimise any error due to such di lemma, the value of %/c would be f ine-tuned in the 

parameter re-estimation stage in Section 5.1.1.7 if necessary. There was no problem 

with Tg/c in the model-based optimisation as the optimal glucose levels were found to be 

always above Tgic due to the fact that low glucose concentrat ions caused reduction in 

productivity. 

5.1.1.2. Engineering, Stoichiometric, and Literature-Based Parameters 

Three model parameters are constant by definit ion or engineering estimation: pH, 

P, and £. The p H of the bioreactor is controlled at pH7, y? is a unit-t ime coeff ic ient of 

effect ive nutrient concentrat ions (Section 4.2.1.4: Equat ion M l 3 ) having a default value 

of 1 h, £"is an engineering parameter for specific ammonium production (Section 4.2.1.5: 

Equat ion M34) and is f ixed at 0.01 such that £ « 1. 
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In the equat ions for specif ic product ion of byproducts (Section 4.2.1.5), 

rmaxAmm_Gin (Equat ion M34) , rmaxAmm_His.ser,Asn (Equat ion M34) , nnaxLac_Gic (Equat ion 

M36) , and rmaxuic_Gin (Equat ion M 3 7 ) represent the s toichiometr ic relat ionships 

be tween the cor responding byproduc t and nutrient source. Their values are 2, 4, 2, and 1 

respect ively (Al tamirano et al., 2001) . 

T h e three engineer ing parameters and four s toichiometr ic fac tors discussed 

above are not analysed in the Global Sensit ivity Analys is (GSA) due to the fac t that 

their values are cons tant by defaul t or engineer ing assumpt ions . 

T h e critical concentra t ions of a m m o n i a (NHg) and lactate in Equat ion M 6 and 

M I O of Sect ion 4.2 .1 .2 represent the levels of byproduc ts beyond which there would be 

s ignif icant inhibit ion of g rowth rate and increase in death rate. The value of NHscr is 

re lated to the measurab le a m m o n i u m (NH4"^) concentra t ion via Equat ion M 5 (Section 

4.2.1.2) . It had been repor ted that C H O - I F N y cell- l ine could tolerate a m m o n i u m 

concentra t ion up to about 5 m M and the cul ture was not a f fec ted by lactate concentra t ion 

as high as 17 .5mM (Hayter et al., 1991). Observat ions of the C H O - I F N y cell cul ture 

mode l l ed in this current s tudy also indicated a s ignif icant decrease in growth rate when 

a m m o n i u m concentra t ion reached ~ 5 m M though no clear inhibit ive level of lactate can 

b e deduced. Therefore , the values of NHscr and Lac^r are es t imated to be 5 m M and 

2 0 m M respect ively. 

5.1.1.3 Directly Measurable Parameter 

T h e spontaneous g lu tamine degradat ion rate, rd,Gi„, in Equat ion M l 8 (Section 

4.2.1.4) can be measu red directly by cul tur ing cel l - f ree m e d i u m in 37°C and moni tor the 

g lu tamine concentra t ion. The value of râ Gin is measu red to be 0 .005 h ' \ Detai led 

calculat ion can b e f o u n d in Append ix 5. 
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5.1.1.4 Isolation of Parameters 

The specific consumption rates of all essential amino acids (Section 4.2.2: 

Equat ion 4.2.54 - 4.2.62) and glucose (Equation 4.2.31) are only related to the effect ive 

concentrat ion of each corresponding nutrient. Since both the specific consumption rate 

and effect ive concentrat ion can be calculated f r o m measured experimental data and it 

may be assumed that no third unknown variable is associated with each of the equations, 

the equations were ' isolated' f rom the model and the corresponding parameters were 

est imated individually based on relevant batch culture data up to the exponential growth 

phase where the byproducts were still below inhibitory levels. An example for essential 

amino acids is shown in Figure 5.2 where initial est imates of rmaxTh- and Krhr were 

obtained based on the data of specific threonine consumption rate versus average 

threonine concentration. Another example for glucose is shown in Figure 5.3. The data 

for tryptophan, one of the essential amino acids, were not able to be measured in the 

experiment . The values of rmaxTrp and Kn-p were assumed to be the same as 

phenylalanine which has the most similar molecular structure (see Appendix 4 for 

amino acids structure). The est imates of parameters for specific consumption of 

essential amino acids and glucose can be found in Table 5.1. 

T̂hr average Thr 

I 
1 
i 

le-4 

8e-5 

6e-5 

4e-5 

2e-5 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Avg Thr (mM) 
Figure 5.2: Specific threonine uptake rate versus threonine concentration in CHO-IFNy batch 
culture. Solid line represents initial estimation of the relationship between the two variables. 
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vs average Glc 

1.6e-3 

1.4e-3 -

1.26-3 

o l.Oe-3 

a 8.0e-4 

S 6.0e-4 

4.0e-4 

2.0e-4 

Avg Glc (niM) 
Figure 5.3: Specific glucose uptake rate versus glucose concentration in CHO-IFNy batch 
culture. Solid line represents initial estimation of the relationship between the two variables. 

The specific consumption rate equat ions of certain non-essential amino acids 

may be assumed independent of other amino acids if (i) their excretion rate f rom cells is 

negligible, (ii) any possible conversion f r o m other amino acids may be assumed less 

significant than the reverse conversion or being ref ined to the intracellular medium, (iii) 

the t ime-profi le of the amino acid in batch culture is monotonical ly decreasing. These 

requirements are satisfied in the case of aspartic acid (Equation 4.2.66), asparagine 

(Equation 4.2.68), and serine (Equation 4.2.69). An example is shown in Figure 5.4 for 

aspartic acid where initial est imates of rmaxAsp and Kas,, were obtained. Glutamic acid 

and arginine cannot be handled this way because the extracellular concentration of 

glutamic acid in batch culture was as low as the measurement uncertainty (Figure 5.18d), 

making any est imation of rmaxou, and Kch, inconclusive; the t ime-profi le of arginine in 

batch culture had a wave-l ike pattern which may suggest a more complex 

interc on version pattern which is not well understood (Figure 5.18c). The estimates of 

parameters for specif ic consumpt ion of aspartic acid, asparagine, and serine can be 

found in Table 5.1. 
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Iasp average Asp 

8e-5 

Avg Asp (mM) 
Figure 5.4: Specific aspartic acid uptake rate versus aspartic acid concentration in CHO-IFNy 
batch culture. Solid line represents initial estimation of the relationship between the two 
variables. 

T h e specific IFNy production rate in the batch culture is shown in Figure 5.5. 

Apar t f r o m the earliest data point at roughly 1 h which had a high mean value but also 

very high uncertainty, the specific production rate appeared to be stable with t ime 

throughout the batch culture. The m a x i m u m specific IFNy production rate, rnmxifNy, in 

Equat ion 4.2.86 was est imated within the shaded region in Figure 5.5 with an initial 

guess of ~2 X 10"^ m g lO'^ceir ' h"'. 

For the m a x i m u m specific growth rates, and /u,„ax2, (Section 4.2.1.2: 

Equat ion M 8 ) and min imum specific death rate, jUd̂ nin, (Section 4.2.1.2: Equation MIO) 

in the batch culture, certain assumptions may be made in the growth and death 

equations in order to est imate their order of magnitude. Figure 5.6 shows the t ime-

profi le of the intrinsic specific growth rate of the batch culture. The word ' intrinsic ' is to 

avoid confus ion with the apparent specific growth rate which is the dif ference between 

specif ic growth rate and specific death rate. Glucose and glutamine in the batch culture 

were depleted around 68 h (Figure 5.18a). If the nutrients in the batch culture are 

assumed to be abundant in the early half of the cell culture t ime such that their 

corresponding terms in the specific growth rate equation tend to 1, an estimation can be 

made for (//,„u.v/ + Mmaxi)- If the amino acids are assumed to be still sufficient shortly 

after glucose/glutamine depletion such that their corresponding terms remain close to 1, 

the value of can be roughly est imated. Similarly, an initial est imate for was 
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made based on the t ime-profi le of the specific death rate in batch culture (Figure 5.7) 

with an assumption that the byproduct concentrat ion in the early cell culture t ime is 

insignif icant to affect death rate. The est imated values for flmaxi, /^nax2, and are 

0.01 h ' \ 0 .025 h"', and 0.001 h"' respectively. Detai led calculation is available in 

Appendix 5. 

'llFN 

Avg time (h) 
Figure 5.5: Specific production rate of IFNy in CHO-IFNy batch culture. The shaded region 
represents the possible range for maximum specific production rate in batch condition. 

Intrinsic specific growth rate 

Glc, Gin exhausted 
at~68h 

a 0.10 

o.os 

Avg time (h) 
Figure 5.6: Intrinsic specific growth rate in CHO IFNy batch culture where glucose and 
glutamine were exhausted at - 6 8 h. The difference in specific growth rate before and after 
exhaustion of glucose and glutamine was used for estimation of the maximum specific growth 
rates. 
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Dead cells concentration 
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Figure 5.7: Concentration of dead cells in CHO-IFNy batch culture. The dotted line represents 
linearization of dead cell concentration up to mid-exponential phase for estimation of minimum 
death rate. 

5.1.1.5 Regression of the Remaining Parameters 

The remaining parameters were separated into those that are based on batch 

cultures versus those that are related to low-glutamine/ low-glucose responses in fed-

batch cultures. The fo rmer were est imated with batch culture data in g P R O M S (Process 

Sys tems Enterprise Ltd.) using a general m a x i m u m likelihood approach similar to in 

Chapter 3. The latter were then est imated with data of glutamine-controlled and 

glutamine-glucose-control led fed-batch cultures using dynamic simulations. The 

est imated values of all batch and fed-batch parameters are listed in Table 5.1. 

5.1.1.6 Identification of Sensitive Parameters via GSA 

Global Sensitivity Analysis (GSA) was used to identify parameters in the C H O -

IFNy mode l that are sensitive with respect to IFNy production. An introduction of 

sensitivity analysis methods is available in Section 4.1.4.1. A total of 179 parameters 

were analysed excluding 13 parameters discussed in Section 5.1.1.1 and 5.1.1.2. The 

lower and upper bounds of parameter range were selected as fol low: 
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U p p e r bound — 

• 2 t imes s tandard deviat ion fo r those isolated parameters (Section 5.1.1.4) that 

were es t imated via regression, e.g. rmaxm -

• A theoret ical upper bound fo r the yield of certain non-essent ial amino acid f r o m 

other amino acid, e.g. nnaxTyr_piw 

• 2 - 2 0 t imes of the initially es t imated value depending on the uncertainty of each 

parameter . 

L o w e r bound — 

• 10'® for mos t posi t ive parameters or a h igher va lue in certain cases where more 

in fo rmat ion is avai lable to j u d g e the feas ib le lower bounds such as Amma- and 

ldc^^f. 

• A theoret ical lower bound for the negat ive response coeff ic ients , e.g. 

^^'yiclxi-^s,ala_glc • 

A list of the lower and upper bounds for all the 179 parameters analysed in G S A can 

be f o u n d in Tab le 5.1. The parameters were g rouped into thir teen categories according 

to their b iological func t ions and paramete r types: 

1. IFNy product ion 

2. Speci f ic growth rate 

3. Speci f ic uptake rate of essential amino acids 

4. G lu tamine concent ra t ion 

5. Spec i f ic death rate 

6. G lucose concent ra t ion 

7. Speci f ic up take rate of non-essent ia l amino acids 

8. In te rconvers ions of amino acids 

9. Format ion of byproduc ts 

10. Response parameters related to essential amino acids 

11. Hal f -sa tura t ion constants fo r response parameters related to essential amino acids 

12. Response parameters related to non-essent ia l amino acids 

13. Hal f -sa tura t ion constants fo r response parameters related to non-essent ial amino 

acids 
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Table 5.1: L is t of g rouped pa rame te r s of the c o m p l e x C H O - I F N y m o d e l fo r Globa l 
Sens i t iv i ty Ana lys i s (GSA) . 

Group Parameter Initial Estimation Lower Bounc UDOer Bound Units 
(1-2 sig. fig.) ( l -2 s ig . f iR . ) 

IFNy nndXjp^y 1 .5E-05 l E - 6 4 E - 5 mg lO''" cell ' h ' IFNy 

rmaXyesJFN Gh 7 1 10 -

IFNy 

PlFN ah, 1 l E - 6 10 -

IFNy 

max les.IFN CIc -1 -1 - l E - 6 -

IFNy 

PiFN Gk 1 l E - 6 10 -

Growth 0 .01 l E - 6 0.1 h-' Growth 

^max2 0 . 0 2 5 l E - 6 0.1 h ' 
Growth 

^s-.GIc 0 , 0 0 0 4 l E - 6 0 . 0 0 4 mmole 10"'' cell"' h ' 

Growth 

^s.GIn 0 . 0 0 0 4 l E - 6 0 . 0 0 4 mmole 10"'' cell ' h ' 

Growth 

kinh.NH.^ 0 . 0 0 2 4 l E - 6 0 . 0 2 4 mmole L"' 

Growth 

^iiih.Uic 25 l E - 6 50 mmole L"' 

Growth 

Val 0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole 10"'' cell"' h"' 

Growth 

^e.Leu 0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole lO"** cell"' h"' 

Growth 

0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole 10"'' cell"' h"' 

Growth 

^s.Mei 0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole 10"'' cell"' h"' 

Growth 

^k'.Phe 0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole 10"'' cell"' h"' 

Growth 

^a.Tiv 0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole 10"'' cell"' h"' 

Growth 

^s.Thr 0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole 10"'' cell"' h"' 

Growth 

^s.L\s 0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole 10"'' cell"' h"' 

Growth 

0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole 10"'' cell"' h"' 

Growth 

0 . 0 0 0 2 l E - 6 C L 0 0 2 mmole 10"'' cell"' h"' 

Growth 

^s.Tyr 0 . 0 0 0 2 l E - 6 0 . 0 0 2 mmole 10"'' cell"' h"' 

Growth 

t̂'.Cv.v 0 . 0 0 0 2 l E - 6 0 . 0 0 2 inmole 10"' cell"' h"' 

Growth 

A. 0 .2 l E - 6 2 -

Essential 
amino acids 
consumption 

rmaxvai 0 ^ 2 l E - 6 0 ^ 4 mmole 10"'' cell"' h"' Essential 
amino acids 
consumption 

^Val 1 l E - 6 4 6 . 5 4 mmole L"' 
Essential 
amino acids 
consumption rmaxMei 0 . 0 2 0 8 8 l E - 6 0 ^ 3 mmole 10"'' cell"' h"' 

Essential 
amino acids 
consumption 

0 . 9 3 3 l E - 6 2 8 . 4 7 mmole L"' 

Essential 
amino acids 
consumption 

rmaxiy.1 0 . 0 2 8 4 4 l E - 6 0 ^ 2 mmole 10"'' cell"' h"' 

Essential 
amino acids 
consumption 

^Lxs 1 .373 l E - 6 6 3 . 6 7 mmole L"' 

Essential 
amino acids 
consumption 

rmaxjie 0 . 0 2 5 2 8 l E - 6 0 4 4 mmole 10"'' cell ' h ' 

Essential 
amino acids 
consumption 

^fle 1.457 l E - 6 7 4 4 4 mmole L"' 

Essential 
amino acids 
consumption 

I iTlClXi^(,if 0 . 0 2 6 3 2 l E - 6 7 4 3 mmole 10"'' cell"' h"' 

Essential 
amino acids 
consumption 

KLCU 1 . 3 6 5 l E - 6 6 7 2 5 mmole L"' 

Essential 
amino acids 
consumption 

rmaxphc 0 . 0 2 1 1 5 l E - 6 0 .99 mmole 10"'' cell"' h"' 

Essential 
amino acids 
consumption 

Kphe 1.351 l E - 6 7 7 ^ 5 mmole L"' 

Essential 
amino acids 
consumption 

rmaxTiv 0 . 0 2 1 1 5 l E - 6 0 4 9 mmole 10"'' cell"' h"' 

Essential 
amino acids 
consumption 

Kjrn 1.351 l E - 6 7 7 . 6 5 mmole L"' 

Essential 
amino acids 
consumption 

nnaxnr 0 . 0 0 6 2 7 9 l E - 6 0 . 0 2 7 4 7 9 mmole 10"'' cell"' h"' 

Essential 
amino acids 
consumption 

Krhr 0 . 0 7 7 2 2 l E - 6 2 . 5 5 9 2 2 mmole L ' 

Essential 
amino acids 
consumption 

rmaxnh 0 . 0 1 2 1 7 l E - 6 1 .30817 mmole 10"'' cell"' h"' 

Essential 
amino acids 
consumption 

f^His 1 .314 l E - 6 1 7 1 . 3 1 4 mmole L ' 

Glutamine rmaxch, 0.7 l E - 6 3 mmole 10"'' cell"' h"' Glutamine 

Kciii 9 l E - 6 4 4 mmole L"' 
Glutamine 

^inh.Glc 13 l E - 6 63 mmole L"' 

Glutamine 

''lie In 0 .005 l E - 6 0 .01 h"' 

Glutamine 

nnClX Qlc 0 l E - 6 1 -

Glutamine 

pGhi Gk 1 l E - 6 10 -

Death Amm^r 5 3 7 mM Death 

LudCfi' 20 15 4 0 mM 
Death 

^d.NHS 0 .0001 l E - 6 0 .001 mmole L ' 

Death 

^dJjir 4 2 l E - 6 8 4 mmole L ' 

Death 

l^d.iiun 0 .001 l E - 6 C L 0 0 2 h"' 

Death 

' frail a o o 8 l E - 6 O I Q h"' 
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(Death 
[continue]) 

Pd.Gln 0.05 l E - 6 1 -(Death 
[continue]) 

Pd.Glc 0.05 l E - 6 1 -

Glucose rmaxcic 0.7 l E - 6 2 . 3 1 mmole 10"'' cell"' h"' Glucose 

KQIC 12 l E - 6 4 0 mmole L"' 
Glucose 

flTlClX qijj 0 l E - 6 1 -

Glucose 

Pair Gin 1 l E - 6 10 
Non-essential 
amino acids 
consumption 

rmaxAia 0 . 2 9 4 l E - 6 5 . 8 8 mmole 10"'' cell"' h"' Non-essential 
amino acids 
consumption 

^Ala 0 . 3 6 5 l E - 6 7 .3 mmole L"' 
Non-essential 
amino acids 
consumption 

rmaxoh 0 . 1 0 8 7 l E - 6 2 . 1 7 4 mmole 10"'' cell"' h"' 

Non-essential 
amino acids 
consumption 

f^Gh- 0 . 3 1 2 6 l E - 6 6 . 2 5 2 mmole L"' 

Non-essential 
amino acids 
consumption 

rmaxpro 1 .6147 l E - 6 3 2 . 3 mmole 10"' cell"' h"' 

Non-essential 
amino acids 
consumption 

Kpro 3 . 7 8 8 l E - 6 7 5 . 7 6 mmole L"' 

Non-essential 
amino acids 
consumption 

rmaxAsp 0 . 0 7 9 4 l E - 6 0 . 3 5 3 4 mmole 10"' cell"' h"' 

Non-essential 
amino acids 
consumption 

^Asp 0 . 5 5 3 6 l E - 6 3 . 2 9 mmole L"' 

Non-essential 
amino acids 
consumption 

rmaxch, 0 . 2 1 2 l E - 6 4 . 2 4 mmole 10"' cell"' h"' 

Non-essential 
amino acids 
consumption 

KGIU 2 . 8 4 l E - 6 5 6 . 8 mmole L"' 

Non-essential 
amino acids 
consumption 

rmaxAsn 0 . 0 2 8 5 3 l E - 6 0 . 2 3 3 mmole 10"' cell"' h ' 

Non-essential 
amino acids 
consumption 

^Asn 0 . 7 1 1 6 l E - 6 7 . 9 8 2 mmole L"' 

Non-essential 
amino acids 
consumption 

nnaxser 0 . 0 0 3 6 9 1 l E - 6 0 . 3 2 mmole 10"' cell"' h"' 

Non-essential 
amino acids 
consumption 

Kser 0 . 3 9 0 3 l E - 6 9 7 . 9 5 mmole L"' 

Non-essential 
amino acids 
consumption 

miax-iyr 0 . 0 2 0 4 l E - 6 0 . 4 0 8 mmole 10"'' cell"' h"' 

Non-essential 
amino acids 
consumption 

K-Thv 0 . 7 5 7 l E - 6 15 .14 mmole L"' 

Non-essential 
amino acids 
consumption 

0 . 2 5 3 l E - 6 5 . 0 6 mmole 10"' cell"' h"' 

Non-essential 
amino acids 
consumption 

Kcn 1 3 . 9 l E - 6 2 7 8 mmole L ' 

Non-essential 
amino acids 
consumption 

rmaxAre 0 . 0 4 3 8 l E - 6 0 . 8 7 6 mmole 10"' cell"' h ' 

Non-essential 
amino acids 
consumption 

10 .57 l E - 6 2 1 1 . 4 mmole L"' 
Non-essential 
amino acids 
interconversion 

^Alci.min 0 . 1 3 5 l E - 6 1 .35 mmole 10"' cell"' h"' Non-essential 
amino acids 
interconversion 

Q Gly.imn 0 . 0 1 8 5 l E - 6 0 . 1 8 5 mmole 10"' cell"' h ' 
Non-essential 
amino acids 
interconversion 

QPrajnin 0 . 0 7 7 7 l E - 6 0 . 7 7 7 mmole 10"' cell"' h"' 

Non-essential 
amino acids 
interconversion 

rmOXAla Gk 0 . 2 2 3 5 l E - 6 0 .5 mmole mmole"' 

Non-essential 
amino acids 
interconversion 

riTlClXAta Gin 0 . 2 2 0 5 l E - 6 0 .5 mmole mmole"' 

Non-essential 
amino acids 
interconversion 

tUlOJCQiy 0 . 1 9 6 5 l E - 6 0 . 8 mmole mmole"' 

Non-essential 
amino acids 
interconversion 

rtnciXpi-Q Qjii 0 . 3 9 9 6 l E - 6 0 .5 mmole mmole"' 

Non-essential 
amino acids 
interconversion 

rmuxpi-fj yirg 0 . 3 9 9 6 l E - 6 0 . 8 mmole mmole"' 

Non-essential 
amino acids 
interconversion 

nnaxT,,r phe 0 . 1 6 9 l E - 6 1 mmole mmole"' 

Non-essential 
amino acids 
interconversion 

rHl{lX(jy^ Ser 4 . 0 0 E - 0 5 l E - 6 0 .2 mmole mmole"' 

Byproducts ^Lac G!c 0 . 4 6 9 5 l E - 6 4 . 6 9 5 mmole 10"' cell"' h"' Byproducts 

^Liir Ghi 1 . 5 5 2 2 l E - 6 1 5 . 5 2 mmole 10"' cell"' h ' 
Byproducts 

I milJAmtn 0 . 0 1 3 6 6 l E - 6 0 . 0 2 7 3 2 mmole 10"' cell"' h"' 

Byproducts 

^scale 0 .04 l E - 6 0 . 4 mmole 10"' cell"' h"' 

Byproducts 

^Aimn G!n 0 . 2 3 3 l E - 6 0 . 4 6 6 mmole 10"' cell"' h ' 

Byproducts 

^Amm His.SerAsu 1 . 7 8 l E - 6 3 . 5 6 mmole 10"' cell"' h"' 

Byproducts 

nnUlA,^„j 
6 . 0 0 E - 0 5 

l E - 6 
3 E - 4 

mmole"""" L"' 10"' 
cell"' h ' 

Byproducts 

rmaXLac.rev 0 . 0 5 4 l E - 6 0 . 5 4 mmole 10"' cell"' h"' 

Byproducts 

^Lac,rev 2 . 6 6 4 l E - 6 2 6 . 6 4 mmole L"' 

Byproducts 

m 3 2 5 -

Byproducts 

PUic Gk 50 1 100 -

Byproducts 

Phic Gbi 4 0 1 8 0 -

Byproducts 

pAmm Gin 3 l E - 6 10 -

Essential 
amino acids 
fed-batch 
response 
coefficients 

nnClXf^^ Va!_Ghi 0 l E - 6 1 -Essential 
amino acids 
fed-batch 
response 
coefficients 

t}TlGXf^^ lj;ii (jln 0 l E - 6 1 -

Essential 
amino acids 
fed-batch 
response 
coefficients 

nUdX^i;^Qjfj 0 l E - 6 1 -

Essential 
amino acids 
fed-batch 
response 
coefficients r/7i£?Xrt'5,jV/i'/_G/n 0 l E - 6 1 -

Essential 
amino acids 
fed-batch 
response 
coefficients 

}'tYl(lXi-£^ Phe_Gh -1 -1 - l E - 6 -

Essential 
amino acids 
fed-batch 
response 
coefficients 

nndXj-^^ frpjGln 0 l E - 6 1 -

Essential 
amino acids 
fed-batch 
response 
coefficients 

} IHClXf^i; ThrjGln 0 l E - 6 1 -

Essential 
amino acids 
fed-batch 
response 
coefficients 

nUQXyt^s. [AS_Gln 0 l E - 6 1 -

Essential 
amino acids 
fed-batch 
response 
coefficients 

0 l E - 6 1 -
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(Essential 
amino acids 
fed-batch 
response 
coefficients 
[continue]) 

I Yiii Qjf-

rtyicix,-!.^ qjf 
r/72QX,-gy//e Qic 

Glc 
TinUXyj:^ p}je Glr 
riTlClXy^^^ Yrp Glc 

'{'Ij,- (jic 

FinClX,-(ĵ  Lv.v Glc 
VlYldXi f,^ ///.t Glc 

l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 

Essential 
amino acids 
fed-batch 
response half-
saturation 
constants 

Pvii! Gin 
Plcu Gin 
Pile Gin 
Pmci Gin 
Pphc Gin D.5 

Pl'rp Gin 
pThr Gin 
PLXS Gin 

PhIs Gin 
Pval Glc 
Pteu Glc 
Pile Glc 
Pmc! Glc 
PPhe Glc 
PTw Glc 
Prhr Glc 
Ph. ! Glc 
Puh Glc 

l E - 6 
l E - 6 

l E - 6 
l E - 6 
l E - 6 2.5 

l E - 6 
l E - 6 

l E - 6 
l E - 6 
l E - 6 

l E - 6 
l E - 6 

l E - 6 
l E - 6 
l E - 6 

l E - 6 
l E - 6 

l E - 6 
Non-essential 
amino acids 
fed-batch 
response 
coefficients 

TynQX yes.Ala Gin 
rinClX les.Glv Gin 
rinClX res.Pro Gin 
nnCVC res Asp Gin 
TinClX res.Glu Gin 
riTlGX res.Asn Gin 
VinClX res.Ser Gin 
nnnx Tvr Gin 
nTldX res.Cvs Gin 
n?lCLX res,Arf! Gin 
1 max resAki Glc - 1 

f lllQX res.Gly Glc 
IIHCIX Pro Glc - ] 

riTlClX resAsn Glc 
VmClX res.Glu Glc 
IITIGX resAsn Glc 
I'lTlOX res.Ser Glc 
IITIQX res.Tyr Glc 
IITIQX res.Cvs Glc 
I lyiClX res.Arn Glc 

- l E - 6 
- 1 - l E - 6 

- l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 

- l E - 6 
- 1 - l E - 6 
- 1 - l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 
l E - 6 

Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 

PAla_Gln 

PGly_Gln 
PProJGln 

Paspjjiu 
pGlii_Gln 

PAsn_Gln 

Pser_Gln 

pTyr_Gln 

PCysJJln 

P.\r^_Gln 

l E - 6 

l E - 6 

l E - 6 

l E - 6 

l E - 6 

l E - 6 

l E - 6 

l E - 6 

l E - 6 

l E - 6 
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(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

Alfa air 1 l E - 6 5 -(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

PAH GIr 1 l E - 6 5 -

(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

PPW GIC 1 l E - 6 5 -

(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

PASO GIr 1 l E - 6 5 -

(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

PGIK GIr 1 l E - 6 5 -

(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

pAsn GIr 1 l E - 6 5 -

(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

PSer GIr 1 l E - 6 5 -

(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

Prvr GIc 1 l E - 6 5 -

(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

PCys GIc 1 l E - 6 5 -

(Non-essential 
amino acids 
fed-batch 
response half-
saturation 
constants 
[continue]) 

pAni GIc 1 l E - 6 5 -
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T h e 13 parameter groups were subjec ted to G S A analysis with respect to IFNy 

product ivi ty . The normal i sed resul ts are shown in Figure 5.8. A larger value of 

sensit ivity index indicates a h igher relat ive s igni f icance of the parameter group. A cut-

off threshold of 0.01 was used to ident i fy sensi t ive versus insensi t ive parameter groups. 

T h e sensitivity indices in Figure 5.8 inc lude higher-order interact ions of each 

paramete r g roup with all other g roups (Sect ion 4.1.4.1: Equa t ion 4.S14) . A compar i son 

of the sensit ivity indices with (S,ot) and wi thout (S) h igher-order interact ions for the 8 

sensi t ive pa ramete r groups is shown in Figure 5.9. Apar t f r o m during the early cell 

cul ture t ime of - 1 0 h w h e n both S and Stot have similar magni tude , the values of Stot in 

all the sensi t ive pa ramete r groups are general ly s ignif icant ly higher than S, indicat ing 

quant i ta t ively the h ighly non- l inear nature of the m a m m a l i a n cell culture model . 

Those parameter g roups with normal i sed sensitivity indices > 0.01 were fur ther 

analysed us ing G S A to quant i fy the relat ive impor tance of each individual parameter 

within those groups . A cut-off threshold of 0 .05 (similar to the threshold in Sect ion 

4.1.4.2) was used to ident i fy the sensi t ive individual parameters . The G S A results of 

those 8 sensi t ive pa ramete r groups are shown in Figure 5 .10 - 5.17. The normal i sed 

sensit ivi ty indices also inc lude h igher-order interact ions. 
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0.4 

^^olipg 

Figure 5.8: Normalised sensitivity index values for different parameter groups classified 
according to biological functions. 

I FN — IFNy production 
Growth — specific growth rate 
EAAs — specific uptake rate of essential amino acids 
Glutamine — glutamine concentration 
Death — specific death rate 
Glucose — glucose concentration 
NEAAs — specific uptake rate of non-essential amino acids 
NEAA cxn — non-essential amino acid conversion f rom other amino acids 
Byproducts — formation of byproducts 
EAA FB res — essential amino acid responses in fed-batch culture relative to batch culture 
EAA FB Ks — half-saturation constants (/fp) for E A A responses in fed-batch cultures 
NEAA FB res — non-essential amino acid responses in fed-batch culture relative to batch culture 
NEAA FB Ks — half-saturation constants (A^̂ ) for non -EAA responses in fed-batch cultures 
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Figure 5.9: Comparison of S and S,ot for all sensitive parameter groups from GSA. 
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Summary of Significant Parameters from GSA 

A m o n g the 179 p a r a m e t e r s ana ly sed b y G S A , 38 w e r e iden t i f i ed as sens i t ive 

w i th respec t to I F N y p roduc t iv i ty (Tab le 5 .2) . M o s t of t h e m are re la ted to g r o w t h and 

c o n s u m p t i o n of i m p o r t a n t nut r ients . F o r the b y p r o d u c t s tha t a f f ec t g r o w t h and dea th 

ra tes , a m m o n i u m w a s f o u n d to b e m o r e in f luen t ia l than lac ta te f o r DFNy p roduc t ion . 

T a b l e 5 .2: L is t of sens i t ive p a r a m e t e r s out of the 179 p a r a m e t e r s ana lysed w i th G S A . 

Sensitive Parameters from GSA Parameter Groups 
IFNy production 

'nTiciXy(,^ ip}\i Qi,, 

PiFN Ghi 

/Anaa:/ Growth 

f^a.Phe 

Kg.His 

A 
rmaxvui Consumption of essential amino acids 
Kval 

rmaxMei 
KMC'I 
miaxne 
Kile 

nnaxieu 

rmaxphe 

Kphe 

rmaxTrn 
KTW 

miax-rhr 
rmaxHis 
Knis 

rmaxGh, Glutamine consumption 
Kcin 

Kjnh.Glc 
Amnicr Death 
kil,NH3 

Md.min 

nnaxQic Glucose consumption 

Byproducts formation 

Kscalt! 

K-Amm Gin 

His.Ser.Asn 

TlllilTAmm. rev 

m 
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T h e sensitivity indices of the individual parameters are not a lways stable with 

cell cul ture t ime like the m a x i m u m specif ic IFNy product ivi ty (rmaxiFN) in Figure 5 .10 

and the m a x i m u m specif ic growth rates (ju,„axi, Mmaxi) in F igure 5.11. For example , the 

indices of parameters for specif ic consumpt ion of leucine {maxieu, Kie,,) increase 

s ignif icant ly at later t ime of the ba tch cul ture (Figure 5.12) when the nutr ient is less 

abundant ; s imilar increase also happens to parameters for g lu tamine (Figure 5.13) and 

g lucose (Figure 5.15) consumpt ion . The parameters responsible for cell death (Figure 

5.14) and byproduc ts fo rmat ion (Figure 5.17) are s ignif icant in the later half of cell 

cul ture t ime w h e n byproduc t concentra t ions b e c o m e suff ic ient ly high to a f fec t cell 

g rowth/dea th . T h e sensitivity indices of all the parameters for non-essent ial amino acid 

consumpt ion are general ly c lose to zero (Figure 5.16) which has been observed to 

happen due to rounding-up of small numer ica l values when the overall impact of the 

pa ramete r g roup on the mode l output is very small . 

T h e es t imated values of the 38 sensi t ive parameters were then ref ined using 

ei ther regress ion for batch parameters or dynamic s imulat ions for fed-ba tch parameters 

wi th all other insensi t ive parameters f ixed at their nominal values. A m o n g the 179 

parameters ana lysed by G S A , there are about 76 cell culture response parameters that 

are not active in ba tch condi t ion and so could not be correct ly ident i f ied as sensi t ive or 

insensi t ive by the G S A . A n y of these parameters having non-zero values are regarded as 

s ignif icant dur ing pa ramete r es t imat ion and their values were ref ined using dynamic 

s imulat ions . The values of all 192 mode l parameters are shown in Tab le 5.3. 
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Figure 5.10: Normalised sensitivity index values for individual parameters that 
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are related to 
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Figure 5.11: Normalised sensitivity index values for individual parameters that are related to 
the specific growth rate. 
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Figure 5.12: Normalised sensitivity index values for individual parameters that are related to 
the specific uptake rate of essential amino acids. 
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Figure 5.13: Normalised sensitivity index values for individual parameters that are related to 
the specific uptake rate of glutamine. 

184 



Figure 5.14: Normalised sensitivity index values for individual parameters that are related to 
the specific death rate. 

<u 0.5 

^ 0.4 

^ 0.2 

Parameters 

Figure 5.15: Normalised sensitivity index values for individual parameters that are related to 
the specific uptake rate of glucose. 
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Figure 5.16: Normalised sensitivity index values for individual parameters that are related to 
the specific uptake rate of non-essential amino acids. 
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Figure 5.17: Normalised sensitivity index values for individual parameters that are related to 
the formation of byproducts. 
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5.1.1.7 Parameter Values for the Complex CHO-IFNyModel 

Table 5.3: List of estimated values of all 192 parameters in the complex CHO-IFNy 

model . 

P a r a m e t e r s V a l u e 
(1-2 sig. fig.) 

U n i t s 

P 1 h 

£ 0.01 -

^Gk 0.5 m m o l e L"' 
0.7 m m o l e L"' 
1 X l O " h"' 
1 X 10"' h"' 
2 ^ x 1 0 ^ h"' 

Amm,.r 5 m m o l e L"' 
7 m m o l e L"' 

^Amm Ghi 2 x 1 ^ m m o l e 10"''ceir' h"' 
7 x 1 0 ^ m m o l e lO'^'cell"' h"' 

K-Ars 11 m m o l e L"' 
^Asii 0.71 m m o l e L"' 

^Asn 0.55 m m o l e L"' 
Kc\s 14 m m o l e L"' 

4 2 m m o l e L"' 
kd.NH3 2 x l C ^ m m o l e L"' 

^X.Ars 3 x l & * m m o l e 10"^ceir' h"' 
^fi.Cys 3 x 1 0 " m m o l e W'^cell"' h"' 
KS.GIc 4.2 X 10 ' m m o l e 10"''cen"' h"' 
Kg.GIn 4.2 X 10 ' m m o l e 10"^ceir' h"' 
^s.His 2 . 8 x 1 0 ' m m o l e lO'^'cell"' h"' 

2 . 8 X 1 0 ' m m o l e 10"' 'ceir' h"' 

^a.Lc'u 2 . 8 X 1 0 ' m m o l e 10"^ceir' h"' 
f^e.LTs 2.4 X 1 0 ' m m o l e 10"' 'ceir ' h"' 

2 . 8 X 1 0 ' m m o l e 10"' 'ceir ' h"' 
2 . 8 X 1 0 ' m m o l e lO'^cell"' h"' 

Kgjhr 2 . 8 x 1 0 ' m m o l e 10"' 'ceir' h"' 

^S.Tiv 2 . 8 X 1 0 ' m m o l e 10"^ceir' h"' 
f^e.Tw 3 X 1 0 " m m o l e 10"''ceir' h"' 

^s.Val 2 . 8 X 1 0 ' m m o l e 10"' 'ceir ' h"' 
KGIC 6.3 m m o l e L"' 
Kdn 8.5 m m o l e L"' 

Kchi 2 . 8 m m o l e L"' 
ATcy 0.5 m m o l e L"' 
Kws 0.75 m m o l e L"' 

Kne 1.2 m m o l e L"' 

^iiili.Glr 14 m m o l e L"' 

^inh.Lac 25 m m o l e L"' 

kinh.NH3 2 x i a ^ m m o l e L"' 

^Lac. rev 2 m m o l e L"' 

^Lac Glc 1 X 10"' m m o l e 10"' 'ceir ' h"' 

^Ltir Gill 1.5 X 10"' m m o l e 10"' 'ceir' h"' 
1 m m o l e L"' 

KLVS 1.1 m m o l e L"' 

^Mel 0.7 m m o l e L ' 
Kphc 0.9 m m o l e L"' 

^Pro 7 m m o l e L"' 

^smle 2 x 1 0 ^ m m o l e 10"' 'ceir' h"' 

Kser 0 3 9 m m o l e L"' 

Krhr 0.077 m m o l e L ' 

Knv 0.76 m m o l e L"' 
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Km, 0.9 m m o l e L"' 
Kvtti 0.8 m m o l e L"' 
LciCff- 20 m m o l e L"' 
m 3 -

pH 7 -

i x i a " m m o l e 10"' 'ceir' h"' 
QClwrnin 2 x l & " m m o l e lO'^cell"' h"' 

7.8 X 10 ' m m o l e lO '^cell"' h ' 
fcI.Ghi 5 x 10 ' ' h-' 

8.4 X IQ-' h-' 
i fUQX fssAta GIr -1 -

rtnClX res.Ai'K Glc 0 -

rtfldX resAsn Glc 0 -

KfflGX rcs.Asi) Glc 0 -

/ TMCfX fc_^,Cy.Y Glc 0 -

I max Qiij Qjf. 0 -

res. Gilt Glc 0 -

jrj.G/y Glc -1 -

rinClX I'cs.His Glc 0 -

ntlQX ri'.s.lle Glc 0 -

Glc 0 -

^ res.L\s Glc 0 -

f7WZ% frj .Aff/ G/r 0 -

ritldX />/;(. (Jlc 0 -

res. Fro Glc -1 -

} ITldX I'c's.Ser Glc 1 -

I JtldX Thr Glc 0 -

1 ITldX , (Jlc 0 -

1 IfldX j Qic 0 -

1JTIUX val Glc 0 -

rmoxAia 0 m m o l e lO'^'cell ' I f ' 

G/r 5 x 1 0 ^ m m o l e mmole" ' 
} }TICIXJ\IQ (JIIJ 1 X 1 0 - m m o l e mmole" ' 
I ITldX^FJJ,,, QIIJ 2 -

4 -

rmaxAn' 4.4 X 1 0 ' m m o l e 10"' 'ceir ' h"' 
rmaxAsn 2 9 x 1 0 " m m o l e 10"^ceir' h"' 
/7Ma:%Ar„ 7.9 X 1 0 ' m m o l e 10"' 'ceir' h"' 
nnaxcxs 2 5 x 1 0 4 m m o l e 10"' 'ceir ' h"' 
} ITldXCy ^ 5 x 1 0 ^ m m o l e mmole" ' 
rmdXcir 8 x 1 0 ^ m m o l e 10"' 'ceir' h"' 
rrndxch, 9 x 1 0 ^ m m o l e 10"' 'ceir' h"' 
rmdXciu 2.1 X 1 0 - 4 m m o l e 10"' 'ceir' h"' 
nnaxaiy 1.1 X 1 0 ' 4 m m o l e 10"' 'ceir ' h"' 
nnaxcir sc-r 2 x 1 0 ' m m o l e mmole" ' 
nndXHis 2 5 x 1 0 " m m o l e 10"''cell"' h"' 

nndXifi^Y 1.5 X 10-' mg lO '-ceir' h"' 
nnaxiie 1 5 x 1 0 ^ m m o l e 10"®ceir' h"' 
nTldXljIC /-^.Y 5.4 X 10"' m m o l e 10"''ceir' h"' 

G/r 2 -

itndXj^DC (ji„ 1 -

nndXuu 4 x 1 0 " m m o l e 10"^ceir' h"' 
3 ^ x 1 0 ^ m m o l e 10"' 'ceir ' h ' 

rmaxMe! 2.1 X 1 0 ' m m o l e 10"' 'ceir' h"' 
rmdXpjje 2.1 X 10"' m m o l e lO'^'cell"' h"' 
nndXpro 1.6 X 10 ' m m o l e 10"' 'ceir' h"' 
rmdXpiQ Y\FU 4 x 1 0 ^ m m o l e mmole" ' 
tmciXpiY) (JILL 4 x 10-' m m o l e mmole" ' 

Gin -1 -

^^^^^res.Ars Gin 0 -



^^^^res.A.sn Gin 0 -

67/1 0 -

HTlClXip^^y^ G//J -1 -

I ITldXf^fj 1 h-' 
/ g y (Jjij -

I HlGXf^^ Qii] 1 h-' 
^^^^res.Ghi Gin 1 -

rfTlUXfg^ (jjy Qj,j -1 -

VmUXf^^ Ql,j -1 -

^^^^rcs.lI'N Glc -1 -

rmaXycs.iFN Gin -

rtncix,-^^ 11^ Qjjj -1 -

^^^^^ri.'s.Leti Gin -1 -

rfnQXf(,ii[^y,; (Jl„ -1 -

nyiciXfi;^ (jjij -1 -

riTiciXj-(>^ Pjif, Qjij -1 -

nncix,(7^ PiQ (ji„ -

^^^^res.Ser Gin -

finciXy^^^ j-jj^ (ji/, -

rf?iciXf(,^ ']-,p (jiji -1 (as Phe ) -

rfnClXy(;t; 'J\,- QL,j -

t inClXi-f,^ y^i] Qifi -

2 x 1 0 " m m o l e lO '^cell"' h"' 
rmaxn, 2 x l & ) m m o l e lO'^'ceH"' h"' 
rmaxrn, 2.1 X 10-' m m o l e 10"ce l l ' h"' 
nnaxjyr 2 x 1 0 ^ m m o l e 10 ' ' ' ce i r ' h"' 
rmaxryr piu- 2 x 1 0 ' m m o l e m m o l e ' 
rmaxvai 3 x 1 0 ^ m m o l e lO '^cell ' h"' 

1.1 X 10-' m m o l e lO '^cell"' h"' 
ff^ifl-Ainni.tey 2 x 1 0 * m m o l e " - " ' L " lO^cel l ' h ' 
^res, G:r 1.2 h ' 

^res. Gin 1.2 h- ' 

PMU Gk 0.1 -

PAIu Gin 0.1 -

pAmm Gin 1 -

pAra Gk- 1 -

PAIS Gin 1 -

PAsn Glc 1 -

PAsn Gin 1 -

pA^p Gk 1 -

PASD Gin 1 -

Pcrs Gk 1 -

Pc\s Gin 0.01 -

Pd.Gk 2 -

PtlGln 5 x l & ^ -

A. 7 x 1 0 " -

pGk Gin 1 -

pGln Gk 1 -

Pain Gk 1 -

pGlii Gin 1 -

Pch Gk 1 -

pGh Gin 0.1 -

PHIS Gk 1 -

PHIS Gin 0 . 0 5 -

PiFN Gk OIG -

PiFN Gin 1 -

A k a r 1 -

Pik Gin 0.1 
' 
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PlMc GIr 30 -

PIMC Gin 40 -

Plj^u Glc 1 -

Pl^u Gin 0.1 -

Ptys Gk 1 -

pLxs Gill 0.1 -

PMC! Gk 1 -

PMCI Gin 0 . 0 5 -

Pphe Gk 1 -

Pphe Gin 0.1 -

PPro Gk 1 -

PPro Gin 0.5 -

PSer Gk 0.01 -

Pser Gin 0.01 -

Prhr Gk 1 -

Prhr Gin 0.05 -

PTIV Gk 1 -

Prrp Ghi 1 -

Prvr Gk 1 -

P/\r Gin 0.01 -

Pval Gk 1 -

Pval Gin 0.5 -
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T a b l e 5 . 4 : L i s t o f d e g r e e s o f f r e e d o m i n t h e C H O - I F N y c e l l c u l t u r e s . 

D e c r e e s of F r e e d o m Value (2 s i s . f ia . ) Units 
G/c,„ 5 0 0 m m o l e L"' 

2 2 0 ( 4 0 K / L ) m m o l e L"' 
Glfijjj 100 m m o l e L"' 
Valin (valine) 4.5 m m o l e L"' 
LeUi„ ( leucine) 4.5 m m o l e L"' 
lie;,, ( isoleucine) 4.2 m m o l e L"' 
Metj,, (methionine) 2.3 m m o l e L"' 
PhCi,, (phenylalanine) 2 . 2 m m o l e L ' 
Trpi„ ( t ryptophan) 0.44 m m o l e L"' 
Thri,, ( theronine) 4.5 m m o l e V' 
Lysi,, (lysine) 5.0 m m o l e L"' 
His,,, (hist idine) 1.5 m m o l e L ' 
AlUi,, (alanine) 0.5 m m o l e L"' 
G/y,„ (glycine) 2.5 m m o l e L ' 
PrOi,, (proline) 1.5 m m o l e L"' 
Aspf„ (aspartic acid) 2 m m o l e L"' 
Glui,, (glutamic acid) 1 m m o l e L"' 
Asiii,, (asparagine) 2 m m o l e L"' 
Serin (serine) 5 m m o l e L"' 
Tyrtn ( tyrosine) 2.1 m m o l e L"' 
CySi,, (cysteine) 2 m m o l e L"' 
Argi„ (arginine) 7.0 m m o l e L ' 
Fm(t) vary ing L h ' 
Pin glc(0 vary ing L h ' 
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5.3 R-Square Analysis of Model Performance 

5.3.1 Analysis of Experiment Data 

In this section, the pe r fo rmance of the complex C H O - I F N y mode l is analysed fo r 

ba tch and fed-ba tch cul tures where the nutr ient supplementa t ion t ime-prof i les are 

avai lable. The quali ty of mode l predict ions is part ly quant i f ied us ing R-square : 

where x„„,: s imula ted value f r o m mode l 

x: data f r o m exper iment 

X : mean value of x 

Howeve r , when the value of x is control led at constant levels that 

^ tends to zero or the measu remen t error, of % is comparab le with 

( x - x ) \ the s tandard R-squa re analysis may fail to ref lect the c loseness of model 

predict ion. This is the case fo r m a n y measured variables in the fed-ba tch cultures. 

There fore , a mod i f i ed R-squa re equat ion ) is deve loped as fo l low: 

where the condi t ion would reject any - x | term if it is less than 

For the cases that is used instead of the percentage of data points lying 

within a nar row range of s imulat ion results would be used to ident i fy variables that 

r emain nearly constant throughout the cell cul ture t ime. 

Estimation of Oerr 

T h e measu remen t error for amino acids was es t imated f r o m the g lu tamine data 

which were analysed by both b iochemica l analyser and H P L C ( W o n g et al., 2005). The 

average value of 6 ,̂,- fo r g lu tamine for f ed-ba tch cul tures was O.OSmM (Appendix 6). 
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This was a s sumed to be the m e a s u r e m e n t error fo r all other amino acids in fed-ba tch 

cul tures. The measuremen t error fo r g lucose is a s sumed to be 0.1 m M because the 

variat ion of g lucose concentra t ion in fed-ba tch cultures was larger than that of amino 

acids. 

Identification of Outiying Initial Amino Acid Concentrations in Fed-Batch Data 

S o m e of the measured values of initial concentra t ion of amino acids in fed-ba tch 

cul tures were found to be problemat ic when subjected to mass ba lance analysis . Test 

s imula t ions were done with the specif ic growth rate set to 0 and viable cell 

concentra t ion set to 0"̂  (X,, cannot be exact ly zero as it is the denomina tor of m a n y 

specif ic consumpt ion quanti t ies in the model) . As the virtual system was set not to 

c o n s u m e amino acids, those amino acids that the cell cannot p roduce (Table 4.1) must 

show a h igher concentra t ion than the real exper iment data. A n y initial concentra t ions 

that violate this, or w h e n the f irst exper imenta l measuremen t was s ignif icant ly lower 

than subsequent measu remen t s to an extent that cannot be compensa ted by product ion 

of non-essent ia l amino acids by the cells, were c lass i f ied as inaccurate and were 

ass igned new postula ted values wi th the help of s imulat ions of the real system. Those 

inaccurate initial amino acid concentra t ions are h ighl ighted in Append ix 6. 

Remarks for Simulation Diagrams 

Simulat ion resul ts of all the 27 variables in the C H O - I F N y batch and fed-batch 

cell cul tures are shown in Figure 5 .18a - 5 .24e. The uncertaint ies of batch data are 

based on W o n g et al. (2005) . Fed-ba tch dupl icate exper iments are treated individual ly 

because the nutr ient supplementa t ion t ime-prof i les were not identical despi te the set-

points of the f e e d b a c k control lers were the same. Thus , uncertaint ies of the fed-ba tch 

data are not depic ted in the cor responding diagrams. 
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5.3.2 Model Performance 

A list of R-square and modified-R-square values for all 26 measured variables is 

shown in Table 5.5. The simulation performance in CHO-IFNy batch culture is 

compared against six sets of fed-batch cultures with the glutamine and/or glucose 

feedback controller being set at five different values. For the ease of reference to each of 

the six fed-batch cultures, the following notations are used in this section: 

• '0.1 mM Fed-batch' refers to the low-glutamine fed-batch culture with glutamine 

feedback controller set-point at 0.1 mM. 

• '1̂ ^ 0.3mM Fed-batch' refers to the 1st duplicate experiment of the low-

glutamine fed-batch culture with glutamine feedback controller set-point at 

0.3mM. 

• '2"^ 0.3mM Fed-batch' refers to the 2nd duplicate experiment of the low-

glutamine fed-batch culture with glutamine feedback controller set-point at 

O.SmM. 

• '0.5mM Fed-batch' refers to the low-glutamine fed-batch culture with glutamine 

feedback controller set-point at 0.5mM. 

• '0.3,0.7mM Fed-batch' refers to the low-glutamine and low-glucose fed-batch 

culture with glutamine feedback controller set-point at O.SmM and glucose 

feedback controller set-point at 0.7mM. 

• '0.3,0.35mM Fed-batch' refers to the low-glutamine and low-glucose fed-batch 

culture with glutamine feedback controller set-point at 0.3mM and glucose 

feedback controller set-point at 0.35mM. 

It should be noted that the concentration of the controlled variables in the fed-batch 

cultures may not stay constant at the set-point values throughout the cell culture. The 

concentration of tryptophan was not able to be measured in the CHO-IFNy cell culture 

experiment but the simulation results of tryptophan concentration would be discussed 

towards the end of this section. 
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Table 5.5: Summary of R-square and modified-R-square values for batch and fed-batch 

CHO-IFNycell cultures. (Refer to p. 175 for notations of fed-batch cultures) 

Batch 0.1 m M 1" 0 . 3 m M 2"" 0 . 3 m M 0 . 5 m M 0 . 3 , 0 . 7 m M 0 . 3 , 0 . 3 5 m M 
Fed-batch Fed-batch Fed-batch Fed-batch Fed-batch Fed-batch 

R" R" or % i n R- or % in R-^or % in R^or % i n R- or % i n R- or % i n 

^ moc ±0 .2 
mM 

r" 
^ mod 

± 0 . 2 
mM 

^ moc ±0 .2 
mM 

±0 .2 
mM 

R'mod ±0 .2 
mM 

R " d ±0 .2 
mM 

IFNy 0.94 0.85 0.87 0.98 0^7 0.78 0.84 
Viable cell 0.95 0.70 0J2 0.87 0.81 0.66 0.54 
Total cell 0.98 0.46 0.93 0.98 094 0.92 0.95 
Dead cell 0,80 -1 .04 0.66 -0 .07 -0 .03 0.11 0.13 
Glutamine 0.99 -1 .36 55% 0.24 82% 57% -1 .54 67% -1 .43 57% -0.18 83% 
Glucose 0.98 -0 .64 8% -0.75 56% -1 .07 71% -0 .16 60% 0.66 73% 0^3 73% 
Ammonium 0.92 0.65 0 .54 0 .42 -0.48 0.07 0^2 
Lactate 093 -21 .0 0.41 -0 .54 0 .70 0.64 0^5 
Isoleucine 0.24 0.87 92% -0 .27 88% -0.39 100% 0.93 93% 0.92 93% 089 67% 
Leucine 0.39 093 82% 0.15 88% 0.90 100% 0.95 87% 094 86% OjG 50% 
Methionine 0.56 0.91 1009& 0.99 1W% -0.51 69% 0.60 100% 0.89 100% 0^9 100% 
Valine CW2 -3 .90 18% 88% 0.03 1009& -1 .69 36% 0.46 92% 0J9 92% 
Phenylalanine 0.24 -0 .46 91% -0 .38 88% 0.11 100% 0 .80 100% 0.33 93% 0.98 100% 
Threonine 0.79 -16 .0 55% -1 .09 73% -0 .74 79% -2 .53 50% -2 .10 62% -1 .56 73% 
Lysine -0.12 078 82% -0 .73 75% -1.71 85% 083 80% 0.51 29% 088 67% 
Histidine 0.29 ^ 1 ^ 7 91% -0 .20 100% 1.00 100% 0.39 100% -L34 79% 0.97 100% 
Arginine -0.18 -10 .7 17% -11.8 27% -30.1 69% -6 .40 29% -10 .0 50% -17.0 42% 
Tyrosine 0 .10 0.43 91% 0.21 75% 0.62 100% 0 .20 67% 0.42 38% 0.31 18% 
Cysteine 0.47 OjW 73% 0.37 n/a 0.91 100% 0.55 36% 0.23 62% n/a n/a 
Alanine 0.44 0.74 25% 093 53% 085 29% 0.70 33% 0.43 21% -0 .92 17% 
Aspartic acid 0.99 1.00 100% 1.00 100% 1.00 100% 1.00 100% 0 .90 100% 0^4 100% 
Glutamic acid 0.44 0.96 100% 0.34 93% 0.92 100% OjG 93% 0.99 100% 1.00 1M% 
Asparagine 0.65 0.95 10M& 0^2 93% 0.77 100% 1.00 10M& 0.85 93% 0^0 92% 
Serine -0 .60 -29.9 55% 0.21 93% 0.96 100% 033 67% -0 .27 64% -4.61 17% 
Glycine 0.49 063 50% ^^.65 18% -4 .19 21% -0 .50 60% 0.54 36% 0^9 50% 
Proline -0 .12 0 .44 42% 0.31 29% 0^2 29% -0 .40 27% 0.37 21% z l Z S 17% 

Remark: 
(1) n/a: data not available or incomplete data for the corresponding analysis. 
(2) *: for glucose, '% in +lmM' was analysed instead of 0.2mM due to larger fluctuations 

in glucose concentration compared to amino acids. 
(3) R~ (or R̂ mod) values < 0.40 and '% in ±0.2mM' (or ±lmM for glucose) values < 50% 

are underlined. 
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IFNy and Cell Concentrations 

The model predictions of IFNy concentration in batch and fed-batch cultures are 

shown in Figure 5.18a - 5.24a. The R-square values range from 0.78 to 0.98, indicating 

that the simulation is generally in good agreement with experiment data. 

The cell concentrations are also shown in Figure 5.18a - 5.24a. The total cell 

concentrations (X,) are closely predicted with R-square > 0.9 in batch and most fed-

batch cultures except in 'O.lmM Fed-batch' culture where X, was over-predicted 

towards the end of the cell culture time with an R-square value of 0.46 (Figure 5.19a). 

The R-squares for viable cell concentration (Z,,) vary between 0.52 and 0.95. The values 

of Xy in some fed-batch cultures are over-predicted near the end and are more 

significant in T ' 0.3mM Fed-batch' and '0.3,0.35mM Fed-batch' cultures where the R-

square values are 0.52 and 0.54 respectively. Deviations in X, and Xy are reflected in the 

dead cell concentration (Xj) which has R-square values of 0.80 and 0.66 in batch and 

'1^' 0.3mM Fed-batch' cultures respectively but the R-square values for X^ are -1.04 -

0.13 in other fed-batch cultures. 

Glutamine 

The glutamine concentration is well simulated in batch culture with R-square 

equals to 0.99 (Figure 5.18a). The modified-R-square values for glutamine in fed-batch 

cultures range from -4.86 to 0.24 with 55 - 83% of data lying within ±0.2mM of the 

simulation (Figure 5.19a - 5.24a). Most of the deviations in fed-batch cultures take 

place near the end of the cell culture time when the glutamine levels increased beyond 

the set-point values. Only in 'O.lmM Fed-batch' culture there is significant 

underestimation in specific glutamine consumption in the early culture time leasing to 

significant over-prediction of glutamine concentration during the first 50 h (Figure 

5.19a). 
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Glucose 

Glucose concentration is closely simulated in batch culture with R-square equals 

to 0.98 (Figure 5.18a). In fed-batch cultures, most of the modified-R-square values are 

in between -0.75 - 0.83 with 56 - 73% data lying within ±lmM of the simulation 

(Figure 5.20a - 5.24a). There are major deviations during about 30 - 100 h of the '1^' 

0.3mM Fed-batch' and '2"^ 0.3mM Fed-batch' cultures where glucose concentration 

was over-predicted by about 2mM but model predictions during subsequent cell culture 

time are in agreement with experiment data (Figure 5.20a & 5.21a). In the '0.1 mM Fed-

batch' culture, significant over-prediction of glucose level occurred at 20 - 90 h, giving 

a modified-R-square value of -0.64 with only 8% of data lying within +lmM of the 

simulation (Figure 5.19a). Such over-predictions in the model might be caused by the 

assumption that the byproduct inhibition constants for the specific consumption rate of 

all nutrients are the same (Section 4.2.1.2: Equation M6). It may be necessary to assign 

separate byproduct inhibition constants for glucose consumption. But a larger set of 

model parameters with the same small number of measured variables would further 

increase the amount of multiple solutions that could match the experiment data. 

Ammonium 

The R-square value for ammonium is 0.92 in batch culture (Figure 5.18b) and 

0.42 - 0.65 in most fed-batch cultures (Figure 5.19b - 5.21b & 5.24b), except being -

0.48 and 0.07 in '0.5mM Fed-batch' and '0.3,0.7mM Fed-batch' cultures respectively 

(Figure 5.22b & 5.23b). The initial accumulation rate of ammonium in all fed-batch 

cultures appeared to be higher than the model predictions (Figure 5.19b - 5.24b). The 

subsequent trend of ammonium time-profiles in '0.1 mM Fed-batch', '2"^ 0.3mM Fed-

batch', and '0.3,0.35mM Fed-batch' cultures are correctly followed by the model 

(Figure 5.19b, 5.21b, 5.24b). But the ammonium concentration in ' l " 0.3mM Fed-

batch', '0.5raM Fed-batch', and '0.3,0.7mM Fed-batch' cultures showed a decreasing 

trend after mid-culture time and then gradually increased again near the end of the cell 

cultures (Figure 5.20b, 5.22b, 5.23b). 

Only the initial under-prediction of ammonium accumulation in '0.1 mM Fed-

batch' culture (Figure 5.9b) could be explained by the deviation in the corresponding 
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initial glutamine concentration (Figure 5.19a). The simulations of glutamine 

concentration in all other fed-batched cultures are mostly within ±0.2mM of the 

experimental measurement until the late exponential growth phase (Figure 5.19a -

5.24a). It is suspected that spontaneous degradation of glutamine in the medium before 

it was used for the fed-batch cultures might have caused the actual initial ammonium 

concentration to be higher than the measured values. The unexpected decrease of 

ammonium concentration in some of the fed-batch cultures cannot be explained by any 

known mechanism in the literature. In general, the model is able to capture the increase 

in ammonium concentration in batch and fed-batch cultures, though there are certain 

detailed dynamics of ammonium production revealed in some of the fed-batch cultures 

(transient decrease in ammonium concentration) )that would require further knowledge 

to understand the underlying mechanisms. 

Lactate 

Lactate concentration is well predicted in the batch culture with R-square value 

equals to 0.93 (Figure 5.18b). The R-square values in most fed-batch cultures are 0.41 -

0.85 (Figure 5.20b & 5.22b - 5.24b) but are -0.54 and -21.0 in '2"" 0.3mM Fed-batch' 

and 'O.lmM Fed-batch' cultures respectively (Figure 5.19b & 5.21b) which are caused 

by deviations in glucose prediction in the corresponding exponential growth phase. The 

reduction in lactate concentration in the glucose-controlled fed-batch cultures are well 

simulated by the model in Figure 5.23b and 5.24b. The over-prediction of lactate 

concentration in certain fed-batch cultures did not have significant effect on cell growth 

or IFNy productivity since lactate is much less toxic than ammonium to the cells. 

Isoleucine 

Isoleucine appeared to be over-predicted between 20 - 70 h in the batch culture, 

giving an R-square value of 0.24 in batch (Figure 5.18b). The modified-R-square values 

in most fed-batch cultures are 0.87 - 0.93 with 67 - 93% data lying within ±0.2mM of 

the simulation (Figure 5.19b & 5.22b - 5.24b). Although the modified-R-squares in T ' 

0.3mM Fed-batch' and '2"^ 0.3mM Fed-batch' are -0.27 and -0.39 respectively, 88 -

100% data are lying within ±0.2mM of the simulation which indicates most of the 
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experiment data in those culture do not show much variation with respect to time 

(Figure 5.20b - 5.21b). 

Leucine 

The model performance for leucine is similar to isoleucine that the R-square in 

batch culture is 0.39 with over-prediction by 0.5 - 1 mM during mid-culture time 

(Figure 5.18b). The modified-R-squares are 0.83 - 0.95 in most fed-batch cultures with 

50 - 100% data lying within ±0.2mM of the simulation (Figure 5.19b & 5.21b - 5.24b). 

The modified-R-square of the T"' 0.3mM Fed-batch' culture is 0.15 but 88% of data are 

lying within ±0.2mM of the simulation (Figure 5.20b). 

Methionine 

The R-square for methionine in batch culture is 0.56 (Figure 5.18b). The 

modified-R-squares in most fed-batch cultures are 0.60 - 0.99 with 100% of data within 

±0.2mM of the simulation (Figure 5.19b, 5.20b & 5.22b - 5.24b) except in '2"^ 0.3mM 

Fed-batch' culture where the methionine level was under-predicted by up to 0.4mM 

after mid-culture time, causing the modified-R-square to drop to -0.51 in 69% data lying 

within ±0.2mM of the simulation (Figure 5.21b). 

Valine 

Valine has an R-square value of 0.42 in batch culture (Figure 5.18b). In most 

fed-batch cultures, the modified-R-square values are -0.48 - 0.79 with most data (88 -

100%) lying within ±0.2mM of the simulation (Figure 5.20b, 5.21b, 5.23b, 5.24b). But 

in '0.1 mM Fed-batch' and '0.5mM Fed-batch', valine concentrations are under-

predicted during most of the cell-culture time by up to ~0.3mM (Figure 5.19b, 5.22b). It 

is not certain why such fluctuation in model performance occurs in the case of valine. 
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Phenylalanine 

The R-square value for phenylalanine in batch culture is 0.24 due to over-

prediction of up to 0.5mM during mid culture time (Figure 5.18c). The phenylalanine 

levels in fed-batch cultures are closely predicted until the death phase where the 

measured concentrations become higher than the simulation (Figure 5.19c - 5.24c). The 

modified R-square values for all fed-batch cultures are -0.46 - 0.98 with most of the 

data (88 - 100%) lying within ±0.2mM of the simulation (Figure 5.19c - 5.24c). 

Threonine 

The R-square value for threonine in batch culture is 0.79 (Figure 5.18c). Only 

three fed-batch cultures have high percentage of data lying close to the simulation: the 

modified-R-squares are -1.56 - -0.74 in '1"̂ ' 0.3mM Fed-batch', '2"^ 0.3mM Fed-batch', 

and '0.3,0.35mM Fed-batch' cultures with 73 - 79% data within ±0.2mM of the 

simulation (Figure 5.20c, 5.21c, 5.24c). In the '0.1 mM Fed-batch' culture, 55% of data 

are within ±0.2mM of the simulation and the modified-R-square value is -16.0 (Figure 

5.19c). In '0.5mM Fed-batch' and '0.3,0.7mM Fed-batch' cultures, the modified-R-

squares are -2.53 and -2.10 respectively with 50 - 62% data within ±0.2mM of the 

simulation (Figure 5.5.22c & 5.23c). Threonine concentrations are significantly under-

predicted during the death phase of all fed-batch cultures, suggesting its maintenance 

consumption might be insignificant relative to other nutrients. 

Lysine 

The lysine concentration in batch culture was over-predicted in batch culture by 

up to about ImM, causing the R-square value to be -0.12 (Figure 5.18c). The lysine 

concentration in the experimental measurement decreased rapidly during the first 50 h 

and then fluctuated around ImM until the end of cell culture time. It is doubtful that 

lysine, being one of the essential amino acids for cell growth (Table 4.1), showed no 

significant consumption during the exponential growth phase at 50 - 90 h. This also 

occurs to the experimental data of isoleucine, valine, phenylalanine, and histidine. 
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In fed-batch cultures, most of the modified-R-squares are -1.71 - 0.88 with 67 - 8 5 % of 

data lying within ±0.2mM of the simulation (Figure 5.19c - 5.22c & 5.24c) except in 

'0.3,0.7mM Fed-batch' culture where the modified-R-square is 0.51 with 29% of data 

lying within ±0.2mM of the simulation (Figure 5.23c). 

Histidine 

The R-square value for histidine in batch culture is 0.29 (Figure 5.18c). The 

modified-R-squares for all fed-batch cultures are between -2.57 - 1.00 with 79 - 100% 

of data lying within ±0.2mM of the simulation (Figure 5.19c - 5.24c). There are under-

predictions in concentration of histidine in '0.1 mM Fed-batch', 'T ' 0.3mM Fed-batch', 

and '0.5mM Fed-batch' cultures in the death phase by up to ImM (Figure 5.19c, 5.20c, 

5.22c); and in '0.3,0.7mM Fed-batch' culture in the death phase by up to 0.2mM 

(Figure 5.23c). But in '2"^ 0.3mM Fed-batch' the histidine level was well simulated 

throughout the cell culture (Figure 5.21c) and there is no significant deviation in the 

'0.3,0.35mM Fed-batch' culture (Figure 5.24c). Thus, it is inconclusive regarding the 

maintenance consumption of glutamine. 

Arginine 

The wave-like trend of arginine in batch culture is not able to be captured by the 

model, resulting in an R-square value of -0.18 (Figure 5.18c). Arginine is one of the 

non-essential amino acids that can be produced from several other amino acids (Figure 

4.10). The modified-R-square values in fed-batch cultures are all negative in the range 

of -30.1 —6.4 with only 17 - 69% of data lying within ±0.2mM of the simulation 

(Figure 5.19c - 5.24c). There are under-predictions in arginine concentration in the 

death phase of fed-batch cultures by up to - ImM, suggesting that the maintenance 

consumption of arginine might be negligible. Arginine is also a growth-stimulating 

amino acid (together with tyrosine and cysteine) that its absence would cause specific 

growth rate to drop significantly (Table 4.1). Although there are deviations in the 

predicted arginine levels in the death phase, the predicted values remain positive in all 

batch and fed-batch cultures. Thus, the effect of such deviations on cell growth 

prediction should be insignificant. 
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Tyrosine 

The R-square value of tyrosine in batch culture is 0.10 due to overprediction by 

up to 0.5mM during mid-culture time (Figure 5.18c). Half of the fed-batch cultures are 

well simulated with 75 - 100% of data lying within +0.2mM of the simulation and 

modified-R-square values being 0.21 - 0.62 in '0.1 mM Fed-batch', '1̂ '̂ 0.3mM Fed-

batch', and '2"^ 0.3mM Fed-batch' cultures (Figure 5.19c - 5.21c). But in '0.5mM Fed-

batch', '0.3,0.7mM Fed-batch', and '0.3,0.35mM Fed-batch' cultures, only 18 - 67% of 

data are within ±0.2mM of the simulation (Figure 5.22c - 5.24c). The modified-R-

square values of these three fed-batch cultures are 0.20 - 0.42 due to over-predictions 

by up to ~0.5mM during mid-culture time or towards the end of the cell culture. 

Cysteine 

The R-square value for cysteine in batch culture is 0.47 (Figure 5.18d). In the 

fed-batch cultures, 2 out of 6 data sets are incomplete (Figure 5.20d & 5.24d). Among 

the complete fed-batch data, the 'O.lmM Fed-batch' and '2"^ 0.3mM Fed-batch' are 

closely simulated with modified-R-squares being 0.89 and 0.91 respectively with 73% 

and 100% of data lying within +0.2mM of the simulation (Figure 5.19d & 5.21d). The 

modified-R-squares of '0.5mM Fed-batch' and '0.3,0.7mM Fed-batch' cultures are 

lower (0.55 and 0.23 respectively) with only 36% - 62% of data lying within +0.2mM of 

the simulation due to over-predictions by up to ~0.5mM (Figure 5.22d - 5.23d). 
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Alanine 

Alanine is one of the amino acids being actively produced by the CHO-IFNy 

cells. Its R-square value in batch culture is 0.44 due to over-prediction during mid-

culture time by up to ~1.5mM and under-prediction near the end of the cell culture by 

up to ~2mM (Figure 5.18d). The modified-R-square values for most fed-batch cultures 

are in the high range of 0.7 - 0.93 though only 25 - 53% of data are within ±0.2mM of 

the simulation (Figure 5.19d - 5.22d). The modified-R-squares in '0.3,0.7mM Fed-

batch' and '0.3,0.35mM Fed-batch' cultures are in the low range of 0.43 and -0.92 

respectively with only 21% and 17% data lying within ±0.2mM of the simulation 

(Figure 5.23d & 5.24d). However, the major variation in the patterns of alanine in 

various fed-batch cultures is already captured by the model. 

Aspartic acid 

The aspartic acid concentration is very well simulated in all batch and fed-batch 

cultures. The R-square value for batch culture is 0.99 and the modified-R-squares for 

fed-batch cultures are 0.84 - 1.00 with 100% of data lying within +0.2mM of the 

simulation (Figure 5.18d - 5.24d). The consumption pattern of aspartic acid appeared to 

be very stable in batch and fed-batch conditions. 

Glutamic acid 

The R-square value for glutamic acid in batch culture is 0.44 due to the time-

profile being very close to zero throughout the cell culture (Figure 5.18d). The glutamic 

acid levels in fed-batch cultures are well simulated with 93 - 100% of data lying within 

±0.2mM of the simulation and modified-R-square values of 0.34 - 1.00 (Figure 5.19d -

5.24d). The pattern of glutamic acid consumption for CHO-IFNy cells is very similar to 

aspartic acid. 
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Asparagine 

The R-square value for asparagine in batch culture is 0.65 due to over-prediction 

during mid-culture time by up to ~0.5mM (Figure 5.18d). In the fed-batch cultures, 92 -

100% of data are within ±0.2mM of the simulation and the modified-R-square values 

are in between 0.52 - 1.00 (Figure 5.19d - 5.24d). There are under-predictions in 

asparagine concentration in the death phase of most fed-batch culture by up to -0.1 mM. 

Serine 

Serine has an R-square value of -0.60 in batch culture due to over-prediction 

during mid-culture time by up to - I m M and under-prediction near the end of the cell 

culture by up to - I m M (Figure 5.18d). The levels of serine in 'l'"' 0.3mM Fed-batch' 

and '2"^ 0.3mM Fed-batch' cultures are well simulated with 93% and 100% of data 

respectively within ±0.2mM of the simulation and modified-R-square values of 0.21 

and 0.96 respectively (Figure 5.20d & 5.21d). But in 'O.lmM Fed-batch' culture, only 

55% of data are within ±0.2mM of the simulation and the modified-R-square is -29.9 

due to under-prediction in the death phase by up to - I m M (Figure 5.19d). In '0.5mM 

Fed-batch', '0.3,0.7mM Fed-batch', and '0.3,0.35mM Fed-batch', there is over-

prediction of serine concentration during mid-culture time by up to -0.7mM, causing 

the modified-R-square values to be -4.61 - 0.33 with 17 - 67% of data lying within 

±0.2mM of the simulation (Figure 5.22d - 5.24d). The consumption pattern of serine 

appeared to be highly dynamic. Because it is a non-essential amino acid, such deviation 

has no significant effect on cell growth and IFNy productivity. 

Glycine 

Glycine, together with proline, are the other two non-essential amino acids being 

significantly produced by the CHO-IFNy cells. The R-square for glycine in batch 

culture is 0.49 (Figure 5.18e). The modified-R-squares in fed-batch culture are generally 

low in the range of -4.65 - 0.63 with only 18 - 60% of data lying within ±0.2mM of the 

simulation (Figure 5.19e - 5.23e). The deviations are in the form of either under-

predictions during the death phase ('O.lmM Fed-batch', '0.5mM Fed-batch', and 
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'0.3,0.7mM Fed-batch') or over-predictions throughout most of the cell culture time 

('!*' 0.3mM Fed-batch' and '2"^ 0.3mM Fed-batch'). But in '0.3,0.35mM Fed-batch' 

culture, the glycine level was well simulated with modified-R-square being 0.89 and 

50% of data lying within +0.2mM of the simulation (Figure 5.24e). 

Proline 

The model performance for proline is similar to glycine. The R-square for 

proline in batch culture is -0.12 due to under-prediction during mid-culture by up to 

0.2mM and over-prediction in the death phase by up to ~0.6mM (Figure 5.18e). In fed-

batch cultures, only 17 - 42% of data are within +0.2mM of the simulation and the 

modified-R-square values are in the range of -3.78 - 0.52 (Figure 5.19e - 5.24e). The 

proline concentrations are over-predicted during mid-culture time in '1''' 0.3mM Fed-

batch', '2"^ 0.3mM Fed-batch', and '0.3,0.35mM Fed-batch' cultures and under-

predicted in the death phase in 'O.lmM Fed-batch', 'T ' 0.3mM Fed-batch', '2"^ 0.3mM 

Fed-batch', '0.5mM Fed-batch', and '0.3,0.7mM Fed-batch' cultures. The model is 

unable to capture the variations in proline production and consumption. But as a non-

essential amino acid, this did not have significant effect on the major output variables of 

the model. 

Tryptophan (experiment data not available) 

The model simulations of possible tryptophan time-profiles for batch and fed-

batch cultures are shown in Figure 5.18e - 5.24e. The initial tryptophan concentration is 

an average value of the initial concentration of other amino acids. The time-profiles of 

tryptophan are generally similar to other essential amino acids in the corresponding 

batch/fed-batch cultures. The unavailability of tryptophan data led to an uncertainty 

regarding its contribution to cell death during the death phase of the batch/fed-batch 

cultures. Tryptophan is an essential amino acid (Table 4.1) so a lack of it would cause 

growth rate to cease and may trigger cell death. In the simulations, tryptophan is still 

available at the end of the batch CHO-IFNy culture but reaches a low but non-zero level 

in all fed-batch cultures in the death phase. It is recommended to improve measurement 

capability in future experiments so that all essential amino acids are monitored. 
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Hypothetical response variables {xres.Gin & 

There are two hypothetical response variables in the model: Xres.cin (Figure 

5.25(i)-(vii)) and Xres.ck (Figure 5.26(i)-(vii)) which respond to the concentration of 

glutamine and glucose respectively. The two variables do not directly represent any 

signalling molecules in the mammalian cell but serve as 'soft sensors' for the 

assumptions (that the cell culture 'switches' to a different metabolic pattern when the 

concentration of the two dominating nutrients is low; and the 'switch' is step-like) made 

in this CHO-IFNy model. The values of x,-es,Gin are positive in most of the fed-batch 

cultures but Xres.Gk is only active in two fed-batch cultures when the glucose feedback 

controller set-point was set at O.VmM and 0.35mM respectively. The overall behaviour 

of these 'sensors' is up to expectation as they are able to activate metabolic changes in 

the mathematical model based on model assumptions. 

Conclusions 

In general, the model is able to simulate the main trends of key variables including INFy, 

viable and total cell, glutamine, glucose, ammonium, essential amino acids, and growth-

stimulating amino acids in the batch and fed-batch CHO-IFNy cell cultures. Though 

some of the fine details of dynamic responses may not be well followed in the 

simulations, e.g. the unexpected decreasing trend in ammonium concentration in some 

of the fed-batch cultures, and the lack of maintenance consumption of certain amino 

acids during the death phase in fed-batch cultures etc., the major cell culture responses 

in low-glutamine and/or low-glucose conditions are able to be captured by the model. 

In the next chapter, dynamic model-based optimisation is applied to optimise the IFNy 

productivity. The possible effects of parameter uncertainty are evaluated using 

statistical analysis and the results are discussed. 
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Figure 5.18a: Simulation of IFNy, glutamine, glucose, and cell concentrations of CHO-IFNy 
batch culture and comparison with corresponding experiment data. 
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Figure 5.18b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine 
concentrations of CHO-IFNy batch cultures and comparison with corresponding experiment 
data. values < 0.40 are underlined. 
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Figure 5.18c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine 
concentrations of CHO-IFNy batch cultures and comparison with corresponding experiment 
data. values < 0.40 are underlined. 
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experiment data. R" values < 0.40 are underlined. 
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Figure 5.18e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNy 
batch cultures and comparison with corresponding experiment data. Tryptophan data was not 
available due to problems with HPLC analysis (initial condition of tryptophan concentration 
was chosen similar to threonine which had an average initial concentration among other amino 
acids in batch cultures). R" values < 0.40 are underlined. 
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Figure 5.19a: Simulation of IFNy. glutamine, glucose, and cell concentrations of CHO-IFNy 
fed-batch culture with glutamine set-point at O.lmM and comparison with corresponding 
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Figure 5.19b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.1 mM and 
comparison with corresponding experiment data. (or R̂ mod) values < 0.40 and '% in 
±0.2mM' values < 50% are underlined. (Refer to text and Appendix 6 for discussion of initial 
concentration of ammonium and amino acids respectively.) 
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Figure 5.19c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at O.lmM and 
comparison with corresponding experiment data. R̂ niod values < 0.40 and '% in ±0.2mM' values 
< 50% are underlined. (Refer to Appendix 6 for discussion of initial concentration of amino 
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Figure 5.19d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and 
serine concentrations of CHO-IFNy fed-batch culture with glutamine set-point at O.lmM and 
comparison with corresponding experiment data. R̂mod values < 0.40 and '% in ±0.2mM' values 
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Figure 5.19e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNy fed-
batch culture with glutamine set-point at O.lmM and comparison with corresponding 
experiment data. Tryptophan data was not available due to problems with HPLC analysis (an 
initial concentration of 0.5mM was used which was an average among other amino acids in fed-
batch cultures). R̂ mod values < 0.40 and '% in ±0.2mM' values < 50% are underlined. 
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Figure 5.20a: Simulation of IFNy, glutamine, glucose, and cell concentrations of CHO-IFNy 
fed-batch culture with glutamine set-point at 0.3mM (1st experiment) and comparison with 
corresponding experiment data. (or R"mod) values < 0.40 and '% in ±0.2mM' (or ±lmM for 
glucose) values < 50% are underlined. 
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Figure 5.20b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3mM (1st 
experiment) and comparison with corresponding experiment data. (or R'mod) values < 0.40 
and '% in ±0.2mM' values < 50% are underlined. (Refer to text and Appendix 6 for discussion 
of initial concentration of ammonium and amino acids respectively.) 
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Figure 5.20c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3mM (1st 
experiment) and comparison with corresponding experiment data. R"mod values < 0.40 and '% 
in ±0.2mM' values < 50% are underlined. (Refer to Appendix 6 for discussion of initial 
concentration of amino acids.) 
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Figure 5.20d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and 
serine concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3mM (1st 
experiment) and comparison with corresponding experiment data, or R̂mod values < 0.40 and 
'% in ±G.2mM' values < 50% are underlined. (Refer to Appendix 6 for discussion of initial 
concentration of amino acids.) 

220 



Glycine 

R mod- - 4 . 6 5 

%(±0.2mM): 18% 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 

Time (h) 

Proline 
W 

1.4 -

1.2 -

E 1.0 -
« 

0 8 -
<-

(16 -
5 

u 0.4 

0.2 • 

0.0 

R mod: Ml 
%(±0.2mM): 29% 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 

Time (h) 

Tryptophan 

B 0.4 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 

Time (h) 

Figure 5.20e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNy fed-
batch culture with glutamine set-point at 0.3mM (1st experiment) and comparison with 
corresponding experiment data. Tryptophan data was not available due to problems with HPLC 
analysis (an initial concentration of 0.5mM was used which was an average among other amino 
acids in fed-batch cultures). R̂mod values < 0.40 and '% in ±0.2mM' values < 50% are 
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Figure 5.21a: Simulation of IFNy, glutamine, glucose, and cell concentrations of CHO-IFNy 
fed-batch culture with glutamine set-point at 0.3mM (2nd experiment) and comparison with 
corresponding experiment data. (or R"mod) values < 0.40 and '% in ±0.2mM' (or ±lmM for 
glucose) values < 50% are underlined. 
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Figure 5.21b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3mM (2nd 
experiment) and comparison with corresponding experiment data. R" (or R'mod) values < 0.40 
and '% in ±0.2mM' values < 50% are underlined. (Refer to text and Appendix 6 for discussion 
of initial concentration of ammonium and amino acids respectively.) 
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Figure 5.21c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0 .3mM (2nd 
experiment) and comparison with corresponding experiment data. R^„od values < 0.40 and '% 
in ±0 .2mM' values < 50% are underlined. (Refer to Appendix 6 for discussion of initial 
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Figure 5.21d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and 
serine concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0 .3mM (2nd 
experiment) and comparison with corresponding experiment data. R^mod values < 0.40 and '% 
in ±0 .2mM' values < 50% are underlined. (Refer to Appendix 6 for discussion of initial 
concentration of amino acids.) 

2 2 5 



Glycine 

R mod: : M 9 
%(±0.2mM): 21% 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 

Time (h) 

Proline 

1 

1.0 -

R̂ modZ 0.52 
%(±0.2mM): 29% 

0 20 40 60 80 100 120 140 160 ISO 200 220 240 260 

Time (h) 

Tryptophan 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 

Time (h) 

Figure 5.21e: Simulation of glycine, proline, and tryptophan concentrations of CHO IFNy fed-
batch culture with glutamine set-point at 0.3mM (2nd experiment) and comparison with 
corresponding experiment data. Tryptophan data was not available due to problems with HPLC 
analysis (an initial concentration of 0.5mM was used which was an average among other amino 
acids in fed-batch cultures). R'niod values < 0.40 and '% in ±0.2mM' values < 50% are 
underlined. 
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Figure 5.22a: Simulation of IFNy, glutamine, glucose, and cell concentrations of CHO-IFNy 
fed-batch culture with glutamine set-point at O.SmM and comparison with corresponding 
experiment data. R" (or R-^od) values < 0.40 and '% in ±0.2mM' (or ± l m M for glucose) values 
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Figure 5.22b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at O.SmM and 
comparison with corresponding experiment data. R" (or R^mod) values < 0.40 and '% in 
±0 .2mM' values < 50% are underlined. (Refer to text and Appendix 6 for discussion of initial 
concentration of ammonium and amino acids respectively.) 
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Figure 5.22c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.5mM and 
comparison with corresponding experiment data. R'^od values < 0.40 and '% in ±0.2mM' values 
< 50% are underlined. (Refer to Appendix 6 for discussion of initial concentration of amino 
acids.) 
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Figure 5.22d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and 
serine concentrations of CHO-IFNy fed-batch culture with glutamine set-point at O.SmM and 
comparison with corresponding experiment data. R^^od values < 0.40 and '% in ±0 .2mM' values 
< 50% are underlined. (Refer to Appendix 6 for discussion of initial concentration of amino 
acids.) 
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Figure 5.22e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNy fed-
batch culture with glutamine set-point at O.SmM and comparison with corresponding 
experiment data. Tryptophan data was not available due to problems with HPLC analysis (an 
initial concentration of O.SmM was used which was an average among other amino acids in fed-
batch cultures). RLod values < 0.40 and '% in ±0.2mM' values < 50% are underlined. 
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Figure 5.23a: Simulation of IFNy, glutamine, glucose, and cell concentrations of CHO-IFNy 
fed-batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.7mM and 
comparison with corresponding experiment data. R^^od values < 0.40 and '% in ±0.2mM' values 
< 50% are underlined. 
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Figure 5.23b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3mM and 
glucose set-point at 0.7mM and comparison with corresponding experiment data. R" (or R^mod) 
values < 0.40 and '% in ±0.2mM' values < 50% are underlined. (Refer to text and Appendix 6 
for discussion of initial concentration of ammonium and amino acids respectively.) 
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Figure 5.23c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0 .3mM and 
glucose set-point at 0 .7mM and comparison with corresponding experiment data. R'mod values 
< 0.40 and '% in ±0 .2mM' values < 50% are underlined. (Refer to Appendix 6 for discussion of 
initial concentration of amino acids.) 
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Figure 5.23d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and 
serine concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0 .3mM and 
glucose set-point at 0 .7mM and comparison with corresponding experiment data. R'mod values 
< 0.40 and '% in ±0 .2mM' values < 50% are underlined. (Refer to Appendix 6 for discussion of 
initial concentration of amino acids.) 
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Figure 5.23e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNy fed-
batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.7mM and 
comparison with coixesponding experiment data. Tryptophan data was not available due to 
problems with HPLC analysis (an initial concentration of 0.5mM was used which was an 
average among other amino acids in fed-batch cultures). R'^od values < 0.40 and '% in 
+0.2mM' values < 50% are underlined. 
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Figure 5.24a: Simulation of IFNy, glutamine, glucose, and cell concentrations of CHO-IFNy 
fed-batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.35mM and 
comparison with corresponding experiment data. (or R^mod) values < 0.40 and '% in 
+0.2mM' (or ± l m M for glucose) values < 50% are underlined. 
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Figure 5.24b: Simulation of ammonium, lactate, isoleucine, leucine, methionine, and valine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3mM and 
glucose set-point at 0.35mM and comparison with coixesponding experiment data. (or R^mod) 
values < 0.40 and '% in ±0.2mM' (or ± l m M for glucose) values < 50% are underlined. (Refer 
to text and Appendix 6 for discussion of initial concentration of ammonium and amino acids 
respectively.) 
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Figure 5.24c: Simulation of phenylalanine, threonine, lysine, histidine, arginine, and tyrosine 
concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0.3niM and 
glucose set-point at 0 .35mM and comparison with corresponding experiment data. R'mod values 
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Figure 5.24d: Simulation of cysteine, alanine, aspartic acid, glutamic acid, asparagine, and 
serine concentrations of CHO-IFNy fed-batch culture with glutamine set-point at 0 .3mM and 
glucose set-point at 0 .35mM and comparison with corresponding experiment data. R^^od values 
< 0.40 and '% in +0 .2mM' values < 50% are underlined. (Refer to Appendix 6 for discussion of 
initial concentration of amino acids.) 
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Figure 5.24e: Simulation of glycine, proline, and tryptophan concentrations of CHO-IFNy fed-
batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.35niM and 
comparison with corresponding experiment data. Tryptophan data was not available due to 
problems with HPLC analysis (an initial concentration of 0.5mM was used which was an 
average among other amino acids in fed-batch cultures). R^^od values < 0.40 and '% in 
±0.2mM' values < 50% are underlined. 
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Figure 5.25(i)-(iv): Time-profiles of the hypothetical response variable for glutamine 
concentration (x^.c/J for (i) Batch, (ii) '0.1 mM Fed-batch', (iii) 'T ' 0.3mM Fed-batch', and 
(iv) '2"d O.BmM Fed-batch' cell cultures. (Notations can be found in Section 5.3.2) 
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(vi) Fed-batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.7mM 
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(vii) Fed-batch culture with glutamine set-point at 0.3mM and glucose set-point at 0.35mM 

Figure 5.25(v)-(vii): Time-profiles of the hypothetical response variable for glutamine 
concentration for (v) '0.5mM Fed-batch', (vi) '0.3,0.7mM Fed-batch', and 
(vii) '0.3,0.35mM Fed-batch' cell cultures. (Notations can be found in Section 5.3.2) 
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Figure 5.26(i)-(iv): Time-profiles of the hypothetical response variable for glucose 
concentration {Xres.cic) for (i) Batch, (ii) 'O.lmM Fed-batch', (iii) '1" 0.3mM Fed-batch', and 
(iv) '2"^ 0.3mM Fed-batch' cell cultures. (Notations can be found in Section 5.3.2) 
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Figure 5.26(v)-(vii): Time-profiles of the hypothetical response variable for glucose 
concentration {Xres.ck) for (v) '0.5mM Fed-batch', (vi) '0.3,0.7mM Fed-batch', and 
(vii) '0.3,0.35mM Fed-batch' cell cultures. (Notations can be found in Section 5.3.2) 
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Chapter 6 

— Optimisation of the Nonlinear 

CHO Model with Secondary-binary 

Variables 

In Chapter 5, a strategy was presented for es t imat ion of parameter values of the 

c o m p l e x C H O cell model that involved 192 parameters and 29 ordinaiy different ia l 

equat ions . Wi th the selected pa ramete r values, the mode l could then be subjected to 

mode l -based opt imisat ion of the dynamic system. 

6.1 Dynamic Optimisation Methods 

T h e topic of dynamic opt imisat ion encompasses all sys tems in which the 

var iable of interest is t ime dependent and the opt imisat ion involves transient state. The 

f o c u s of this chapter is non- l inear dynamic biological systems. Thus , only dynamic 

opt imisa t ion me thods appl icable to non- l inear mode l s are discussed. In the fo l lowing 

sections, several popular dynamic opt imisat ion approaches are int roduced. The 

incorpora t ion of integer variables in dynamic opt imisat ion is br ief ly presented as mixed-

integer dynamic opt imisat ion ( M I D O ) was applied in Chapter 3 to opt imise a s imple 

h y b r i d o m a cell cul ture model . All the dynamic opt imisat ions carr ied out in this work 

were done in g P R O M S (Process Sys tems Enterpr ise Ltd., 2008). Thus , the dynamic 

opt imisat ion a lgor i thms avai lable in g P R O M S are also discussed. 
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6.1.1 Common Approaches for Continuous Dynamic Optimisation 

There are numerous methods being developed in the Hterature to solve dynamic 

optimisat ion problems. Generally these methods can be grouped into two main 

categories; variational approach and variable discretisation. 

T h e variational approach (also known as indirect method) involves f inding a solution of 

a classical necessary condit ions for optimality obtained f rom the Pontryagin ' s 

m a x i m u m principle (Cervantes and Biegler 1999; Schlegel et al., 2005) which is quoted 

be low f r o m Pontryagin et al. (1962) and W o l f r a m MathWor ld (2008): 

Let u{t), to<t <ti, be an admissible control such that the corresponding trajectory \(t) 
which begins at the point xq at the t ime to passes, at some t ime t; , through a point on 
the line II . In order that u{t) and x{t) be optimal it is necessary that there exist a 
nonzero cont inuous vector funct ion \|f(r) = Yi{t), . . . , y/nit)) coiTesponding to u{f) 
and x(f), such that: 

(1) For every t, to<t <ti, the function H{Mf{t), x{t), u) of the variable u e U 
attains its m a x i m u m at the point u = u{t): 
H(\\i(t),x(t),u{t)) - max H(\\f(t),x(t),u) 

(2) At the terminal t ime t] the relations < 0 and H{\^{ti), x(ti), u{ti)) = 0 
are satisfied. 

Line II: In a vector space X that contains state variable x(r), let II be a line in X passing 
through the point x = (0, xj) and parallel to the axis made up of all the points (^, x;) where ^ 
is arbitrary. 

The differential algebraic equations formulated f rom the optimality condit ions can be 

solved with different methods: single shooting, multiple shooting, collocation on finite 

e lements and finite differences etc. (Cervantes and Biegler 1999). But it can be difficult 

to f ind a solution when there are inequality constraints and other complexit ies (Banga et 

al., 1997; Cervantes and Biegler 1999; Biegler et al., 2002). The Single shooting 

method requires input of initial conditions for forward numerical integration of the D A E 

system to obtain t ime profi les of the state variables (Schlegel et al., 2005). The term 

's ingle-shooting ' arises f r o m the single integration of the dynamic model over the entire 

horizon. The discretisation of the control profi les is of ten piecewise polynomial 

approximation (Schlegel et al., 2005). Mult iple shooting and collocation methods are 

also used to explicitly discretise the state variables in some of the discretisation 

approaches (Cervantes and Biegler 1999) so they are discussed later on in this section. 

The discretisation approach can be fur ther classified into partial discretisation and full 

discretisation. Somet imes the partial/full discretisation approaches are categorised 

according to the solution strategy: single shooting, multiple shooting, and collocation 

(Schlegel et al., 2005) instead of the t reatment of the variables. Partial discretisation 

- 2 4 7 -



only discretise the control profi les. It is used in dynamic programming and sequential 

approach (Cervantes and Biegler 1999). Dynamic programming is a mathematical 

theory of multi-stage decision processes for solving problems exhibit ing the properties 

of overlapping subproblems (problems that can be broken down into smaller parts 

which are reused multiple t imes) and optimal substructure (problems of which the 

globally optimal solution can be constructed f r o m locally optimal solutions of 

subproblems) (Bellman, 1957; Wikipedia , 2008). Some literature would classify 

dynamic programming separately f r o m sequential approach due to their different 

solution strategies (Barton et al., 1998). Iterative dynamic p rogramming (IDP) is often 

used for the solution of dynamic optimisation problems (Luus 1993a,b,c; Dadebo and 

McAuley 1995; Cervantes and Biegler 1999). There is a high dimensionali ty problem 

associated with the IDP algorithm though it is useful to cross-check the results of small 

problems when the global op t imum is unknown (Cervantes and Biegler 1999). 

Stochastic search algorithm has also been used to f ind the optimal solution in non-l inear 

optimisat ion (Banga et al., 1997; Rodriguez-Acosta , et al., 1999). 

Sequential approach is also known as control parameterisat ion method (Sargent and 

Sullivan, 1978; Kraf t , 1985). In sequential approach, only the control variables are 

discretised. The control variables are represented by piecewise polynomials and 

optimisat ion is done with respect to the polynomial coeff ic ients (Biegler et al., 2002; 

Bar ton et al., 1998). The differential algebraic equation (DAE) system is solved using a 

D A E solver, e.g. single shooting method (Schlegel et al., 2005), in every iteration and 

the optimal control parameters are found using a nonlinear p rogramming (NLP) solver 

(Cervantes and Biegler 1999; Vassil iadis et al., 1994a,b). 

Full discretisation approach discretises both the state and control profi les which 

generate a large scale nonlinear p rogramming (NLP) problem. The resulting large-scale 

N L P is of ten solved using successive quadratic p rogramming (SQP) algorithm 

(Cervantes and Biegler 1998; Cervantes and Biegler 1999; Biegler et al., 2002) which 

uses N e w t o n ' s method for unconstrained minimisation. Full discretisation is used in 

s imultaneous approach. Both sequential approach and simultaneous approach are 

somet imes called direct methods as the discretisations directly transform the infinite 

dimensional dynamic optimisation problem into a f inite dimensional nonlinear program 

(NLP) (Barton et al., 1998). In the s imultaneous approach, the D A E system is only 

solved at the op t imum point instead of every iteration in the sequential approach. There 

are two types of SQP methods to solve the N L P in simultaneous approach: full space 

S Q P for problems with many degrees of f r eedom and reduced space S Q P for problems 

when the number of state variables is much larger than number of control variables 

(Cervantes and Biegler 1999; Cervantes and Biegler 2000). 
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There are mainly two methods to discretise the state variables explicitly in the 

s imultaneous approach: mult iple shooting and collocation. Mult iple shooting method is 

similar to single shooting method except the t ime horizon in multiple shooting is 

divided into subintervals and the D A E system is integrated separately in each 

subinterval so the state variables are also guessed at several intermediate t ime points 

(Cervantes and Biegler 1999; Biegler et al., 2002; Leineweber et al., 2003a,b). In 

collocation method, spline funct ions (piecewise polynomial curves are used to 

approximate the state and control variables (Neuman and Sen, 1973; Birkhoff and de 

Boor, 1965; Ahlberg et al., 1967). The cont inuous t ime problem is converted into an 

N L P by approximating the cont inuous profi les as a family of polynomials on finite 

e lements and the coeff ic ients of these polynomials and e lement sizes 

become decision variables in a large-scale NLP. (Tsang et al., 1975; Biegler 1984; 

Cuthrell and Biegler 1987; Tieu et al., 1995; Barton et al., 1998; Cervantes and Biegler 

1999y 

The dynamic optimisation approaches described above are to provide a general idea of 

some of the many different strategies that have been used to solve non-linear dynamic 

optimisat ion problems. The aim of this work is to apply and adapt one of these existing 

algori thms to optimise a biological cell culture. Thus, next section will focus on the 

optimisat ion sof tware used for this study and the available algorithms. 

6.1.2 Dynamic Optimisation with/without Integer Variables in 
g PROMS 

Mixed-Integer Dynamic Optimisat ion 

The presence of binary degrees of f r eedom in an otherwise cont inuous dynamic 

optimisat ion process introduces more challenges to the optimisation strategy. A detailed 

review of existing solution approaches for mixed-integer dynamic optimisation (MIDO) 

can be found in Bansal et al. (2003). Below is a brief description of methods used to 

solve M I D O problems in the literature including the one used in gPROMS. 

The binary variables can be approximated by variable space partit ioning or funct ions 

which remove the discrete property of the optimisation problem (Samsatli et al., 1998). 

For example, the binary variables can be treated as switching parameters which take 

discrete values in different variable regions defined by inequality constraints (Bhatia 

and Biegler , 1997). Alternatively, smooth approximation funct ions can be applied to 

represent the binary variable, y, with a funct ion in terms of continuous variable x. 

E.g. in the fo l lowing funct ion. 

- 2 4 9 -



J = ^ [ t a n h ( ( / ? - x ) + l] 

the binary variable is def ined to be 1 for any positive values of x except when x = 0. But 

the switching parameter method could result in large model size; and the smooth 

approximat ion method does not always lead to integral values of the binary variable 

(Samsatl i et al., 1998; Bansal et al., 2003). 

A Branch and Bound f r amework was proposed by Androulakis (2000) which defines 

famil ies of solution algorithms that operate within a search tree and per form an 

enumerat ion of the alternatives without examining all the 0/1 combinat ions of the 

binary variables. This technique typically involves solving a large number of dynamic 

optimisat ion problems, making its application l imited to small M I D O problems (Bansal 

et al., 2003). 

The M I D O problem can also be handled using generalised Benders decomposi t ion 

(GBD) where it is decomposed into a series of primal and master problems that the 

master problems decide new binary configurat ions for subsequent primal problems 

where the binary variables are f ixed. The dynamic optimisation in the primal problems 

can be solved with reduced space approach to give an upper bound of the solution while 

the lower bound is obtained f rom the master problems (Mohideen et al., 1997a; Sharif et 

al., 1998; Schweiger and Floudas, 1998; Bansal et al., 2002). Bansal et al. (2003) 

developed a new algorithm based on G B D and outer approximation (OA)/ equality 

relaxation (EA) for solving general M I D O problem and can also handle t ime dependent 

binary variables. The original binary variables are relaxed but are still forced to take 

integral values by an addition of new binary variables. It shares a limitation of most 

G B D methods that when the optimisation problem is non-convex or highly non-linear, 

the algori thm may exclude potentially feasible choices of binary variables f rom the 

solution set (Bansal et al., 2003). Many other numerical solution approaches for M I D O 

in the literature are based on decomposi t ion principles, but d i f fer in the treatment of the 

differential algebraic equation system (Bansal et al., 2003; Barton 1998; Floudas, 1995; 

Chachuat et al., 2005). The method by Bansal et al. (2003) is the basis for the mixed-

integer non-l inear p rogramming (MINLP) solver in gPROMS and is fur ther discussed in 

next section. 

gPROMS Optimisat ion Algori thms 

The dynamic optimisation was carried out in gPROMS version 3.0.3 (Process Systems 

Enterprise Ltd., 2008). There are two mathematical solvers for dynamic optimisation in 

gPROMS: CVP_SS and C V P _ M S . Both solvers are based on control vector 

parameterisat ion approach which discretises the t ime-varying control variables and 
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assumes that they are p iecewise constant or p iecewise l inear func t ions of t ime over a 

spec i f ied n u m b e r of control intervals (Process Sys tems Enterpr ise Ltd., 2004) . T h e 

C V P _ S S solver uses a s ingle-shoot ing m e t h o d which requires initial guesses of the 

control variables. The C V P _ M S solver imp lemen t s a mul t ip le-shoot ing me thod which 

requires both initial guesses of the control var iables and the values of the different ia l 

var iables at the start of each subsequent control interval. T h e choice be tween the 

C V P _ S S and C V P _ M S solvers for any dynamic opt imisat ion p rob lem depends 

pr imari ly on the n u m b e r of opt imisat ion decis ion paramete rs that the a lgor i thm has to 

deal with in compu t ing the sensit ivit ies of the model variables. C V P _ S S is m o r e suited 

fo r p rob lems with large n u m b e r of state var iables but relatively f ew t ime-vary ing 

control variables and control intervals . On the other hand, C V P _ M S is more appropr ia te 

fo r the opposi te situation of C V P _ S S (Process Sys tems Enterpr ise Ltd., 2004) . C V P _ S S 

was chosen for the dynamic opt imisat ion of both the cel l-cycle mode l in Chap te r 3 and 

the C H O - I F N y cell cul ture mode l in this chapter due to the relat ively larger n u m b e r of 

state variables than t ime-vary ing control variables. 

T h e nonl inear p r o g r a m m i n g p rob lems resul t ing f r o m the dynamic opt imisat ion solvers 

are solved with S R Q P D by defaul t which is a sequential quadrat ic p r o g r a m m i n g (SQP) 

me thod . W h e n mixed- in teger control variables are involved, such as in the cel l-cycle 

mode l dynamic opt imisa t ion in Chapted 3, the s tandard mixed- in teger non- l inear 

p r o g r a m m i n g ( M I N L P ) solver is O A E R A P which is s imilar to the algori thm developed 

by Bansa l et al. (2003). The O A E R A P solver employs an outer approximat ion (OA) 

a lgor i thm to solve the M I N L P . A n y end-point equal i ty constraints would be handled by 

an equal i ty relaxat ion (ER) scheme. A s mos t engineer ing p rob lems are non-convex and 

highly non-l inear , an augmen ted penal ty (AP) strategy is also involved to increase the 

chance of obta ining the global solution. 

In next section, the dynamic opt imisat ion p rob lem f o r C H O - I F N y cell cul ture is def ined 

and the initial guesses of the t ime-vary ing control var iables are explained. The 

opt imisa t ion was solved wi th C V P _ S S and the N L P was solved us ing S R Q P D . 
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6.2 Model-Based Optimisation of CHO-IFNy Culture 

6.2.1 Formulation of the Optimisation Problem 

In Chapter 3, dynamic opt imisat ion with binary variable as an explici t degree of 

f r e e d o m has been demons t ra ted for s imul taneous opt imisat ion of nutr ient 

supplementa t ion t ime-prof i le , Fin(t), and cel l -cycle arrest ing t ime, fo r a s imple 

h y b r i d o m a cell cul ture mode l . In that si tuation, mixed- in teger dynamic opt imisat ion 

( M I D O ) algor i thm was used because the binary variable was independent of all other 

variables . However , fo r the C H O - I F N y non- l inear dynamic model with secondary-

binary var iables dependent on g lu tamine and g lucose concentra t ions , the binary 

var iables were not f ree ly adjus table . The opt imisat ion of such model was done via 

dynamic opt imisat ion with inequali ty constraints conf in ing the concentra t ion of 

g lu tamine and g lucose in ei ther the act ive or inactive domains of the secondary-binary 

var iables if necessary. 

T h e dynamic opt imisat ion objec t ive was def ined in Equat ion 6.1 which was to 

m a x i m i s e the yield of IFNy at the end-point , tj- , of the fed-ba tch suspension C H O 

culture. The degrees of f r e e d o m to be opt imised were the t ime prof i les of a g lucose feed 

s t ream, Finj,ic(t), and a g lu tamine-r ich f eed stream, Fi„(t). Bo th variables are cont inuous 

and could take any non-nega t ive real values. The pat terns of Fi„_f,ic(t) and Fi„(t) were 

dec ided to be pulses with constant t ime intervals. At, due to the small vo lume of 

concent ra ted nutr ients required at any part icular t ime. Though theoret ical ly a cont inuous 

f eed ing pattern is also possible , in this case the volumetr ic f l ow rate involved would be 

ex t remely small which is beyond practical considerat ion. T h e choice of At should be 

less than the doubl ing t ime of the cells which is roughly a day fo r mammal i an cul tures 

and larger than the t ime required fo r sampl ing which is several minutes . It was tested 

computa t iona l ly that when At was reduced f r o m 2 h to 1 h, the opt imised cul ture had 

smoothe r t ime-prof i les of nutr ient concentra t ions but there was no s ignif icant increase 

in IFNy yield. Thus , At was f ixed at 1 h for all opt imisat ions. The durat ion of each f e e d 

s t ream pulse was a s sumed to be 0 .001 h (3.6 s). A n y slight deviat ion of the pulse 

durat ion in reali ty wou ld not a f fec t the product yield. 
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Optimisat ion objective: m a x lFN{t J (6.1) 
u(') 

subject to Z , (0 - Z = 1 -29 , y = 1..2, m e [1,29] 

Z e Z , 

Control variables: 

W/(0 = Fjn_i,lc{t) , Fin_gk ^ 0 ( 6 . 2 ) 

M2(f)==/fm(f) , (6.3) 

Inequality constraints: 

y < 1.5 Vg (6.4) 

Viabili ty > 50% (6.5) 

Finj-ic < 10 L h ' (6.6) 

f m < lOLh"^ (6.7) 

G / c < 6 m M (6.8) 

Gin < 0.65 m M (6.9) 

The object ive funct ion above was subjected to all the differential equations, x. {t) , 

algebraic equations, , and inequality constraints, g,. The inequality constraints were 

based on the limit of the reactor volume (Equation 6.4), product degradation at low 

viability (Equation 6.5), amount of feed streams required by experience (Equation 6.6 -

6.7), concern of high lactate format ion at high glucose concentration (Equation 6.8), and 

a need to restrain glutamine concentrat ion within the active domain of secondary-binary 

variable yh (Equation 6.9). It was found that when the upper bound of glutamine 

concentrat ion was set to include both active and inactive domains of (Equation 6.11), 

the optimisat ion iteration would get stuck at the inactive domain, even though previous 

iterations in the active domain yielded a better opt imum, and was not able to recover. 

But setting the upper bound of glucose concentration to include both active and inactive 

domains did not cause any problem to the dynamic optimisation. 
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Secondary-binary variables: 

0. 

}',=•; 1, 0 < G/c < Tc/r (6.10) 

0, Glc = 0 

0, 

1, 0 < G b c T a . 

0, Gin = 0 

where y represents binary variables, Glc is glucose concentration, Gin is g lutamine 
concentrat ion, Tgic and Tg/„ are the threshold concentrat ion of glucose and glutamine 
respectively between the active and inactive domains of jy and yz. 

Fixed variables: 

(1) All initial conditions: f ixed at the initial condition of one of the fed-batch 

exper iments with 0 . 3 m M glutamine level control (all fed-batch experiments have 

similar initial conditions). 

(2) Composi t ions of the feed streams: 100 m M glutamine in F,,, , 40 g L"' (220 m M ) 

glucose in 

(3) Nutrient supplementat ion t ime interval: 1 h 

D y n a m i c optimisat ion algorithm: 

The optimisation was solved using control vector parameterisat ion approach with 

single-shooting method (CVP_SS) . The control profi les were piece wise-constant. The 

nonlinear p rogramming solver was a sequential quadratic p rogramming method 

(SRQPD). 

The dynamic optimisation results were sensitive to initial guesses of the control profiles. 

Thus, several different modes of initial conditions were considered: constant pulses, 

r andom pulses, and progressive pulses. For the last two modes, the cell culture t ime was 

divided into only three t ime periods for simplicity. A total of 100 initial condit ions were 

used and their values are listed in Table 6.1. 
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T a b l e 6 .1: Init ial guesses of con t ro l p ro f i l e s of F , 
op t imi sa t i on of f e d - b a t c h C H O - I F N y cell cu l tu re . 

,(t) and Finj , ic( t) u sed in d y n a m i c 

Control 
Profi les 

Mode Fin* (L h ') Fin_glc* (L h ') 

1 Constant 0.1 0.1 
2 0.3 0.1 
3 0.3 0.3 
4 0.5 0.5 
5 0.3 0.5 
6 0.3 0.2 
7 0.2 0.2 
8 0.4 0.4 
9 0.6 0.6 
10 0.5 0.05 
11 0.1 0.6 
12 0.05 0.05 
13 0.6 0.3 
14 0.7 0.7 
15 0.8 0.8 
16 0.5 0.8 
17 0.7 0.2 
18 1 1 
19 1 2 
20 2 3 
21 2 4 
22 3 3 
23 3 4 
24 4 5 
25 2 1 
26 3 1 
27 4 3 
28 4 2 
29 2 5 
30 4 4 
31 1 3 
32 2 2 
33 1 4 
34 3 5 

0-80h 81-160h 161-245h 0-80h 81-160h 161-245h 
35 Random 0.1 0.4 0.2 0.2 0.8 0.4 

36 0.2 0.1 0.3 0.4 0.2 0.6 

37 0.4 0.3 0.2 0.8 0.6 0.4 

38 0.1 0.3 0.2 0.1 0.2 0.1 

39 0.2 0.4 0.3 0.1 0.2 0.05 

40 0.3 0.5 0.2 0.2 0.6 0.3 

41 0.4 0.1 0.3 0.3 0.7 0.5 

42 0.5 0.3 0.1 0.2 0.6 0.4 

43 0.6 0.4 0.2 0.3 0,5 0.1 

44 0.7 0.3 0.5 0.1 0.4 0.3 

45 0.8 0.6 0.4 0.2 0,3 0.1 

46 0.2 0.5 0.3 0.3 0,2 0.1 

47 0.3 0.4 0.1 0.6 0,1 0.4 

48 0.4 0.8 0.2 0.5 0.05 0.2 

49 0.5 0.1 0.6 0,3 0.5 0.3 

50 0.6 0.2 0.7 0.2 0.4 0.1 

51 0.7 0.3 0.1 0.1 0.3 0.2 

52 1 3 2 2 1 4 

53 2 4 1 1 5 3 

54 3 4 2 3 2 4 

55 1 4 1 4 1 2 

56 4 3 4 2 5 4 

57 2 1 4 1 3 2 

58 3 1 2 2 4 3 

59 1 2 1 3 5 3 
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(continue) 
Control 
Profiles 

Mode Fin* (L h-') (L h-') 

60 Random 2 3 2 1 2 1 
61 (continue) 3 4 1 2 1 3 
62 4 2 3 5 2 3 
63 2 1 3 2 5 2 
64 1 4 2 4 2 3 

65 3 1 4 1 4 2 
66 1 4 3 2 4 1 
67 2 3 1 5 1 5 

68 Progressive 0.1 0.2 0.3 0.2 0.4 0.6 
69 

Progressive 
0.2 0.3 0.4 0.4 0.6 0.8 

70 0.3 0.4 0.5 0.5 0.6 0.7 
71 0.4 0.5 0.6 0.1 0.2 0.3 
72 0.5 0.6 0.7 0.2 0.3 0.4 
73 0.6 0.7 0.8 0.3 0.4 0.5 
74 0.7 0.8 0.9 0.4 0.5 0.6 
75 0.1 0.3 0.5 0.5 0.7 0.9 
76 0.2 0.4 0.6 0.6 0.7 0.8 
77 0.3 0.5 0.7 0.7 0.8 0.9 
78 0.4 0.6 0.8 0.1 0.4 0.7 
79 0.5 0.7 0.9 0.2 0.5 0.8 
80 0.1 0.4 0.7 0.3 0.6 0.9 
81 0.2 0.5 0.8 0.1 0.6 0.7 
82 0.3 0.6 0.9 0.2 0.7 0.8 
83 0.2 0.4 0.8 0.1 0.8 0.9 
84 0.3 0.7 0.9 0.2 0.3 0.7 
85 1 2 3 3 4 5 

86 2 3 4 1 2 3 

87 1 2 4 2 3 4 

88 2 2.5 3 1 3 5 

89 2.5 3 3.5 2 4 5 

90 3 3.5 4 1 2 4 

91 1 1.5 2 1.5 2.5 3.5 

92 1.5 2 2.5 2.5 3.5 4.5 

93 1 2 2.5 1 2.5 4.5 

94 1.5 3 3.5 3.5 4.5 5 

95 2.5 3.5 4 1 1.5 2 

96 1 2.5 4 2 2.5 3 

97 1.5 2 3.5 3 3.5 4 

98 1 3 3.5 1 3.5 5 

99 1.5 2.5 3.5 1.5 4 5 

100 2 3.5 4 4 4.5 5 

*The time-width of each pulse was made such that the height of each pulse in L h ' is equivalent 
to volume in ml. 
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6.2.2 Dynamic Optimisation Results and Discussion 

T h e best dynamic opt imisa t ion result was s imulated and the prof i les of IFNy, 

cell concentra t ions , g lutamine, glucose, F,„ , , a m m o n i u m , and lactate are shown 

in Figure 6.1 - 6.8. T h e result indicated a potential fo r the fed-ba tch cul ture to p roduce 

I F N y at about 60 m g L"' at the end of the cul ture t ime and the viable cell concent ra t ion 

could reach 9 x 1 0 ^ cell ml ' . Expe r imen t resul ts of the C H O - I F N y fed-ba tch cul tures 

can be f o u n d in Chapter 5. T h e h ighes t I F N y yield and viable cell concent ra t ion 

achieved in the fed-ba tch exper iment was about 35 m g L"' and 6 x 10® cell ml ' 

respect ively. T h e h igher p roduc t yield (Figure 6.1) and cell yield (Figure 6.2) in the 

opt imised result was due to a low concentra t ion of toxic a m m o n i u m and a bet ter 

control led concentra t ion of g lucose and g lu tamine in the cell culture. The lactate 

concent ra t ion in the opt imised result (Figure 6.8) was within the same range of the fed-

ba tch exper iments which was 7 - 5 0 m M . The concentra t ion of a m m o n i u m in the f ed -

ba tch exper iments reached 6 — 8 m M , some of which was at 7 m M at 150 h, but in the 

opt imisat ion resul t the a m m o n i u m level was 7 m M at 250 h (Figure 6.7). Mos t of the 

a m m o n i u m produced in the cul ture c a m e f r o m g lu tamine as it was the domina t ing 

amino acid in the med ium. Thus , the a m m o n i u m t ime-prof i le was closely related to 

Fin(t). In the fed-ba tch exper iments , g lucose concentra t ion was most ly be low 0.5 m M or 

above 3 m M . T h e opt imised g lucose prof i le s tayed be tween 1 - 2.5 m M (Figure 6.4) 

wh ich appeared to be a ba lance be tween too low or too high glucose concentra t ions . 

T h e g lu tamine levels in the fed-ba tch exper iments were set at var ious values us ing a 

f eed -back control ler and it was conc luded by W o n g et al (2005) that 0 .3 m M was the 

bes t concentra t ion. T h e g lu tamine concentra t ion in the computa t ional opt imisat ion 

result was similar in the range of 0.1 — 0.2 m M with a low level of - 0 . 1 m M around the 

exponent ia l g rowth phase (80 - 160 h) and then increased towards 0 . 2 m M near the end 

of the cell cul ture t ime (Figure 6.3). The opt imised t ime-prof i les of the s t ream 

conta in ing g lu tamine (F,„) and g lucose (Fm_g/c) gradual ly increased in the exponent ia l 

g rowth phase and then decreased in the death phase of the cell cul ture (Figure 6.5 - 6.6). 

T h e t ime-prof i les of the hypothet ica l response variables {Xres.cin and Xres.Gk) of the 

op t imal solution are shown in Figure 6.9. The ' l ow-g lu tamine ' response was act ivated 

th roughout the whole fed-ba tch cul ture bu t the ' l ow-g lucose ' response was not act ivated 

at all which suggested that the negat ive e f fec t of low glucose concentra t ion on 

product ivi ty is more s ignif icant than its pos i t ive e f fec t on reducing lactate format ion . 

257 



T h e result of the opt imisat ion is a f fec ted by the es t imated values of the mode l 

parameters . In Chapter 5, the relat ive s igni f icance of the parameters that were act ive in 

ba tch cul tures was analysed using Global Sensit ivity Ana lys i s (GSA). In the next 

sect ion, mos t of the parameters that are active and sensi t ive in ei ther ba tch or fed-ba tch 

cul tures were varied and their e f fec t s upon the opt imisat ion of the t ime-prof i les of Fi„{t) 

and Fi„_gic(t) we re studied. 
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Figure 6.1: IFNy concentration profile of the optimised fed-batch CHO-IFNycell culture. 
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Figure 6.2: Viable and total cell concentration profiles of the optimised fed-batch CHO-IFNy 
cell culture. 
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Figure 6.3: Glutamine concentration profile of the optimised fed-batch CHO-IFNy cell culture. 
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Figure 6.4: Glucose concentration profile of the optimised fed-batch CHO-IFNy cell culture. 
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Figure 6.5: supplementation profile of the optimised fed-batch CHO-IFNy cell culture 
with Ar =lh . The stream contained lOOmM glutamine, other amino acids, and basic components 
of the DMEM medium. The height of each pulse in L h"' is equivalent to volume in ml. 
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Figure 6.6: Glucose supplementation profile of the optimised fed-batch CHO-IFNy cell culture 
with At = Ih. The stream contained 40g/L(222mM) glucose. The height of each pulse in L h"' is 
equivalent to volume in ml. 
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Figure 6.7: Ammonium concentration profile of the optimised fed-batch CHO-IFNycell culture. 
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Figure 6.8: Lactate concentration profile of the optimised fed-batch CHO-IFNy cell culture. 
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Figure 6.9: Optimised profiles of the hypothetical response variables for glutamine and 
glucose (xres.Gic) Concentrations. 
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6.3 Evaluation of Effects of Parameter Uncertainty 

6.3.1 Numerical Uncertainty Analysis Using Random Sampling 

A m o n g all the sensi t ive parameters that were ident i f ied in Chap te r 5, those that 

could be isolated f r o m the whole mode l and had their values es t imated f r o m individual 

expe r imen t data, i.e. rmaxiPNy , l̂ d.min , f̂ nwx . and /J„,ax2 , were f ixed in this sect ion 

because their accuracy was h igher than that in bulk pa i ame te r es t imat ion. The 

remain ing sensi t ive parameters and certain s ignif icant parameters which were only 

act ive in fed-ba tch condi t ions (Table 6.2) were var ied and the impact on the dynamic 

opt imisa t ion result was evaluated. Al though some fed-ba tch paramete rs {pg, 

rmaXres,iFN_Gin, PiFN_Gin, rmaXrt;s,iFN_Gic, PiFN_Gk) could havc their sensitivity de te rmined 

by the Global Sensit ivity Analys is (GSA) method, mos t fed-ba tch parameters are only 

act ive when the g lu tamine and g lucose concentra t ions are control led at low levels by 

add ing an inlet f eed stream. The G S A did not take into account any inlet s t ream because 

that would have in t roduced more compl ica t ion into the analysis be fo re iden t i fy ing the 

sensi t ive ba tch culture parameters . The s igni f icance of those parameters that were only 

act ive in fed-ba tch condi t ions was j udged based on their es t imated values and biological 

re la t ions in the C H O - I F N y cell culture. For example , fed-ba tch parameters which had a 

va lue of zero or were set at a theoret ical l imit were regarded as insensit ive. A n y fed-

ba tch parameters related to non-essent ia l amino acids which af fec t nei ther the growth of 

the C H O - I F N y cells nor the productivi ty, e.g. g lu tamate and alanine, were also f ixed at 

their es t imated values. A list of the insensi t ive/f ixed fed-ba tch parameters are shown in 

Tab le 6.3. 

T h e sensi t ive parameters in Table 6.2 were varied by d i f ferent extents (±10%, ± 2 5 % , 

± 5 0 % ) based on the poss ible uncertainty range for a biological cell culture. For each 

tested uncer ta inty range, the parameters were changed randomly using a Sobol ' 

s equence genera tor avai lable f r o m B R O D A (2006). Each set of r andomly selected 

paramete rs within an uncertainty range of interest was subjec ted to the dynamic 

opt imisa t ion s imilar to Sect ion 6.1 but only 9 - 1 2 di f ferent initial guesses fo r control 

p rof i les (Table 6.4) were done due to the large n u m b e r parameter sets involved in the 

uncer ta in ty evaluat ion. 60 parameter sets were tested for each uncertainty range until 

conve rgence of the m e a n and s tandard deviat ion of the IFNy yield was observed (Figure 

6 .10 -6 .11 ) . 
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Table 6.2: L i s t of p a r a m e t e r s t h a t w e r e v a r i e d t o t e s t t h e e f f e c t of p a r a m e t e r v a l u e 

u n c e r t a i n t y o n d y n a m i c o p t i m i s a t i o n o u t p u t . 

Parameters Units Value f l - 2 sis. fia.) 
1 Amnicr mmole L"' 5 
2 ^Amrn Gin mmole lO'^cell"' h"' 2 x 10"* 
3 ^Amm HisSerAsn mmole 10"''ceir' h"' 7 x 1 0 ^ 
4 Kd.NH3 mmole L ' 2 x 1 0 ^ 
5 mmole 10"''ceir' h"' 2.8 X 10 ' 
6 mmole lO'^cell ' h ' 2.8 X 1 0 ' 
7 ^sJ'he mmole lO '̂ cell"' h"' 2.8 X 1 0 ' 
8 KGIC mmole L"' 6.3 
9 Kc,ln mmole L"' 8.5 
10 KHIS mmole L"' 0.75 
11 Kile mmole L"' 1.2 
12 K-iiih.Glc mmole L ' 14 
13 K-l^u mmole L"' 1 
14 K-Met mmole U' 0.7 
15 Kphe mmole L"' 0.9 
16 Kscale mmole lO'^'ceir' h ' 2 x 1 0 ^ 
17 Km mmole L"' 0.9 
18 Kval mmole L"' 0.8 
19 A - 7 x 1 0 ^ 
20 m - 3 
21 rmaxc.ic mmole 10"''ceir' h"' 8 x 1 0 ^ 
22 rmaxoin mmole lO'^cell"' h"' 9 x 10-" 
23 rmax„i. mmole 10"''ceir' h ' 2 5 x 1 0 ^ 
24 rmaxiic mmole lO'^cell ' h"' 3.5 X 10 ' 
25 rmaxuu mmole lO'^cell ' h ' 4 x 1 0 " 
26 rmaxmet mmole 10"''ceir' h"' 2 1 x 1 0 ^ 
27 rmaxphe mmole lO '̂ ceH"' h ' 2.1 X 10-" 
28 rmaxthr mmole lO'^cell ' h"' 2 x 1 0 ^ 
29 rmaxtrn mmole lO'^cell"' h"' 2.1 X 10"' 
30 miOXval mmole 10"''ceir' h"' 3 X 10"' 
31 (}iji - 9 
32 mmole 10'^cell ' h"' 1.1 X 1 0 " ' 

33 flfliflAmm.rev mmole" "" L™ lO'^cell ' h ' 2 x 1 0 * 
34 Paio Gin - 0.1 
35 PCvs Gin - 0.01 
36 Pgiu Gin - 1 
37 Pgiv Gin - 0.1 
38 pHis Gin - 0.05 
39 PlFN Gin - 1 
40 Pile Gin - 0.1 
41 - 0.1 
42 - 0.1 
43 - 0.05 

44 Pl'he Gin - 0.1 
45 Ppro Gin - 0.5 
46 PSer Gin - 0.01 
47 Prhr Gin - 0.05 
48 Pin Gin - 1 
49 Plvr Gin - 0.01 
50 Pval Gin - 0.5 
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Table 6.3: List of fed-batch parameters of which the values were f ixed due to 

insensitivity, inactive (zero value), not affect ing growth or productivity, or being at 

theoretical limit. 

Fixed FB 
Parameters 

Value Units Remark 

rmaXrcs,IFN_Gk -I - Insensi t ive f r o m 
G S A 

PlFN_Glc 0.03 - Insensi t ive f r o m 
G S A 

Pd,Glu 0 . 0 5 - Insensi t ive f r o m 
G S A 

Pd,Glc 2 - Insensi t ive f r o m 
G S A 

rmaXres.Glc Ghi 0 - -

TmOXj-ex.Val Gin - Theoret ica l limit 
- Theoret ica l l imit 

rinaXresMe Gin - Theoret ica l limit 
- Theoret ica l l imit 
- Theoret ica l limit 

nnUXres-Tm Gin - Theore t ica l l imit 

rmaXres.rhr Gin - Theore t ica l limit 

nnaXrits f.vs Gin - Theore t ica l limit 

rmaXresHis Gin - Theore t ica l l imit 

f;}„ - Theore t ica l l imit 

nnuXf^f; (7//I - Theoret ica l limit 

rmaXff.^ Pro Gin - Theore t ica l l imit 

mi(lXrps.A\n Gin 0 - -

CilujGln 1 - Not a f fec t ing 
growth/product iv i ty 

c,iti 0 - -

-1 - Theoret ica l l imit 

riTlGX(;i„ -1 - Theoret ica l limit 
-1 - Theore t ica l limit 

Qif, 0 - -

0 - -

rtnaXres.Val GIC 0 - -

TmCtXj-pyjc^if 0 - -

0 - -

rm M etjGIc 0 - -

fTf^(^res.Phe Glc 0 - -

0 - -

rtnaXfg); fjff 7̂/̂  0 - -

0 - -

rmaXres.His Glc 0 - -

-1 - Theoret ica l l imit 
-1 - Theoret ica l l imit 

riTlttXrps.Pro Glc -1 - Theoret ica l limit 
0 - -

I'^tldXj-ps.GIti GIr 0 - -

0 - -

TlTl flX|-e.v, .Ver_G/c I - Not a f fec t ing 
growth/product iv i ty 

0 - -

rmUXi-fif^ CMX GIC 0 - -

0 - -

Pc.Ic Gin 1 - rtnaXfgg QJF. (;i„ = 0 

Pain Glc 1 - riTiaXff,f; QI„ QIF. — 0 

Pval Glc 1 - rtnuXf^G YGI QI^ = 0 

Pl^ii Glc 1 - rtticiXj-(,g [^y Q[(- 0 

Ak Gfc 1 - J'tnaXresJleS'ic — 0 

Afgf Glc 1 - TTnClXres,Met GIc ~ 0 

Pi'he GIc 1 - nnaXj-esJ'he Glc ~ 0 

pTrn Glc 1 - r m a x , , , j ^ c,ic = 0 

fhhr Glc 1 - nnaXres.Thr Gk = 0 

PLVS Glc 1 - riTKlXff,̂  67c ~ 0 

pHis GIc 1 - rmaXresMis Gk = 0 

pAla_Glc 0.1 - Not a f fec t ing 
growth/product iv i ty 

pGly_Gk 1 - Not a f fec t ing 
growth/product iv i ty 

pPro_Glc 1 - Not a f fec t ing 
growth/product iv i ty 

PASD GIC 1 - ^"^'^re.v.A.v/7 Gk ~ 0 

PgIU GIC 1 - I"fftClXrcx,Glu Glc ~ 0 
1 - ^f^^^res,Asn Gk ~ ^ 

PSer_GIc 0.01 - Not a f fec t ing 
growth/productivity 

Prvr GIc 1 - nnuXj-^fij-yj. (-;/(. = 0 

PCvs GIc 1 - nnaXre^ ovt- — 0 

Pavp GIc 1 - rf/ZCU'reY./lrg Gk ~ ^ 

PAsn Gin 1 - ^^^res,Asp Gin — 0 

PAsn Gin 1 - ^^^res^sn Gin ~ 0 

PAre Gin I - rtTlClX,.f,fij\^rs Gin ~ ^ 
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Table 6.4: 12 Initial guesses of control profi les of Fin(t) and Fi„_gic(t) used in evaluation 

of the effects of uncertainty of sensitive model parameters . Somet imes only 3 out of 6 

of the constant feeding modes were tested unless optimisation failures were encountered 

with certain initial guesses. 

Mode Fin' (L h ') Fin_glc^ (L h"') 
1 Constant 0.1 0.1 
2 

Constant 
0.3 0.1 

3 

Constant 

0.3 0.3 
4 

Constant 

0.5 0.5 
5 

Constant 

0.3 0.5 
6 

Constant 

0.3 0.2 
0-80h 81-160h 161-245h 0-80h 81-160h 161-245h 

7 Random 0.1 0.4 0.2 0.2 0.8 0.4 
8 

Random 
0.2 0.1 0.3 0.4 0.2 0.6 

9 

Random 

0.4 0.3 0.2 0.8 0.6 0.4 
10 Progressive 0.1 0.2 0.3 0.2 0.4 0.6 
11 

Progressive 
0.2 0.3 0.4 0.4 0.6 0.8 

12 

Progressive 

0.3 0.4 0.5 0.5 0.6 0.7 
Remark: 

^The time-width of each pulse was made such that the height of each pulse in L h"' is 

equivalent to volume in ml. 

Table 6.5: Computat ional t ime spent on dynamic optimisation of the original parameter 

set of the C H O model and evaluation of the effects of uncertainty of sensitive 

parameters . 

Original set 10% 25% 50% 
A v g C P U t ime per 
optimisat ion (h) 

0.53 0.56 0.61 0.59 

Total no. of 
optimisat ion 

100 621^ 706* 708* 

No. of di f ferent 
parameter sets tested 

1 60 76 81 

No. of i l l -conditioned 
parameter sets 

0 0 16 21 

Total C P U time (h) 57 348 428 416 
Remark: 

* Not including ill-conditioned parameter sets causing failure in initial iteration. 
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6.3.2 Statistical Results 

T h e h is tograms of IFNy yield distr ibution of 60 samples (each sample represents a 

d i f fe ren t parameter set) fo r each tested uncer ta inty range are shown in Figure 6.12 -

6.14. In the h is togram, the data are sorted into SObins of equal width be tween the 

m i n i m u m and m a x i m u m sample values. C o m p a r i n g wi th the opt imised IFTSTy yield of 61 

m g L ' f r o m the original set of pa ramete r values, the mean IFNy yield of ±10%, ± 2 5 % , 

and ± 5 0 % uncertainty fo l lowed a decreas ing trend of 56 m g L % 54 m g L"', and 48 m g 

L ' respect ively. The standard deviat ion increased with increas ing uncer ta inty of the 

sensi t ive parameters : 8.0 m g L"' fo r ±10%, 15.2 m g L ' fo r ± 2 5 % , 24.4 m g U ' fo r ±50%. 

T h e distr ibution of the opt imised IFNy yield appeared asymmetr ica l around the m e a n 

values with a b ias towards the lower range. 

T h e C P U t ime spent on the uncer ta inty analysis of sensi t ive parameters is shown in 

Tab le 6.5. Each uncertainty range took 348 - 428 h to comple te opt imisat ion of 60 

success fu l pa ramete r sets. S o m e parameter sets generated f r o m ± 2 5 % and ± 5 0 % of the 

original pa ramete r values caused fa i lures in initial i teration of the dynamic opt imisat ion 

so a total n u m b e r of 76 and 81 pa ramete r sets were tested respect ively to p roduce 60 

opt imised numer ica l outputs fo r each of the two uncer ta inty ranges . 
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IFNy yield optimisation mean conc. 
— effect of parameter uncertainty 
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Figure 6.10: Convergence of the mean value of optimised IFNy yield against number of 
parameter sets tested. The lines represent best-fit curves showing the trends of the mean values. 
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Figure 6.11: Convergence of the standard deviation of optimised IFNy yield against number of 
parameter sets tested. The lines represent best-fit curves showing the trends of the standard 
deviation. 
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Figure 6.12: Distribution of optimised IFNy yield among 60 different sets of parameter values 
when the sensitive parameters were varied ±10%. 
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Figure 6.13: Distribution of optimised IFNy yield among 60 different sets of parameter values 
when the sensitive parameters were varied ±25%. 
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Figure 6.14: Distribution of optimised IFNy yield among 60 different sets of parameter values 
when the sensitive parameters were varied ±50%. 
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Uncertainty in Time-Profiles of the Controlled Variables 

Table 6.6: Lower and upper ranges of the ratio of standard deviation versus mean 

values of Fin(t), Fin_^,c(t), Gln(t), and Glc(t). 

Ratio of s tandard deviat ion vs. m e a n value 
Variables ± 1 0 % ± 2 5 % ± 5 0 % 
Fi„(t) 0.3-2.0 0 . 4 - 4 . 0 0 . 5 - 3 . 0 
Fm_glc(t) 0 . 5 - 2 . 7 0 . 6 - 2 . 1 0 . 8 - 2 . 7 
Gln(t) 0 . 0 - 0 . 7 0 . 0 - 0 . 8 0 . 0 - 0 . 8 
Glc(t) 0 . 0 - 0 . 8 0 . 0 - 0 . 9 0 . 0 - 1 . 2 

The t ime-profi les of the mean and standard deviation of Fin(t), Fin_gic(t), Gln(t), 

and Glc(t) of the 60 optimisation samples for ±10%, ±25%, and ± 5 0 % of the sensitive 

parameters (Table 6.2) are shown in Figure 6.15 - 6.17. The standard deviation is 

indicated by the grey area in the diagrams. The t ime interval between each pulse in 

and Fi„_gic(t} is 1 h and the t ime-width of each pulse in and Finj,ic(t) was made 

such that the height of each pulse in L h"' is equivalent to volume in ml. The double-

lines in the t ime-profi les of glutamine and glucose are caused by nutrient 

supplementat ion which resulted in a step increase in glutamine/glucose concentration 

every 1 h. 

The trends of the mean values of FM, Fin_gic(t), Gln(t), and Glc(t) are similar 

among various extent of uncertainty of the sensitive parameters . But the standard 

deviation widens upon increasing the uncertainty f r o m ± 1 0 % to ±50% (Figure 6.15 -

6.17). This is also reflected in the ratios of standard deviations versus mean values of 

Fi„(t), Fin_gic(t), Gln(t), and Glc(t) which generally increase when the uncertainty of the 

sensitive parameters is increased f r o m ± 1 0 % to ±50% (Table 6.6). With the standard 

deviat ions reaching about the same order of magni tude as the mean values of 

glutamine/glucose concentrat ion and up to 3 or 4 t imes the mean values of F,„ and 

Fi„(t), the off- l ine model-based optimisation results need to be combined with on-line 

measurements of several ma jor cell culture variables, e.g. concentrat ion of viable cells, 

total cells, glutamine, and glucose, to compensate for the uncertainties of both model 

parameters and experimental variations of the real cell culture system. In that case, the 

off- l ine optimisation results would provide an optimal dynamic working range for the 

system; the on-line measurements would enable f ine adjustment of the degrees of 

f r eedom (e.g. Fi„(t) and Fi„_gic(t)) when variations occur in the cell cultures. 
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Figure 6.15: Mean (black circle) and standard deviation (grey area) of F M , Fi„jic(t), 
glutamine, and glucose concentrations among the 60 optimised results of +10% sensitive 
parameters. (The time-width of each pulse in FJt) and Fi„_gu.(t) was made such that the height 
of each pulse in L h"' is equivalent to volume in ml.) 
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Figure 6.16: Mean (black circle) and standard deviation (grey area) of F,„_gic(t), 
glutamine, and glucose concentrations among the 60 optimised results of ±25% sensitive 
parameters. (The time-width of each pulse in and Fi„_gi^(t) was made such that the height 
of each pulse in L h"' is equivalent to volume in ml.) 
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Figure 6.17: Mean (black circle) and standard deviation (grey area) of F,„(r), Fi„_gi,.(t), 
glutamine, and glucose concentrations among the 60 optimised results o f+50% sensitive 
parameters. (The time-width of each pulse in Fi„(t) and Fi„_gu.(t) was made such that the height 
of each pulse in L h"' is equivalent to volume in ml.) 
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Conclusions 

In this chapter , it has been shown that mode l -based opt imisat ion can provide 

use fu l in format ion regarding the bes t opera t ing region of a dynamic m a m m a l i a n cell 

cul ture fo r a large mode l conta ining 192 parameters and 29 ordinary different ia l 

variables. The highest IFNy yield tested in fed-ba tch C H O - I F N y cell cul ture 

exper iments was about 35 m g L \ Bu t the dynamic opt imisat ion result suggested a 

h igher potential yield of about 60 m g L"'. The uncer ta inty of the mode l has been tested 

via varying the values of sensi t ive parameters by ± 1 0 - 5 0 % and then carry ing out 

mode l -based opt imisat ion for d i f fe rent combina t ions of var ied parameters until the 

m e a n value and standard deviat ion of the samples showed convergence . T h e statistical 

results of analysis showed that within 10 - 50% of parameter uncertainty, the s tandard 

devia t ions of the opt imisat ion results could be up to 1 - 4 t imes the values of the 

contro l led variables. It wou ld be benef ic ia l to combine the resul ts of such off - l ine 

opt imisa t ion wi th on-l ine measu remen t s of a f ew impor tan t cell cul ture variables in 

order to take the fu l l advan tage of mode l -based analysis of b iological sys tems and at the 

s a m e t ime tackle the real - t ime uncer ta in nature of the complex systems. 
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Chapter 7 

— Conclusions & Future Work 

7.1 Overall Conclusions 

Design and opt imisat ion of m a m m a l i a n cell cul ture processes can b e c o m e m o r e 

e f f ic ien t with the help of cell cul ture model l ing . In this study, it has been demons t ra ted 

that an explici t on /of f - type biological degree of f r eedom, e.g. cel l -cycle arrest, that is 

s tep-l ike and irreversible with respect to t ime can be mode l led as binary variable and 

opt imised s imul taneously with other cont inuous degrees of f r e e d o m using a s tandard 

mixed- in teger dynamic opt imisa t ion ( M I D O ) algor i thm with a t ransformat ion of the 

b inary variable into a binary and two cont inuous d u m m y variables dur ing opt imisat ion 

(Sect ion 3.2.3). 

W h e n mode l l ing the growth of m a m m a l i a n cells, t radit ionally only a f e w main 

energy sources, e.g. g lucose and glutamine, were included in the growth kinet ics and it 

was of ten implici t ly a s sumed that other fac tors a f fec t ing growth rate were constant . 

However , such s impl i f ied approach fo r the growth kinet ics appeared to be insuff ic ient 

in the s tudied case of ba tch / fed-ba tch hybr idoma cell cul ture mode l l ing because other 

growth- l imi t ing nutrients were likely to be exhaus ted towards the end of the cell 

cul tures. M a m m a l i a n cells are k n o w n to be unable to synthesize certain amino acids 

which , if absent, would cause growth rate to cease. Thus , it is important to inc lude 

amino acids that are essent ia l /s t imulat ing fo r growth in the growth kinet ics when 

mode l l ing the s tat ionary/death phases of ba tch / fed-ba tch cultures or fed-ba tch cul tures 

wi th nutr ients control led at low levels because in those si tuations the amino acids 

concent ra t ion could b e c o m e signif icant ly low. A model has been developed with the 

incorpora t ion of essential and growth-s t imula t ing amino acids in the growth kinet ics for 
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a Chinese hamster ovary (CHO) cell cul ture where amino acids data are available. 

M a m m a l i a n cells (as well as other cel lular organisms such as yeasts) respond to their 

sur roundings by changing their gene express ions which may af fec t the pat terns of 

growth , metabol i sm, and product ivi ty . It is impor tant that a model a iming at opt imis ing 

a biological system of which the range of the degrees of f r e e d o m would cause a change 

in the cel lular responses take such ' change ' into account . Fai lure to do so would result 

in a mode l of which the parameter values are d i f ferent fo r d i f fe rent exper iment 

condi t ions of interest . The C H O inter feron-y (CHO-IFNy) cell cul ture s tudied in this 

work was cul t ivated under a wide range of concentra t ions of g lu tamine and g lucose in 

ba tch and fed-ba tch condi t ions . T h e specif ic growth rate and specif ic IFNy product ion 

rate were observed to increase s ignif icant ly w h e n g lu tamine concentra t ion was 

control led at roughly 0.1 - 0 . 5 m M in fed-ba tch cul tures as opposed to ~ 4 m M initial 

concent ra t ion in batch cultures; and both the specif ic lactate (byproduct) product ion rate 

and specif ic IFNy product ion rate decreased when g lucose concentra t ion was control led 

at roughly < 0.5 m M in fed-ba tch cul tures as opposed to ~ 3 0 m M in batch cultures. A 

' s tep- l ike ' approximat ion has been used to mode l the changes in cell growth and 

metabol ic pat terns when the concentra t ion of ma jo r nutr ients (glutamine, glucose) are 

sh i f ted f r o m high to low concentra t ions wi th an assumpt ion that the in termedia te range 

of nutr ient concentra t ion is less s ignif icant fo r the opt imisat ion. The deve loped model 

fo r C H O - I F N y cell cul ture contains 192 parameters and 29 ordinary different ia l 

equat ions (ODEs) . A m o n g the ODEs , 27 are measured variables (practically 26 since 

Tryp tophan could not be quant i f ied in the analysis) and 2 are hypothet ical variables 

re la t ing changes in g lu tamine /g lucose concentra t ions to cellular responses . 

T h e mode l parameters were es t imated based on data of batch and fed-ba tch 

C H O - I F N y cell cultures. The relat ive s igni f icance of mos t of the parameters were 

quant i f ied us ing Global sensit ivity analysis (GSA) in order to ident i fy parameters that 

are sensi t ive fo r the specif ic product ion rate of IFNy. G S A is a va luable tool fo r 

interpretat ion of h igher-order interact ions a m o n g mode l parameters throughout the 

who le range of the possible parameter values. The insensi t ive parameters were f ixed at 

their initially es t imated values and the sensi t ive parameters were re-est imated. The 

mode l is able to capture the t ime-prof i les of the measured variables in batch cul ture and 

mos t of the fed-ba tch cultures. T h e mode l was then subjected to dynamic opt imisat ion 

us ing g P R O M S (Process Sys tems Enterpr ise Ltd.) to de te rmine the optimal 

2 7 8 -



supplementa t ion t ime-prof i les of a g lu tamine-conta in ing s t ream and a g lucose s t ream 

fo r max imis ing IFNy yield in fed-ba tch C H O - I F N y cultures. T h e opt imisat ion result 

sugges ted a potential of h igher IFNy yield than the yield obtained in the tested fed-ba tch 

cul tures. But a statistical analysis of the opt imisat ion output taking into account the 

poss ib le uncertaint ies of the sensi t ive paramete rs indicated non-negl ig ib le var ia t ions in 

the opt imised nutr ient supplementa t ion t ime-prof i les when the values of the sensi t ive 

paramete rs were changed by +10%, ±25%, or +50%. It is r e c o m m e n d e d that a f e w 

m a j o r cell cul ture variables, e.g. cell concentra t ions , g lu tamine and g lucose 

concentra t ions , are measured onl ine to al low f ine ad jus tments of the of f - l ine opt imised 

nutr ient supplementa t ion t ime-prof i les . 

In general , the main chal lenge in mode l -based opt imisat ion of dynamic 

m a m m a l i a n suspension cell cul tures is in the determinat ion of an appropr ia te 

mathemat ica l mode l s tructure for the biological sys tem of interest . O n c e a correct model 

s t ructure is found , the values of the mode l parameters can be es t imated f r o m 

exper iments and the predict ions f r o m the mode l can assist in unders tanding and 

opt imisa t ion of the system, which can save fu tu re exper imenta t ion t ime. This study has 

h ighl ighted the impor tance of inc luding essential and growth-s t imula t ing amino acids in 

the g rowth kinet ics of m a m m a l i a n cell cul tures. It has also been demonst ra ted that it is 

poss ib le to s imul taneously opt imise binary- i r revers ible and cont inuous degrees of 

f r e e d o m using a s tandard mixed- in teger dynamic opt imisat ion ( M I D O ) algori thm which 

was not des igned to handle the irreversibil i ty encountered in biological sys tems; and to 

approx imate the observed changes in cellular activities be tween high and low nutr ients 

concent ra t ion by a step-l ike func t ion when the in termediate range of the concentra t ion 

is less s ignif icant fo r product yield maximisa t ion . Bu t the intrinsic complexi ty and 

uncer ta inty of the m a m m a l i a n cell cul tures have caused var ia t ions in the mode l -based 

of f - l ine opt imisat ion results. This can be improved by adjus t ing the opt imisat ion results 

us ing onl ine measu remen t s of a f e w m a j o r cell cul ture variables. Computa t iona l 

s imula t ion and wet- lab exper imenta t ion are complemen ta ry tools for the opt imisat ion of 

b io logica l processes . A s the cul t ivat ion and analysis of cell cul tures are of ten lengthy 

and expensive , mathemat ica l mode l s can he lp to construct relat ionships a m o n g process 

var iables to p ropose fur ther benef ic ia l exper iments if necessary. The use of mode l -

based opt imisat ion for biological sys tems is still a developing f ield. It is be l ieved that 

this will be more widely applied in the b ioindust ry in the fu ture when the mathemat ica l 

and engineer ing tools for biological sys tem simulat ion and opt imisat ion are more 
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readi ly avai lable to people who are not famil iar with the re levant theoret ical and 

technical knowledge . 

7.2 Recommended Future Work 

T h e deve loped f r a m e w o r k of us ing ' r esponse ' variables to mode l step-l ike 

changes in cellular activities can be appl ied to mode l step changes of other control lable 

p rocess variables, e.g. osmot ic shift , t empera tu re shif t , p H shif t etc. Depend ing on the 

reversibi l i ty of the control led variables, the ' r e sponse ' variables should be const ra ined 

to be activated only once or for unl imi ted t imes. For example , an increase in osmot ic 

pressure is i r reversible in ba tch / fed-ba tch cell cul tures but reversible in cont inuous cell 

cultures. 

T h e dynamics of biological cell cul tures and the values of mode l parameters are 

dependent on the cell- l ines due to genet ic variat ions across d i f ferent cell types. It is 

the re fore benef ic ia l to develop a l ibrary of general mode l s fo r d i f ferent m a m m a l i a n cell-

l ines cater ing for each o n e ' s un ique fea tures of nutr ients requi rement , death kinetics, 

metabol ic patterns, nutr ient t ransport mechan i sms , and ant ibody/ recombinant -pro te in 

product ion mechan i sm. Such a mode l library would faci l i ta te appl icat ions of 

m a m m a l i a n cell cul ture s imula t ions by exper imenta l is ts w h o may have l imited 

k n o w l e d g e of cell cul ture mode l deve lopment . It would be usefu l that cell cul ture 

model le rs and exper imenta l i s t s interact m o r e closely wi th each other as the task of cell 

cul ture opt imisat ion involves cross-discipl inary skills which can b e c o m e more 

synerget ic wi th bet ter mutua l unders tanding of the strength and l imitat ion in model l ing 

and exper imenta t ion . 

In addi t ion to the ident i f icat ion of sensi t ive model pa ramete rs using global 

sensit ivi ty analysis in Chapter 5, it is also interest ing to invest igate the possibil i ty of 

l inear dependency be tween sensi t ive mode l parameters . W h e n two parameters are 

l inearly dependent , only their ratio ( instead of their individual values) can be ident i f ied 

f r o m the exper imenta l data. Such analysis can be carried out using Fisher in format ion 

matr ix (Zografos , 1998) to provide an addit ional layer of insight into the property of the 

parameters . 
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T h e study of low concent ra t ion of g lu tamine and g lucose in this work has 

revea led a metabol ic change in C H O cells wh ich can be fur ther explored us ing '^C 

metabol ic f lux analysis with s teady-state C H O cell cul ture subjected to high and low 

substrate concentra t ions . T h e results can indicate h o w the m a j o r metabol i sm has been 

a f fec ted by low extracel lular nutr ient concentra t ion and may suggest usefu l targets fo r 

metabol ic engineer ing to increase product ivi ty . 
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Appendix 1 
— ELISA Protocol for Hybridoma CRL-1606 Antibody 

Analysis 

Ant ibody concentra t ion was measured us ing an enzyme- l inked immunoso rben t assay 

(ELISA) modi f i ed f r o m Kontoravdi (2007). 

Protocol: 

(1) Prepare 96 wellplates (Corning or M a x i S o r p [f la t -bot tom clear]) 

(2) Di lu te 10 \ig of an t i -human f ibronect in ant ibody f r o m rabbit (S igma-Aldr ich 

F3648) to 10ml in coat ing bu f f e r (0 .05M carbonate-b icarbonate buf fe r , p H 9.6). 

A d d lOOjxl to each well . Seal plate with thin f i lm and incubate overnight (16-20h) 

at ~4°C on f lat surface. 

(3) E m p t y the plate and r inse 3 t imes with 250-300|_il wash ing bu f f e r per well (PBS 

( G I B C O ) with 0 .05% v/v T w e e n (Sigma)) . 

(4) B lock non-spec i f ic b ind ing with 250-300 | l l b locking bu f f e r (coat ing bu f f e r with 

0 .5% w/v casein (BDH)) for 1 h. 

(5) E m p t y the plate and rinse 4 t imes wi th wash ing buf fe r . 

(6) Di lute 2 | lg of h u m a n f ibronect in (Chemicon ECO 10) to 10ml in P B S solution. A d d 

lOOpI to each well . Seal pla te and incubate at room tempera ture for 1 h on a shaker . 

(7) E m p t y the plate and rinse 4 t imes with wash ing bu f f e r 

(8) Di lute s tandards (ant i -human f ibronect in ant ibody f r o m mouse , S igma-Aldr ich 

E0791) and samples to suitable ranges using sample con juga te bu f f e r (PBS 

solution wi th 0 .2% w/v casein and 0 .02% v/v Tween) . Add lOOpI of s tandards/ 

samples to each well in dupl icates / tr iplicates respect ively. Seal plate and incubate 

at room tempera ture for 2 h on a shaker . 

(9) E m p t y the plate and rinse 4 t imes wi th wash ing buf fe r . 
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(10) Dilute 6.4 |a,g of anti-mouse Fc antibody from goat (Sigma-Aldrich A0168) to 10ml 

with sample-conjugate buffer. Add lOOjil to each well. Seal plate and incubate at 

room temperature on a shaker. 

(11) Empty the plate and rinse 4 times with washing buffer. 

(12) Dissolve one tablet of 3,3%3,3'-tetramethyIbenzidine (TMB, Sigma-Aldrich T-

3405) in 10ml of 0.05M phosphate-citrate buffer at pH 5.0 (citric acid, BDH; 

dibasic sodium phosphate Na2HP04 (Sigma), in the dark. Add 2 |a,l of fresh 30% 

H2O2 (Sigma) just before use. Add lOOpl of the mixture to each well. Seal plate 

and incubate in the dark at room temperature for 10-60mins on a shaker. Check 

every lOmins for colour development. 

(13) Stop the reaction with 50p] of 2.5M sulphuric acid (BDH) for each well. 

(14) Analyse absorbance at 450 nm with an ELX 808 Ultra Microplate Reader (Bio-Tek 

Instruments, Inc., Vermount, U.S.A.) 

Buffers: 

(i) Coating buffer (0.05M carbonate-bicarbonate buffer, pH 9.6) 

• Sodium carbonate, Na2C03 (Sigma) 

• Sodium hydrogencarbonate, NaHCOa (Sigma) 

E.g. To make 500ml — 

Dissolve 0.846g Na2C03 and 1.439g NaHCOs in 500ml water. The resulting pH should 

be slightly higher than 9.6. Then add a small amount of NaHC03 (each time the order 

of O.Olg) until the pH is 9.6. 

(ii) 0.05M Phosphate-citrate buffer (pH 5.0) 

• Citric acid, C^HgO? H2O (BDH) 

• Dibasic sodium phosphate, Na2HP04 (Sigma) 

E.g. To make 100ml — 

Dissolve 0.864g Na2HP04 in 30ml water and 0.638g citric acid in 30ml water separately. 

Then put 24ml citric acid solution into a container with 100ml capacity. Add 20ml 

NazHPO^ solution and mix well. The pH should be below 5.0. Then slowly add small 

amounts of Na2HP04 solution (starting with l-2ml and gradually decrease to 0.25-

0.5ml) until the pH is 5.0. Keep a record of how much Na2HP04 solution is added. 

Finally add more water until the total volume is 100ml. 
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Appendix 2 
— Protocol for Cell-Cycle Analysis 

Cell fixing: 

(1) Spin cell culture sample at SOOrpm for 5 min. 

(2) Remove supernatant. 

(3) Add -0.5ml PBS solution to re-suspend cells. 

(4) Then add equal volume of ethanol drop by drop and mix well. 

(5) Store at ~4°C and analyse within 1 month. 

Propidium iodide (PI) staining: 

(1) Staining solution contains 50 |i.g/ml propidium-iodide (Sigma-Aldrich P4864; stock 

Img/ml), 25 |ig/ml RNAse Type I-A (Sigma) in PBS (GIBCO). (E.g. for 40ml staining 

solution, add 2ml PI stock, 1ml RNAse stock, and 37ml PBS solution) 

(2) Store in dark container and keep at ~4°C. 

Cell-cycle flow cytometry analysis: 

(1) Check flow cytometer performance using Flow-Check™ fluorospheres (Beckman 

Coulter Inc.) 

(2) Set-up software protocol to analyse cell cycle distribution. Prepare the following 

analysis: 

(i) Forward scatter (FS) linear versus side scatter (SS) log [gate A] 

(ii) PMT4 (605 - 615 nm) peak versus PMT4 integral (linear) [gate B] 

Explanations: Single particles fall along the diagonal of peak versus 

integral diagram. The 

doublets lie on the right hand side of the diagonal. 

(iii) Ratio of peak/integral of PMT4 versus PMT4 integral (linear) [gate C] 

Explanation: The ratio of peak/integral for single particles is higher than 

doublets. 
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(iv) PMT4 integral (linear) versus time of flight [gate D] 

Explanation: time of flight is proportional to the pulse width. Single 

particles have shorter 

TOP than doublets. 

(v) Plot a histogram for gate A+B 

(vi) Plot a histogram for gate A+C 

(vii) Plot a histogram for gate A+D 

All the 3 histograms should agree with each other 

(3) Pellet 0.5 - 1 X 10® cells per sample. Then gently decant and blot away the ethanol 

solution. [Final sample concentration - 1 - 2 x 1 0 ® cell/ml] 

(4) Add 0.5ml PI-RNAse solution. Then mix well and incubate at room temperature in 

the dark for at least 30mins. 

(5) Acquire at least 10,000 - 20,000 data in the histogram. 

Cell-cycle distribution histogram analysis: 

• Cylchred software (Cytonet UK) 
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Appendix 3 
— Linage Relationship between the Animal Sources of 

CHO and Hybridoma Cells 
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Figure A3.1: Linage relationship between Chinese hamster and mouse which are 
sources of CHO and hybridoma cells respectively. (Source: NCBI 2007) 
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Appendix 4 
— Molecular Structure of the 20 Amino Acids Modelled 

in CHO 

Table A4.1: Amino acid structure of the 20 amino acids. Essential amino acids are 

highlighted in bold. (Campbell and Smith, 2000; ChemFinder 2005) 

Amino acid Structure (at dH 6-7) Formula MW 
(g/mole) 

L-Alanine (Ala) 
[CAS: 56-41-7] 

NH, 

C3H7NO2 89 

Glycine (Gly) 
[CAS: 56-40-6] 

0 C2H5NO2 75 

L-Valine (Val) 
[CAS: 72-18-4] 

NH, 

C5H11NO2 117 

L-Leucine (Leu) 
[CAS: 61-90-5] 

NH: 

CfiHiaNOi 131 

L-Isoleucine (He) 
[CAS: 73-32-5] 

NH: 

CgHiaNOz 131 

L-Methionine (Met) 
[CAS: 63-68-3] 

NH, 

CsHnNOiS 149 

L-Proline (Pro) 
[CAS: 147-85-3] 

OH C5H9NO2 115 

L-Phenylalanine (Phe) 
[CAS: 63-91-2] 

0 C9H11NO2 165 

L-Tryptophan (Trp) 
[CAS: 73-22-3] 

' NH: 

C11H12N2O2 204 
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L-Aspartic acid (Asp) 
[CAS: 56-84-8] 

0 NH: 

C4H7NO4 (at a c i d i c p H ) 

C4H5NO4 (at n e u t r a l p H ) 

133 

132 

L-Glutamic acid (Glu) 
[CAS: 56-86-0] 

NHz 

C5H9NO4 (at a c i d i c p H ) 

C5HgN04 (at n e u t r a l p H ) 

147 

146 

L-Asparagine (Asn) 
[CAS: 70-47-3] 

0 

NH, 

C4H8N2O3 132 

L-GIutamine (Gin) 
[CAS: 56-85-9] 

m 

C5H10N2O3 146 

L-Serine (Ser) 
[CAS: 56-45-1] 

0 
HO 

NH, 

C3H7NO3 105 

L-Threonine (Thr) 
[CAS: 72-19-5] J y l . . 

NH, 

C4H9NO3 119 

L-Tyrosine (Tyr) 
[CAS: 60-18-4] 

0 

NH= 

C9H11NO3 181 

L-Cysteine (Cys) 
[CAS: 52-90-4] 

0 

NHj 

C3H7NO2S 121 

L-Lysine (Lys) 
[CAS: 56-87-1] rV-

NH, 

C«H]4N202 (basic pH) 

(neutral 

146 

147 

L-Arginine (Arg) 
[CAS: 74-79-3] 

NH, 

C6H14N4O2 (basic pH) 

C6H]gN202 (neut ra l ) 

174 

175 

L-Histidine (His) 
[CAS: 71-00-1] 

C6H9N3O2 (basic pH) 

C6H10N3O2 (neut ra l ) 

155 

156 
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Appendix 5 
— Calculation of Glutamine Degradation Rate, Maximum 

Specific Growth Rates, and Minimum Specific Death Rate 

Glutamine Degradation Rate 

DMEM medium was incubated at 37°C in a humidified incubator and the concentration 

of glutamine was monitored for about 2 days. 

Table A5.1: Calculation of the average glutamine degradation rate in DMEM medium. 

Time (h) Avg. time 
(h) 

Glutamine 
conc. (mM) 

Avg. 
degradation 

rate (h *) 

Relative 
uncertainty (±%) 

Absolute uncertainty Time (h) Avg. time 
(h) 

Glutamine 
conc. (mM) 

Avg. 
degradation 

rate (h *) 

Relative 
uncertainty (±%) ( - h ') ( + h-') 

0 - 4J7 -

31.5 15.75 3.5 0 .0063 25 0 .0015 0 .0016 
5 5 j 43.5 3.19 0 .0037 67 0 .0024 0.MB6 

Ave.: 0.005 

G l u t a m i n e 

0 10 20 30 40 

Time (h) 
Figure A5.1: Glutamine concentration data for degradation rate estimation. 
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Gin degradation rate 

0.010 

0.008 

a 0.006 

V 0.004 

0.002 

0.000 
0 10 20 30 40 50 

Avg time (h) 

Figure A5.2: Estimation of glutamine degradation rate in DMEM medium. 

Intrinsic Specific Growth Rate 

The rate of change of viable cell concentration is affected by both growth, death rate 

and any possible lysis of viable cells. The rate of change of total cell concentration is 

affected by growth rate and any possible fragmentation of dead cells. Assuming the 

lysis of viable cells and fragmentation of dead cells are negligible, the rate of change of 

total cell concentration is used to estimate the intrinsic specific growth rate for CHO-

IFNy batch culture. 

Table A5.2: Calculation of the average specific growth rate before and after exhaustion 

of glucose and glutamine in CHO-IFNy batch culture. 

Avg time 
(h) 

Rate of change 
o fX, (h ' ) 

Relative 
uncertainty 

(±%) 

Absolute 
uncertainty 

Remark Ave rate of change 
ofX. (h 'l 

Avg time 
(h) 

Rate of change 
o fX, (h ' ) 

Relative 
uncertainty 

(±%) ( - h ') ( + h') 

Remark Ave rate of change 
ofX. (h 'l 

1.51 0 . 0 6 0 183 0 . 0 9 6 0 . 1 2 8 
A b s unce r t a in ty 
t o o h igh (no t u sed ) 

0.035 

11 .40 0.0320 80 0 .0225 0.0298 

0.035 
24^3 0.0255 151 0 . 0 3 3 8 0 . 0 4 4 8 

0.035 3&85 0.0263 93 0 . 0 2 1 5 0.0285 0.035 
4&27 0.0474 119 0 . 0 4 9 4 0 . 0 6 5 5 

5 2 . 1 9 0.0685 311 0 . 1 8 7 &248 
A b s unce r t a in ty 
t o o h igh (not u sed ) 

6 0 . 7 7 0.0459 57 0 . 0 2 3 4 0 . 0 2 9 7 

Glucose and 
glutamine 
exhausted 

7285 0.0214 160 0 . 0 3 0 3 0.0386 
0.01 85^2 0.00552 283 0 . 0 1 4 0 0 . 0 1 7 8 0.01 

9 7 . 0 2 0.00999 4 1 2 0.0280 0 . 0 3 4 9 
0.01 
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Calculation of iii,„axi and Umaxi'-

Average specific growth rate with abundant nutrient - 0.035 h" 

maxi 1 + 
V /̂ max 1 J 

/̂ max 1 /̂ max 2 

Average specific growth rate without glucose/glutamine = 0.01 h" -

Thus, 0.025 h'' 

Minimum Specific Death Rate 

Table A5.3: Calculation of the minimum specific death rate in CHO-IFNy batch culture. 

Time 
(h) 

Viable cell Total cell Dead cell 
conc. 

(cell ml"') 

Linearised dead 
cell conc. 

Viability 
(%) 

Soecific 
death rate 

Time 
(h) 

conc. 
(cell ml"') 

(±%) conc. 
(cell ml"') 

(±%) 

Dead cell 
conc. 

(cell ml"') conc. 
(cell ml"') 

(±%) 

Viability 
(%) 

(h"') 

QIC 0.25 0.25 0 0 100.00 0 

3 .02 &28 12 0.295 12 0 .015 0.001539 0.069 9492 0.001936 
19.77 0.441 12 0 .453 12 0 .012 0.010074 0.107 9735 0.001413 
28.69 0.536 12 [L556 12 0 .02 0.014618 0.131 9&40 0.001043 
45 .02 0J8 14 0.795 14 0 .015 0.02294 0.221 98.11 0.000774 
51,52 1.005 14 1.04 14 0 .035 0.026253 0.286 96.63 0.000571 

Ave: 0.001 
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Appendix 6 
— Estimation of Measurement Error for Amino Acids 

& Identification of Outlying Initial Amino Acid 

Concentrations Using Fed-Batch Culture Simulation with 

Zero Growth Rate 

A6.1 Estimation of Measurement Error for Amino Acids 

Table A6.1: Estimation of measurement error of glutamine in CHO-IFNy fed-batch 

cultures. 

a b 

Average of 'b' 
(mM) 

Average difference between 
glutamine measurement in HPLC 
and biochemical analyser (mM) 

(mM) Average of 'b' 
(mM) 

'0.1 mM Fed-batch' 0.089 0.0447 

0.05 

'T' 0.3mM Fed-batch' 0.113 0.0565 

0.05 '2"" 0.3mM Fed-batch' 0.076 0IW85 0.05 

'0.5mM Fed-batch' 0.104 0.0520 

0.05 

'0.3,0.7mM Fed-batch' 0.117 0X%86 

0.05 

'0.3,0.35mM Fed-batch' 0.089 0.0447 

0.05 

Remark: Refer to section 5.3.2 for notations of the glutamine- and glucose-controlled 

fed-batch CHO-IFNy cultures. 

324-



A6.2 Identification of Outlying Initial Amino Acid 

Concentrations Using Fed-Batch Culture Simulation with 

Zero Growth Rate 

The validity of the initial conditions of amino acids in fed-batch cultures was tested 

using virtual simulations where the specific growth rate was set to 0 and the viable cell 

concentration was set to 0^. The viable cell concentration cannot be exactly zero due to 

the fact that it is used in the denominator of certain quantities in the model. Since there 

would be no cellular consumption in this virtual simulation, all essential amino acids 

(Table 4.1) must show a higher concentration than the experiment data. When this is not 

satisfied, or when the first experimental measurement is significantly lower than 

subsequent measurements in a way that cannot be explained by the cells' production of 

non-essential amino acids, are indicated by a black circle at time zero in the 

corresponding diagrams in this section. 
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A6.2.1 Initial Amino Acid Concentration Testing Under Zero Consumption for 

Fed-Batch CHO-IFNyData with Glutamine Set-Point at O.lmM 

Symbols — 

• : Amino acid concentration measured from high-performance liquid chromatography 

(HPLC) (Wong et al., 2005). 

o : Glutamine concentration measured from bio-analyser (Wong et al., 2005). 

Phenylalanine (FB O. lmM Gin) Leucine (FB O. lmM Gin) 

C 0.6 

U &4-

a iw la 
T i m e (h ) 

im iw 
T i m e ( h ) 

Isoleucine (FB O. lmM Gin) Lysine (FB O. lmM Gin) 

o 0.6 

M iM IM 1% 
T i m e ( h ) 

Meth ion ine (FB O. lmM Gin) Valine (FB O. lmM Gin) 

c 0.4 

e O J -i 

« 0.6 

U M 

IW 
T i m e iTi) 

IM 
T i m e (h ) 
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Tyrosine (FB O. lmM Gin) Cysteine (FB O. lmM Gin) 

5 LO 

Time (h) T ime(h) 

Prol ine (FB O. lmM Gin) Alanine (FB O. lmM Gin) 

IW IW IW 

Threonine (FB O. lmM Gin) Arginiiie (FB O. lmM Gin) 

100 150 

Time (h) 
IW IN 
Tme(̂  
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Glycine (FB O. lmM Gin) Glu tamine (FB O. lmM Gin) 

100 150 

Time (h) 

Hist idine (FB O . l m M Gin) 

IW 
Tiine(h) 

Ser ine ( 1 3 O . l m M Gin) 

o 0.4 • 

50 100 150 

TinieCh) 

Aspa rag ine ( F B O. lmM Gin) 

50 100 150 

Time (h) 

Glu tamic acid ( F B O . l m M Gin) 

O 0.2 -

100 150 

Time (h) 

Aspar t i c ac id (FB O. lmM Gin) 

100 150 

Time (h) 

100 ISO 

Time (h) 

Figure A6.1: Mass balance 
testing of amino acids data in fed-
batch CHO-IFNy culture with 
glutamine set-point at O.lmM. 
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A6.2.2 Initial Amino Acid Concentration Testing Under Zero Consumption for 

Fed-Batch CHO-IFNy Data with Glutamine Set-Point at 0.3mM (1®' experiment) 

Symbols — 

• : Amino acid concentration measured from high-performance liquid chromatography 

(HPLC) (Wong et al., 2005). 

o ; Glutamine concentration measured from bio-analyser (Wong et al., 2005). 

Phenylalanine (FB 0.3mM Gln( l ) ) Leucine (FB 0 .3mM Gln( l ) ) 

Time(h) Time (h) 

Lsoleucine (FB 0.3mM Gln( l ) ) Lysine (FB 0 .3mM Gln( l ) ) 

Time (h) Time (h) 

Methionine (FB O J m M Gln(l)) Valine ( F B 0 . 3 m M Gln(l)) 

e OJO 

Timefh) 
IM iw 

Tune (h) 
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Tyrosine (FB 0 .3mM Ghi ( l ) ) Cysteine (FB 0.3niM Gln( l ) ) 

o 0.4 

Tune(h) Tmie(h) 

Prol ine (FB 0.3inM Gln( l ) ) Alanine (FB 0 .3mM Gln( l ) ) 

IW 
Tone ̂ h) 

Threonine (FB 0.3mM Gln( l ) ) Arginine (FB 0 .3mM Gln( l ) ) 

e &6 
U 0.4 

Time (h) Time (h) 
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Glycine (FB OJmM Gln(l)) Glutaminc (FB 0.3mM Gln( l ) ) 
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Figure A6.2: Mass balance 
testing of amino acids data in fed-
batch CHO-IFNy culture with 
glutamine set-point at 0.3mM (T* 
experiment). 
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A6.2.3 Initial Amino Acid Concentration Testing Under Zero Consumption for 

Fed-Batch CHO-IFNyData with Glutamine Set-Point at 0.3mM (2"^ 

experiment) 

Symbols — 

• : Amino acid concentration measured from high-performance liquid chromatography 

(HPLC) (Wong et al., 2005). 

o : Glutamine concentration measured from bio-analyser (Wong et al., 2005). 

Phenylalanine ( F B 0 . 3 m M Gln(2)) Leucine (FB O J m M Gjn(2)) 

Tune (h) 

100 150 

Time (h) 

Isoieucine (FB 0.3mM GIn(2)) Lymine (FB 0 JmM Gln(2)) 

M 0.4y* 
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Figure A6.3: Mass balance 
testing of amino acids data in fed-
batch CHO-IFNy culture with 
glutamine set-point at 0.3mM (2' 
experiment). 
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A6.2.4 Initial Amino Acid Concentration Testing Under Zero Consumption for 

Fed-Batch CHO-IFNy Data with Glutamine Set-Point at O.SmM 

Symbols — 

• : Amino acid concentration measured from high-performance liquid chromatography 

(HPLC) (Wong et al , 2005). 

o : Glutamine concentration measured from bio-analyser (Wong et al., 2005). 

Pheny la lan ine (FB O.SmM Gln(2)) Leucine (FB O.SmM Gln(2)) 

100 150 

T ime(h) 
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Time (h) 
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Figure A6.4: Mass balance 
testing of amino acids data in fed-
batch CHO-IFNY culture with 
glutamine set-point at O.SmM. 
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A6.2.5 Initial Amino Acid Concentration Testing Under Zero Consumption for 

Fed-Batch CHO-IFNyData with Glutamine Set-Point at 0 .3mM and glucose set-

point at 0 .7mM 

Symbols — 

• : Amino acid concentration measured from high-performance hquid chromatography 

(HPLC) (Wong et al., 2005). 

o : Glutamine concentration measured from bio-analyser (Wong et al., 2005). 
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Figure A6.5: Mass balance 
testing of amino acids data in fed-
batch C H O - I F N Y culture with 
glutamine set-point at 0.3mM and 
glucose set point at 0.7mM. 
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A6.2.6 Initial Amino Acid Concentration Testing Under Zero Consumption for 

Fed-Batch CHO-IFNyData with Glutamine Set-Point at 0.3mM and glucose set-

point at 0.35mM 

Symbols — 

• : Amino acid concentration measured from high-performance liquid chromatography 

(HPLC) (Wong et al., 2005). 

o : Glutamine concentration measured from bio-analyser (Wong et al., 2005). 
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Figure A6.6: Mass balance 
testing of amino acids data in fed-
batcli CHO-IFNy culture with 
glutamine set-point at 0.3mM and 
glucose set point at 0.35mM. 
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