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Abstract

Robust model predictive control (RMPC) is widely used in industry. However, the online
computational burden of this algorithm restricts its development and application to systems
with relatively slow dynamics. We investigate this problem in this thesis with the overall

aim of reducing the online computational burden and improving the online efficiency.

In RMPC schemes, robust control invariant (RCI) sets are vitally important in dealing with
constraints and providing stability. They can be used as terminal (invariant) sets in RMPC
schemes to reduce the online computational burden and ensure stability simultaneously. To
this end, we present a novel algorithm for the computation of full-complexity polytopic RCI
sets, and the corresponding feedback control law, for linear discrete-time systems subject to
output and initial state constraints, performance bounds, and bounded additive disturbances.
Two types of uncertainty, structured norm-bounded and polytopic uncertainty, are consid-
ered. These algorithms are then extended to deal with systems subject to asymmetric initial
state and output constraints.

Furthermore, the concept of RCI sets can be extended to invariant tubes, which are funda-
mental elements in tube based RMPC scheme. The online computational burden of tube
based RMPC schemes is largely reduced to the same level as model predictive control for
nominal systems. However, it is important that the constraint tightening that is needed is not
excessive, otherwise the performance of the MPC design may deteriorate, and there may
even not exist a feasible control law. Here, the algorithms we proposed for RCI set approx-
imations are extended and applied to the problem of reducing the constraint tightening in
tube based RMPC schemes.

In order to ameliorate the computational complexity of the online RMPC algorithms, we
propose an online-offline RMPC method, where a causal state feedback structure on the
controller is considered. In order to improve the efficiency of the online computation, we
calculate the state feedback gain offline using a semi-definite program (SDP). Then we pro-
pose a novel method to compute the control perturbation component online. The online op-



vii

timization problem is derived using Farkas’ Theorem, and then approximated by a quadratic
program (QP) to reduce the online computational burden. A further approximation is made
to derive a simplified online optimization problem, which results in a large reduction in the

number of variables.

Numerical examples are provided that demonstrate the advantages of all our proposed algo-

rithms over current schemes.
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Chapter 1
Introduction

Robust model predictive control (RMPC) has been widely employed in industrial processes,
due mainly to its ability to deal with hard constraints compared to other control algorithms.
However, its large online computational demands remain an obstacle to its adoption for fast
systems. This thesis aims to reduce the online computational burden of this control method
so that its use can be extended to systems with faster dynamics. A commonly used method
to achieve this is to treat a robust control invariant (RCI) set as the terminal set in RMPC
schemes [12] so that the control law may be switched to a pre-computed feedback controller
once the online controller has steered the state inside the RCI set. Since the system state
cannot in general converge to the origin in the presence of disturbances and uncertainties,
the RCI set is usually used as a substitute for the origin and acts as the objective state
set as stated in [40]. Recent developments in computational methods for RMPC design
are reviewed in the following sections. In addition, tube based RMPC schemes as well as

combined online/offline computational approaches are considered.

1.1 Background and Motivation

1.1.1 Computation of Robust Control Invariant Sets

RCI sets determine a bounded region to which the system state can be confined, for all pos-
sible disturbances/uncertainties, through the application of a feedback control law [12, 13].

Therefore, RCI sets are widely used in the analysis and design of robust control schemes



1.1 Background and Motivation 2

for disturbed or uncertain systems. In particular, these sets are of primary importance in
establishing the stability and recursive feasibility of RMPC Schemes, see e.g. [38], [64] and
the references therein. Invariant sets also form an important part of the tube based RMPC
schemes [31], [37]. Furthermore, they serve as suitable target sets in robust time-optimal
control schemes [26], [39].

Due to their great application in robust control, the problem of efficient computation of RCI
sets has been studied extensively over the past few decades, see [12] and [13] for a compre-
hensive literature survey. The two main RCI set structures considered in the literature are
Polytopic and Ellipsoidal [29]. Computational methods for ellipsoidal RCI sets are investi-
gated in [30] and [36]. [9] and [48] provide algorithms for the calculation of polytopic RCI
sets. For these structures, the problem of computing the minimal- as well as the maximal-
volume RCI set is important and, in most cases, intractable. For example, it is shown in [29]
that the exact computation of the minimal invariant set for uncertain systems involves the
Minkowski’s sum of infinitely many terms, which leads to intractability unless the system
dynamics are nilpotent [39]. Therefore, most of the research has been focused on efficient
computation of suitable inner/outer approximations to the maximal/minimal RCI set, which

is discussed in the following paragraphs.

In [52], a method to compute an outer approximation of the minimal invariant set has been
proposed for linear systems with additive disturbances. This approach was subsequently
extended in [51] to the degenerate disturbance case. However, both these schemes employ
a constant, pre-computed feedback control law which can lead to excessive conservatism.
In [27] and [22], in contrast, methods are derived to compute control laws which render
a fixed set invariant. It is clear that in order to optimize the size of the invariant set, the
best approach is to simultaneously consider both the feedback control law and RCI set as
decision variables in the optimization. In this regard, [60] presents a method to approximate
both an ellipsoidal invariant set as well as the feedback control law. However, as discussed in
[12], generally the polytopic representation is not only less conservative than its ellipsoidal
counterpart but also more naturally captures the physical constraints on state and control

variables. Therefore, we focus on Polytopic RCI sets in this thesis.

In [6] and [8], the invariance conditions for the computation of polytopic RCI sets for dis-
crete time systems without uncertainty or disturbances have been presented. [21] [42] and
[66] provide invariance conditions for polytopic RCI sets in the presence of additive distur-
bances. These conditions are extended to the parametric uncertainty case in [61], [7] and
[41]. An algorithm, initially proposed in [25], computes the RCI set by iteratively imposing
auxiliary constraints. This method has been extended to systems with polytopic uncertainty
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in [48]. Algorithms for computing RCI sets for linear systems with polytopic uncertainty
and disturbances are also reported in [2] (for variable controllers) and [10] (for fixed con-

trollers).

More recently, research in the literature has focused on the computation of low-complexity
polytopic RCI sets, in which the the maximum number of faces of the polytope is equal to
twice the dimension of the state-space. This is due to their computational advantages for
the associated control schemes as well as their reduced conservatism in comparison to ellip-
soidal RCI sets (see [14] for details). In [32], necessary and sufficient conditions are derived
for the existence of a low-complexity polyhedral RCI set for discrete-time systems with un-
certainty, and the set is computed, for a given feedback control law, by solving a quadratic
optimization problem. A unified approach to determine the RCI set is proposed in [18]. An
algorithm that optimizes both the polytopic RCI set and the feedback controller simulta-
neously is proposed in [17] for nonlinear systems, though the computation complexity for
obtaining such an RCI set is substantially increased owing to the large number of variables
involved. In [62], an efficient method was proposed to compute a hyper-rectangular RCI
set (which is a special case of low-complexity polytopic set) and the corresponding control
law in one step through a single semi-definite programming (SDP) problem. However, the
hyper-rectangular set structure is, in general, conservative. Finally, in [14], a new algorithm
to compute both the low-complexity RCI set as well as the corresponding control law has

been proposed for systems with polytopic uncertainties.

Although less conservative than the ellipsoidal set, the low-complexity polytopic RCI set
structure is still restrictive due to the restriction on the number of faces of the polytope. In
this thesis, we address this issue by proposing a novel algorithm to efficiently compute full-
complexity RCI sets, where arbitrarily large number of faces can be specified for the poly-
tope, thereby enabling a more accurate inner/outer approximations to the maximal/minimal
RCI sets (see Chapter 2 and 3 for details).

1.1.2 Robust Model Predictive Control Algorithm

Model predictive control (MPC) has been widely used for the industrial control of con-
strained systems. Good literature surveys about the algorithm and its application can be
found in [1], [4], and [38]. Traditional MPC algorithms usually calculate a control sequence
online by solving an optimization problem at each time step, and only implement the first

control action. A new control sequence is computed again at the next time step. The op-
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timization problem involving polyhedral constraints and a quadratic objective function, is
solved iteratively at each time step. There are two main methods considered in MPC al-
gorithm. Open-loop MPC utilizes the inherent robustness of the nominal MPC to obtain
a sequence of control actions, examples are given in [68]. This method is not widely em-
ployed because it cannot predict the state trajectories resulting from the disturbances and
uncertainties. This can be avoided by using feedback MPC [54], in which a control policy,
which is a sequence of control laws, is treated as the decision variable. However, the com-
putational burden of feedback MPC is very heavy and the process procedure is relatively
slow and not applicable for fast dynamic systems with the presence of disturbances and
uncertainties. Many methods are proposed in the literature to ease this problem. One of
these methods is explicit MPC, which is an offline MPC algorithm that computes the con-
trol action offline and forms a lookup table. When implemented online, control actions are
chosen based on the lookup table. [5] present a method to form the lookup table with a state
feedback control law. This method cannot be implemented for large scale systems since the
size of the lookup table will increase exponentially with the number of dimension of the
system and the predictive horizon. Many other fast MPC algorithms have been proposed in
recent years, for example, the primal barrier method [44], which transforms the constrained
quadratic programming (QP) problem to an unconstrained log-barrier optimization prob-
lem. This method is not widely used because of several drawbacks. [67] provides some
variations of this method. Fixing the structure of the controller, e.g. using state feedback or
causal state feedback structure, is another way to improve the process speed.

Due to the presence of state and input constraints and the disturbances, infeasibility may
result. Some constraint tightening methods were developed to solve this problem. [35]
present a method involving some constraint restrictions to achieve robustness. These con-
straint restrictions are computed offline. Hence, no extra online computational burden is
added to the MPC algorithm. On the basis of this method, [37] presented the novel concept
of tube MPC, in which a piecewise affine control law is used and a tube, rather than a state
trajectory, is designed to guide the system. This method presents a novel application of the
minimal RCI set and reduces the computational burden of a disturbed system to the level of
anominal system and increases the robustness further. The invariant tube and related control
law are computed offline and a nominal MPC algorithm is employed under the constraint of
the tube. The computational complexity of this method increases linearly in the predictive
horizon length, rather than exponentially as in the traditional RMPC algorithm. [31] pro-
vides a detailed description of this method and gives some variations. In [40], this method
has been improved by considering the initial state of the nominal system as an optimizer,

and the invariant tube and the objective RCI set (terminal set) are used simultaneously. [55]



1.2 Challenges and Contributions 5

provides a method to scale the rigid tubes and form a series of homothetic tubes, which
achieves less conservativeness on online constraint handling. Based on this, [53] improves
the scaling dynamic of the tubes and the computation of the terminal constraint set and in-
troduces an equi-normalization process to relax the conditions for the application of the tube
based RMPC algorithm. The existence and characterization of the minimal tube is verified
in [53].

Tube based RMPC algorithms are computationally tractable due to the application of the
tube. Accurate calculation of the tube is very important. In this thesis, we improved the
computation method of the tube and provide approximate optimal controller and observer
gains simultaneously, which reduce conservativeness of this algorithm. Details are given in
Chapter 4.

In order to implement MPC algorithms in the presence of disturbances, min-max techniques
are used and the optimization is reduced to a convex optimization problem involving linear
matrix inequalities (LMIs) [30]. Although this method provides robust solutions in the
presence of uncertainties, SDP problems slow the process speed further compared to QP
problems. [63] presents two methods to calculate controllers with causal state feedback
structure online by solving SDP problems involving LMIs. These methods improve the ro-
bustness and tractability of the MPC algorithm, but the online computational burden is large
and the process speed is slow. In order to improve the process speed, we present an online-
offline MPC method in this thesis. Linear discrete-time systems subject to additive bounded
disturbance are considered. The online computational complexity is reduced by calculating
part of the control law offline, and transforming the SDP problem into a QP problem using
Farkas’ Theorem for online optimization. Finally, a simplified online algorithm is proposed
to reduce the computational burden further. The efficiency of these methods is tested by

numerical examples. Details are given in Chapter 5.

1.2 Challenges and Contributions

1.2.1 Research Challenges

The most important challenges addressed in this thesis are listed below:
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» Full-complexity polytopic structure. A tractable algorithm for the computation of full-
complexity polytopic RCI sets is developed in this thesis in order to provide better

accuracy compared with the structures considered in the literature.

* [nitial state and performance constraints. Maximal RCI sets are required to be suffi-
ciently small so that the performance is acceptable once the system states are included.
Minimal RCI sets are often required to be sufficiently large so that the initial state set
can be contained. Incorporating these constraints in the calculation process, which is
currently missing in the literature, is significantly important and is presented in this

thesis.

» Asymmetric constraints. The computation of RCI sets for systems subject to asym-
metric constraints is seldom addressed in the literature, even though such constraints

are not uncommon in real systems. This thesis develops a class of such algorithms.

» Optimized observer gain. The observer gain and the feedback control gain are nor-
mally chosen and fixed before online process in tube based MPC scheme. Optimizing
the gains simultaneously with the invariant sets, which we carry out, provides better

control accuracy and less conservativeness.

* online-offline separation. Due to the heavy computational burden of traditional online
RMPC and the excessive conservativeness of the offline RMPC scheme, transferring
part of the online computational burden offline, which we carry out, reduces the online

computational burden without introducing excessive conservativeness.

1.2.2 Contributions

This thesis aims to reduce the online computational burden of RMPC scheme. Three
methods are considered: treating an RCI set as a terminal set in RMPC schemes and
thereby switching from the online RMPC scheme to a feedback control scheme, with a
pre-computed fixed control law once the system states enter the RCI set; applying the RCI
set computational algorithms thus developed to tube based RMPC schemes; implementing
a combined online-offline RMPC scheme.

Chapter 2 presents a novel algorithm for the computation of full-complexity polytopic robust
control invariant (RCI) sets, and the corresponding feedback control law, for linear discrete-
time systems subject to output, initial state and performance constraints, with additive dis-

turbances. Structured norm-bounded and polytopic uncertainties are also considered. The
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proposed scheme allows arbitrarily large number of faces for the invariant polytope which
enables less conservative inner/outer approximations to the maximal/minimal RCI sets. The
nonlinearities associated with the computation of such an RCI set structure are overcome
through the application of corollary of Elimination Lemma. An initial full-complexity in-
ner/outer approximation to the maximal/minimal RCI set as well as the feedback gain are
computed through convex/LMI optimization. The volume of this initial invariant set is
then iteratively optimized (minimized/maximized) based on a Newton-like update. The
algorithm, based on convex/LMI optimizations, is shown to yield larger/smaller volume in-
ner/outer approximations to maximal/minimal RCI sets as compared to other schemes from
the literature.

In Chapter 3, asymmetric system constraints are considered. The center of the RCI set is
shifted from the origin to provide more flexibility. Farkas’ Theorem is first used to derive
necessary and sufficient conditions for the existence of an admissible polytopic RCI set in
the form of nonlinear matrix inequalities. Corollaries of Elimination Lemma are then used
to derive sufficient conditions, in the form of linear matrix inequalities, for the existence of
the solution. An optimization algorithm to approximate maximal/minimal RCI set is also
proposed. The algorithm improves the accuracy of the computed maximal/minimal RCI set,

while keeps the same computational complexity compared with the literature.

In Chapter 4, the tube based RMPC scheme proposed in [37] and [31] is improved by
calculating the minimal approximations to the invariant tube. The algorithms proposed in
Chapter 2 are modified to approximate the tube and optimizing the feedback control gain
and the observer gain simultaneously. This RMPC scheme gives an effective compromise

between computational complexity and optimality.

Chapter 5 proposes an online-offline RMPC scheme for linear discrete-time systems with
bounded additive disturbance. We consider a causal state feedback structure on the con-
troller, which comprises of a causal state feedback gain and a control perturbation compo-
nent. The state feedback gain is calculated offline via SDP, the control perturbation com-
ponent is computed online. Farkas” Theorem is applied to guarantee the satisfaction of the
system constraints for all disturbances. The online optimization problem is derived as a QP
problem to reduce the online computational burden. Further approximations are made to
derive a simplified online optimization problem, which results in a large reduction in the
number of variables.
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1.2.3 Publications

Part of the research results in this thesis are based on the following papers which have been

published or under review.

* Chengyuan Liu and Imad M. Jaimoukha, “The Computation of Full-complexity Poly-
topic Robust Control Invariant Sets”, in proceedings of the IEEE Conference on De-
cision and Control, Osaka, Japan, 2015, pp. 6233-6238.

e Chengyuan Liu, Imad M. Jaimoukha and Furgan Tahir, “Full-complexity Polytopic
Robust Control Invariant Sets for Uncertain Linear Systems”, IEEE Transactions on

Automatic Control (under review).

1.3 Techniques and Preliminaries

1.3.1 Major Definitions and Techniques

Some basic definitions and mathematic lemmas and theorem are listed in this section.

In this thesis, we consider a linear discrete time system with disturbances

xt A B B, X
f|1=(¢C D D, u |, (L.D)
Z G D O w
with
xt A" X A"
fle| 2|, ule| @ |,
Z A" w R

where x is the current state, x™ is the successor state and u and w denote the current control
and disturbance signals, respectively, and where the distribution matrices in (1.1) have ap-
propriate dimensions, and where the pair (A, B) is assumed to be stabilizable. We assume

that the disturbance w belongs to a bounded polytope

W= P(V,d) (1.2)
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where
Vegm M, 0<dexr™ (1.3)

are given. The output constraint signal f is given as f € . % C #"/. Note that we use a
general form of constraint which involves all the constraints on states, outputs and inputs

and their linear combinations.

The initial system state xq is required to be contained in a set, that is

X0 € Zo A" (1.4)

In the sequel, we consider another type of constraint related to the signals z defined in (1.1).

Next, we introduce the concept of control invariance. The concept of an invariant set was
introduced in [43], and was subsequently extended in many different ways, e.g. [3], [16],
and [24]. In this thesis, we consider the following definition, given in [12] and [49].

Definition 1.1 (Robust Control Invariant Set). A set &2 C %" is a robust control invariant
set for system (1.1) if xT € P.Nw € W for every x € & and the output constraints f € F
are satisfied for every x € Z,NN\w € W'

While previous work on the computation of RCI sets uses Farkas’ Lemma, we will use the
following version of Farkas’ Theorem instead since expressing the constraints in quadratic

form will be shown to offer computational advantages.

Theorem 1.1 (Farkas’ Theorem). [50] Suppose that € C %" and fi,..., fn: %" — X are
convex and satisfy the Slater condition [20]. Let fy: %" — % and define the system

S Afo(x) <0 fi(x) <0,j=1,..., mx €€}

Consider the statements

(1) aylu'“?ym >0: fO(x)+Z’;1:1yjfj(x) > O,VXE C.

(2) . is not solvable.

Then (1) = (2). Furthermore, if fy is convex, then (1) < (2).
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The following version of the Elimination Lemma [15] will be used to deal with the nonlin-

earities.

Lemma 1.1 (Elimination Lemma). Let Q = QT € %#™", R € Z#"™ " and S € #"*P. LetR |
and S | be orthogonal complements of R and S, respectively, and consider the following two

Statements:

1) Iy e C@™P: Q+RYST +SYTRT » 0.

(2) RTOR | ~0and STQS, = 0.
Then (1) = (2). Furthermore, if % = Z"™*P then (1) < (2).

The next result follows from Farkas’ Theorem and is used for norm—bounded structured

uncertainties.

Lemma 1.2. /23] Given T} = TlT ERXR T, e R T3 € B and A C #"r*""a. Define

the subspace
B ={(S,T,R) € S" x S x Z"""s . SA = AT, AR" + RAT =0 VA € A},
and consider the statements:

T\ —TST] T + TR
*

(1) 3(S,T,R) € #: = 0.
(2) Ti +DAT; + (HAT;)T = 0VA €A, A < 1.

Then (1) = (2). Furthermore, if n, = ny and A= Z"r*", then (1) < (2).

1.3.2 Preliminaries on MPC

Consider the linear discrete-time system (1.1) and regarding the MPC scheme, define the

terminal constraint and cost signals

; (1.5)
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where x(k) denote the system state at kth step and N is the prediction horizon. The other
symbols denote the appropriate transition and distribution matrices. The initial state xg =

x(0) for system (1.1) is constrained as
xo € Zo:={x0 € Z"|xg <x0<Xo} (1.6)

where x; < 0 <Xy € %" are given.

We define the objective function as

J=Y 2(k)Tz(k), (1.7)

It is required that for all k € {0, 1,...N — 1}, there exist a u(k) such that the constraints:

f(k)eﬁ:z{fe%mﬂfg]i,VWGWL 18
fINYe Fn:={fez2™|f < fn, VWEX},
are satisfied, and an upper bound 7y on the cost function J, that is
J<y,YweW,
is minimized.

Define the system state, constraint signal, cost signal, input, and disturbance sequences as

x(1) f(0) z(0) u(0) w(0)
xX:= x(2) = f(_l) , 2= Z(:l) JUi= u(:l) W= W(:l) , (1.9)
x(N) f(N) z(N) u(N—1) w(N)

respectively. We assume that at the current time step, the system state xy is measured and

the input #(0) can be calculated based on our MPC algorithm proposed in this thesis.

By iterating the system dynamics (1.1), we derive the following relations

X ® G Gy, [x
f - (I)f Gf GfW ul, ( 1. 10)
Z o, G, Gy w
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where the distribution matrices in (1.10) can be deduced from (1.1) and the definitions in
(1.9).

The controller is defined in the causal state feedback structure, which includes a causal state
feedback part that depends on the state trajectory and a control perturbation component.

Therefore, we have
u = Koxo+Kx+7v (1.11)

where Ky € 2V " is the current state feedback gain, K € 2" "«*N" i5 the future feedback
gain and 7 € Z" " is the control perturbation sequence. The structure of the matrix [Ky K]

is block lower triangular, where the block dimension is n,, X n, which ensures causality [63].
Substituting the state dynamic in (1.10) into (1.11) gives

u = Koxo +KG,w+v (1.12)
with Ky = (I — KG) ™' (Ko + K®), K = (I —KG)"'K and v = (I - KG)~'¥. Note that K

and K have the same causal block structure as Ky and K, and that ¥, Ky and K are uniquely

determined by v, Ky and K. Substituting (1.12) into the constraint and cost signal dynamics

:

E = ®;+GsKo, EX, = GKGy+Gpy,
ENY = ® +GKy, EX = G.KG,+G,.

in (1.10) gives

Ef Gy EX, 0

K
E.* G, EX

with

Then the objective function (1.7) can be rewritten as
J="z=Jy+J1, (1.13)

where

Jo Z(EZKOX() + EgVW)T (EZKOX() + Eng),
Ji =V GI G+ 2(GT EXoxg+GTEX w)Tv.
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The bounds on the disturbance sequence can be rewritten as

weW:={weZWrm| _p<w<w}, (1.14)
where w:=e ® w, and the constraint (1.8) becomes

feF:={fe@NtV™I|f<F YweW}, (1.15)

where f:=e® f.

Our aim is to minimize the objective function (1.13) in order to obtain an optimal controller
of structure (1.12) under the constraints (1.15). When minimizing the objective function
(1.13), the unmeasured disturbances become a barrier. In the literature, min-max methods
and SDP optimization are the two mainly used algorithms. Although they provide valuable
results, there is scope to improve the efficiency of the algorithms. Our algorithms, proposed
in the following chapters, which improve the computational efficiency compared with the

literature, are approximations of the following SDP method presented in [63].

Theorem 1.2 (SDP method). With all definitions as above, the following optimization prob-
lem will provide optimal feasible Ky € %N ">", K € gN">Nn -y ¢ ggN-nu

min (1.16)
K(),K,Vy
D, 0 (E5)"
st.| x y=wIDew VT GTf (EF)T | = 0;

B * I

-D.lg _(E]I‘(W)Tei
_ | =0, Vi€ I nit)m,

-* ZelT(f—E]Ic(OXo—GfV)—WTD’eW (N+1)-my

where D, D', € .@J(FNH)'HW.

This theorem can be proved based on the results in [63]. It gives sufficient conditions for
the existence of a control law of the form (1.12) that guarantees an upper bound on the cost
function in (1.13) and gives necessary and sufficient conditions for satisfying the constraints
in (1.15) for all w satisfying (1.14). These conditions are in the form of LMIs and provide

an SDP algorithm to minimize the upper bound.



Chapter 2

Computation of Robust Control
Invariant Sets

Robust control invariant (RCI) sets are important in control analysis. These sets can be used
as the target set of the model predictive control (MPC) scheme. They also play an important
role in the design of tube based MPC scheme.

In this chapter, we propose a novel algorithm to efficiently compute full-complexity RCI
sets, where arbitrarily large number of faces can be specified for the polytope, thereby en-
abling less conservative and more accurate inner/outer approximations to the maximal/minimal
RCI sets than the ellipsoidal and low-complexity polytopic approximations. The proposed
method considers linear discrete-time systems subject to additive disturbances and computes
an initial full-complexity inner/outer approximation to the maximal/minimal RCI set as well
as the feedback gain through convex/LMI optimization. The nonlinearities associated with
the computation of such an RCI set structure are overcome through the application of corol-
lary of Elimination Lemma. Structured norm-bounded and polytopic uncertainty are con-
sidered separately. An update algorithm is then proposed that iteratively increases/reduces
the volume of inner/outer bounding ellipsoids on this initial invariant set, and computes the
corresponding feedback gain to obtain improved approximations to the maximal/minimal
RCI set. The update algorithm is convex and is based on a Newton-like update. Both con-
servatism and computational complexity are therefore reduced compared with the published
literature. Through numerical examples, it is shown that the proposed algorithm can result in
a substantially improved RCI set (volume-wise) as compared to some of the other schemes

in the literature.
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2.1 Robust control invariant Set

Standard procedures of calculating admissible RCI sets require a pre-defined structure for
computational tractability. A full-complexity polytopic structure, which provides higher
precision than the previous published structures, will be considered in this thesis. This has
the form

P(Pb)={xeZx": —b < Px<b},

where 0 < b € ™, P € ™" and m > n; m can be chosen based on the required accuracy.

Note that for m = n, &(P,b) reduces to a low-complexity polytope (see e.g. [14, 65]).

The requirements on an RCI set [49] include invariance and output constraint satisfaction.
For the system and disturbances described by (1.1)-(1.3), set Z(P,b) and for given f €
F = @(Imf,f), where 0 < f € #"/, these can be written as

P(P,b
{XE (P, )} — xte 2(Pb), (Invariance) 2.1)
wewW
e Z(Pb
{X (P, )} = fe .7, (Output constraint) (2.2)
wewW

respectively. Since RCI sets are in general not unique, maximal (minimal) RCI sets are
defined in terms of unions (intersections) of all such sets. For RCI sets of a pre—defined
structure, this definition is modified to optimize the volume of these sets.

Maximal RCI sets are associated with target sets in the state—space and are required to be
large, since they are associated with switching from on-line to off-line control once the
state is inside the set. Since a direct characterization of the volume of a polytope is not

feasible when m > n, we introduce an inner bounding ellipsoid & (Q), require

30e .7t £(Q)C P(P,b) (Inner bounding ellipsoid) (2.3)

and maximize logdet(Q '), since the volume of the ellipsoid &(Q) is proportional to
det(g’l). Maximal RCI sets are also required to be sufficiently small so that the perfor-
mance is acceptable once the state is inside. While the volume is to some extent limited
by the output constraint requirement, we further impose a performance constraint. With

z(k) denoting the current cost signal, where z defined in (1.1), and r a required performance



2.1 Robust control invariant Set 16

level, we require

x€P(Pb) = Iy:=Y ||z(k) 12 <7 (745 constraint) (2.4)
k=0

Minimal RCI sets are associated with initial states, and are required to be small. To this end,

we introduce an outer bounding ellipsoid &'(Q), such that
30e St 2(P,b)C&E(Q) (Outer bounding ellipsoid) (2.5)

and minimize logdet(Q~!). Minimal sets are also often required to include an initial state
set as defined in (1.4) [31] and so, for given 2y := Z(Py,by), where Py € %#™*" and
0 < by € Z™, we require

P(Py,by) C P(Pb). (Initial condition constraint) (2.6)

For given system (1.1), sets #',.%, 2 (Py,by), parameter r and m > n, and with ¥ :=
R X R x B, we present convex algorithms, based on semidefinite programs (SDP),
to solve the optimizations:

max log detQ*I, 2.7
(Pb,K)e¥ -
(2.1),(2.2),(2.3),(2.4)
min logdet Q. (2.8)
(P,b,K)e¥

(2.1),(2.2),(2.5),(2.6)

A triple (P,b,K) € ¥ satisfying either of the constraints in (2.7) or (2.8) will be called
admissible.

Remark 2.1. Systems subject to asymmetric constraints and a more general form of the full-
complexity polytopic set P (P,b,x.) = {x € Z#" : —b < P(x — x.) < b} will be considered
in Chapter 3. The nonlinearities caused by the variable x. lead to mathematical difficulties
in both the initial linearization and the update procedure. Since it is more common, we
consider this specific form &?(P,b) and the symmetric constraint first in this Chapter for
clarity.
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2.2 Nonlinear formulation

In this section, we derive conditions, in the form of nonlinear matrix inequalities (NLMIs),
for the admissibility of (P,b,K) € W. While previous work uses Farkas’ Lemma, we will
use the Farkas” Theorem (Theorem 1.1) instead since expressing the constraints in quadratic

form will be shown to offer computational advantages.

The following result uses Theorem 1.1 to derive conditions, in the form of NLMIs, for the
existence of an admissible triple (P,b,K) € W [34].

Theorem 2.1. Let all definitions be as above and denote
AKX .= A+BK, cX:=Cc+DK, cX =G+ DK,

Then for (P,b,K) € ¥ we have:

1. The invariance condition (2.1) is satisfied if and only if

Doeom [2e7b-b"Dib—d"Wid| eIP[B, AX]
Viejm7zl|:v[/il€ @fw :| : . VT‘/VIV 0 =0. (29)
x  PIDP

2. The output constraint condition (2.2) is satisfied if and only if,

Zejrf—bTEjb—dTdo eJT-DW ejTCK
* VIG;v 0 |>0. (2.10)

* x PTE;P

EjG@ff .
GjG@_TW

3. The inner bounding ellipsoid condition (2.3) is satisfied if and only if

Vie .7 3{ u; >0 } 2ein_“i eiTP
mrleest | * HiQ

= 0. 2.11)

4. The 5% -norm condition (2.4) is satisfied if

Q

~ PID.P

0 0 AKX
[ ~0, r>bID,b. (2.12)

QeS| . K
H{DZGQT % ol Gy | =0,
* x Q7!
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5. The outer bounding ellipsoid condition (2.5) is satisfied if

De! | orpp_ A T
H{QEYf]'PDP Q>0, 1>b"Db. (2.13)

6. The initial state constraint condition (2.6) is satisfied if and only if

2e'b—bIFby eI'P

= 0. 2.14
* Pl FP, (.19

Vi€ S, 3F, € 770 [

Hence solutions to the optimizations (2.7) and (2.8) can be obtained by solving the nonlinear
SDPs

max log detQ*I, (2.15)
(Pb,K)e¥ -
(2.9),(2.10),(2.11),(2.12)
min logdetQ ™!, (2.16)
(Pb,K)e¥

(2.9),(2.10),(2.13),(2.14)

respectively.
Proof. The proof is an application of Farkas’ Theorem. In more detail:

1. Condition (2.1) is equivalent to the requirement that for all i € .7,

{ (T Px)2 — (eTb)2 < 0,V) € 7,

T
(Vw2 — (el d)? <0, vk € } = 2¢] (b= P((A+BK)x+Byw)) 2 0.

The result then follows from Theorem 1.1 based on the following identity

2el(P((A+BK )x-+B,,w)—b)=—(b" Dib—x" P D;Px)
—(d"Wid—wTVIWVw)
—a"N;a (2.17)
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where a! = [—1 wl xT}, and

2eb—b'Dib—d"Wid €IPB,, e!P(A+BK)
N; = * viwy 0
* * P'D;P

For D; € 2" and W; € 2/, the first and second terms on the RHS of (2.17) are non-
positive for all x € (P, b,x.) and all w € #/, it follows that the invariance condition
is satisfied if N; > 0, which proves the sufficiency of (2.9). Necessity follows from
Farkas’ Theorem.

2. The proof is similar to Part 1) and follows from Theorem 1.1 and some manipulations.

3. Condition (2.3) is equivalent to the requirement that for all i € .%,,,,
T T
x' Ox—1<0=2¢; (b—Px)>0.
The result then follows from Theorem 1.1.

4. For any x € & (P,b), a minor extension of the results in [30] gives the first inequality
in (2.12) and
r—x'Q x>0 (2.18)

as sufficient conditions for J,» < r?. Theorem 1.1 then gives the second and third in-
equalities in (2.12) as sufficient conditions for (3.18) to be satisfied for all x € & (P,b).
5. Condition (2.5) is equivalent to the requirement that
(e]T~Px)2 — (ejT-b)2 <0Vje S =1-x"0x>0.
The result then follows from Theorem 1.1.
6. Condition (2.6) is equivalent to the requirement that for all i € .#,,,,
(ef Pox)>— (e bg)> <0V € Sy = 2¢] (b—Px) > 0.

The result then follows from Theorem 1.1.
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Finally, (2.15) and (2.16) follows from 1-6 above. L]

Remark 2.2. We have opted for strict inequalities in (2.9)-(2.14) in order to avoid numerical
difficulties associated with optimality. It follows that, in common with other LMI problems
[58], the algorithms resulting from the use of Theorem 2.1 may become badly conditioned

near optimality.

2.3 Linearization and Initial Computation

While Theorem 2.1 gives necessary and sufficient conditions for the the triple (P,b,K) to
be admissible, the conditions are nonlinear. The nonlinearities have three forms: the first
occurs in the term e/ PAK, the second in the terms PTD;P, PTE;P, PTD.P, PTDP, b" D;b,
b'E b, and bTDZb, and the third in the terms /,L,-Q and Q_l. In the low-complexity case, the
variable P is square and can be assumed nonsingular, and this forms the basis for efficient
approximation procedures in [65]. In the full-complexity case treated here, we propose a
linearization algorithm involving the computation of an initial solution. An update algorithm

is then presented in the next section.
We set
P(Pb)=P(PX,b,)={xeZ%": —b <PXx<b,}

as an initial full-complexity inner/outer approximation to the maximal/minimal RCI set,
where b, and P, are given (see Remark 2.3 below), and where X € #"*" is a variable used
to reshape (rotate and scale) the polyhedral set (P, b, ).

The following is a corollary of the Elimination Lemma (Lemma 1.1) and is used for the

initial linear solution.

Corollary 2.1. [34] Given T € S} E€ "V F € #P*",Zc S and %W C %P*P. Con-

sider the statements:

T EY 0

(1) M:= |« YT +Y F| =0 holds for someY € %.
* * VA
T EF

(2) N:= )

*
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Then (1) = (2). Furthermore, if % = %P*P, then (1) < (2).

Proof. Write M as M = Q+ RYST + SYTRT where

T 0 0 E
| |
O 'R 0 0 FiI
R el [
ST 1 % 0 FT 7.0
,,,,,,, L
0O I 0%
Since
I 0 I 0
R, =|-ET 0|, S, =10 0],
0 I 0 I

are orthogonal complements of R and §, respectively, the result follows from the Elimination

Lemma upon noting that Ri OR, =N and

T 0
0 Z

sTos, = [
]

The following result gives sufficient conditions for the admissibility of the triple (P.X, b, K)
in the form of LMIs by using Corollary 2.1.

Theorem 2.2. [34] Let all the definitions be as above and let P = P,X and b = b,, where
P. € ™" and b, € #™ are given and where X € #"*". Denote

X.=x1 K:=Kx ', A:=AX+BK,
C:=CX+DK, Cy = CX+DsK.

Then

1. Condition (2.9), hence (2.1), is satisfied if

2Aielb,—bIDib,—d™Wid MelP, 0 0

_ Ai>0 * X+xXT B, A
Vie Iy, 3| Dice DY |: T =0. (2.19)
WiEQfW * * VWV 0

* * x PIDP,



2.3 Linearization and Initial Computation 22

2. Condition (2.10), hence (2.2), is satisfied if and only if

2ef f-bIEjb—d"Gjd €D, €TC
* vIigiv 0 |[>0. (220)

Vjefmf,ﬂ[
* x  PTE;P,

Ej 6@_7_1 .
G;e g

3. Condition (2.11), hence (2.3), is satisfied if

>0 2velb,—; yelP, 0
Vi€ Sy, 3 % >0 : * X+XT 02| 0. (2.21)
_1 -
Qe * * Qi1

4. Condition (2.12), hence (2.4), is satisfied if

>0 0 0 A Q
I gesy ||« 20t & |-0, L A ]>O,Cr>b,TDzbr. (2.22)
DeZ¢] |« x X1XT-0 reE
5. Condition (2.13), hence (2.5), is satisfied if
pegr 1 (07" X -
= [ o1 ¢c Eﬂf } : [ . PTDP =0, 1>b,Db,. (2.23)

6. Condition (2.14), hence (2.6), is satisfied if and only if

2viel b,—bl Eiby  viel P, 0

Vie ﬂm,a{ e >9,,0 ] : * X+xT 1, |[=0. (224
tie 7 -

* * Py FiPy

Hence initial solutions to the optimizations (2.7) and (2.8) can be obtained by solving the

convex SDPs

max logdet Q_%, (2.25)
XK -

(2.19),(2.20),(2.21),(2.22)
min trace(Q71), (2.26)
X, K

(2. 19),(2.20):(2.23), (2.24)
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respectively.

Proof. The proof consists in manipulating each of (2.9)-(2.14) into the form of statement
(2) of Corollary 2.1 and then use the corollary to show that (2.19)-(2.24), after some ma-
nipulation, correspond to statement (1) with an appropriate Y, and are therefore sufficient
conditions for (2.9)-(2.14) and hence for (2.1)-(2.6), respectively. In detail:

1. Applying Corollary 2.1 on (2.9) (with E = eiTP,X and Y = A;X 1), effecting a Schur
1 1 1
complement and the congruence diag(A>,A; *1,, A1, A*X ~1) shows that (2.19)

implies (2.9) upon the redefinitions

D,' = ll'D,', VV, = AlVVl (227)

2. Effecting the congruence diag(1,1,,,X~7) on (2.10) shows that it is equivalent to
(2.20).

3. Applying Corollary 2.1 (with E = eiTPrX and Y =7X~!) on (2.11), implementing
o _1 1
the congruence diag(y’,?; zln,)/fg_%) shows that (2.21) implies (2.11) upon the
redefinition

fi = s (2.28)

4. Effecting the congruence diag({ _%In, 4 X ~T) shows that the second inequalities in
(2.12) and (2.22) are equivalent while the third inequality in (2.22) is { times the
third inequality in (2.12). Effecting the congruence diag(I,, 1,Q) and applying Corol-
lary 2.1 on the first inequality in (2.12) (with F=Q and Y ={ X ') followed by a Schur
complement, the congruence diag({ _%In, 4 -2 ¢ _%In) shows that the first inequality
in (2.22) implies the first inequality in (2.12) since { ' > 2 — ¢ for all { > 0 upon the
redefinitions

0:=¢'0,D,:=¢{D,. (2.29)

5. For the first inequality in (2.13), effecting the congruence X ~7 and then using a Schur
complement shows that (2.23) is equivalent to (2.13).

6. Applying Corollary 2.1 (with £ = eiTPrX and Y =v;X~!) on (2.14) and implement-
1 1
ing the congruence diag(v;?,v; *I,,v?1,) shows that (2.24) implies (2.14) upon the

107
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redefinition

F, = Vv;F,. (2.30)

n
Finally, (2.25) and (2.26) follows from 1-6 above and the fact that det(Z) < (%) for

any n X n positive definite matrix Z. [l

Note that the optimizations derived in the above theorem have variables X, K, Q_%, g, Q,
DZ9 D9 Q_]7 A’i» Di9 ﬁ/i’ ,ilia ’}/ia Vi, FA; for l E jm’ E]’ G] for ,] E =ﬂmf-

Remark 2.3. The conservatism introduced by the linearization in Theorem 2.2, compared
to Theorem 2.1, can be traced back to the use of Corollary 2.1 and to the choice of the
initial polytope & (P,,b,). Note that we restrict % for a tractable solution. Although this
restriction can be relaxed, the resulting optimization becomes nonlinear. We present one
possible relaxation in Theorem 2.4 below, where the nonlinearity involves a scalar variable
and is thus tractable. In our examples, we used the vector of ones for b, and the regular
polytope with 2m faces for P,. Since P = P,X, then X provides scaling and rotational degrees
of freedom. Another possible choice of & (P,,b,) is outlined in the next theorem.

While the existence of polytopic RCI sets is not in general guaranteed - see [12, 8] for more
details - the next result, based on an idea in [14], gives conditions which guarantee the
existence of the initial solution in Theorem 2.2 satisfying the invariance and inner bounding
ellipsoidal conditions (2.1) and (2.3), respectively, (which correspond to conditions (2.19)
and (2.21) in Theorem 2.2, respectively) in the special case of no disturbances, uncertainties,

¢, output or initial state constraints.

Theorem 2.3. Suppose that ||A+ BK||*> < n~! and let m = In where | is any integer greater
than 0. Let b, € Z™ be the vector of ones and let P, = [UIT UZT]T e Z™" for any
orthogonal U; € #"*". Then there exist X € B and K € ™" such that

2Niel b, —bIDib, Aiel P, 0

vie s, 3| M0 | « R4+XT AX+BR| >0,
* * PI'D;P,
and (2.21) are satisfied.

Proof. Let X =1, K = K and Q = I, and, for every i € .%,, define the unique integers /;
and n; such that 1 <[; < 1,1 <n; <n,i = (I; — 1)n+n; and define D; = %(elielTi) ®1, and
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Ai = [l = % = 1, where ® denotes the Kronecker product. Then

1 U, o
Li=|x 2I A+4BK|.
* ok lIn

Using an upper Schur complement,

1+ U7 (I—enel U, A+BK
L -0 l’( i)Vl )
i * zln
1 A+BK| [U(I—enel)U;. 0
& ! i (= emen)Uy = 0.
_* 2],1 * 0
Therefore L; = 0 since
I A+BK
|IA+BK|*<n e X ,
nln
and Ul,-T (I— e,,ie,T”)Uli >~ 0. A similar procedure proves that (2.21) is satisfied. [

Remark 2.4. Note that if (A, B) is controllable, there exists Q€. such that (A+BK)T Q(A+
BK)=<Q/n. Letting Q=T T~ effecting the similarity transformation (A,B)—(T'AT,T~'B),
and redefining the problem appropriately, shows that we can assume, without loss of gen-
erality, that ||A+BK||> <n~'. Although Theorem 2.3 can be applied to obtain an initial
solution, our experience indicates that the solution of Theorem 2.2 gives a much better ini-
tial solution. We only give it to show that, under certain conditions, the existence of our

initial solution is guaranteed.

The following theorem provides a possible relaxation for the restriction on % (see Re-
mark 2.3).

Theorem 2.4. Let all the definitions be as above, condition (2.9), hence (2.1), is satisfied if

20,eTb,~bTDib—d™Wid Mie’P—ae’PXT 0 0 0 |
a>0 * X+XT 2Xv;aa B, A
Vi€ g3 /Il'>0m * * 22,00 0 0 |=0.
We g™ * * * VIwy o
* * * x PID;P,

2.31)
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Proof. Implementing Corollary 2.1 for the invariance condition (2.9), with
E=ePX, Y =2X"'-X"lon?xT,

where v; is any vector such that eiTPrvi = 0 (otherwise, it is not difficult to show that (2.31)
offers no advantage over (2.19)). For simplicity, we choose v; = P! ¢;/||P¢;|| . Then effect-
ing the congruence

diag(AZ A 21y, A2 1 APXY)

1 1

and Schur complement for the (2,2) entry shows that (2.31) implies (2.9) upon the redefini-
tions Dl' = AD;, VAVZ = AW, ]

This relaxation introduces a variable o which makes the resulting invariance condition non-
linear. Note that, in the limit, as &« — 0, then (2.31) (after removing the third block rows and
columns) is the same as (2.19). It follows that if (2.19) is not feasible, it may be possible
that (2.31) is feasible for some o > 0. This may reduce the conservatism to some extent.
Since the NLMI in (2.31) is linear for a given & and since « is a scalar, it is tractable to use
a gridding on « and a simple search algorithm to find a feasible solution to (2.31).

2.4 Update Computation Algorithm

Once an admissible initial triple (P, b, K) € W is obtained, this section presents an algorithm
to update the solution based on the following result.

Lemma 2.1. LetL,L € #™*" and D,D € /" Define

LD =L"D7'L+L"D'L-L"D"'DD7'L, (2.32)

Mp:=L"D7'L. (2.33)
Then N, p = .,%LL’[? and Ny p = ﬁ;g. Hence,
(ALe #™"De ST Np- 0} = {ILe X" De ST Nop = Ly -0},

Proof. The proof follows from the identity

Mp=Lp+L-DD'L)'D"(L-DD'L). (2.34)
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]

Remark 2.5. Note that if .#1 p is any linear matrix function of L and D, then the linear
matrix equation My p + ff g =0 is the Newton update for the nonlinear matrix equation

A1 p + N p=0 from the initial approximation L,D [47].

The next result extends this idea to derive Newton—like updates for the nonlinear matrix
inequalities of Theorem 2.1 starting from the initial approximations given in Theorem 2.2.

Theorem 2.5. With all definitions as above and N.. and Z.." as defined in (2.32) and (2.33),
respectively, let (P,b,K) € W. Then

1. Suppose that (P,b,K,D;,W;),Vi € .y, satisfy (2.9). Then

-1
—1 ; ~D._1 b W gLi(PaK):Fi(D,‘ )
Viefm,ﬂ[%' Eﬁ,ﬂ: Db Wit ek i, =0, (235
€7 EL/(P,K) I,
where E = [ —1, I, 0],F;(D;) = diag(l,,,I,,D;),
D;! b 0 0
. x 2e'b—d™Wid 0 0
'%I(Dl 7b7Wl'): )
* * VIw,v 0
* * * 0
and
0Ple; 0 0O
L{(P,K)= |0 0 B, AK|
00 0 P

Furthermore, (2.9) and (2.1) are satisfied by

(P,b,K,Di,VVi)::(P,b,K,Di,Wi).
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2. Suppose that (P,b,K,E;,G),Yj € Iy, satisfy (2.10). Then
E;! b 0 0
_ 2T f—d"Gijd e'D, eTCK
. E;'eor e jaepEw €
VJ S ﬂm‘f,,EI GJJ c gilw ] . * * VTGJV 0 | > 0. (236)
PE;
i * * * .,?P’E;, |
Furthermore, (2.10) and (2.2) are satisfied by
(P,b,K,Ej,Gj) = (P,b,K,Ej,Gj).
3. Suppose that (P,b, u;, Q),Vi € Iy, satisfy (2.11). Then
2eTb—p; e'P 0
vie 3| M0 2 “3| =0 (2.37)
"Tleres R |

* *

Furthermore, (2.11) and (2.3) are satisfied by

(vanuiaQ) = (P7b7y'i,Q)'

4. Suppose that (P,b,K,Q,D;) satisfy (2.12). Then

#iln

0 0 AKX
SR Qo I D!
3 [ Q—] +m ] * rIm2 Cg }O, [ D%P’Df_ll >O, [
D €T .. .,%1”’QQ * e *

Furthermore, (2.12) and (2.4) are satisfied by

(P7b7K7Q7DZ) ::(P7b7K7Q7DZ)'

5. Suppose that (P,b,Q,

) satisfy (2.13). Then

¢ b] = 0. (2.38)
r

(2.39)
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Furthermore, (2.13) and (2.5) are satisfied by

(P,b,Q0,D) := (P,b,Q,D).

6. Suppose that (P,b,F;),Vi € .#,, satisfy (2.14). Then

26Tb—bTFby P
A RO Y (2.40)

Vie I,,3F; € 27°: . PTE P
oL'ilo

Furthermore, (2.14) and (2.6) are satisfied by
(P,b,Fi) = (P,b,Fi).
1

Hence, if Q"2 and O are solutions to the optimization problems in (2.25) and (2.26), re-
spectively, then

1 1
max logdetQ 2 | >logdetQ 2, (2.41)
P.b.K sfUE SfeE
(2.35),(2.36),(2.37),(2.38)

min —logdetQ | <—logdetQ. (2.42)
P.b.K
(2.35),(2.36),(2.39),(2.40)

Proof. The proof is essentially an application of Lemma 2.1, congruences, Schur comple-
ments and some re—definitions to show that (2.9)-(2.14) imply (2.35)-(2.40), which in turn
imply (2.9)-(2.14) (with bold variables) and therefore (2.1)-(2.6) (with bold variables), re-
spectively, from Theorem 2.1. In more detail:

1. Effecting an upper Schur complement on b’ D;b, a manipulation shows that (2.9) is
equivalent to

///,-(Dl._l,b,VI/,-)+</I/Li(R K)E(Di_l)—L,-(P,K)TETEL,-(P,K) = 0. (2.43)

The result follows by applying Lemma 2.1 on the second term and a Schur comple-
ment on the third.
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2. This follows by applying a Schur complement on b'E jband Lemma 2.1 on A, -1 =
™
PTE;Pin (2.10).

3. This follows by applying Lemma 2.1 on t/ij.( 001 = Qu; and taking a Schur comple-
ment in (2.11). B

4. The result follows by applying Lemma 2.1 on .47 o = Q! and N PTD_P and

D! =
a Schur complement on the third inequality in (2.12).

5. The second inequality in (2.39) and (2.13) are equivalent using a Schur complement
argument. The result follows by applying Lemma 2.1 on the term Ap 51 = PTDP in
the first inequality in (2.13).

6. The result is trivially satisfied since (2.14) is linear in the variables.
Finally, (2.41) and (2.42) follow from 1-6 above. [

Note that the variables in the optimizations of the above theorem are emphasised in bold.

Remark 2.6. Note that taking D; ! JE ]71 ,DZ_1 ,Dfl as the update variables allows us to use
Lemma 2.1 to ensure recursive feasibility, that is, the volume of the updated inner/outer
approximation to the maximal/minimal RCI set is at least as good (large for maximal and
small for minimal sets) as that of the previous set. It also allows us to use b as a variable,
thus improving the updated solution. Our numerical experience, part of which is reported
below, as well as Remark 2.5, suggest quadratic convergence, although a formal proof of

this is beyond the scope of this work.

2.5 Solution algorithm

The following algorithm summarizes our solution.

Algorithm 2.1. Given system (1.1), F = P (I, f) and sets W = 2 (V,d), P (Py,by) and

parameterr.

1. Initial data: Choose m > n, initial polytope &?(P,,b,) and tolerance level tol.

2. Initial solution
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(a) Use Theorem 2.2 to solve the convex SDPs in (2.25) or (2.26).

(b) Define D;,W;,Q,D, and u; from (2.27)-(2.30) so that (2.9)-(2.10), (2.11) or
(2.13), (2.12) or (2.14) are satisfied.

3. Update Solve the optimizations in (2.41) or (2.42).

4. Stopping condition

(a) If det(Q ") — det(Q™") < tol (for maximization) or det(Q~') —det(Q ') < tol

(for minimization), stop.

(b) Else update Z:=Z, where Z denotes a variable in the optimizations in (2.41) or
(2.42), and go to step 3.

5. End

2.6 Norm-Bounded Uncertainty

Previous sections provide an efficient algorithm to calculate the approximate maximal/minimal
RCI set for discrete time system subject to additive disturbance. In this section, we extend
these results to systems subject to structured norm-bounded uncertainty and additive distur-
bance as follows:

xt A B B, X
fl=1]1C D D, u |, u=Kx, (2.44)
Z C2 D2 0 w
with
xt A" X A"
flel|Zzmv|, ule| % |,
z KA w H"

where A and B belong to the norm-bounded structured uncertainty set:

Q:={(A,B):[AB|=[A B|+B,A[C, D, |Al| <1, Ac AC Z"*"4}, (2.45)
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where A, B, B,,,C, and D, are given matrices with appropriate dimensions, and where it is as-
sumed that the subspace Z associated with the structured subspace A defined in Lemma 1.2

may be characterized. All the other notations and constraints are defined as before.

The following subsections will provide nonlinear and linearized conditions for the existence
triple (P,b,K) € ¥ for uncertain systems, and the optimization algorithm to obtain the ap-
proximate maximal/minimal RCI set.

2.6.1 Robust control invariant Set

The invariance and 773 constraint requirements become

xe Z(P,b)
wew =x" € P (Pb) (Invariance) (2.46)
(A,B)eQ

{xegZ(P,b)

(A.B)eo } = J:= Z 2k |? < 7? (4 constraint) (2.47)
’ k=0

respectively. All the other requirements are the same as (2.2)-(2.6) since they do not involve

the uncertain parameters (A, B) .

For given system (2.44), sets Q, % ,. %, P (Py,byp), parameter r and m > n, and with ¥ :=
R} B x ", we present convex algorithms, based on semidefinite programs (SDP),

to solve the optimizations:

max logdetQ_l, (2.48)
(Pb,K)e¥ -
(2.46),(2.2),(2.3),(2.47)
min logdetQ 1. (2.49)
(P,b,K)eV¥

(2.46),(2.2),(2.5),(2.6)

A triple (P,b,K) € ¥ satisfying either of the constraints in (2.48) or (2.49) will be called
admissible.
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2.6.2 Nonlinear formulation

The following theorem uses Theorem 1.1 and Lemma 1.2 to derive invariance and 7% con-
straint conditions, in the form of NLMIs, for the existence of an admissible triple (P,b,K) €
v,

Theorem 2.6. Let all definitions be as above and denote

AX .= A+BK, cX:=Cc+DK,
CK:=C,+ DK, C¥ =G+ DiK.

Then for (P,b,K) € ¥ we have:

1. The invariance condition (2.46) is satisfied if (and only if when n, = n, and A =

%npxnp)
2eTb-bTDib—d"Wid | IP| B, B,S; B,R: A¥
_ Die D7} VvIwv 00 0
Vie 4y, 3 MG@TW : . * S: 0 0 > 0.
(Si.T;,Ri)€ % x xT Cf
i * * % PTD,P ]
(2.50)
2. The F6—-norm condition (2.4) is satisfied if
Q—B,SB], 0 B,R AX
Qe x o 0 Ck 0 I .
3 D, e 9" : =0, > 0,r > b" D.b.
(S.T,R) € 2 * x T CK *x PTD_P
* * x Q7!
(2.51)

Hence solutions to the optimizations (2.48) and (2.49) can be obtained by solving the non-
linear SDPs

max logdetQ !, (2.52)
(P,b,K)cW¥ -
(2.50),(2.10),(2.11),(2.51)
min logdetQ~ !, (2.53)
(Pb,K)e¥

(2.50),(2.10),(2.13),(2.14)
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respectively.
Proof. The proof is an application of Lemma 1.2 and Farkas’ Theorem. In more detail:

1. Condition (2.46) is equivalent to the requirement that for all i € .#,, and for all (A, B) €
Q,

{ (eJT~Px)2 — (eJT~b)2 <0,Vje Iy

T -~
(T Vw)2 = (el d)? <0,k € i, } = 2¢; (b—P((A+BK)x+Byw)) 0.

Similar to the proof of Part 1 of Theorem 2.1, applying Farkas” Theorem and then,

additionally, employing Lemma 1.2 as well as some manipulations gives the result.

2. Similar to the proof of Part 4 of Theorem 2.1, for any x € ?(P,b), a minor extension
of the results in [30] gives the first inequality in (2.51) and

r—x'Q x>0 (2.54)

as sufficient conditions for J < r?,¥(A,B) € Q. Theorem 1.1 then gives the second
and third inequalities in (2.51) as sufficient conditions for (2.54) to be satisfied for all

xe P(Pb).

Finally, (2.52) and (2.53) follows from 1-2 above and Theorem 2.1. [

2.6.3 Linearization and Initial Computation

The following result gives sufficient invariance and .73 constraint conditions for the admis-
sibility of the triple (P.X,b,,K) in the form of LMIs by using Corollary 2.1.

Theorem 2.7. [34] Let all the definitions be as above and let P = P.X and b = b,, where
P. € Z™" and b, € #™ are given and where X € Z#"*". Denote

X=x" K:=KxX ', A:=AX +BK,
C:= CX—FDI%, éq = CqX—FDqI%, éz = C2X+D213.

Then
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1. Condition (2.50), hence (2.46), is satisfied if

22,eTb—bIDib,—d™Wd AP, 0 0 0
Ai>0 * X+XT-B,S;BT B, B,R; A
: Dic 7+ VIV 0 0 |=0
Vie 4,3 WIAE -A@TW * * V0 C .
(5.7.R) ez * * * L G
* * x  * PIDP,
(2.55)
2. Condition (2.51), hence (2.47), is satisfied if
A opT D AK
>0 0-B,SBI 0 B,R AA
3 Q¢ SN * 2-8)rl 0 G 0
ADZA GA-@T * * T Cq ’
(5,1,R)e%# * * * X+XT-0
0 | =0,¢r>bID.b,. (2.56)
| x PID.P,

Hence initial solutions to the optimizations (2.48) and (2.49) can be obtained by solving the
convex SDPs

max logdet Q_%, (2.57)
X, K o

(2.55),(2.20),(2.21),(2.56)
min trace(Q71), (2.58)
X, K

(2.55),(2.20),(2.23),(2.24)

respectively.

Proof. The proof consists in manipulating each of (2.50)-(2.51) into the form of statement
(2) of Corollary 2.1 and then use the corollary to show that (2.55)-(2.56), after some ma-
nipulation, correspond to statement (1) with an appropriate Y, and are therefore sufficient
conditions for (2.50)-(2.51) and hence for (2.46)-(2.47), respectively. In detail:

1. Applying Corollary 2.1 on (2.50) (with E = e/ P.X and Y = A, X —1), effecting a Schur
JR| 1 _1 1
complement and the congruence diag(A;”, A; *In, A7 I, A; 21y, A7 X ~1) shows that

1 l
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(2.55) implies (2.50) upon the redefinitions

Dj = XDy, Wi = W;, Si = 4,7'Si, T =2, 'T;, R := A, 'R (2.59)

2. Effecting the congruence diag({ _%In, 4 X ~T) shows that the second inequalities in
(2.51) and (2.56) are equivalent while the third inequality in (2.56) is { times the
third inequality in (2.51). Effecting the congruence diag(ly,1,1,,,Q) and applying
Corollary 2.1 on the first inequality in (2.51) (with F =Q and ¥ = {X ") followed by
a Schur complement, the congruence diag({ _%In, 4 -2 ,C _%Inq, 4 _%In) shows that the
first inequality in (2.56) implies the first inequality in (2.51) since {~! > 2 — ¢ for all
¢ > 0 upon the redefinitions

0:=¢1'0,D,:=¢D, $:=¢7'S, R:=¢ 'R, T:=¢7'T. (2.60)

Finally, (2.57) and (2.58) follows from 1-2 above and Theorem 2.2, and the fact that det(Z) <
n

( %) for any n X n positive definite matrix Z. O

Remark 2.7. Note that the relaxation method stated in Theorem 2.4 can be extended for sys-
tems subject to norm-bounded structured uncertainties by employing Lemma 1.2, although

we omit the details.

2.6.4 Update Computation Algorithm

The following theorem gives the update procedure on the invariance and 7% constraint once
an admissible initial triple (P,b,K) € ¥ is obtained.

Theorem 2.8. With all definitions as above and .. and Z.." as defined in (2.32) and (2.33),
respectively, let (P,b,K) €Y. Then

1. Suppose that (P,b,K,D;,W;,S;,T;,R;),¥i € 9, satisfy (2.50). Then

%(Di—l7b7wi7si7Ti7K)

. D; ‘€ ‘%‘T Li(PK,S;,R:),F;(D; ")
VZEjn/“H WZG.QJF . _I_ng(P?K,S”Rl)’E(Dl_l) >_07 (2.61)
(Si7Ti7Ri) €A

EL(P K,S;.R;) A
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where E = [ — 1, I, 0],F;(D;) = diag(l,,,I,,D;),

D! b 0 00 0]
x 2e'b—d™Wid 0 00 0
VIW,y 0 0 0

* 8§ 0 0
* * T; Cff
* * % 0]

M,(D7 bW, S, T K) =

b S D S
b S D S o

and

OPe; 0 0 0 O
L{P,K,S;,R;))= |0 0 B, B,S" B,R; AX|-
00 0 0O o0 P

Furthermore, (2.50) and (2.46) are satisfied by

(RbaKvDiaW7Si7E7Ri)::(P7baKaDiaWi7SiaTi7Ri)-

2. Suppose that (P,b,K,Q,D.,S,T,R) satisfy (2.51). Then

[Q—B,SB! 0 B,R AK ]
Qe e
3| Dilegy |: x |~ 0
€ q
(S,T,R) B * * T C
0 1 )
pp-t | =0, |7 = 0. (2.62)
| "%PD;1 T

Furthermore, (2.51) and (2.47) are satisfied by

<P7b7K7 Q?DZ’S7 T7R) = (P?b’K7Q7DZ7S7T7R)'
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Hence, if Q’% and Q are the solutions to the optimization problems in (2.57) and (2.58),

respectively, then

1 1
max logdetQ 2 | >logdetQ 2, (2.63)
P b.K S0 S0k
(2.61),(2.36),(2.37),(2.62)

min —logdetQ | < —logdetQ. (2.64)
P.b.K
(2.61),(2.36),(2.39),(2.40)

Proof. The proof is essentially an application of Lemma 2.1, congruences, Schur comple-
ments and some redefinitions to show that (2.50)-(2.51) imply (2.61)-(2.62), which in turn
imply (2.50)-(2.51) (with bold variables) and therefore (2.46)-(2.47) (with bold variables),
respectively, from Theorem 2.6. In more detail:

1. Effecting an upper Schur complement on b7 D;b, a manipulation shows that (2.50) is

equivalent to

j/i(Di_l;b?‘/Vi’Si’]}’K)+‘/VIJ,-(RK,S,~,R,'),IT,~(D;1)_Li(P’Kv S,‘,Ri)TETELi<P7K7 S,',R,') > 0.
(2.65)

The result follows by applying Lemma 2.1 on the second term and a Schur comple-
ment on the third.

2. The result follows by applying Lemma 2.1 on .47 g = Q! and N p-! =PTD,P and
a Schur complement on the third inequality in (2.62).
Finally, (2.63) and (2.64) follow from 1-2 above and Theorem 2.5. ]

2.6.5 Solution algorithm

The following algorithm summarizes our solution for systems subject to norm-bounded

structured uncertainty.

Algorithm 2.2. Given system (2.44), .7 = P (Ly,, f) and sets Q, % = P (V,d), P (Py, bo)

and parameter r.
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1. Initial data: Choose m > n, initial polytope &?(P,,b,) and tolerance level tol.

2. Initial solution

(a) Use Theorem 2.2 and Theorem 2.7 to solve the convex SDPs in (2.57) or (2.58).

(b) Define D;,W;,S;,T;,R;,Q,D.,S,T,R and u; from (2.59)-(2.60) so that (2.50) and
(2.10), (2.11) or (2.13), (2.51) or (2.14) are satisfied.

3. Update Solve the optimizations in (2.63) or (2.64).

4. Stopping condition

(a) If det(Q~ 1) — det(gfl) < tol (for maximization) or det(Q~!) — det(Qil) <ol

(for minimization), stop.

(b) Else update Z:=Z, where Z denotes a variable in the optimizations (2.63) or
(2.64), and go to step 3.

5. End

2.7 Polytopic Uncertainty

Since our algorithms are linear, in the case of polytopic uncertainty, that is, for system (2.44)
if (A,B) € Q where
_ _ P

)4
Q:={(A,B):[AB]=Y ailA; Bi],) ai=1,0;>0},
i=1 i=1

and where A; € """ and B; € "™ are given matrices for all € .#,, all our algorithms are
applicable except that (A, B) are replaced by (A;, B;) and the constraints need to be satisfied
foralll € .7,.

Remark 2.8. Note that Theorem 2.3 can be extended to quadratically controllable systems
[57], which would allows us to obtain an initial solution for systems subject to polytopic

uncertainties.
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2.8 Examples

This section presents numerical examples that illustrate the algorithms developed in this
chapter.

2.8.1 Example 1

In this example, we demonstrate the improvement in the RCI set accuracy as we increase the

complexity of polytope. Consider the following discrete-time system from [11] with V =1,

f=e,d=1and:

1 1] 0 1
A= 5 B = P BW: 5
0 1 1 1
0] [0
c=10o 1|, b=|o|, D,=0
0 0] 1

There is no .7 constraint for the system, and we calculate the approximate maximal RCI
set. The following table gives the final value of logdet Q" computed using Algorithm 2.1
as the complexity of the polytope (measured by m) increases.

m 2 3 6 10
logdetg_1 0.6825 | 1.2668 | 1.2680 | 1.2684

Table 2.1 Improvement in the RCI set accuracy for increasing m.

The volume for m = 3 is much larger than for m = 2, although for m > 3, there is no
significant increase in the volume. The resulting approximation to the maximal RCI set
when m = 2 is shown in yellow (dashed border), and the final polytopic RCI set with m =3
is shown in red (solid border) in Fig.2.1. The box in white color and dash-dot border shows
the state constraints. For illustration, a state trajectory, which starts from the edge of the
final RCI set is shown (dashed blue line), and the red cross marks represent the system

states. Only one state trajectory for m = 3 is plotted for clarity.
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Fig. 2.1 Maximal polytopic RCI set with m = 2 (dashed border), m = 3 (solid border), state
constraints set (dash—dot border) and a typical state trajectory (crosses).
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2.8.2 Example 2

Consider the following example from [69] (originally from [28]) withC=0,D =1, D,, =0,
f = e and:

~ 10.8876 —0.5555 B_ —0.1124
~10.5555  1.5542 | | 05555

Note that the system is without disturbance and state constraints. Here, the actuator satura-
tion is treated as input constraints, which corresponds to the first case in [69]. The magenta
ellipsoid in Fig.2.2 is the ellipsoidal approximation to the maximal RCI set solved by the
method proposed in [69] and [28]. Our initial maximized full-complexity polytopic RCI set
(shown in yellow with dashed border) gives better precision than the ellipsoidal set. The
volume of the resulting RCI set is increased by implementing the update procedure in Sec-
tion 2.4, and the final RCI set is shown in red (with solid border) in Fig.2.2. An illustrative
state trajectory (shown with dashed blue line and red cross mark) starts from the margin of
the final RCI set and stays inside the set for all future times. Without the presence of dis-
turbances, the state trajectory converges to the origin under the effect of the state feedback
controller.

2.8.3 Example 3

This example illustrates our approach for a system subject to polytopic uncertainty. Con-
sider the double integrator example in [48]. We set m =30 and & (P,,b,) a regular hex-
acontagon. Figure 2.3 shows the initial (in yellow, with solid border) and final (in red,
with solid border) inner approximation to the RCI set, with the final control law given as
K =[-0.0794 —0.0781]. The blue cross marks and the dashed green line shows the tra-
jectory of the system states under the feedback control law (only one trajectory is shown
for clarity). The white box with dash-dot border shows the output constraints. Figure 2.5

displays the convergence of logdet Q_% with the update times N (blue, dashed line).

For comparison, the low-complexity (m = n = 2) inner approximation to the RCI set is also
shown in Figure 2.3 (in blue color and with dashed border). Note that considering a full-
complexity RCI set leads to a much larger volume. [48] gives an optimal solution under

the control gain K = [-0.3 —0.1] as shown in green color with dotted border in Figure
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Fig. 2.2 Initial (solid border) and final (dashed border) maximal polytopic RCI sets, ellip-
soidal approximation using methods of [69],[28] and a typical state trajectory (crosses).
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2.3. Our result shows that the volume of the RCI set can be greatly increased by treating the

feedback gain as a decision variable in the optimization.

Let
0.1 0 0
G=10 01|,D,=1{0 |- (2.66)
0 0 0.1

Using (2.12), the J#—performance level, defined in (2.4), for the final inner approxima-
tion to the maximal RCI set is given by Y = 6.36. We can improve the performance level
by, for example, setting ¥ = 3 and incorporating the .7% constraint condition (2.12) in our
algorithm. The final inner approximation to the RCI set with the improved performance
requirement is shown in Figure 2.3 (in magenta color and with dash-dot border). This illus-

trates the compromise between the volume of the RCI set and the expected performance.

2.8.4 Example 4

This example illustrates our approach for a system subject to norm-bounded structured un-
certainty. Consider the example of a continuous-time DC motor system with norm—bounded
structured uncertainty proposed in [14]. We discretize the system with a sampling period
T =0.1s and express the discrete-time system in the form of (1.1) and the uncertainty in the
form of (2.45) with appropriate nominal system (A, B), distribution matrices B, C, and D,

and uncertainty set

A= {diag(3112,52), 0 € X, ’51| < 1}.

We also incorporate an additive disturbance and the state and input constraints are integrated

into our output constraint by setting
0.1 T 0 01 0
Bw - y Cc = )
0.1 01 0 O
DT = [O 0 0.1} , Dy, =034, V=1, and d, and f as vectors of ones with appropriate

dimensions.

Set m = 8 and & (P,,b,) a regular hexadecagon. Using Algorithm 2.1 to find an outer
approximation to the minimal RCI set, we obtain the initial and final sets as shown in Fig-
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10

[ Jinitial
[JFinal | 1
pogim =2
AN - |
S Fix K

1P, 9)

L2
=

L1

Fig. 2.3 Initial (yellow) and final (red) polytopic RCI sets, final polytopic RCI set with
m = 2 (blue), final polytopic RCI set with 773 constraint (magenta), final polytopic RCI set
computed by [48] with a fixed controller (green), the output constraint (white) and a typical
state trajectory (crosses).
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1r ]
0.5+ i
S 0r i
0.5+ .
/
[ ]Initial
[ Final
=i Constrained
-1r |
F 3P (P bo)

-0.6 -04 -0.2 0 0.2 0.4 0.6

Fig. 2.4 Initial (yellow) and final (green) polytopic RCI sets, the final polytopic RCI set with
initial state constraint (red), final polytopic RCI set with m = 2 constraint (blue), the initial
state constraint (white), and a typical state trajectory (crosses).
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ure 2.4 with the final control law as K = [—9.9707 —0.0588]. The convergence rate of
log detQ_1 with the update times N is shown in Figure 2.5 (red, solid line).

We can show the effect of including the initial state constraint (2.6) with

P _ 4.167 5.159 0.397 3.571
0 [4.167 0.397 5.159 —3.571] ’

and bg as the vector of ones with appropriate dimensions. The final outer approximation
to the minimal RCI set subject to the initial state constraint is shown in Figure 2.4 (in red
color and with dash-dot border; the initial state constraint is shown in white color with dotted
border). Under this requirement, the superiority of using full-complexity RCI set is obvious.
For comparison, the outer approximation to the minimal low-complexity (m = n = 2) RCI

set is also shown in Figure 2.4 (in blue color and with dashed border).

To illustrate the invariance condition, the blue cross marks and the dashed green line shows
the trajectory of the system states under the feedback control law (only one trajectory is
shown for clarity). The trajectory is representative since it starts from the edge of the set

and is produced using the worst case disturbances and uncertainties.

2.9 Conclusion

We have proposed a novel scheme, based on convex/LMI optimizations, for the computa-
tion of full-complexity inner/outer approximations to polytopic maximal/minimal RCI sets
and the corresponding feedback control law (K) for linear discrete—time systems subject to
additive disturbances and output, initial state and performance constraints, as well as model

uncertainties.

This chapter first derives necessary and sufficient conditions for the existence of an admis-
sible RCI set and feedback gain matrix, that are, in general, nonlinear and nonconvex. A
corollary of Elimination Lemma is then used to relax the problem and obtain sufficient LMI
conditions, thus rendering the optimization problem tractable. An initial invariant polytope,
and control law K, is first obtained and the set-volume is then iteratively optimized by solv-
ing convex/LMI optimizations. These iterations are reminiscent of Newton updates which
appears to promote good convergence speed. Furthermore, the proposed scheme is able to
handle both structured norm-bounded as well as polytopic model uncertainties.
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N (Example 4)
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5 T T T T T T T T T T T
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N (Example 3)

Fig. 2.5 Convergence Rates for Examples 3 (blue) and 4 (red).
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Unlike many of the schemes in the literature, the algorithm places no restriction on the
complexity of the invariant polytope and allows for arbitrarily large values of m. This, cou-
pled with the fact that K is treated as a variable of optimization, results in larger/smaller
inner/outer approximations to the maximal/minimal RCI sets. This is reflected in the results
from the numerical examples, which show that the proposed scheme can yield a polytopic
RCI set with a substantially improved volume as compared to other schemes from the liter-

ature.



Chapter 3

Robust Control Invariant Sets with
Asymmetric Constraints

The computation algorithm proposed in the previous chapter considered symmetric con-
straints only, while in many control cases, system constraints are asymmetric, especially in

tracking problems.

In this chapter, consider the linear discrete time system subject to additive disturbance and
asymmetric constraints, we propose an algorithm to compute full-complexity RCI sets,
where arbitrarily large number of faces can be specified for the polytope and the center
of the RCI set is shifted from zero point, thereby enabling a less conservative and more

accurate inner/outer approximations to the maximal/minimal RCI sets.

3.1 Problem Description

Consider the linear discrete time system as described in (1.1) subject to asymmetric output
and 1nitial state constraints. Since the output constraints are asymmetric, we shift the center

of the invariant sets from zero point by defining the invariant sets in the following form:
P(Pb,x;)={xeX": —b<P(x—x;) <b},

where 0 <b e %™, P € ™", m > n, and x. € Z".
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For given system (1.1), disturbance set # defined in (1.2)-(1.3), (asymmetric) output con-
straint set F iy, :={f € Z" : f<f< £} with f<0< f € Z™, (asymmetric) initial state
constraint set Pagy(Po,bo,by) := {x € Z" : by < Pox < by} with by < 0 < by € Z™ and
Py € ™", 74 performance bound r and m > n, and all the other notation as defined in
the previous chapter, we present convex SDP based algorithms to solve the following opti-
mizations to obtain an admissible quadruple (P, b,x;,K) € ® := Z"™*" x " x B" x B"*"
and approximate maximal/minimal RCI set & (P, b, x.):

max logdetQ_1 3.1
(P,b,x.,K)eD -
€ P (P,b, .
s.t. {x (Pb,x) } = x" € P(Pb,x.) (Invariance) (3.2)
wew
€ P (P,b, .
{x (BB x) } = [ € Fayy (Output constraint) (3.3)
wew
107! 8(Q,x.) CP(P,b,x:) (Inner bounding ellipsoid) (3.4)
x€P(Pb,x;) = Jyp:=Y, ||z ||* < r? (4 constraint)  (3.5)
k=0
min logdet Q! (3.6)
(P,b,x.,K)e®
€ P (P,b, .
s.t. {x (Pb,xc) } =x" e P(Pb,x.) (Invariance)
wew
€ P (P,b, .
{x (B.b,x) } = [ € Fagy (Output constraint)
wew

30e St P(Pb,x.) CE(Q,x.) (Outer bounding ellipsoid) (3.7)
Pasy(Po,bo,by) € P(Pb,x.) (Initial condition constraint)  (3.8)

3.2 Nonlinear formulation

In this section, we derive conditions, in the form of NLMIs, for the admissibility of the

quadruple (P,b,x.,K) € ® under asymmetric output and initial state constraints.

The following result derives a nonlinear optimization algorithm to obtain an approximate
maximal/minimal RCI set & (P, b, x.).
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Theorem 3.1. An admissible quadruple (P,b,x.,K) € ® and an approximate maximal/minimal
RCI set & (P,b,x.) can be obtained by solving the nonlinear SDPs

max logdetQ~! (3.9)
(P,b,x;,K) €D -
[ fi(b,D;,W;,P,x.) e PB,, el PAK4xT PTD;P
s.t. * viwy 0 =0Vie 7y, (3.10)
* * PTD;P
-gj(b,Ej,Gj,P,xc) ejTDW €J~TCK+XCTPTEJ'P-
* vVIGv 0 =0,
* * PTEPp |
gj(b,Ej,Qj,P,xc) ejTDW ejTCK—xCTPTEJ-P
* viG,v 0 =0V €Iy (3.11)
* * PTEP
2ein+2eiTPxC—,u,~+chu,-Qxc el-TP+xCT,u,-Q OVie s, (3.12)
i x wiQ
[0 0 AKX 0 1
* rl CK| >0, ; =0, r>b'D.b. (3.13)
. ~ P'D.P
Lx x O
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min logdetQ~! (3.14)
(P,b,x.,K) € ®
[ fi(b,D;,W;,P,x.) e PB,, el PAK4xT PTD;P
s.t. * viwy 0 ~=0VYie Iy,
* * PTD,P

vVIGv 0 >0,

gj(b7Ej7Gj’P’xc) eJTDw eJTCK'i‘XZPTEjP
*
* * PTE;P

gj(b,Ej,Qj,P,xc) ejTDW ejTCK—xCTPTEJP
* ViGv 0 =0V €I
* * PTE,P
[ 1—bT Db—xT Ox+xT PT DPx. xT O—xT PT DP '
R P (3.15)
. PTbP-0
[2eTb+2eT Px +bLFiby el P+ L(bo+by)  FP
’ R0 G Z(TO bo"ER\ _vie s Gu16)
i * PIFpy
where D;,Ej, E;,D;,DED''; Wi, Gj,Qje.@fW; Wi € Z+; Q,0,0 € S Fr e 2 and where
AKX :=A+BK,
cK.=Cc+DK,
CcKX .= G+ DsK,

fi(b,D;,W;, P,x.) :=2e! b— b Dib — d” Wid + 2e! Px. + x! PT D;Px,.,
JE;,Gj,P.x;):=2e} f—b"E;jb—d" G;d+x. P'E;Px,,
G,,P.x;):=—2e} f~b"E ;b—d" Gd+x] P'E ;Px..

Proof. Condition (3.2) is equivalent to the requirement that for all i € .#,,,,

{ (T P(x—xc))?—(eTb)? < 0,V) € 7,

T
(e[ Vw)>~(eld)> <0.Yk € .7, } = 2¢; (b=P((A+BK) 3By w—xc)) = 0.

The result then follows from Theorem 1.1 based on the following identity

2€iT(P ((A+BK)x+B,,w—x;)—b)=— (b—Px+Px,) D, (b+Px—Px,)
—(d"Wid—wTVIWVw)
—a'N;a (3.17)
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where a! = [—1 wl xT}, and

2el b—bT Dib—d" Wid+2e! Px+x! PTD;Px. el PB,, el PAK+xI PTD;P
N;:= * viwy 0
* * P'D;P

For D; € 2" and W; € .@TW, the first and second terms on the RHS of (3.17) are nonpositive
for all x € Z(P,b,x.) and all w € #/, it follows that the invariance condition is satisfied if
N; > 0, which gives the result. This proves the sufficiency of (3.10), necessity follows from
Farkas’ Theorem.

Similarly, following Theorem 1.1 and some manipulations, we can prove that (3.11) is
equivalent to (3.3). The LMIs in (3.11) corresponding to the upper and lower bound re-
spectively.

Condition (3.4) and (3.8) are equivalent to the requirement that for all i € .#,,,

(x—x)T0(x—x.)—1<0=2el (b—P(x—x.)) >0,

T Pyx)?—(eThp)> <0
(ejT oxg (i] 0)2 = Vje I = Ze?(b—P(x—xc)) >0,
(€709)*—(ej Pox)* <0
respectively. Then (3.12) and (3.16) follow from Theorem 1.1.

For any x € & (P,b,x.), a minor extension of the results in [30] gives the first inequality in
(3.13) and
r—x'Q'x>0 (3.18)

as sufficient conditions for J,» < r>. Theorem 1.1 then gives the second and third inequali-
ties in (3.13) as sufficient conditions for (3.18) to be satisfied for all x € & (P, b, x.).

Condition (3.7) is equivalent to the requirement that

(eJT'P(x_xc))z - (ejT'b)z <0 v] S jm = 1- (x_xc)TQ(x_xc) > 0.

(3.15) is then obtained follows Theorem 1.1.

Finally, (3.9) and (3.14) follow from the above conditions. ]
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3.3 Linearization and Initial Computation

While Theorem 3.1 gives optimization algorithms for approximate maximal/minimal RCI
set Z(P,b,x.), and necessary and sufficient conditions for the the quadruple (P,b,x.,K) to
be admissible, the conditions are nonlinear. In addition to the nonlinearity forms in Theo-
rem 2.1, new nonlinear forms appear due to the introduction of the asymmetric constraints
and the variable x.. In this section, we propose a linearization algorithm involving the com-

putation of an initial solution.

We set
P(Pb,x;) = P(PX,br,x.) ={x€ %" : —b, < PX(x—x.) < b}

as an initial full-complexity inner/outer approximation to the maximal/minimal RCI set,
where b, and P, are given (see Remark 2.3), and where X € #"*" is a variable used to
reshape (rotate and scale) the polyhedral set defined by P, and x. is the centre of the RCI
set, which we take to be a variable.

The following two are corollaries of the Elimination Lemma (Lemma 1.1) and are used for
the linearization procedure.

Corollary 3.1. Given T € /!, E € Z"*P F € #P*" and % C #P*P. Consider the state-

ments:

T FT —Ey

1) M:= > 0 holds for someY € %'
(L YT +v f

(2) N:=T+EF+FTET »0.
Then (1) = (2). Furthermore, if % = %P*P, then (1) < (2).

Proof. Write M as M = Q+ RYST + SYTRT where

0 R T FT —E
| |

[TF =|F 01
Storx | [-=--- -
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S_I
7l_07

are orthogonal complements of R and S, respectively, the result follows from the Elimination
Lemma upon noting that REQR | =N and SEQS 1 =T. O

Since

1

R, = ET

Corollary 3.2. Given T € S Ec Z"P Fe """ He """, Zc " and & C ZP*P.

Consider the statements:

T EY H
(1) M:= |« YT +Y —F| =0 holds for someY € .
* * Z
T H+EF
(2) N:= TEM o,
* Z

Then (1) = (2). Furthermore, if % = %P*P, then (1) < (2).

Proof. Write M as M = Q+ RY ST + SYTR” where

T 0 HE
| |
O 'R 0 0 -—FiI
- = - — |
ST HT —FT 7 .10
L [ Fﬁf
0 1 0 %
Since
1 0 I 0
R, =|-ET 0|, S, =10 0],
0 1 0 I

are orthogonal complements of R and S, respectively, the result follows from the Elimination

Lemma upon noting that Ri OR| =N and

H

SLOSL= |
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The following result gives initial solutions to the optimizations (3.1) and (3.6) by deriving
sufficient conditions for the admissibility of the quadruple (P.X,b,,x.,K) in the form of
LMIs using Corollary 3.1 and Corollary 3.2.

Theorem 3.2. Let all the definitions be as above and P=P,X and b=b,, where P, € """
and b, € Z™ are given and where X € #"*". The approximate maximal/minimal RCI set
P (P,b,x;) and K € Z™*" can be obtained by solving the linear convex SDPs:

max log detQ*%

Xe, X, K

S.t.

Gi(ADiW;) 0 0 TNl P,
* VIw,yv 0 0 B!
* x PID:P, 0O AT |0, Vie S,
* * *  X+XT AT
* * * * X+X r
2¢! f-bTEjb,—d"Gjd ! D,, e!C xI+elC
* VIGv 0 0
_ =0,
* x PTEp. 0
i * * * X+X r
—2e! f~bTE;b,—d"G;d eI D,, el C xI—elC
* vIGgv o 0
— r =0, Vj €I,
* x P EP O
i * * * )A(-i—f( r
2vielb,—; yelP, 0
* X+XT Q1| =0,Vie Iy
* * il
A ar .
—B,SBI 0 A % )
=0 & =0T o [=0,8r>b/Deb,.
A P'D.P,
* * X+XT-0

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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min _trace(Q") (3.24)
Xe, X, K
-lA,-(ﬁ,i,lA)i,Wi) 0 0 xl xI Ll P,
" viwy 0 0 BT
s.t. * * PrTDiPr 0 AT =0, Vie g,
* * * X+)A( r AT
* * * * X+XT
[2e! f~bI Ejb—d" Gjd ¢! D,, eIC xI+el'C
* vIiGgv o 0
_ =0,
* * PrT EiP. 0
I * * *  X4XT
_—2ejT ]_C—brTE jbr—dTde ejTDW ej-Té xCT—ejTC’
* vigy o O |vo, Vie s,
* « PTE;P, 0 =S
* * * X—i—X’ r
SRR ]
_ | =0, 1> b Db,. (3.25)
.~ P'DP,
[2viel b+bi Eby 5 (bo+by)TFiPy xI—viel P,
* PIER I =0, Vi € I, (3.26)
L * * X +X r

where )L,',‘ai,’}/,', C,V,’ EX; Di,Ej,Ej,DZ,D egn,; VV,’,GJ',QJ- c g Q_%,QA, Q_l e S
F,' S .@_’f“ and X := X1, K := KX~ are the variables. Furthermore,

A:=AX +BK,

Cy :=CX+DaK, li(Ai, Dy,

é = CX"‘DIea
W;) := 2Aiel b, — bL Dib, —d" Wid.

Proof. The proof is similar to the proof of Theorem 2.2 except that it uses Corollary 3.1 and

Corollary 3.2 in addition to Corollary 2.1. In more detail:
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Applying the congruence

1 0 —x
0 I, O
0 0 I,

and then Corollary 3.1 on (3.10) (with ET = [eiTPrX 0 O}, F= [xC—AKxC Bw AK] and
Y = ;X" 1), then applying Corollary 3.2 (with ET = [ch 0 0] ,F=—(AKT and ¥ =

1 1 1 1 1
-1 . . 3 473 sv—1 77 -5
A" X), effecting the congruence diag(A, AL, ,A*X ™", A’I,,A; *I,) shows that (3.20)

1

implies (3.10) upon the redefinitions

Di = l,'D,', VV, = AlVVl (327)
Effecting the congruence
1 0 —x'
011, O
0 0 I

and employing Corollary 3.1 (with ET = [—e]T.CK 0 O} and Y = X 1) on the first LMI of
(3.11) and effecting the congruence

1
0 Inw
0 0 -1,

for the second LMI, and employing Corollary 3.1 (with ET = [e]T.CK 0 O} and Y =X1)
shows that (3.21) is sufficient for (3.11).

. I — : .
For (3.12), effecting the congruence [0 IXC] , applying Corollary 2.1 (with E=e! P,X and
n

1 1 1

Y =yX""), implementing the congruence diag(y?,¥; *I,, v} Q’%) shows that (3.22) implies
(3.12) upon the redefinition

i == Yildi. (3.28)

Effecting the congruence diag({ _%In, 4 X ~T) for the second inequality in (3.13) shows
that the second inequalities in (3.13) and (3.23) are equivalent, while the third inequality
in (3.23) is { times the third inequality in (3.13). Effecting the congruence diag(l,,1,Q)
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and applying Corollary 2.1 on the first inequality in (3.13) (with F=Q and ¥ = {X 1)
followed by a Schur complement, the congruence diag({ -2, g -2, g ’%In) shows that the
first inequality in (3.23) implies the first inequality in (3.13) since { ™! > 2 —{ forall £ >0
upon the redefinitions

0:=¢'0,D,:=¢{D,. (3.29)

For (3.25),

T
Effecting the congruence [O );c] on (3.16) shows that it is equivalent to 1 > b! Db, and

n

XTPTDP.X — Q = 0. Effecting the congruence X 7 on the last inequality followed by a
Schur complement shows that (3.25) is equivalent to (3.15).

Applying Corollary 3.1 (with ET = [el.TPrX 0} and Y =v;X~1) on (3.16) and implementing
1

11 _1
the congruence diag(v;, v/ 1,,V; *1I,) shows that (3.26) implies (3.16) upon the redefinition

F == viF;. (3.30)

n
Finally, (3.19) and (3.24) follows from the above proof and the fact that det(Z) < <M>

n
for any n X n positive definite matrix Z. [

Remark 3.1. The conservatism introduced by the linearization in Theorem 3.2, compared
to Theorem 3.1, can be traced back to the use of Corollary 2.1, Corollary 3.1 and Corol-
lary 3.2, as well as the choice of the parameters P, and b, used to define the initial polytope.
Similar to Remark 2.3, we restrict % in Corollaries 2.1, 3.1 and 3.2 for a tractable solution.

Although this restriction can be relaxed, the resulting optimization becomes nonlinear.

3.4 Update Computation Algorithm

Once an admissible initial quadruple (P,b,x.,K) € ® is obtained, this section presents an

algorithm to update the solution based on Lemma 2.1 and the following result.
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Lemma 3.1. LetL,L € ™", M.M € ™™ and D,D € ./}". Define

LMD . _ oLl (MT'D™'ML)I _ Ty T y—1 1
Hid =27 +Logrp oy —L' M D7'DDT ML, (3.31)
Finp = p — M D 'ML—L) (M"D'ML—L) (3.32)
% mp:=L"M'D'ML, (3.33)

where 2. as defined in (2.33). Then G mp = ﬁfﬂg and Gy y.p = ELLAA,I/Ig Hence,
(3L e #™ "M € Z#™ ™, D € "G yp - 0}
={dL e A" M e #™" D e yf : gL,M,D - F J\LL&/ILI)) = 0}.

Proof. The proof follows from Lemma 2.1 and the identities

Gmp =Ly p +(ML—DD~'ML)D™'(ML—DD~'ML)

and
Lo = ws — MDD ML—L) (M"D~'ML—L)
+MD*ML-MD ML) (MD'ML-MD'ML)+(L-L)" (L-L).

]

Remark 3.2. Note that if #1mp is any linear matrix function of L, M and D, then the
linear matrix equation /1 mp + ?,ff;g =0 is the Newton update for the nonlinear matrix
equation .#1 m p + %1 m p =0 from the initial approximation L,M,D.

The next result derive a Newton-like updates for the nonlinear matrix inequalities of Theo-

rem 3.1 starting from the initial approximations given in Theorem 3.2.

Theorem 3.3. With all definitions as above and ..., F.." and 9.. ., as defined in (3.31),
(3.32), and (3.33) respectively, let (P,b,x;,K) € ®. Suppose that the optimizations in (3.19)
and (3.24) have feasible solutions. Then the following optimization problems are feasible

and provide Newton-like updates:
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max
(P,b,x.,K)c®

S.t.

logdetQ™ 7, (3.34)
[ g —1 . i(P7xC7K)7M(P)1Hi(Di)71
'%I(Dl ’b’Wl>+E%if(P,xc,K),M(P),Hi(Di)_l ‘ * Kk -|
EM(P)L;(P,x,K) I, *J =0, Vi€ Fy; (3.35)
I, I,

| M(P)"Hi(Di)M(P)Li(P,x¢, K)—Li(P,x,K)

P 1(x.) PE;!
GE .G Ky *

PTE]'PI:I(XC)—I:I(JCC)
(xc')aPaEfl
G. K)_l_(%ﬂ(xt)v >

J
=] PEfI

PTEPH(x.)~H(x,)
Ri(Pxe) T (WQRi(Px) | w

‘ =0, Vi€ I (3.37)

—1

}w, V)€ s (3.36)

ER;(P,x.) I, *
1
i Q 2ZJi(iQ)Ri(P,xc) 0 wil,
0 0 AK
*x rly, G5 =0, PD;! =0, N =0 (3.38)

* L7 * T
* * glﬂaQ P,DZ
[I'HQ
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min —logdetQ (3.39)
(P,b,xc,K)ECI)( )
i _ (Pxc,K),M(P),H;(D;)~"
D b WAL |5
s.t. EM(P)Li(P,x;,K) 1, x | =0, Vi€ Iy;
_M(P)TH-(D)M(P)L (P,x.,K)—L;(P,xc,K) |1, I,
&/(E;" b,G; K+%”xx‘PPEEl *LO
| PTEPA(x.)-H(x.) ||
[ &,(E6,G,K) %“
i(E * 1 *1 =0, V)€ .
| P'E;PH(x.)-H ( ) I |
: D!
PD~
Q?PD —0 >0, N 1] > 0; (3.40)
(P,b,F )+
| ZPbF) L), *Lo, Vie (3.41)
| TSP "]

where the variables are Dl-_1 ,Efl,Efl 7Dz_l >D71 SRZ4y W"’Gj’gje‘@mw’. i€ Hi Qo

S Fi€ 21 and where E = [—In I, 0], M(P)

A(x) = [0 X 0 In},l;l(xc): [0 X 0 —In],Z:

=diag(I,,1,,D;),
[o _q, In}, T = [—In 1}

D;! b 0 0
- 0Ple; 00
,///(D’IbW) * 2eib—d Wd 0 0 L{P.xe.K) 0 B AK
i i O, W)= s Li\ 75 X¢, = Xc w 5
' * * VIw,v 0
0 x. 0 1[I
* * 0
E;! b 0 0
o x 2T f—d"G;d eTD,, elCK
* * VTGjV 0
* * * 0

}.0,0¢
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and
E;l b 0 0
T T T T K
ﬁj(Efl,b,Qj,K)Z *x —2e;f—d Gd e;Dy e;C ’
/ * * VTQjV 0
* * * 0
I, 0 0 PTe; 0
Jl(.ulg) = | * In 0 ) Ri(vaC> = Xe 0
* x W0 xe I

2eTb+bIFiby elP+ % (bo+by)TFiPy

T(P,b,F;) =
il ) * PIF,Py

s = [P:ei g]

Proof. The proof is essentially an application of Lemma 2.1 and Lemma 3.1, congruences,
Schur complements and some re-definitions to show that (3.10)-(3.16) imply (3.35)-(3.41),
which in turn imply (3.10)-(3.16) (with bold variables) and therefore (3.2)-(3.8) (with bold
variables), respectively, from Theorem 3.1. In more detail:

Suppose that (P,b,x.,K,D;,W;),Vi € %, satisfy (3.10). Then effecting an upper Schur com-
plement on b7 D;b on (3.10), a manipulation shows that (3.10) is equivalent to

MDD WG (p i) (P (D)1 —Li(PXe K) MTETEMLi(P,x, K)>-0. (3.42)

The result (3.35) follows by applying Lemma 3.1 and Lemma 2.1 on the second term and a
Schur complement on the third. Furthermore, (3.10) and (3.2) are satisfied by

(PabaxmK?Di?‘/Via)::(P7b7x07K7Di7Wi)-
Suppose that (P, b,xc,K,Ej,Gj,Ej,Qj),Vj € I, satisfy (3.11). Then (3.36) follows by

applying Schur complement on b”E;b and b'E ;b, and Lemma 3.1 on iy pE-! AN
%H(x )PE! in (3.11). Furthermore, (3.11) and (3.3) are satisfied by
22 \Ac ) 7fj

J

(P7b7xC7K7Ej7Gj7Ej7Qj) = (P7b7x67K;Ej7(_;j7£j7gj)'
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Suppose that (P, b, x, Wi, Q),Vi € .#,, satisfy (3.12). Then (3.37) follows by applying Lemma 3.1

on g, (px.) Ji(we) and taking a Schur complement in (3.12). Furthermore, (3.12) and (3.4)

i

are satisfied by
(P;bernuin) = (P7b7x¢,‘7“'i7Q)'

Suppose that (P,b,K,Q,D,) satisfy (3.13). Then (3.38) follows by applying Lemma 2.1 on
Moo= Q0 !and Npp-1 =PTD,P and a Schur complement on the third inequality, in (3.13).
Furthermore, (3.13) and (3.5) are satisfied by

(P7b7K7Q7DZ)::<P7baK7Q7DZ)'

Suppose that (P,b,Q, D) satisfy (3.15). Then the inequalities in (3.40) are equivalent with
the inequality in (3.15) while using a congruence transformation. The result follows by ap-
plying Lemma 2.1 on the term A5 51 = PTDP. Furthermore, (3.15) and (3.7) are satisfied
by

(P,b,Q0,D) := (P,b,0,D).

Suppose that (P, b, F;),Vi € .9, satisfy (3.16). Then (3.41) follows by applying Lemma 2.1
on .5, (p); and taking a Schur complement. Furthermore, (3.16) and (3.8) are satisfied by

(P,b,F;) := (P,b,F;).

Finally, (3.34) and (3.39) follow from above proof. [

: A N R .| :
Remark 3.3. Note that taking D; I,E j E P I,DZ L. D™ asvariables allows us to use Lemma 3.1
and Lemma 2.1 to ensure recursive feasibility, that is, the volume of the updated inner/outer
approximation to the maximal/minimal RCI set is at least as good (large for maximal and

small for minimal sets) as that of the previous set, that is

max log detQ_% > logdet Q_%,
(P;brxl.‘?K)eq) - N

min —logdetQ | < —logdetQ,
(P,b,x.,K)c®

lfg_% and Q are solutions of (3.19) and (3.24). It also allows us to use b as a variable,

thus improving the updated solution. Our numerical experience, part of which is reported
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below, as well as Remark 2.5, suggest quadratic convergence, although a formal proof of

this is beyond the scope of this work.

3.5 Solution algorithm

The following algorithm summarizes our solution.

Algorithm 3.1. Given system (1.1), Fas, and sets W = P (V,d), Pasy (P, bo, by) and pa-

rameter r.

~

. Initial data: Choose m > n, initial polytope & (P,,b,,x.) and tolerance level tol.

2. Initial solution

(a) Use Theorem 3.2 to solve the convex SDPs in (3.19) or (3.24).

(b) Define D;,W;,Q,D. and W; from (3.27)-(3.30) so that (3.10)-(3.11), (3.12) or
(3.15), (3.13) or (3.16) are satisfied.

¥

. Update Solve the optimizations in (3.34) or (3.39).

N

. Stopping condition

(a) Ifdet(g_l) — det(Q’l) < tol (for maximization) or det(Q~!) — det(Q_l) <tol

(for minimization), stop.

(b) Else update Z:=Z, where Z denotes a variable in the optimizations in (3.34) or
(3.39), and go to step 3.

5. End



3.6 Examples 67

3.6 Examples

3.6.1 Example 1

Consider the model for a car following scenario described in [59] and [45] with the param-

el el el

The asymmetric output constraints are defined by the parameters

eters:

10 0 0 1.85 -3
Co 0 1 D= 0 . D, = 0 o j- 3 e -3
11 0 0 4.85 - —2.2
00 1 0 24 24

With m = 3, Figure 3.1 shows the initial (in yellow, with solid border) and final (in red,
with dashed border) inner approximations to the maximal RCI set, with the final control
law given as K = [—0.6271 —0.6931]. The blue cross marks and the dashed green line
shows the trajectory of the system states under the feedback control law (only one trajectory
is shown for clarity). The white box with dotted border shows the constraints on state and
input signals. We also gives the RCI set centered at the origin (in green color and dash-dot
border) for comparison. When treating the RCI set as a terminal target set, the polytopic
form Z(P,b,x.) has the advantage of having a larger volume. In this example, the values
of logdetg’% are 1.1334 and 0.9390 for & (P,b,x.) and Z(P,b), respectively.

3.6.2 Example 2

Consider the example in [46] with

10 0 0 4 -3
0.98 0.72 0 1 0 o0f . |4 -3

A= , C= , D= s =L [
—0.02 0.72 00 10 4 = |-3
00 0 1 4 —4
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3 L .
2 L .
1 L .
g0 -
-1t i
2 i
DO Final
M Final (2. = 0) :
3 L | L. 1Constraints _ I S —— HE
3 -2 -1 0 1 2

L1

Fig. 3.1 Initial (yellow) and final (red) approximations of maximal RCI sets, final RCI set
for Z(P,b) (green), and output constraint (white).



3.7 Conclusion 69

B,, B,, and V are the identity matrices, D,, is the zero matrix and d is the vector of ones.

The initial state constraint is defined by

5 5 2 =5
Py — 7 04 b= 2 b= =5
04 7 2 - -5
6 —6 2 =5

We choose m = 5 and apply Algorithm 3.1 to obtain an outer approximation to the minimal
invariant set. Figure 3.2 demonstrates the initial set (in yellow with solid border) and the
final set (in red with dashed border). The initial state constraint is shown in white with solid
border. One state trajectory is given (in blue cross marks and dashed green line). The final
result in the x, = 0 case is given (in blue with dash-dot border). The structure Z(P,b,x.)
gives smaller result with —logdetQ = —0.9748 while when using & (P,b), —logdetQ =
—0.7352.

3.7 Conclusion

We have proposed a novel scheme, based on a convex SDP algorithm, that can efficiently
compute full-complexity polytopic RCI sets and the corresponding control law, whilst tak-
ing account of additive disturbances, asymmetric output and initial state constraints as well
as .74 performance constraints in a unified framework. The chapter first derives the non-
linear necessary and sufficient conditions for the existence of an admissible RCI set and
feedback gain matrix. Corollaries of the Elimination Lemma are then derived and used to
linearize the LMI conditions and render the optimization problem tractable. An initial in-
variant polytope, and control law K, are first obtained and the set-volume is then iteratively
optimized by solving convex/LMI optimizations. In addition to handling arbitrarily large
number of faces of the invariant polytope, the iterative algorithm guarantees recursive fea-
sibility. Furthermore, the iterations - based on a Newton-like update - result in an observed

quadratic speed of convergence.

Apart from the freedom of choosing arbitrarily large values of m and the optimization for
the control gain K, the algorithm proposed in this chapter allows the center x. of the poly-
topic RCI set to shift from the origin, which, when the constraints are asymmetric, further

improves the inner/outer approximations of the maximal/minimal RCI set compared with
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1.5 ' 1
1r _
0.5 1
0r _
8
0.5 1
At 1
[ Jlnitial
15+ - . Final i
[ Final(z, — 0)
[ ]Constraints
-2 C I I I I I I i
-1 -0.5 0 0.5 1 1.5
L1

Fig. 3.2 Initial (yellow) and final (red) approximations of minimal RCT sets, final RCI set
for Z(P,b) (blue), initial state constraint (white).
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many of the schemes in the literature. The efficiency of this algorithm has been illustrated

using numerical examples.



Chapter 4

Tube Based Model Predictive Control

Tube based MPC algorithms are computationally tractable due to the use of invariant tubes.
Their computational complexity increases linearly in the length of predictive horizon. For
linear time-invariant systems, the algorithms proposed in the literature (see [31] and the
references therein) often choose a piecewise affine control policy in which the control gain
is predefined. When considering the observer for the systems [56], the observer gain is also

predefined.

In this chapter, we extended the algorithms proposed in Chapter 2 to use the control and
observer gains as variables in the optimization of invariant sets and tubes since the extra
degrees of freedom provided by these variables will result in tighter volumes of the tubes.

The efficiency of these algorithms are then illustrated by numerical examples.

4.1 Problem Description

Consider the system (1.1) with z as the cost signal and the output y = Cx + Du + D,,w, and

consider only separate state and input constraints

xe 2 ={xeR"|f <Vx<fi}, V, € BN [ <0< frezr™,
ue%::{ue%”"lzugvuugfu}, V, € R"x" J_‘x<0<ﬁ,e%mu,

for clarity. Instead of a linear controller, we will use a tube based MPC controller, which is

time-varying and piecewise affine. Implementation of tube based MPC also require the use
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of a nominal system:

A B
G Dy

=

<

] 4.1)

where X, X" € %" are the current and successor nominal system states, respectively, 7 is the
nominal cost signal and i € Z" is the nominal system input, which will be a variable in the
MPC procedure.

We also consider the Luenberger Observer [56]:

£ |A B L
91 |Cc D o N
y=y
and use the control input
u=i+KXx—-x),

where £,£7 € 2" are the current and successor estimated states, respectively, and § € 2™
is the estimated output. The matrix L € #"*" is the Luenberger Observer gain, and the
matrix K € %" is the feedback gain. In the literature, L is predefined and is normally
chosen to satisfy p(AL) < 1, where p(-) denotes the spectral radius and where AL := A — LC.
The feedback gain K is also predefined and similarly chosen to satisfy p(AX) < 1, where
AX := A4 BK. In the next section, we will provide the algorithm to ensure AX and A" are
stable and furthermore, use them as variables in the optimization of the volume of the tubes.

Define the state estimation and state control error signals as ¥ := x — £ and § := £ — X,

respectively. Then their dynamics are described by

T =Ag+BLw, (4.2)
ET=AKE 10, (4.3)

where B = B,, —LD,,, 0 := L(y — $) = L(C%+ D,,w). It follows that

u=i+KE. (4.4)
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Suppose there exists an RCI set &(P;,bs) for system (4.2) and an RCI set & (Pg,b¢ ) for
system (4.3) so that

{)ZG@(P)ZJ?)Z)} = ¥ € P(P:,by), 4.5)

wew

{ éef@(Pg,bg) }:>§+E=@(Pg,b§)- (4.6)
0€® :=L(CH(P;,bz) DY)

Since x(k) = £(k) + x(k), it follows that x(k) € 2" is satisfied if (k) € 2" © Z (P, bx) and
(k) € P(Pg, bx) for all w(k) € # . Furthermore,

%(0) € P (P, bx)
x(0) € {#(0)} ® P(Pr,bz) p = x(k) € {%(k)} ® P (P;, bx)
wew

Similarly for the control error and the input, we have %(k) € {¥(k)} ® & (P¢,be ) and u(k) €
{L_t(k)} @K@(Pg,bé) ifﬁ(O) € {)?(0)} ©® Q(Pé,bé) and 5(0) € y(Pg,bé) forallwe 7.
Hence, the system constraints x € 2", u € % are satisfied if

i(k)e X =2 0 P(Pr,bz) o P (Pr,be) (4.7)
i(k) e U :=U SKP (P ,bg) (4.8)

In conclusion, we have

)

2(k) € {x(k)} & P (Pg,be)
u(k) € {ﬁ(k)}@K@(Pé,bg)

%(0) € P (P:,bz) = x(k) € {x(k)} ® P (P ,bg) & P (Ps, by)
§(0) € Z(Pe,be)
weW

J

The set {X(k)} ®© P (P¢,bg) © P(P;,bz) is the invariant tube at kth step. The trajectory of
the nominal system state x(k) is the center of the tube in which %(k) lies. The feedback
component K& will attempt to steer the trajectory of £(k) towards the center of the tube.
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Define the objective function of the MPC scheme as J = Y& z(k)Tz(k). When using tube

MPC, we replace the original optimization problem

N
min Z 2(k)Tz(k)
k=0

S.t.

xeX, uew

by the following nominal MPC optimization

N
min Y 7(k)"z(k)
k=0

(4.9)
S.t.

i(k)e 2, alk) e %

Thus the MPC problem for a system subject to additive disturbance can be replaced by the
nominal MPC problem. The nominal state and input constraints (k) € 2 and (k) € %
will ensure the satisfaction of the original state and input constraints x € 2 and u € % .

4.2 Invariant Tube

Consider the invariance conditions (4.5)-(4.6) for the state estimation and state control error
dynamics in (4.2) and (4.3), respectively. From the above analysis, we have that the original
constraints x € 2" and u € % are tightened by & (P¢,be ) and & (P;, bz); see (4.7) and (4.8).
It follows that minimal invariant set are required to obtain reasonable control performance.
To this end, we introduce outer bounding ellipsoids &' (Qx) and & (Q¢ ) for the invariant sets
for minimization and require that

30z .S P(Pr,bz) CE(Qx) (4.10)
HQgéy_fie@(Pg,bé)Céa<Qé). “4.11)
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For system (4.2) and (4.3), sets #', m > n, and with E := Z"™" x "™ x " and ¥ .=

R ) B x FM", we present convex algorithms to solve the following optimizations:

min  logdet Q;l, min logdet Q_l. 4.12)
(Pg,bg,L)EE (Pé,bg,K)ElP ¢
(4.5),(4.10) (4.6),(4.11)

In the following, we provide sufficient conditions for the existence of the invariant sets
P (P;,bsz), P (Pg,bg) and the corresponding L, K.

Remark 4.1. Note that the RCI set in (4.6) requires knowledge of the RCI set in (4.5). It
is outside the scope of this work to take L and K as variables and simultaneously optimize
both sets and leave it is a direction for future research. We will, instead, provide algorithms
to approximately minimize the volume of the set &Pz, bs), and then use this set, as well as

the corresponding observer gain matrix L, in the approximate minimization of the volume
of the set & (Py, by ).

4.2.1 Invariant Set of Estimation Error

In this subsection, we derive sufficient conditions for the existence of an admissible triple
(Pg, by, L) € E. The conditions are first derived in the form of NLMIs. Then we give suf-
ficient conditions for the admissibility of the triple (P.Xz,b,,L) in the form of LMIs by
using Corollary 2.1. Once an admissible initial triple (P, bz, L) € E is obtained, we give an

algorithm to update the solution.

Theorem 4.1. The invariance condition (4.5) is satisfied if and only if

[ 2¢] bz~ b Dibz—d" Wid
. m
Vieﬂm,H{D’€@+]:{ x

el P:BL el-TPgAL]
viwyv 0o |=0. (4.13)
x  PIDP;

W,e D
*
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Let P; = P.X;z and bz = b,, where P, € ™" and b, € #™ are given and where Xz € %#"*".

Denote L. := X)EL,A := X;zA — LC. Then condition (4.13), hence (4.5), is satisfied if

2%ieTb,—bIDib,—d™Wid eTPX:BL eTPA 0 0
20 x 21, 0 Ady, O
Vie 4, 3| Dic 2 |: * *x  Xe+XT 0 Ay
Di€ 74 )
WeZ, * * x  VIwyv o
* * * * PrT D;P,

>0.

(4.14)

With A.. and 2. as defined in (2.32) and (2.33), respectively, let (Pz,bz,L) € E. Suppose

that (Pg, bz, L,D;,W;),Vi € .y, satisfy (4.13). Then

-1
Vie,ﬂm,ﬂ{l‘?‘;’ 6@%;} Dy be Wikt Li(Py K),F(D; ") =0,
i€y EL;(Pz,K) I,
where E = [ —1, I, 0],F;(D;) = diag(l,,, I, D;),
D;! b: 0 0
* 2eTbi—d™Wid 0 O
MDD by, W) = ! ,
z( i X z) . N VTW,'V 0
* * * 0
and
0Ple; 0 O
L{PzL)= |0 0 BL AL|.
0O 0 0 P

Furthermore, (4.13) and (4.5) are satisfied by

(P)%b)??l’?DiJ/Viv )::(Pfab)%L;Di)Wi)-

(4.15)

Proof. The proof of (4.13) is an application of Farkas” Theorem. Details are similar to Part

1) of Theorem 2.1.
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Applying Corollary 2.1 on (4.13) (with E=|e! B.X:BL T PX:A'X 'Y zﬂtfldiag(lnw,X,;)),

J 1 1 1
effecting the congruence diag(?tiz,/ll.zlnw,lizln,lizlnw,liin_l) shows that (4.14) implies
(4.13) upon the redefinitions

D,' = liD,', VV, = A,VV, (4.16)

Effecting an upper Schur complement on b;Dl’bg, a manipulation shows that (4.13) is equiv-
alent to

MD; b, W)+, 1 -1y~ LilPo K) ETEL(Py, L) 0. (4.17)

1

The result follows by applying Lemma 2.1 on the second term and a Schur complement on
the third. —

Theorem 4.2. Let all definitions be as above, then for (P;,bz,L) € E, the outer bounding
ellipsoid condition (4.10) is satisfied if

_ " i i
3[5266?2 ] : PIDP; — 0z > 0, 1 > bL Dbx. (4.18)
Let P; = P,X; and bz = by, where P, € Z™*" and b, € Z™ are given and where Xz € #"*".
Denote L := X,;L,A := XA — LC. Then condition (4.18), hence (4.10), is satisfied if

Xi+XI-0: I

* PIDP,

5| De2y |.
Qz € S

] >0, 1> bl Db,. (4.19)

With A.. and 2. as defined in (2.32) and (2.33), respectively, let (Ps,bz,L) € E. Suppose
that (P;, bz, O, D) satisfy (4.18). Then

[ Dt ear ], g o, [P |0 4.20
Qiey_’}z . ~—1 _Q)C>_ 9 >_ . ( . )

Furthermore, (4.18) and (4.10) are satisfied by

(P)%b)f)Qf?D) = (Pf7bf7Qf7D)
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Proof. The proof of (4.18) is an application of Farkas’ Theorem. Details are similar to Part
5) of Theorem 2.1.

For the first inequality in (4.18), effecting a Schur complement, followed by the congruence
diag(Xg,Xi_T) and using (2.34) (with L := Xz, D = Qz, L = D =I) and ignoring a positive
term, shows that (4.19) implies (4.18).

The second inequality in (4.20) and (4.18) are equivalent using a Schur complement argu-
ment. The result follows by applying Lemma 2.1 on the term Ap_ 51 = PIDP; in the first
inequality in (4.18). [

The following algorithm summarizes our solution to obtain the approximate minimal invari-

ant set of estimation error & (Pg, bx) and the corresponding observer gain L.
Algorithm 4.1. Given system (4.2) and set W =2 (V,d).
1. Initial data: Choose m > n, initial polytope &?(P,,b,) and tolerance level tol.

2. Initial solution

(a) Solve the following convex SDP

min —logdetQx. (4.21)
Xz, L
(4.14),(4.19)

(b) Define D;,W;, Qs and D from (4.16) so that (4.13) and (4.18) are satisfied.
3. Update Solve the following optimization

min —logdetQx) . 4.22)
vabva ( © )
(4.15),(4.20)

4. Stopping condition

(a) Ifdet(Q;l) — det(Q;l) < tol, stop.
(b) Else update Z :=Z, where Z denotes a variable in the optimizations in (4.22),
and go to step 3.

5. End
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4.2.2 Invariant set of the Control Error

Once an admissible and approximated minimal invariant set of the estimation error is ob-
tained, that is a triple (P, bz, L) € E is given, we can give the conditions to derive an admis-
sible (Pg,bé,K ) € ¥ for system (4.3). Note, however, that the problem has the same form
as the problem treated in Chapter 2 with the substitutions:

[LDW LC | — B,
vV 0]

—V
0 P
.

—d,

and therefore, the solution will not be explicitly presented.

4.3 Example

Consider the double integrator with the parameters:

P L | R U f_IO f_—so
o 1 " ool Y looa|” Y Lol = |=sof

andV, =1, f, = — f,, = 10. Applying our algorithm proposed above, we obtain the size of

the tube as shown in Figure 4.1 in red, which is significantly smaller than the tube calculated
by the method used in [31] (shown in blue color). The control and observer gain are K =
[—0.9999 —1] and LT = [1 0.3063} , respectively. In Figure 4.2, the state constraint
on x is shown in blue with solid border, the calculated constraint on X using our proposed
algorithm is shown in red with dashed border, and the calculated constraint on X by the
method in [31] is shown in light blue with dotted border. The figure shows that our algorithm

can provide a much better tightened constraint on nominal system state.

The control performance is shown in Figure 4.3, the real, estimated and nominal system
states are shown in red, blue and green, respectively, and the tubes are shown in black. The

figure shows that, compared with the methods used in [31] (the tubes and performance are
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L2
=
I

Fig. 4.1 Tube calculated using our algorithm (red) and tube calculated using method in [31].

shown in light blue), our algorithm gives smaller tubes, which results in a better control

performance.

4.4 Conclusion

We have extended the approximation algorithm of RCI set proposed in Chapter 2 to the ob-
server case. Nonlinear necessary and sufficient conditions for the existence of an admissible
RCI set and observer gain are first derived. The Elimination Lemma and its corollaries are
then used to derive the linearizations. An update algorithm, reminiscent of Newton updates,

is also proposed.
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10

-20 -

HiD)

-40
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Fig. 4.2 Original constraint on x (blue), tightened constraint on X (red), and tightened con-
straint on X using method in [31] (light blue).
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Fig. 4.3 Tube (black), control trajectory of the real (red), estimated (blue) and nominal
system (green) states, the tube and the state trajectory of the real system calculated using
the method in [31] (light blue).
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Numerical tests have shown better control performance by using our optimal RCI sets in
the TMPC algorithm. The use of the state feedback and observer gains as variables in the
optimization provides extra degrees of freedom and allows the design of tighter tubes and
results in better control performance.



Chapter 5

Online MPC with Offline Causal
State-feedback Computation

In this chapter, we propose an outline of an online-offline model predictive control (MPC)
method for linear discrete-time systems with bounded additive disturbance. We consider a
causal state feedback structure on the controller, which comprises a causal state feedback
gain and a control perturbation component. In order to improve the efficiency of the online
computation, we calculate the state feedback gain offline using a semi-definite program
(SDP). Then we propose a novel method to deal with the bounded disturbance as well as
the state and input constraints, and compute the control perturbation component online.
The online optimization problem is derived using Farkas” Theorem, and then described by a
quadratic program (QP) to reduce the online computational burden. A further approximation
is made to derive a simplified online optimization problem, which results in a large reduction
in the number of variables. The efficiency of this method is demonstrated using numerical

examples.

Consider linear discrete-time system (1.1) and the terminal signal (1.5). Although the MPC
problem in Theorem 1.2 provides robust solutions using LMIs, the computational burden is
heavy. In the following sections, we propose an online-offline method to reduce the compu-
tational complexity. The offline and online part of this algorithm are presented separately.
The offline algorithm, presented in Section 5.1, is an SDP problem and provides the causal
state feedback gains Ky and K. The online MPC algorithm, presented in Section 5.2 is a
QP problem and provides the control perturbation. Another approximation, presented in
Section 5.3, simplifies the constraint conditions to further reduce the computational burden.
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Two numerical examples are also given to demonstrate the efficiency of these methods in
Section 5.5. Through our design methods, the Farkas’ Theorem, stated in Theorem 1.1, will

be used.

5.1 Offline Calculation

In the objective function (1.13), note that Jy depends only on Ky and K while J; is quadratic
in v for given Ky and K. Furthermore, since there are a large number of variables in K and
K, their online evaluation is generally computationally prohibitive. Hence we propose to
determine K and K offline to minimize an upper bound on Jy for all disturbances and all xq
satisfying the initial state constraints, and such that the constraints in (1.15) are satisfied for

some v. Note, however, that v computed offline will not be used online.

The following theorem is derived from Farkas’ Theorem and gives the causal state feedback

gain.

Theorem 5.1 (Offline Calculation). With all definitions as in Section 1.3.2,

1. There exist Ko € N> K € ZgNmxNny ¢ N such that Jy < ¥ for all xg € Zo
and all w € W if there exist matrices Dy € 'l and D,, € .@J(FNH)'"W such that

D, O 0 (EX)T

* Do —Dix+®) (B G5
*  x ¥+ )_chxio —wI'D,,w 0 ' '

*x % * 1

2. There exist Ky € ZN """ K € NNy ¢ ggN"a sych that f € T for all xo € 2o
and all w € W if and only if there exist matrices H. € 9" and H, € 9iN+l)'nw for all
1€ H(Nt1)m, such that

Hvlv 0 _(EJISW)Tei
Hi —3Hi(xy+ %) — (Ef°)Te; - 0. (5.2)
x  x 2l (f—Gpv)+xbHixg—wl HLw
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Optimal Ky and K can be obtained by solving the SDPs

5.3
Ignn}( Y. (5.3)

(5. 1) (52)

Proof.

(N+1)-n,,

1. For any matrices D, € ' and D,, € & , we have the identity

Jo—7 :(EZKOxo—f—Eng)T (EZKOxo—i—Eng)— %

— (w4+w) D, (w—w)
54
— (x0 —x0) " D (%o — Xo) e

— ' e
where ¢! = |:WT xg 1] and
K
D, — (E5)"EL,  —(EL,)TE;" 0
.,E/ﬂl = * Dx—(EZKO)TEZKO —%DX(J_CO +)E())
* * Y+ gngio —wID,Ww

Since the first and second terms on the RHS of (5.4) are nonpositive for all xy € 2
and all w € W then Jy < ¥ for all xg € Zp and all w € W if £} > 0. Effecting a Schur

complement for .Z} > 0 gives the sufficient condition in (5.1).

2. The constraints (1.15) can be written as

el (f—F) =2¢] (Ef*x0+G pv+Ef,w)—2e] f
—(w4+w)TH (w—w
5 ) 5 5
— (%0 — x9)" Hy(¥0 — x0)
— ! Zic
for any matrices H. € 2! and H.,, € 7, (N+1)-
second terms on the RHS of (5.5) are nonpositive for all xg € Z( and all w € W then

" foralli € F(y41).m, Since the first and

,,2”2’ = 0foralli € Ay )m ; implies the constraints are satisfied for all xo € 2 and
all w € W. This proves sufficiency of (5.2). Necessity follows from Farkas” Theorem.
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]

Remark 5.1. In case there is no feasible Ky and K satisfying the constraints in (1.15) for
all xo € Zo, we may modify the optimization so that 2 is replaced by Z ), the largest
volume polytope inside 2 for which a feasible solution exists. This may be carried out by
maximizing the volume of an ellipsoid 2 such that 2 C Z o C Zo. However, this is not

pursued here.

5.2 Online Process

The causal state feedback gain of the controller is obtained by solving, offline, the optimiza-
tion problem in Theorem 5.1. In this section, we propose an online process to compute the
control perturbation v to minimize J and satisfy the constraints. Note that J; is linear in w.

The next result, exploits this fact by using Farkas” Theorem.

Theorem 5.2 (Full QP Method). At the current time step, the control perturbation sequence
that minimizes an upper bound on J can be calculated by solving the following QP problem:

1
min ~p"Qp+q'p
p 2

S.t.: (5.6)
Mp <m
where
b [VT W7 VT]T e (Nt (N+1) (g (V1) )
2GIG, 0 0
0= 0 0 0],
0 00

[—(EK)TG, —I 0 0
0 —1I 0 0
M= 0 0 —1I M= vec((Efw)T>
0 0 —1 0
B O ETCU 0] I Y-S e )
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Proof. Since Jy is independent of v and we have Jy < ¥ in Theorem 5.1, Jo+J; < 7y is
satisfied if J1 < y— 7. Now, an application of Farkas’ Theorem shows that J; < y— ¥ for all
w € W if an only if there exists g € ZN D™ such that

VIGTGy+2(GTEX xg+GTEX W) v 44w u < y—7
—u<o0 (5.7)
—u—(EX)Gv<o.

The constraints in (1.15) can be written as:

el <Ef°xo +Gyv +E}{WW> <elf, (5.8)

foralli € Ini1)m ; and for all w € W. Another application of Farkas’ Theorem shows that
this is equivalent to the system of inequalities

-m:<0
—ni < (Ef,) e (5.9)
el Gpv+2wn; <ef (f— Efoxo - E;(WW)

Define vI = [an nzT na\, 1)y | and combine the constraints in (5.9) with (5.7) to

give (5.6). ]

5.3 Simplified Online Process

While we have reduced the SDP solution of the MPC problem to a QP problem in Section
5.2, this QP problem nevertheless has N - n,+(N+1) - n,+(N+1) -my - (N+1) - n,, variables,

which is still too large for online computation.

In the following result, we propose a simplified algorithm to reduce the computational bur-
den by expressing the constraints in (5.8) in a more compact way and using an off-line

optimization.
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Theorem 5.3 (Simplified Algorithm). At the current time step, the control perturbation
sequence can be calculated by solving the following QP problem:

1
min ~p'Qp+q'p
p 2

s.t.: (5.10)
Mp <m
where
p=ve RN,
0=2GG,,

q" =2(GTEXoxg + GTEX w)T,

M =Gy,
m=f—Ex — |Ef, .

Proof. Note from (5.7) that while the variable u is required to ensure that J; < y— ¥ for all

w € W, this in fact has no effect on the minimizing v and can therefore be dropped.

Next, we can write the constraints (5.8) as

el Gpv<el f— el-TE}(OxO - eiTE]Ic(ww

for all w € W. A simple upper bound on eiTE J[fww for all w € W is obtained as eiT |E Kw|w and
so the constraints can be written as

Gpv < f—E%x— |EF,|w. (5.11)
Combining this constraint with (5.7) gives the optimization problem in (5.10). 0

This simplified QP problem (5.10) has only N - n, variables which reduces the computation
burden significantly.

Remark 5.2. Note that since EJISW is a function of K, then the quality of the approximation
in (5.11) can be taken into account in the off-line optimization to compute K, although we

do not pursue this here.
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Remark 5.3. Although our method was derived assuming box-type bounds on the distur-
bances and constraints, this is only for ease of presentation and the approach is still valid

for more general constraints, such as polytopic constraints.

5.4 RMPC Scheme

In this section, we summarize the overall RMPC scheme from the above analysis.

Algorithm 5.1. Given system (1.1) and (1.5), and set W .

1. Offline Computation

(a) Calculate Ky and K by solving the optimization (5.3).
(b) Find a triple (P,,b;,K;) € Y using Algorithm 2.1 and set (P, b;) as the termi-

nal invariant set, K; as the inner controller.

2. Online Computation

(a) If the current system state x € P (P, b,), let u = K;x.

(b) Else compute v by solving (5.6) or (5.10) and set the input u as the first element
in Kox+v.

5.5 Numerical Examples

5.5.1 Example 1

We consider the example in [19], which is originally from [33] and introduce an additive

bounded disturbance for system (1.1) with

0o 1 0 0 0
0o 0 1 0 0

A= B =
0o 0 0 1 0
1

—1 2v2 —4 232
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Cr, Dy, Dy, and f are defined according to the input constraints —4 < u(k) < 4 for all
k€ {0,1,...,N}. The disturbance is bounded with —1 < w(k) <1 forall k € {0,1,...,N}.
We define the cost signal using

1000 0
0100 0
C:=[0 01 0, D:=|0
0001 0
00 0 0] 1]

The initial system state condition is given with
X =-xb=1[10 10 10 10].

However, there are no constraints for the future system states. Ky and K are calculated

offline using Theorem 5.1 to minimize Jy and ensure feasibility for all xy € 2.

Applying our online optimization methods, we have the system state trajectory shown in
Fig. 5.1; only the first and the third system state are shown for clarity. Fig. 5.1 (a) shows the
response of using the simplified optimization problem in Theorem 5.3, Fig. 5.1 (b) gives
the response of using the full QP method in Theorem 5.2, while Fig. 5.1 (c) shows the
response of using the SDP method derived from [63] in Theorem 1.2. Although the SDP
method gives a less oscillatory response under the disturbance, when using an RCI set as
the terminal set and switch the MPC scheme to linear feedback controller within the set, we

obtain better control performance as shown in Fig. 5.1 (d).

In the simulation, we observe that the simplified method only takes 0.012s to complete
the optimization on average at each step, the full QP algorithm uses 0.046s and the SDP
method needs 2.112s. Note that, the average processing speed of our simplified optimization
algorithm is more than 170 times faster than the SDP method, we can apply much shorter

sampling time for the system by using the simplified method.
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Fig. 5.1 State trajectories for Example 1.
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5.5.2 Example 2

Taking the example in [63], the discrete time system matrices are given by:

1 08 1 0.1
A= ., B=||, B,= .
[0.5 1 ] 1] [0.1]

Ct, Dy, Dy, and f are defined according to the state and input constraints —0.5 < u(k) <0.5

and

3
<]

In order to demonstrate the robustness of our approach, we increase the bounds on the

disturbance:

w(k) e ¥ . ={we %%

The cost signal is defined using

which is consistent with the example. The prediction horizon is N = 9, and the initial state
isaf =3 —3):

Applying our online-offline algorithms with the RCI set as a terminal set for this example
gives the system state trajectory shown in Fig. 5.2. The response when using the simplified
optimization problem in Theorem 5.3 is shown in red color, and the response when using
the SDP method in Theorem 1.2 is shown in blue color. When the system state enters the
RCI set, the control scheme is switched to a (pre-computed) linear feedback control law
with K = [—0.4183 —0.3918} . The full QP method in Theorem 5.2 gives similar result to
the simplified method, hence it is not shown here. In this example, the simplified algorithm
only needed 0.009s to complete the optimization at each time step, which is almost 380
times faster than the traditional SDP method. The sampling speed can thus be improved
greatly without significantly changing the performance. Note that worst case disturbances

are used in our examples.
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Fig. 5.2 RCI set (green) and state trajectories: using the simplified optimization in Theo-
rem 5.3 (red), using the SDP method in Theorem 1.2 (blue).
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5.6 Conclusions

An online-offline method has been proposed for MPC design for state and input constrained
linear discrete-time systems subject to additive bounded disturbances in order to reduce the
online computational complexity while preserving the robustness against the disturbances.
In the offline computation, a causal state feedback controller is designed to minimize part
of the cost function while satisfying the constraints over a set of initial states. The online
computation involves the solution of a QP problem derived from Farkas’ Theorem. The
method combines robustness and fast processing speed. A further approximation to this QP
problem is made to derive the simplified algorithm, which provides significant improvement
in computation efficiency without losing optimality. Our numerical tests indicate that the
simplified method can achieve faster processing speed without significant loss in optimality
compared with the SDP method.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

RMPC schemes have been well developed in recent years, and the implementation of RCI
sets for this scheme are emphasized. This thesis first provides a literature review on re-
cent development of the RCI sets approximations and RMPC algorithms. Considering the
computational accuracy and the implemented conveniences, we choose the full-complexity
polytopic structure of the RCI set and the online-offline RMPC scheme. The tube based
RMPC algorithm is also considered.

In this thesis, linear discrete-time systems subject to additive disturbances and output, ini-
tial state and performance constraints, and model uncertainties in some cases, is considered.
A novel algorithm for computing the full-complexity inner/outer approximations to poly-
topic maximal/minimal RCI sets and the corresponding feedback control law (K) is pro-
posed based on convex/LMI optimizations. The necessary and sufficient conditions for the
existence of an admissible RCI set and feedback control gain, which are nonlinear and non-
convex in general, are derived. The problem is then relaxed by Farkas’ Theorem to obtain
sufficient LMI conditions, thus rendering the optimization problem tractable. An initial in-
variant polytope and the corresponding control law K are first obtained and the set-volume
is then iteratively optimized by solving convex/LMI optimizations. These iterations are
reminiscent of Newton updates which appears to promote good convergence speed. Both
norm-bounded and polytopic model uncertainties can be handled with this algorithm. This
algorithm allows arbitrarily large complexity of the invariant polytope and the value of m,

coupled with the fact that K is treated as a variable of optimization, results in less conser-
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vative inner/outer approximations to the maximal/minimal RCI sets. Numerical examples
have shown that our proposed algorithm provides a polytopic RCI set with a substantially

improved volume as compared to other schemes from the literature.

Asymmetric output constraints are considered. By considering a symmetric structured poly-
topic RCI set with a variable center, necessary and sufficient conditions for the existence of
an admissible RCI set and feedback control gain are derived. Some corollaries of the Elimi-
nation Lemma are employed to relax the problem and obtain sufficient LMI conditions. An
optimization algorithm is proposed to yield an initial RCI set and the corresponding con-
trol law, then the set-volume is iteratively optimized by solving convex/LMI optimizations.
This algorithm results in less conservative and more accurate approximations to polytopic
maximal/minimal RCI sets for linear discrete-time systems subject to asymmetric output

constraints, which has been illustrated in the numerical examples.

Tube based RMPC schemes provide a novel application of the approximated minimal RCI
set. In this thesis, we employ our proposed computation algorithm to calculate the approx-
imated minimal invariant set of the estimation error and the control error for tube based
RMPC scheme. Unlike many algorithms in the literature, we reduce the conservative by
choosing the full-complexity polytopic set structure and treating the feedback control and
the observer gains as variables of optimization, which improved the control performance of
tube based RMPC scheme.

Finally, a novel online-offline RMPC scheme is proposed for state and input constrained lin-
ear discrete-time systems subject to additive bounded disturbances in order to reduce the on-
line computational complexity while preserving the robustness against the disturbances. A
causal state feedback controller is first designed to minimize part of the cost function while
satisfying the constraints over a set of initial states. The online procedure then provides
the perturbation part of the input by solving a QP problem derived from Farkas’ Theorem.
This RMPC scheme guarantee both robustness and fast processing speed. The QP problem
is simplified further to improve the computation efficiency without loss of optimality. The
efficiency of these methods are demonstrated by numerical examples. Furthermore, the RCI

sets can be calculated offline and be treated as the terminal target set of the RMPC scheme.

The Matlab CVX toolbox is used to solve our SDP algorithms proposed in this thesis. Nu-
merical examples show that the computational speed of our algorithm of approximating a
full-complexity RCI set has no significant increase compared with the low-complexity case.
In addition, the proposed online-offline RMPC scheme has achieved very fast processing
speeds as illustrated in the examples.
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6.2 Future Work

In this section, we highlight possible extensions of the proposed algorithms and control

schemes.

» Concerning the computation of the approximated maximal/minimal RCI sets for lin-
ear discrete-time systems subject to asymmetric output constraints, we used the full-
complexity polytopic structure of the form

P(Pb,x;)={xe %" :—b < P(x—x.) <b},
which is still symmetric around x.. Future research may concern the form
P(Pb,b,x.) ={x€R" :b<P(x—x;) < b},

where b < 0 < b € #™, and with P, b, b and x, being variable to obtain asymmetric
RC sets.

* In our tube based RMPC scheme, we only considered invariant tubes, that is we use
the same RCI set through the control process. Since the computational burden of
our approximation algorithm of the RCI sets is not heavy, the online computation of

variable tubes can be considered.

* The computation of the tube in the tube based RMPC scheme includes the computa-
tion of the RCI set of the estimation error and the corresponding observer gain, and
the computation of the RCI set of the control error and the corresponding feedback
control gain. These two algorithm are considered separately in our current scheme.
Future work will consider computing all the parameters in one algorithm, hence the
tube and the corresponding feedback control and observer gains are optimized simul-

taneously, which may result in a less conservative design.

* The proposed online-offline RMPC scheme is a preliminary work. Further research,

particularly on the stability of the proposed algorithm, will be considered.

* The online-offline RMPC scheme can be extended for systems with parameter uncer-

tainties and general convex disturbance bounds and constraints.
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