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Abstract

We investigate the effect of nonlinearities on the frequency response of a round, incompressible

jet. Experiments show that axisymmetric structures dominate the response of forced and unforced

jets. In contrast, linear stability and frequency response analyses predict the asymmetric mode

(m = 1) to be locally more unstable and globally more amplified than the axisymmetric mode

(m = 0). We perform a weakly nonlinear expansion of the response of the flow to harmonic forcing

and derive an asymptotic expression for the sum of this divergent series beyond its limit of validity.

This expression compares reasonably well with the nonlinear gain up to forcing amplitudes an order

of magnitude greater than the limit of validity of the weakly nonlinear expansion. For equal forcing

amplitudes, the asymmetric mode dominates over the axisymmetric mode. This suggests that the

projection of environmental forcing onto the individual azimuthal modes plays an important role

in the preferred dynamics of round jets.
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I. INTRODUCTION

Large-scale unsteady flow structures play an important role in the dynamics of laminar

and turbulent jets, as they are responsible for a large proportion of the momentum and en-

ergy transfer taking place. Early experiments [1] have shown that, as the Reynolds number

is increased, the unsteadiness takes the form of a sinusoid, then a helix, and finally axisym-

metric vortex rings at a dominant (non-dimensional) frequency of St ∼ 0.3 based on the jet

diameter and jet exit velocity. For turbulent jets, the preferred frequency has been found to

vary between 0.25 < St < 0.6 based on the experimental set-up. In this study, however, we

focus on laminar jets.

Several studies employed linear stability analyses to understand the mechanisms that

determine the selection of the preferred frequency. Local stability analyses [2, 3] found that

axisymmetric and helical perturbations are spatially amplified downstream of the jet exit

plane. The competition between these two modes depends on the local flow profile and jet

shear-layer thickness. Thin shear layers and top-hat flow profiles favor the axisymmetric

mode, while thick shear layers and fully developed flow profiles favor the helical mode.

From a fully non-parallel perspective, the uniform density jet is globally stable [4], and

behaves as a hydrodynamic amplifier. The flow experiences oscillations only in the presence

of external forcing or noise, and amplifies these disturbances selectively. The unsteadiness

arises from a superposition of all linear global eigenmodes with negative growth rates and

thus cannot be modelled by a finite subset of global modes [4]. Instead, the dynamics of

the flow are more appropriately represented by its response to external forcing [5]. Within

a linear framework, this response can be quantified by calculating the optimal frequency

response and identifying the forcing structure that is linearly most amplified due to the non-

normality of the linear operator [6, 7]. For an isothermal jet, the optimal frequency response

for axisymmetric forcing shows a dominant peak at St ∼ 0.45 [8], but non-axisymmetric

forcing structures are linearly more strongly amplified. It has been suggested that the

discrepancy between experimental observations and the optimal frequency response analysis

could be explained by the effects of turbulence and nonlinear saturation.

As the forcing amplitude is increased, nonlinearity acts to saturate the response and

thus reduces the amplification. In a recent study, this saturation effect was explored for

flow over a backward-facing step [9]. For small forcing amplitudes, the nonlinear saturation
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was captured exactly using a weakly nonlinear expansion about the steady base flow. For

larger forcing amplitudes, the nonlinear saturation could be captured accurately using a self-

consistent model in which the linear frequency response is coupled to the mean flow via the

Reynolds stresses. The results demonstrated that the interaction between the first harmonic

and the steady base flow is more important in determining the nonlinear saturation than

the higher harmonics.

In this present study, we investigate the effects of nonlinearity on the frequency response

of a laminar isothermal jet. Our aim is to understand how nonlinear saturation affects the

amplification of different azimuthal modes, and to understand why experiments show a pref-

erence for axisymmetric structures, even though helical modes are linearly more amplified.

II. PROBLEM FORMULATION

A. Flow configuration

We study the motion of a round jet of incompressible fluid exiting from a circular pipe

into a large cylindrical domain of length Xmax and radius Rmax. The fluid is described by its

state vector, q = (u, p)T , which contains the pressure p and the velocities u = (ux, ur, uθ)
T in

the axial (x), radial (r), and azimuthal (θ) directions, respectively. The geometry is identical

to the one used by Garnaud et al. [8] to study the optimal linear frequency response of the

jet. The flow variables and domain lengths are made non-dimensional using the centerline

axial velocity Uin at the inlet and the pipe diameter D.

The motion of the fluid is governed by the forced incompressible Navier–Stokes (NS)

equations in non-dimensional form, given as

∇ · u = 0,

∂u

∂t
+ u · ∇u +∇p− 1

Re
∇2u = f , (1)

where the Reynolds number, Re, is defined in terms of Uin and D, and f represents a body

forcing. We assume that the forcing is harmonic in nature and has a small-amplitude,

f(x, t) = ε(̂f(x)eiωf t + f̂∗(x)e−iωf t), where the superscript ∗ denotes the complex conjugate.

3



B. Weakly nonlinear analysis

The response can then be represented by an asymptotic expansion around a steady base

flow in terms of the small parameter ε. A consistent form of this expansion is given by a

summation of steady and harmonic terms [9]

q(x, t) = q̄0,0(x) +
∞∑
n=1

εnq̄0,n(x) +
∞∑
p=1

eipωf t
∞∑
n=1

εnq̂p,n(x) + c.c., (2)

where the index p represents the frequency harmonic and n represents the order of the

expansion. Assuming that the steady base flow is axisymmetric, we decompose the forcing

and higher-order corrections into a sum of modes of azimuthal wavenumber m

f(x, t) =
∞∑
m=0

εf̂m(x, r)eimθeiωf t + c.c. (3)

q(x, t) = q̄0,0(x, r) +
∞∑
n=1

εn
∞∑

m=−∞

q̄m,0,n(x, r)eimθ +
∞∑
p=1

eipωf t
∞∑
n=1

εn
∞∑
m=0

q̂m,p,n(x, r)eimθ + c.c.

(4)

The rotational symmetry of the problem implies that q̄−k,0,n = q̄∗k,0,n and that the complex

conjugate terms (c.c.) are of the form q̂∗m,p,ne
−i(mθ+ωf t). We substitute this expression

into (1) and equate terms at different orders of ε.

1. At zeroth order, ε0

We obtain a set of equations for the axisymmetric solution of the steady base flow, which

we label q̄0 = (ū0, p̄0)T = for ease of reference. It satisfies

∇ · ū0 = 0,

ū0.∇ū0 +∇p̄0 −
1

Re
∇2ū0 = 0. (5)

which can be written in the compact form N (ū0) = 0.

2. At first order, ε1

The first-order steady correction terms for all azimuthal modes are zero, q̄m,0,1 = 0;

furthermore, the different azimuthal modes of the first harmonic are independent. This
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yields an expression for the linear frequency response as a sum of responses for the individual

azimuthal modes. We obtain

∞∑
m=0

(iωfB− Lm)q̂m,1,1 =
∞∑
m=0

f̂me
imθ (6)

where the linear operators B and Lm are defined such that

B =

 I 0

0 0

 , Lm =

 −∇0ū0 · (.)− ū0 · ∇m(.) + 1
Re
∇2
m(.) −∇m(.)

∇m · (.) 0

 .

3. At second order, ε2

The second-order steady correction terms are obtained by solving inhomogeneous linear

systems for all azimuthal modes independently. These linear systems are forced by the

Reynolds stress terms which represent the interactions between the first harmonic responses

and their complex conjugates.

Lmq̄m,0,2e
imθ =


∑∞

j=m(û∗j−m,1,1.∇ûj,1,1 + ûj,1,1.∇û∗j−m,1,1)

0

 eimθ. (7)

The unsteady component of the second-order terms is given by the second-order frequency

response for the second harmonic,

(2iωfB− Lm)q̂m,2,2e
imθ =

 −
∑m

j=0(ûj,1,1.∇ûm−j,1,1)

0

 eimθ. (8)
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4. At third order, ε3

There is no third-order steady component. The unsteady component consists of the

third-order correction to the frequency response for the first harmonic, according to

(iωfB− Lm)q̂m,1,3e
imθ =

 −
∑m

j=−∞(ūj,0,2.∇ûm−j,1,1 + ûm−j,1,1.∇ūj,0,2)

0

 eimθ

+

 −
∑∞

j=m(û∗j−m,1,1.∇ûj,2,2 + ûj,2,2.∇û∗j−m,1,1)

0

 eimθ, (9)

and the third-order frequency response for the third harmonic,

(3iωfB− Lm)q̂m,3,3e
imθ =

 −
∑m

j=0(ûj,1,1.∇ûm−j,2,2 + ûm−j,2,2.∇ûj,1,1)

0

 eimθ. (10)

Higher-order terms can be calculated in a similar manner, if needed.

C. An expression for the gain

The frequency amplification or gain is measured by the ratio of the kinetic energy of

the response to the kinetic energy of the forcing, integrated over the domain Ω of volume

V shown in figure 1 and averaged over one period. This is equivalent to the ratio of the

squared L2 norms of the unsteady components of the response and the forcing. Using the

expression in (2), we obtain

G =
1
T

∫ T
0

∫
Ω

u′2dV
1
T

∫ T
0

∫
Ω

f2dV
, (11)

=
ε2
∫

Ω
(û∗1,1û1,1 + 2ε2û∗1,1û1,3 + ε2û∗2,2û2,2 +O(ε4))dV

ε2
∫

Ω
f̂∗f̂dV

,

= G1 + ε2(G1,13 +G2,2) +O(ε4). (12)

In general, the forcing consists of a superposition of many azimuthal modes, leading to each

component of the flow response containing multiple azimuthal modes, ûp,n =
∑N

m=0 ûm,p,n.

For example, non-axisymmetric steady corrections to the base flow, q̄m6=0,0,2 arise due to
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interaction between the axisymmetric and non-axisymmetric modes of the first harmonic.

For the simpler case of forcing consisting of only one azimuthal mode, we present here

expressions for the flow response. These expressions can then be substituted into (12) to

calculate the gain resulting from forcing with different azimuthal wavenumbers.

1. m = 0 forcing

In the presence of only axisymmetric forcing, all components of the response are merely

axisymmetric. The basic form of the flow response is then given by

q = q̄0 + ε2q̄0,0,2 + ε(q̂0,1,1 + ε2q̂0,1,3)eiωf t + ε2q̂0,2,2e
2iωf t + ε3q̂0,3,3e

3iωf t +O(ε4). (13)

2. m = 1 forcing

In the presence of forcing with only m = 1, i.e., f = f̂1e
iθ+iωf t, the forcing produces an

axisymmetric steady modification of the base flow, a first hamonic with m = 1, a second

harmonic with m = 2, and a third harmonic with m = 3. The corresponding flow response

is given by

q = q̄0 + ε2q̄0,0,2 + ε(q̂1,1,1 + ε2q̂1,1,3)eiθ+iωf t + ε2q̂2,2,2e
2iθ+2iωf t + ε3q̂3,3,3e

3iθ+3iωf t +O(ε4).

(14)

3. m = 2 forcing

In the presence of forcing with only m = 2, i.e., f = f̂1e
2iθ+iωf t, the forcing produces an

axisymmetric steady modification of the base flow, a first harmonic with m = 2, a second

harmonic with m = 4, and a third harmonic with m = 6. The corresponding flow response

is given by

q = q̄0 + ε2q̄0,0,2 + ε(q̂2,1,1 + ε2q̂2,1,3)eiθ+iωf t + ε2q̂4,2,2e
4iθ+2iωf t + ε3q̂6,3,3e

6iθ+3iωf t +O(ε4).

(15)

III. NUMERICAL IMPLEMENTATION

The governing equations are multiplied by the radial coordinate r, recast into a weak

formulation, and discretized on the computational domain shown in figure 1 using the finite-
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FIG. 1. Sketch of the computational domain used for the numerical solution by the finite element

method, withXmax = 30.0 and Rmax = 5.0. Darker shades of grey represent higher grid resolutions.

The boundaries of the domain include the wall (Ωwall), centerline (Ωcl), outlet (Ωout), lateral

boundary (Ωlat), and the inlet (Ωin).

element method implemented in FreeFem++, based on modified versions of the scripts

developed by Garnaud [4, 8] that are available online as the femstab package. We use

Taylor-Hood elements for the velocity (P2) and pressure (P1) fields. The mesh consists of

157 444 triangles, and we have checked that doubling the resolution changes the weakly

nonlinear gain coefficients by less than 1%.

No-slip Dirichlet conditions for the velocities are imposed along the wall, while viscous

stress-free boundary conditions are applied at the outlet and along the lateral boundary.

Along the centerline, homogeneous Dirichlet and Neumann conditions for the velocity com-

ponents are used depending on the azimuthal mode being solved for. At the inlet to the

pipe, we set the axial velocity to ux = tanh(0.25(1 − 4r2)D/(2θ)), where the parameter

D/(2θ) = 12.5 determines the thickness of the shear-layer. The steady base flow is obtained

using the Newton-Raphson method. The sparse matrices and vectors associated with the

solution of the linear systems in equations (6)-(10) are assembled in FreeFem++; matrix

inversions are performed using the MUMPS package.

IV. RESULTS

We consider the response of a uniform density jet at Re = 1000 to a forcing with a Gaus-

sian profile for the radial velocity at the jet exit plane given by f̂r = exp (−100(x2 + (r − 0.5)2)).

First, we calculate the linear gain for this fixed forcing structure for azimuthal wavenumbers

8



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

St

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

L
in

e
a
r 

g
a
in

, 
G

1

m=0

m=1

m=2

FIG. 2. The linear frequency response, G1 for m = 0 (circles), m = 1 (crosses), and m = 2

(squares) at Re = 1000.

FIG. 3. The forcing (a) at St = 0.40 and the weakly nonlinear mode structures (b)-(e) for m = 0

at Re = 1000.
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FIG. 4. The forcing (a) at St = 0.40 and the weakly nonlinear mode structures (b)-(e) for m = 1

at Re = 1000.

m = 0, 1, 2. The results are shown in figure 2 and are similar to those obtained for the opti-

mal linear amplification in a model turbulent mean flow [8]. This confirms that this forcing

structure is unbiased. There is a well-defined peak at St ∼ 0.4 for a forcing with m = 0,

but a forcing with an azimuthal wavenumber of m = 1 exhibits larger linear amplification.

We normalize the forcing such that
∫

Ω
f̂∗f̂dV = 1 and then calculate the various harmonics

and corrections as derived in section 2. The results are shown in figures 3 and 4 for forcings

at St = 0.40 with m = 0 and m = 1. We notice that the responses for m = 1 have higher

magnitudes and reach a maximum further downstream compared to m = 0. In addition,

higher-order corrections also have larger magnitudes further downstream compared to the

first harmonic.

We next investigate the effects of weak nonlinearity on the gain by calculating the higher-
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FIG. 5. The variation of the gain with forcing amplitude for forcing with m = 0 (blue) and m = 1

(black) for St = 0.40 at Re = 1000. The solid lines represent the second-order expression and the

dashed lines represent the fourth-order expression for the gain.

order gain coefficients G2,2 and G1,13 as presented in (12). The second-order gain is shown

in figure 5 for a forcing with m = 0 and m = 1 at St = 0.40. Even though m = 1

experiences greater linear amplification, as the forcing amplitude increases, the gain drops

sharply and, above a forcing amplitude of ε = 3×10−5, the m = 0 mode experiences greater

amplification. The sharp drop motivates us to examine the effect of higher-order corrections

by including fourth-order and fifth-order terms in the flow response. The gain is then given

by the expression

G = G1 + ε2(G1,13 +G2,2) + ε4(G1,15 +G2,24 +G3,3 +G13,13) +O(ε6) (16)

= G1 + ε2G2 + ε2G4 +O(ε6), (17)

where the additional terms are defined as G1,15 = 2
∫

Ω
û∗1,1û1,5dV , G2,24 = 2

∫
Ω

û∗2,2û2,4dV ,

G3,3 =
∫

Ω
û∗3,3û3,3dV , and G13,13 =

∫
Ω

û∗1,3û1,3dV . The dashed lines in figure 5 represent the

fourth-order expression for the gain. The fourth-order gain curves are divergent because the

highest-order coefficient is positive. We examine this divergence in more detail by evaluating

the weakly nonlinear coefficients for a range of Reynolds numbers 100 ≤ Re ≤ 1000. We can

group the coefficients at each order of the asymptotic expansion. In figure 6, we show how

these coefficients vary with Reynolds number for m = 0 and m = 1. With the exception of

low Reynolds numbers where the flow profile at the jet exit plane is signficantly different from

the top-hat profile at the domain inlet, the gain coefficients show a near-perfect exponential
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FIG. 6. The variation of the gain coefficients with Reynolds number for (a) m = 0, and (b) m = 1.
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FIG. 7. The ratios of the first three gain coefficients with Reynolds number for (a) m = 0, and (b)

m = 1.

dependence on the Reynolds number. This is directly related to the local properties of

the flow. The condition number of the eigenvector matrix (and the resolvent norm) of the

discrete Orr-Sommerfeld operator scales as eαRe
γ

for some α and γ < 1 [10]. For the flow

considered here, we find that G1 ∼ e0.013Re, G2 ∼ e0.028Re and G4 ∼ e0.043Re for both m = 0

and m = 1.

Plotting the ratios of the absolute values of the gain coefficients G2/G1, G4/G2 in figure 7,

we notice that the ratios also vary roughly as rG ∼ e0.013Re. From a physical perspective,

this dependence is not entirely surprising. Looking at the weakly nonlinear gain coefficients

in more detail (table I), the largest magnitude at each order is obtained for interactions
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involving the first harmonic (and its corrections). At each order in the expansion, the

corrections to the first harmonic are calculated using the first-order (linear) resolvent and a

higher-order forcing term. The dominant contribution to this forcing term comes from the

interaction between the steady correction to the base flow and the first harmonic (and its

corrections) – the first term in (9). Similar behavior has also been observed for flow over a

backward-facing step [9]. Therefore, it is not surprising that the scaling for the linear gain

carries over in a multiplicative fashion to higher-order gain coefficients. To approximate the

behavior of the gain as the forcing amplitude increases, we assume for now that the ratios

between coefficients are equal and represent the weakly nonlinear asymptotic expansion as

a geometric series of the form

G

G1

= 1− rGε2 + r2
Gε

4 − r3
Gε

6 · · ·

=
∞∑
n=0

(−rGε2)n. (18)

where we set rG = G2/G1. This can be represented as the power series

G

G1

≈ 1

1 + rGε2
, (19)

with a radius of convergence rGε
2 = 1. From this, we can deduce that the weakly nonlinear

asymptotic expansion is valid for forcing amplitudes εmax < r−0.5
G . For forcing amplitudes

greater than εmax, the asymptotic expansion diverges. To obtain an expression for the gain

that is uniformly valid, we use the concept of Borel summation of an asymptotic series [11],

a technique based on a generalized definition of summability. The Borel transform of the

geometric series (18) is given by

BG(t) =
∞∑
n=0

(−rGt2)n

n!
= 1− rGt2 +

r2
Gt

4

2!
− r3

Gt
6

3!
+ · · · = exp(−rGt2), (20)

which is now valid for all parameters t. We then form the expression

B(ε) =
1

ε

∫ ∞
0

e−t/εBG(t)dt (21)

which, after a power expansion for small ε and a term-by-term integration of the resulting

expressions, reproduces

B(ε) =
∞∑
n=0

anε
n. (22)
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The above procedure then suggests that B(ε) is asymptotic to the diverging series for small

values of ε. We thus continue to apply Borel summation to our geometric series which results

in ∫ ∞
0

e−tBG(tε)dt =

∫ ∞
0

e−te−rGε
2t2dt,

=

√
π

2
√
rGε

exp

(
1

4rGε2

)
erfc

(
1

2
√
rGε

)
. (23)

Using this expression, we display the approximation to the weakly nonlinear gain in figure 8

and compare the asymptotic weakly nonlinear results with a self-consistent model [9] that

has been found to correctly capture the fully nonlinear behavior. The details of the self-

consistent model can be found in the Appendix.

We find that the Borel sum provides a reasonable approximation to the nonlinear be-

havior up to one order of magnitude beyond the radius of convergence of the asymptotic

expansion (19). For larger forcing amplitudes, the Borel sum consistently overpredicts the

gain because it scales as 1/ε. The self-consistent model saturates at a faster rate but does

not show a tendency for the m = 0 mode to dominate over the m = 1 mode. These results

have been obtained for each mode evolving independently and for a fixed forcing structure

– an impulse near the jet exit. In figure 9, we plot the nonlinear behavior of the gain in

response to the linear optimal forcing structure for each mode at St = 0.45. This represents

the ”worst-case scenario”. We find that even the optimal forcing does not show a tendency

for the m = 0 mode to dominate over the m = 1 mode if forced equally and independently.

If both modes are forced simultaneously and with equal amplitude, we find, using the self-

consistent model, that the m = 0 mode is even more strongly saturated than the m = 1

mode. This is because the nonlinear base-flow modification caused by the Reynolds stress

terms of m = 1 forcing is significantly greater than that caused by m = 0 forcing. We

conclude that, in response to forcing of equal amplitudes, the m = 1 mode will dominate

over the m = 0 mode.

The asymptotic analysis that we have presented is based on the assumption that the

ratios between the weakly nonlinear coefficients are equal. The results in figures 8 and 9

show that this is a reasonable first approximation to make. However, the overprediction in

the gain curves for larger forcing amplitudes suggests that the ratios between higher-order

coefficients must decrease. We would expect this from a physical point of view as well.

We can model this feature by multiplying the ratio rG by a factor µ < 1 in (18). The
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FIG. 8. The variation of the gain with forcing amplitude for fixed Gaussian forcing with m = 0

(blue) and m = 1 (black) for St = 0.40 at Re = 1000. The solid lines represent the results

of the Borel summation (23), and the dashed lines represent the weakly nonlinear asymptotic

expansion (19). The circles represent a self-consistent model that correctly predicts the nonlinear

behavior, represented as crosses. The two vertical lines indicate, for the respective azimuthal

wavenumber, the critical forcing amplitudes given by the radius of convergence of the geometric

series (18).

corresponding gain curves would exhibit strong saturation even for minute reductions from

unity in the value of µ. The effect of nonlinearities on the frequency response curve for

m = 0 and m = 1 is displayed in figure 10. We observe a tendency for the response to

become more broadband as the forcing amplitude is increased.

V. CONCLUSIONS

We have studied the effect of nonlinearities on the global frequency response of a uniform-

density jet. A weakly nonlinear expansion has been employed to calculate the higher-order

corrections to the linear frequency response for axisymmetric and non-axisymmetric body

forcing. In particular, we focus our attention on the axisymmetric (m = 0) and asymmetric

(m = 1) azimuthal modes about frequencies that are optimally excited in experiments, that
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FIG. 9. The variation of the gain with forcing amplitude for the optimal linear forcing with m = 0

(blue) and m = 1 (black) for St = 0.45 at Re = 1000. The solid lines represent the results

of the Borel summation (23), and the dashed lines represent the weakly nonlinear asymptotic

expansion (19). The circles represent a self-consistent model that correctly predicts the nonlinear

behavior. The two vertical lines indicate, for the respective azimuthal wavenumber, the critical

forcing amplitudes given by the radius of convergence of the geometric series (18).

is, for Strouhal numbers around St ∼ 0.3. We find that the expansion coefficients of the

weakly nonlinear expansion describe a divergent series. While recognizing the limit in forcing

amplitude beyond which the asymptotic expansion is not valid, we have derived an integral

expression for the sum of the divergent series beyond this limit using a Borel summation.

We find that this expression gives a pleasing approximation to the full nonlinear gain up to

one order of magnitude beyond the limit of validity of the weakly nonlinear expansion. We

have also compared our results with a self-consistent model that takes into account the base

flow modification induced by the Reynolds stress terms of the forcing.

For infinitesimally small forcing amplitudes, the asymmetric mode of the forcing is more

strongly amplified than the axisymmetric mode. However, as the forcing amplitude is in-

creased, nonlinearity acts to saturate the flow response. Although the asymmetric mode

experiences strong saturation, we do not observe a tendency for the axisymmetric mode

to dominate. These results have been obtained for each mode being forced equally. In a
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m = 0 m = 1

G1 8.40× 104 2.78× 106

G2,2 5.80× 1010 6.45× 1013

G1,13 −2.48× 1012 −4.97× 1015

G1,15 7.85× 1019 2.13× 1024

G13,13 3.79× 1019 1.02× 1025

G2,24 −4.23× 1018 −1.84× 1023

G3,3 8.06× 1016 2.80× 1021

TABLE I. Weakly nonlinear gain coefficients for m = 0 and m = 1 at Re = 1000 for the fixed

forcing with St = 0.40.

real experiment, the forcing will be stochastic and distributed over all azimuthal modes.

The nonlinear behaviour of each mode will be determined by the projection of the forcing

onto the optimal forcing structure of each azimuthal mode. The experimental dominance

of axisymmetric structures could then be explained by the axisymmetric component of the

forcing having a larger amplitude than the asymmetric component of the forcing. This would

correspond to a horizontal shift of the gain curves in figure 9 with respect to each other.

The presented formalism can easily be applied to configurations where the linear frequency

response is used to understand other aspects of jet dynamics, for example, the production

of noise in high-speed jet flows, [12]. In this case, our asymptotic approach could provide a

quick estimate of nonlinear effects with minimal computational effort. In closing, we would

like to point out that the asymptotic approach is expected to give better results for flows that

exhibit less non-normality – e.g., strongly non-parallel flows at moderate Reynolds numbers,

and for flows that exhibit supercritical bifurcations, as observed in, for example, convection.
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FIG. 10. Variation of the frequency response curve with forcing amplitude for fixed forcing with

(a) m = 0 (top), and (b) m = 1 (bottom), at Re = 1000.
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Appendix A: Self-consistent model

For flows far from the primary bifurcation, previous studies in a variety of flow configu-

rations have shown that linear stability analyses around time-averaged (mean) flow profiles

provide accurate predictions of the dominant nonlinear frequency content of the unsteady

flow [13, 14]. Similarly, linear responses to harmonic forcing around the mean flow also

provide accurate predictions of the nonlinear amplification of finite-amplitude forcing [8, 9].

In both these cases, most of the energy in the nonlinear flow is contained within the funda-

mental frequency, or first harmonic. Mantic-Lugo & Gallaire [9] noted this and proposed a

self-consistent model that couples the nonlinear mean-flow equations with the linear pertur-

bation equations using the Reynolds stresses. Taking into account non-axisymmetric forcing

structures, this model has the form

N (ū) = −2
∞∑
m=0

Re
(
û∗m,1,1.∇ûm,1,1

)
, (A1)

∞∑
m=0

(iωfB− Lm)q̂m,1,1 =
∞∑
m=0

f̂me
imθ, (A2)

where ū is the axisymmetric mean flow, m is the azimuthal wavenumber of perturbations,

and the operator Lm is the linearized Navier-Stokes operator for perturbations with az-

imuthal wavenumber m around the mean flow ū. Different azimuthal modes are coupled

through the base flow modifications caused by the Reynolds stresses. In the general case,

one would have to consider the linear response to forcing at each azimuthal wavenumber.

In this study, however, we focus only on forcing with azimuthal wavenumbers m = 0 and

m = 1.

We solve the coupled system using the amplitude stepping algorithm proposed by Mantic-

Lugo & Gallaire [9]. Starting from a small amplitude ε = 10−5, we gradually increase the

amplitude. At each step, we calulcate the coupled linear response and mean flow in an

iterative manner until the l2-norm of the changes in the mean flow are less than 10−4.

We find that this leads to results that are sufficiently well-converged up to a certain forcing

amplitude. Beyond this amplitude, we have great difficulty in obtaining converged solutions.

To verify the validity of the self-consistent model and the solution algorithm, we compare

the results obtained for purely axisymmetric Gaussian forcing with results from a nonlinear

direct numerical simulation (DNS) of the axisymmetric Navier-Stokes equations. For the
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∆t = 0.008 ∆t = 0.0125 ∆t = 0.025 ∆t = 0.03

Nonlinear gain 3999 3885 3420 3135

TABLE II. Nonlinear gain for fixed Gaussian forcing with m = 0 and amplitude ε = 2× 10−3 for

St = 0.45 at Re = 1000.

DNS, we use the same discretization in FreeFem++ as used for the weakly nonlinear analysis

together with a characteristics-based solution algorithm with implicit time-stepping. In

table II, we evaluate the effect of time-step on the nonlinear gain given by (12) for a forcing

amplitude ε = 2× 10−3. We choose ∆t = 0.008 to compare the gain with the self-consistent

model for a range of forcing amplitudes. This comparison is shown in figure 8. We find that

the self-consistent model provides a reasonable estimate of the nonlinear gain, but under-

predicts the gain at higher forcing amplitudes. We attribute this to the effect of higher-order

harmonics, which are not captured in the self-consistent model. Nevertheless, the results

show that the self-consistent model provides a useful and accurate estimate for the fully

nonlinear behaviour.
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