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Steady-state matching and model reduction for
systems of differential-algebraic equations

Giordano Scarciotti

Abstract—The problem of model reduction for nonlinear
differential-algebraic systems is addressed using the notions of
moment and of steady-state response. These notions are formally
introduced for this class of systems and families of nonlinear
differential-algebraic reduced order models achieving moment
matching with additional properties are presented. Stronger
results for the special class of linear singular systems are provided.
Two simple examples illustrate the proposed technique.

I. INTRODUCTION

S INGULAR systems, also known as descriptor systems or
differential-algebraic equations1 (DAEs) are a class of

systems which, combining differential equations with algebraic
equations, are used to model constraints and multi-scale
behaviors [1]–[3]. In fact, they can be seen as the composition
of a fast subsystem (the algebraic part) and a slow subsystem
(the differential part). For this reason, systems of differential-
algebraic equations are used to model various behaviors
and phenomena, e.g. multi-body systems, electrical networks,
chemical processes, social economic systems [1], and to model
large interconnected systems, e.g. systems obtained from the
application of the Kirchoff’s laws or models created by object-
oriented modeling languages such as MODELICA [4], [5].

As a result, systems of differential-algebraic equations may
have large dimensionality. This has motivated researchers to
investigate model reduction techniques. Given a complex high
dimensional system, the model reduction problem consists
in determining a reduced order model, namely a simple
low dimensional mathematical representation with a behavior
similar (in a sense to be defined) to the behavior of the complex
system. For linear singular systems several approaches have
been presented in the last decades. Some of these techniques are
based on balanced truncation, see e.g. [6]–[12], on interpolation
theory, see e.g. [13], and on other variations or ad hoc methods,
see e.g. [14]–[19]. More detail and additional references on
model reduction of linear singular systems can be found in the
survey paper [5]. Conversely, only a few methods to reduce
nonlinear singular systems have been proposed. A method based
on balanced truncation has been proposed in [4]. Further results
have been obtained using piecewise-linear model reduction,
see [20]–[22]. Model reduction of nonlinear singular systems
in special forms, e.g. bilinear systems, has been investigated in
[23], [24]. An approach based on adaptive proper orthogonal
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1Throughout the technical note we use the expressions “singular system”
and “system of differential-algebraic equations” interchangeably.

decomposition of a related class of distributed parameter
systems has been proposed in [25], [26].

In this technical note we present, in a unified framework,
a model reduction technique for linear and nonlinear singular
systems. Exploiting the connection between moment and
steady-state response given in [27], we provide a notion
of moment for nonlinear DAEs (Section II-A). We propose
families of reduced order models for nonlinear singular systems
(Section III-A) and we analyze in detail special families
for which additional properties, e.g. strong stability, can be
imposed (Section III-B). In addition we specialize the results
to linear singular systems, obtaining stronger properties for
this particular class (Sections II-B, III-C, III-D).

Preliminary versions of this technical note have been
published in [28] and [29]. The additional contributions of
the technical note are as follows: we provide all the proofs
of the results (in the Appendix); the presentation has been
improved, developing the results for nonlinear systems and then
deriving the linear framework as a special case; we study the
controllability and observability properties of the linear reduced
order models; we illustrate the results with two examples,
namely we compute the moment in an academic example
and we obtain reduced order models for a nonlinear system
describing an electrical circuit.
Notation. We use standard notation. C<0 (C0) denotes the
set of complex numbers with negative (zero) real part. The
symbol ∅ indicates the empty set, I denotes the identity matrix,
σ(A) denotes the spectrum of the matrix A ∈ Rn×n, rank(A)
denotes its rank and det(A) its determinant. The superscript
> denotes the transposition operator. Given a polynomial p,
deg(p) indicates its degree. Given two functions, f : Y → Z
and g : X → Y , with f ◦ g : X → Z we denote the
composite function which maps all x ∈ X to f(g(x)) ∈ Z as
(f ◦ g)(x) = f(g(x)).

II. NOTION OF MOMENT FOR CLASSES OF DAES

In this section we provide the definition of moment for
singular systems. We first formulate the notion for nonlinear
singular systems. We then conclude the section with an in-depth
discussion of the special case of linear singular systems.

A. Moment for nonlinear singular systems

Consider a nonlinear, single-input, single-output, continuous-
time, system described by the equations

Eẋ = f(x, u), y = h(x), (1)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, E ∈ Rn×n and f
and h smooth mappings. If E is invertible, then equations (1)
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describe a nonlinear system, which we call normal. If E is
singular, then system (1) is called singular system. Without
loss of generality we assume that rank(E) = r < n with
E = diag(I, 0). Throughout the technical note we also assume
that the initial condition x(0) is consistent, i.e. the initial value
problem associated to (1) has at least one solution [2]. Consider
a signal generator described by the equations

ω̇ = s(ω), u = l(ω), (2)

with ω(t) ∈ Rν , s and l smooth mappings, and the intercon-
nected system

ω̇ = s(ω), Eẋ = f(x, l(ω)), y = h(x). (3)

In addition, suppose that f(0, 0) = 0, s(0) = 0, l(0) = 0 and
h(0) = 0. The following assumptions and definitions provide
a generalization of the notion of moment.

Definition 1: System (2) is observable if for any pair of
initial conditions ωa(0) and ωb(0), such that ωa(0) 6= ωb(0),
the corresponding output trajectories l(ωa(t)) and l(ωb(t)) are
such that l(ωa(t)) − l(ωb(t)) 6≡ 0, i.e. the output trajectories
are not indistinguishable, see [30, Definition 3.27].

Assumption 1: The signal generator (2) is observable and
neutrally stable. Finally, ω(0) is almost periodic and such that
(2) satisfies the excitation rank condition2 at ω(0).

Assumption 2: The pair (E,A), with A = ∂f(x,0)
∂x

∣∣∣
x=0

, is

strongly stable, i.e. for all λ̄ ∈ C such that det(λ̄E −A) = 0,
λ̄ ∈ C<0 and deg(det(λE −A)) = r.
If the system is normal, Assumption 2 reduces to the hypothesis
that the zero equilibrium of ẋ = f(x, 0) is asymptotically stable
in the first approximation. This is a necessary condition for the
existence of a center manifold which we intend to exploit to
characterize the notion of moment [31]. However, Assumption 2
is stronger than simple stability because it guarantees that all
the trajectories of the system exist and are bounded for all
t ≥ 0 (for sufficiently small initial states), i.e. the response of
the system is impulse free [34].

Lemma 1: Consider system (1) and the signal generator (2).
Suppose Assumptions 1 and 2 hold. Then there is a sufficiently
smooth mapping π(ω), with π(0) = 0, locally defined in a
neighborhood of ω = 0 which solves the partial differential-
algebraic equation

E
∂π

∂ω
s(ω) = f(π(ω), l(ω)). (4)

In addition, for any sufficiently small x(0) and ω(0), the
solution x(t), ω(t) of (3) exists, is bounded for all t ≥ 0
and satisfies limt→∞ x(t)− π(ω(t)) = 0.

Remark 1: Observability and neutral stability of the genera-
tor (2) are the only conditions (from Assumption 1) required
to prove Lemma 1. However, we want to exclude some
“pathological” situations in which the components of the steady-
state may be identically zero for selected initial conditions
ω(0) (e.g. we want to exclude the initial condition ω(0) 6= 0).
For this reason we require the excitability rank condition
to be satisfied at an almost periodic ω(0). This condition

2See [31, Chapter 8] for the definition of neutral stability. See [32], [33]
for the definition of almost periodicity and excitation rank condition.

guarantees persistence of excitation of the signal u [32]. For
an in-depth discussion of the relation between this condition
and the problem of model reduction see [33].
The result of Lemma 1 implies that the interconnected
system (3) possesses an invariant center manifold described
by the equation x = π(ω) and that this equation expresses the
steady-state response of system (1) driven by (2). In analogy
with the definition of moment for nonlinear normal systems
given in [27] we define the moment for nonlinear singular
systems.

Definition 2: Consider system (1) and the signal generator (2).
Suppose Assumption 1 holds. The function h ◦ π, with π
solution of equation (4), is the moment of system (1) at (s, l).

Remark 2: The results can be extended to the class of
uncertain systems Eẋ = f(x, u, η̃), y = h(x, η̃), u = l(ω, η̃),
where η̃ ∈ Rn̄ is a vector of unknown parameters of the
plant. The results still hold [34, Lemma 8.21] and we can
define the parametric moment of the system at (s, l) as the
mapping h ◦ π, with π solution of the equation E ∂π

∂ω s(ω) =
f(π(ω, η̃), l(ω, η̃), η̃). This is illustrated in the next example.

Example 1: Consider the nonlinear uncertain singular system
described by the equations

ẋ1 = 2x2 + (1 + η̃)x3, 0 = x2 + x3,
ẋ2 = −4x1 − 2x2 + x4, 0 = −x1 − sin(x2) + x4 + u,
y = x4,

(5)
parametrized in η̃ ∈ R, and the input

ω̇1 =
√

2ω2, ω̇2 = −
√

2ω1,

u = −
(

3− 2
1−η̃

)
ω1 − 2

√
2

1−η̃ω2 + sin
( √

2
1−η̃ω2

)
.

(6)

The pair (E,A) has two finite3 eigenvalues λ1,2 = −0.5 ±√
3η̃ − 2.75, both in the left half complex plane if η̃ <

1. Simple computation shows that the mapping π =[
π1 π2 π3 π4

]>
is given by π1 = ω1, π2 =

√
2

1−η̃ω2,

π3 = −
√

2
1−η̃ω2 and π4 = (4− 2

1−η̃ )ω1 + 2
√

2
1−η̃ω2. For η̃ < 1 the

pair (E,A) is strongly stable, Assumptions 1 and 2 hold, and
the steady-state response of system (6) is π(ω). If η̃ > 1, the
mapping π is still a solution of the partial differential equation,
π4 is the parametric moment, but we cannot establish a relation
with the steady-state response of the system.

Remark 3: Remark 2 and Example 1 show a possible
approach to deal with constant uncertain parameters of the
system to be reduced. If the uncertain parameter obeys a
stochastic distribution, then the techniques presented in [35]
to deal with stochastic systems could be extended to the
present singular framework. Uncertainties can be addressed
also formulating the uncertain system as an inclusion, see [36].
This offers another approach that can be extended to singular
systems. Finally, if the model is completely unknown, we
can extend to differential-algebraic equations the data-driven
techniques based on output measurements which have been
presented in [37]–[39].

3The finite eigenvalues of the pair (E,A) are the zeros of det(λE −A)
for finite values of λ [1].
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B. Moment for linear singular systems

It is of particular interest to specialize the results we have
obtained to the case of linear singular systems. In fact, on one
hand, exploiting linearity we can obtain stronger results and
provide new insights. On the other hand, since the problem of
model reduction for linear singular systems is a classic problem
in linear algebra, it is important to relate this framework with
the literature.

1) Preliminaries on linear singular systems: in this section
we recall some basic results on linear singular systems. Assume
system (1) takes the form

Eẋ = Ax+Bu, y = Cx, (7)

with A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. Assume that u(t)
is piecewise continuously differentiable.

Definition 3: [1] Let E ⊂ C be the set of complex numbers
λ ∈ C such that det(λE − A) 6= 0. For any two matrices E
and A, the pencil (E,A) is called regular if E 6= ∅.

Lemma 2: [1] The pencil (E,A) is regular if and only if there
exist two nonsingular matrices Q and P such that QEP =
diag(I,N), QAP = diag(A1, I), where N ∈ Rn2×n2 is
nilpotent with degree4 d and A1 ∈ Rn1×n1 , with n1 +n2 = n.

Assume system (7) is regular, then Q and P can be selected
such that system (7) can be written in the so-called first
equivalent form [1], namely

(slow subsystem) ẋ1 = A1x1 +B1u, y1 = C1x1,
(fast subsystem) Nẋ2 = x2 +B2u, y2 = C2x2,

y = y1 + y2,
(8)

with the coordinate transformation
[
x>1 x>2

]>
= P−1x,

where x1 ∈ Rn1×n1 , x2 ∈ Rn2×n2 , QB = [B>1 B>2 ]> and
CP = [C1 C2]. The state response of system (7) is given by

x(t) = P

[
I
0

](
eA1tx1(0) +

∫ t
0
eA1(t−τ)B1u(τ)dτ

)
−P

[
0
I

]∑d−1
i=0 N

iB2
di

dtiu(t).

(9)
For linear singular systems the assumption that the initial
condition x(0) = P

[
x>1 (0) x>2 (0)

]>
is consistent implies

that x(0) = P [I 0]>x1(0)−P [0 I]>
∑d−1
i=0 N

iB2
di

dtiu(t)|t=0,
where x1(0) can be freely selected.

2) Interpolation-based description of moment: in this section
we show that the moments of system (7) are uniquely
determined by the solution of a generalized Sylvester equation.
In the next section we show also that the moments of system (7)
are uniquely determined by the steady-state response of the
output of a particular interconnected system. Let W (q) =
C(qE − A)−1B = C1(qI − A1)−1B1 + C2(qN − I)−1B2

be the transfer function associated to system (7) and assume
that the system is minimal, i.e., as for normal systems (see [1,
Theorem 2-6.3]), controllable and observable.

Definition 4: [40, Chapter 11]) Let si ∈ E . The 0-moment
of system (7) at si is the complex number η0(si) = C(siE −

4A nilpotent matrix is a square matrix N such that Nk = 0 for some
positive integer k. The smallest such a k is called the degree of N .

A)−1B. The k-moment of system (7) at si is the complex
number ηk(si) = (−1)k

k!

[
dk

dqk
W (q)

]
q=si

, with k ≥ 1 integer.

The next result, which is a direct extension of [27] (see also
[41], [42] for analogous results), gives a relation between the
moments and the solution of a generalized Sylvester equation.

Lemma 3: Let si ∈ E . Consider system (7),
then [η0(si) . . . ηk(si)] = CΠ̃iΨk, where Ψk =
diag(1,−1, 1, . . . , (−1)k) ∈ R(k+1)×(k+1) and Π̃i ∈ Rn×k+1

is the unique solution of the generalized Sylvester equation

EΠ̃iΣi = AΠ̃i +BLi, (10)

with Li = [1 0 . . . 0] ∈ R(k+1) and

Σi =


si 1 0 . . . 0
0 si 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 si 1
0 . . . . . . 0 si

 ∈ R(k+1)×(k+1).

Exploiting this lemma, the following result holds.
Theorem 1: Consider system (7) and a set of numbers si ∈ E ,

with i = 1, . . . , ρ. Then the moments η0(s1), . . . , ηk1−1(s1),
. . . , η0(sρ), . . . , ηkρ−1(sρ) are uniquely determined by the
matrix CΠ, where Π ∈ Rn×ν is the unique solution of the
generalized Sylvester equation

EΠS = AΠ +BL, (11)

with S ∈ Rν×ν any non-derogatory5 matrix with characteristic
polynomial

c(q) =

ρ∏
i=1

(q − si)ki , (12)

where ν =
∑ρ
i=1 ki, and L ∈ R1×ν such that the pair (S,L)

is observable.
Remark 4: The Sylvester equation (11) is the linear version

of the partial differential-algebraic equation (4).
3) Steady-state-based description of moment: we are now

ready to present the “steady-state-based” description of moment
for linear singular systems. This result links the nonlinear notion
given in Section II-A with the linear framework.

Theorem 2: Let S ∈ Rν×ν be any non-derogatory matrix
with characteristic polynomial (12), with ki = 1 for all i =
1, . . . , ρ. Consider system (7) and suppose that σ(S) ⊂ C0 and
σ(A) ⊂ C<0. Consider the interconnection of system (7) with
the system

ω̇ = Sω, u = Lω, (13)

with L and ω(0) such that the triple (S, ω(0), L) is minimal.
Then the moments η0(s1), η0(s2), . . . , η0(sρ) are uniquely
determined by the steady-state response of the output of such
interconnected system, i.e. CΠω.

Remark 5: In the linear case the moments can be defined as
in Definition 4 or equivalently as the matrix CΠ, as established
in Theorem 1, or equivalently as steady-state output mapping
CΠ, as established in Theorem 2. The definition for nonlinear
systems is a nonlinear enhancement of this last characterization

5A matrix is non-derogatory if its characteristic and minimal polynomials
coincide.
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of moment for linear systems. While in the linear case the three
definitions are equivalent, in the nonlinear case the first one
does not make sense. For this reason while for linear systems
we can define k-moments at si, for nonlinear systems we do
not define higher order moments.
In the linear framework we can achieve more than the mere
restriction of the results of Section II-A. In fact, we now show
that the matrix Π is partitioned in “slow” and “fast” parts.

Theorem 3: Let S ∈ Rν×ν be any non-derogatory matrix
with characteristic polynomial (12). Consider system (8) and
suppose that σ(S)∩σ(A1) = ∅. Then the moments η0(s1), . . . ,
ηk1−1(s1), . . . , η0(sρ), . . . , ηkρ−1(sρ) are uniquely determined
by the matrix CΠ̂, where Π̂ = P−1Π =

[
Π>1 Π>2

]>
is

the unique solution of the equations

A1Π1 −Π1S = −B1L, Π2 = −
∑d−1
i=0 N

iB2LS
i. (14)

Remark 6: The contribution of the fast subsystem to Π̂
is separated from the contribution of the slow subsystem.
Moreover, the condition for uniqueness of Π̂ is simplified
and it depends only on the eigenvalues of the slow subsystem.
This fact is actually expected since in the first equivalent
form the k-th moment of the system can be written as
ηk(si) = C1(siI−A1)−(k+1)B1 +C2N

k(siN − I)−(k+1)B2,
in which siN − I is full-rank for any si.
This formulation gives high flexibility in maintaining the
properties of the fast and slow subsystems. Depending on
the particular application the fast subsystem can be preserved,
reduced or eliminated independently of the reduction of the
slow subsystem. This possibility is analyzed in detail in the
next section.

III. FAMILIES OF REDUCED ORDER MODELS

In this section we provide families of reduced order models
for linear and nonlinear singular systems.

A. Nonlinear singular reduced order models

We begin giving the definition of reduced order model in
the present framework.

Definition 5: Consider system (1) and the signal generator (2).
The system described by the equations

Ξξ̇ = φ(ξ, u), ψ = κ(ξ), (15)

with ξ(t) ∈ Rν , u(t) ∈ R, ψ(t) ∈ R, Ξ = diag(I, 0), with
rank(Ξ) = r̄ ≤ r, and φ and κ smooth mappings, is a model
of system (1) at (s, l) if system (15) has the same moment at
(s, l) as system (1). System (15) is a reduced order model of
system (1) at (s, l) if ν < n.
From this definition a rather general result can be presented.

Lemma 4: Consider system (1) and the signal generator (2).
Suppose Assumptions 1 and 2 hold. Then system (15) is a
model of system (1) at (s, l) if the equation

Ξ
∂p

∂ω
s(ω)=φ(p(ω), l(ω)) (16)

has a unique solution p such that

h(π(ω)) = κ(p(ω)), (17)

where π is the unique solution of (4).
This claim follows directly from Definition 5 and the

definition of moment.
The family of models identified in Lemma 4 has numerous

free design “parameters”, i.e. Ξ, φ and κ, that can be exploited
to obtain a convenient representation, as shown in the next
section.

B. Nonlinear “identity” family of models

In the case of differential-algebraic systems it is of interest to
have the differential part and the algebraic part separated. At the
same time we would like to have an easily tunable parameter
which allows to span the family of models. To streamline
the presentation of the results we indicate with ξ1, s̄1(ω) and
( ∂p∂ω )1 the first r̄ rows of ξ, s(ω) and ∂p

∂ω , respectively. For a
mapping δ : Rν → Rν , δ1 indicates the first r̄ rows, whereas
δ2 denotes the last ν − r̄ rows.

Assumption 3: There exist mappings κ and p such that
κ(0) = 0, p(0) = 0, p is locally continuously differentiable,
equation (17) holds and p has a local inverse p−1.

Lemma 5: Consider system (1) and the signal generator (2).
Suppose Assumptions 1, 2 and 3 hold. Then the system

ξ̇1 = s̄1(ξ)− δ1(ξ)l(ξ) + δ1(ξ)u, 0 = −δ2(ξ)l(ξ) + δ2(ξ)u,
ψ = h(π(ξ)),

(18)
is a model of system (1) at (s, l) if δ is an arbitrary mapping
such that the partial differential-algebraic equations

( ∂p∂ω )1s(ω) = s̄1(p(ω))− δ1(p(ω))l(p(ω)) + δ1(p(ω))l(ω),
0 = −δ2(p(ω))l(p(ω)) + δ2(p(ω))l(ω),

(19)
have the unique solution p(ω) = ω.

The nonlinear differential-algebraic model (18) is
parametrized in the mappings δ1, δ2 which can be used
to achieve additional properties. Note that the mapping p
may not describe the steady-state response of system (18)
unless additional assumptions hold. In fact, from Section II, it
follows that we need the additional property that the system
be strongly stable.

Lemma 6: Consider system (18) and the signal generator (2).
Suppose Assumptions 1 and 2 hold. If δ1 and δ2 are chosen
such that the pair (Ξ, F ), with

F =

[
∂
∂ξ (s̄1(ξ)− δ1(ξ)l(ξ))

− ∂
∂ξ (δ2(ξ)l(ξ))

]
ξ=0

, (20)

is strongly stable, then p(ω) = ω solves the partial differential-
algebraic equations (19). Moreover, for any sufficiently small
ξ(0) and ω(0), the solution ξ(t), ω(t) of the interconnection
of (18) and (2) exists, is bounded for all t ≥ 0 and satisfies
limt→∞ ξ(t)− p(ω(t)) = 0.

This result is a consequence of Lemma 1 applied to the
family of reduced order models (18).

Remark 7: The mapping δ can be selected such that (20)
holds. Then the partial differential-algebraic equation (19) is
solved and the resulting system (18) is a reduced order model of
(1). Moreover, note that condition (20) is a “loose” constraint.
In fact, δ can be selected to satisfy the condition and, at
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the same time, be used to obtain reduced order models with
additional properties, see e.g. [27].

Remark 8: To obtain the family of reduced order models (18)
we only need to solve equation (4). In general the solution of
this partial differential-algebraic equation is difficult to deter-
mine analytically. However, the solution can be approximated
with numerical methods, see e.g. [34], [37], [38].

Remark 9: Nothing prevents to define a normal reduced order
model. Normal reduced order models are actually included in
the family of models given so far by simply setting Ξ = I . In
this case the family (18) becomes

ξ̇ = s(ξ)− δ(ξ)l(ξ) + δ(ξ)u, ψ = h(π(ξ)), (21)

with δ free, which is the family of reduced order models given
in [27].

C. Linear singular reduced order models

Since for linear singular systems stronger results can be
obtained, we now specialize the results to this class of systems.
The possibility of obtaining purely fast or purely slow singular
systems is investigated and a “simple” family of linear singular
systems is given. In addition, the problem of maintaining
controllability and observability properties is discussed.

Definition 6: Consider system (7) and the signal genera-
tor (13). The system described by the equations

ξ̇1 = F1ξ1 +G1u, Mξ̇2 = ξ2 +G2u,
ψ1 = H1ξ1, ψ2 = H2ξ2,
ψ = ψ1 + ψ2,

(22)

where ξ1(t) ∈ Rν1 , ξ2(t) ∈ Rν2 , with ν1 + ν2 = ν, ψ1(t) ∈ R,
ψ2(t) ∈ R, F1 ∈ Rν1×ν1 , M ∈ Rν2×ν2 nilpotent with degree
d̄ ≤ d, G1 ∈ Rν1×1, G2 ∈ Rν2×1, H1 ∈ R1×ν1 , and H2 ∈
R1×ν2 , is a model of system (7) at S, if system (22) has the
same moments at S as system (7). System (22) is a reduced
order model of system (7) at S if ν < n.

Lemma 7: Consider system (7) and let S ∈ Rν×ν be any non-
derogatory matrix with characteristic polynomial (12). Assume
σ(S) ∩ σ(A1) = ∅ and let L be such that the pair (S,L) is
observable. Then the system (22) is a model of system (7)
at S if there exists a unique solution

[
Γ>1 Γ>2

]>
of the

equations

F1Γ1 − Γ1S = −G1L, Γ2 = −
∑d̄−1
i=0 M

iG2LS
i, (23)

such that

C1Π1 = H1Γ1, C2Π2 = H2Γ2, (24)

where
[

Π>1 Π>2
]>

is the unique solution of (14).
This claim follows directly from Definition 6 and the

definition of moment.
Similarly to the nonlinear case, there are several parameters

that can be exploited to achieve a convenient representation.

D. Linear “identity” family of models

In this section we provide a linear equivalent of the
family (18). Since for linear singular systems we can use
the special structure of Π highlighted in (14), it seems natural
to select Γ1 = I keeping M and G2 free.

Lemma 8: Consider system (7) and let S ∈ Rν×ν be any non-
derogatory matrix with characteristic polynomial (12). Assume
σ(S) ∩ σ(A1) = ∅ and let L be such that the pair (S,L) is
observable. Then the system

ξ̇1 = (S −G1L)ξ1 +G1u,

Mξ̇2 = ξ2 +G2u,
ψ1 = C1Π1ξ1,

ψ2 = C2

∑d−1
i=0 N

iB2LS
i
(∑d̄−1

i=0 M
iG2LS

i
)−1

ξ2,

ψ = ψ1 + ψ2,

(25)

where
[

Π>1 Π>2
]>

is the unique solution of (14), is a model
of system (7) at S for any G1 such that σ(S)∩σ(S−G1L) = ∅
and any G2 and M such that

∑d̄−1
i=0 M

iG2LS
i is invertible.

Remark 10: As noted in [13], in the reduction of non-proper
transfer functions W (s) the algebraic part should be maintained
unchanged to guarantee that the error between the frequency
response of the system to be reduced and the frequency response
of the reduced order model stays bounded. This can be achieved
in the presented framework setting ν2 = n−r, d̄ = d. However,
in some cases we may not be interested in preserving the rate at
which the frequency response grows unbounded, but we may be
interested only that it grows unbounded. In other cases, we may
be interested only in the output response for low frequencies.
The proposed method can deal with these situations leaving
to the designer the choice of reducing the fast subsystem, the
slow subsystem, or a combination thereof, as shown in the
following. Note that a similar discussion can be made for
nonlinear singular systems.

Remark 11: Similarly to Remark 9, setting ν1 = ν, we can
approximate a singular system with a normal system. Note that
this was the first approach attempted [6], although inaccurate
since the impulsive characteristic of the singular system is lost
[43]. However, in particular settings and as a first approximation
it can be useful to approximate a singular system with a normal
one. In this case the family (25) becomes

ξ̇ = (S −GL)ξ +Gu, ψ = CΠξ, (26)

with G free, which is the family of reduced order models given
in [27].

Remark 12: Conversely, setting ν2 = ν, we can obtain a
completely fast reduced order model. In this case the family (25)
becomes

Mξ̇ = ξ +Gu, ψ = −CΠ
(∑d̄−1

i=0 M
iGLSi

)−1

ξ,

(27)
with M nilpotent with degree d̄ and G free.

Recall now that system (7) is assumed to be controllable
and observable. We conclude this section investigating if these
structural properties can be maintained with a specific choice
of the free parameters of the reduced order models.

Theorem 4: System (25) has the following properties.
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i(t)

u(t) R C1

C2

L
uC(t)

uR(t) uL(t)

Fig. 1. The electrical circuit in [4].

(C1) The slow subsystem ξ̇1 = (S − G1L)ξ1 + G1u is
controllable. In this case system (25) is said R-controllable
(see [1, Definition 2-2.2]).

(C2) The fast subsystem Mξ̇2 = ξ2 +G2u is controllable.
(C3) System (25) is controllable.
(C4) System (25) is impulse controllable (see [1, Definition

2-2.3]).
Theorem 5: System (25) has the following properties.

(O1) The slow subsystem ξ̇1 = (S − G1L)ξ1 + G1u, ψ1 =
C1Π1ξ1 is observable if G1 is such that this subsystem
has relative degree ν1. In this case system (25) is said
R-observable (see [1, Definition 2-3.2]).

(O2) The fast subsystem Mξ̇2 = ξ2 + G2u, ψ2 =

−C2Π2

(∑d̄−1
i=0 M

iG2LS
i
)−1

ξ2 is observable if M and
G2 are such that

rank

([
M

−C2Π2

(∑d̄−1
i=0 M

iG2LS
i
)−1

])
= ν2.

(O3) System (25) is observable if the conditions in (O1) and
(O2) hold simultaneously.

(O4) System (25) is impulse observable (see [1, Definition
2-3.3]) if M and G2 are such that

rank


M I

0 M

0 −C2Π2

(∑d̄−1
i=0 M

iG2LS
i
)−1


=ν2+rank(M).

Example 2: We illustrate the results with a simple example.
We consider the model studied in [4], which represents the
electrical circuit illustrated in Fig. 1. The model is described
by the equations

u̇C1
= 1

2
i1

1+10−1uC1
+ 1

2
i2

1+10−2uC1
, Φ̇ = uL,

0 = uR − 5iR − 10i3R, 0 = Φ− arctan(iR),
0 = i1

1+10−1uC1
− i2

1+10−2uC1
, 0 = i− i1 − i2,

0 = u− uR − uC1
− uL, y = uC1

,
(28)

where u is an ideal voltage source, uR and iR are, respectively,
the voltage and the current of the nonlinear resistor, i1, i2
and uC1

represent, respectively, the currents and the voltage
of the capacitors, and Φ and uL represent, respectively, the
saturated flux and the voltage of the inductor. Consider the
signal generator (13) with matrices S = [0,−1; 1, 0] and L =
[0.001,−0.0098] which generates an input similar to the one
used in [4]. We compute an approximation of the moment h◦π
(see [37], [38]), namely h(π(ω)) ≈ 10−4(0.0451 + 9.591ω1 +

0 10 20 30 40 50

0

5

10
x 10

−3

t

 

 

y(t)

ψN (t)

ψS(t)

0 10 20 30 40 50
0

1

2

x 10
−3

t

 

 
|y(t)− ψN (t)|
|y(t)− ψS(t)|

Fig. 2. The top graph shows the time history of the output of system (28)
in blue/solid line, of the output of model (29) in red/dotted line and of the
output of the model (29) in black/dashed line. The bottom graph shows the
absolute errors.

1.955ω2+0.0042ω2
1−0.0005ω1ω2). We determine two reduced

order models, a normal model described by the equations

ξ̇1 = −0.1021 ξ1 + 0.0001 ξ2 + 102.1076u,

ξ̇2 = 1.5001 ξ1 − 4.8979 ξ2 − 500.0748u,
ψN = h(π(ξ)),

(29)

and a singular model described by the equations

ξ̇1 = −0.1028 ξ1 + 0.0073 ξ2 + 102.8404u,
0 = ξ1 − 9.7944 ξ2 − 1000u,

ψS = h(π(ξ)).
(30)

Note that both models are linear systems with nonlinear output
map (this is expected since the signal generator is linear). The
eigenvalues of the dynamic matrix of the model (29) have been
set, using the free parameter G, as −0.1021,−4.8979. These
eigenvalues are the eigenvalues of the linearization around
uC1 = 0, Φ = 0 of system (28). Similarly, the only finite
eigenvalue of model (30) is set as −0.1021. The resulting two
reduced order models are, respectively, asymptotically stable
and strongly stable. Fig. 2 (top) shows the time history of
the output of system (28) in blue/solid line, of the output
of model (29) in red/dotted line and of the output of the
model (30) in black/dashed line. The initial conditions of the
simulation have been selected as uC1(0) = 0.01, Φ(0) = 0.01,
iR = 0.01, i1 = 0.005, i2 = 0.005, uL = −0.06, uR = 0.05,
ω(0) = [1 0]> and ξ(0) = [8.6 8.8]>. The bottom graph
shows the absolute errors |y−ψS | (red/dotted line) and |y−ψN |
(black/dotted line). We see that both the singular model and
the normal model are reduced order models of system (28)
achieving moment matching in the sense of Definition 5. Hence,
from this simulation we are not able to establish which of the
two models is preferable.

IV. CONCLUSION

In this technical note we have extended the notion of moment
based on the steady-state response to nonlinear singular systems.
We have proposed families of reduced order model for nonlinear
and linear singular systems. Connections with the moment
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matching approach based on the interpolation of the transfer
function have been drawn. The results have been illustrated by
the reduction of a simple electrical circuit.
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APPENDIX

Proof of Lemma 1: Note that this lemma, which characterizes
the steady-state response of system (3) in terms of the mapping
π, is a standard result in the literature of output regulation of
singular systems. A detailed proof can be found in [34, Lemma
8.9]. As a compromise between completeness and space, we
provide a sketch of the proof. Under the stated assumptions the
singular system can be rewritten as a normal system. This is
proved showing that there exists a change of coordinates such
that the algebraic subsystem written in the new coordinates
has an obvious solution. The obtained normal system satisfies
the assumptions of [31, Proposition 8.1.1]. The proposition
establishes that there exists a center manifold which is locally
exponentially attractive, is the graph of a mapping solving an
equation similar to (4) and can be used to define the steady-state
response. �

Proof of Lemma 3: Let Π̃i = [Π̃0
i Π̃1

i . . . Π̃k
i ] and note that

(10) can be rewritten as

EΠ̃0
i si = AΠ̃0

i +B,

EΠ̃1
i si + EΠ̃0

i = AΠ̃1
i ,

...
EΠ̃k

i si + EΠ̃k−1
i = AΠ̃k

i .

As a result

Π̃0
i = (siE −A)−1B

Π̃1
i =−(siE −A)−1E(siE −A)−1B =

[
d
dq (qE −A)−1B

]
q=si...

Π̃k
i = 1

k!

[
dk

dqk
(qE −A)−1B

]
q=si

which proves the claim. �
Proof of Theorem 1: Note that (11) has a unique solution

if and only if
∏ρ
i=1 det (A− siE) 6= 0. Since the matrix

S is non-derogatory, for each distinct eigenvalue si there
exists only one Jordan block Σi of dimension ki, i.e. Σ̄ =
T̄ ST̄−1 = diag(Σ1, . . . ,Σρ) is in Jordan form and L becomes
L̄ = LT̄−1 = [L̄1, . . . , L̄ρ] where each L̄i block corresponds
to a Σi block. We can then consider a pair (Σi, L̄i) and note
that this is observable. It is easy to see that we can find an
invertible matrix T̂ such that Σi = T̂ΣiT̂

−1 and Li = L̄iT̂
−1,

i.e. it leaves Σi unchanged and transform L̄i in the canonical
form in Lemma 3. Let T = T̂ T̄ . Then equation (11) becomes
AΠ − EΠT−1 diag(Σ1, . . . ,Σρ)T = −B[L1, . . . , Lρ]T . The
claim follows multiplying on the right by T−1, defining
Π = [Π̃1, . . . , Π̃ρ]T and applying Lemma 3 to each of the
resulting ρ blocks. �

Proof of Theorem 2: Consider the interconnection of sys-
tem (7) with system (13). By the assumptions on the pencil
(E,A) and σ(S), the interconnected system has a well-defined
invariant manifold given byM = {(x, ω) ∈ Rn+ν : x = Πω},
with Π the unique solution of the generalized Sylvester
equation (11). We prove now that M is attractive. Let
z = x−Πω. Consider the equation Eż = Ax+BLω−EΠSω,
which substituting (11), yields Eż = A(x−Πω) = Az. The
solution of this last equation is z(t) = P [I 0]>eA1tz(0).
Thus, the output response of the interconnected system is
y(t) = CΠω(t) +CP [I 0]>eA1t(x1(0)−Πω(0)). Observing

that CP [I 0]>eA1t(x1(0) − Πω(0)) describes the transient
response (which vanishes exponentially), yields that the steady-
state output response of (7) driven by (13) is CΠω(t). By
minimality of (S, ω(0), L), CΠ can be uniquely determined
by CΠω(t) computed at ν sample times ti, see [33], [37]. �

Proof of Theorem 3: Let x̄ = Πω and define [x̄>1 x̄>2 ]> =
P−1x̄ = P−1Πω = [Π>1 Π>2 ]>ω. Substituting these relations
in (8) yields

Π1Sω = A1Π1ω +B1Lω, NΠ2Sω = Π2ω +B2Lω,

from which ω can be eliminated because the two equations hold
for any ω. From the first of these equations we readily obtain the
first of equations (14). From the second equation we note that
Π2 is unique if and only if det(I−siN) 6= 0, for any si ∈ σ(S).
This holds by definition for any si ∈ C since N is a nilpotent
matrix, i.e. siN has all zero eigenvalues for any si ∈ C. Then
Π is unique if and only if σ(S) ∩ σ(A1) = ∅. To obtain the
explicit expression of Π2, we substitute x̄2 = Π2ω in the last
n2 equations in (9) obtaining Π2ω = −

∑d−1
i=0 N

iB2L
di

dtiω.
Observing that di

dtiω = Siω yields Π2 = −
∑d−1
i=0 N

iB2LS
i,

since the equation holds for any ω. �
Proof of Lemma 5: Consistently with Lemma 4 and As-

sumption 3 a family of models that achieves moment matching
at (s, l) is described by Ξξ̇ = φ̂(ξ) + δ(ξ)u and ψ = κ(ξ),
with φ̂(ξ) = [Ξ∂p(ω)

∂ω (s(ω)) − δ(p(ω))l(ω)]ω=p−1(ξ), where
p is the unique solution of (16) and δ is a free mapping.
Mappings κ and p that have the required regularity properties
are given by the selection p(ω) = ω and κ(ω) = h(π(ω)).
This yields a family of models described by the equations
Ξξ̇ = Ξs(ξ) − δ(ξ)l(ξ) + δ(ξ)u and ψ = h(π(ξ)), where
δ is an arbitrary mapping such that equation (16), namely
Ξ ∂p
∂ω s(ω) = Ξs(p(ω)) − δ(p(ω))l(p(ω)) + δ(p(ω))l(ω), has

the unique solution p(ω) = ω. The claim is proved rewriting
these last equations using the definitions given for Ξ, ξ1, s̄1,
δ1, δ2 and ( ∂p∂ω )1. �

Proof of Lemma 8: Consider model (22). F1 and H1 are
selected substituting Γ1 = I in (23) and (24), respectively. H2

is obtained substituting in equation (24) the expressions for
Γ2 and Π2 given in (23) and (14), respectively. �

Proof of Theorem 4: Claim (C1): Since
G1 is such that σ(S) ∩ σ(S − G1L) = ∅,
ξ̇1 = (S − G1L)ξ1 + G1u is controllable, see [44].
Claim (C2): Recall that

∑d̄−1
i=0 M

iG2LS
i is invertible, i.e.

rank([G2|MG2| . . . |M d̄−1G2][L>|S>L>| . . . |(Sd̄−1)>|L>]>) =
ν2. Since (S,L) is observable then
rank([G2|MG2| . . . |M d̄−1G2]) = ν2 which is equivalent to
the controllability of the fast subsystem Mξ̇2 = ξ2 +G2u [1,
Theorem 2-2.1 (2)(b)]. Claim (C3): (C1) + (C2) imply (C3)
[1, Theorem 2-2.1 (3)]. Claim (C4): (C2) implies (C4) [1, p.
37]. �

Proof of Theorem 5: Claim (O1): This is a direct consequence
of [27, Theorem 2]. Claim (O2): This is a direct consequence
of [1, Theorem 2-3.1 (3)(d)]. Claim (O3): (O1) + (O2) imply
(O3) [1, Theorem 2-3.1 (4)]. Claim (O4): The condition is
obtained after eliminating full rank blocks from the condition
given in [1, Theorem 2-3.4 (vii)]. Note that (O2) implies (O4)
but (O4) does not imply (O2). �


