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Abstract. Electroanatomical mapping is a mandatory time-consuming
planning step in cardiac catheter ablation. In practice, interventional
cardiologists target specific endocardial areas for mapping based on per-
sonal experience, general electrophysiology principles, and preoperative
anatomical scans. Effective fusion of all available information towards
a useful mapping strategy has not been standardised and achieving the
optimal map within time and space constraints is challenging. In this
paper, a novel framework for computing optimal endocardial mapping
locations in patients with congenital heart disease (CHD) is proposed.
The method is based on a statistical electroanatomical model (SEAM)
which is instantiated from preoperative anatomy in order to achieve an
initial prediction of the electrical map. Simultaneously, the anatomical
areas with the highest frequency of mapping among the similar cases in
the dataset are detected and a classifier is trained to filter these points
based on the electroanatomical data. The framework was tested in an
iterative process of adding mapping points to the SEAM and computing
the instantiation error, with retrospective clinical data of 66 CHD cases
available.

1 Introduction

Cardiac rhythm disorders are serious life-long comorbidities affecting patients
with surgical repair of congenital heart disease (CHD). These life-threatening
conditions are commonly treated by radiofrequency (RF) catheter ablation with
a high input from the clinician in terms of personalised electroanatomical map-
ping, RF energy delivery and follow-up. CHD electroanatomical mapping is ad-
ditionally challenging due to the structural differences in anatomy and unusual
haemodynamics. All these physiological changes affect the electrical conduction
system and build the substrate for arrhythmias uncommon to normal hearts,
but specific to each CHD in particular [4].

Pre-procedural planning is a major factor in the success and duration of
cardiac catheter ablation. The state-of-the-art in intra-operative image guidance
systems such as CARTO (Biosense Webster, Diamond Bar, CA, USA) or EnSite
(St Jude Medical, St Paul, MN, USA) are able to reconstruct the anatomy
from the mapping catheter tip motion and the electrical activation from the
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catheter tip electrode. However, the catheter tip can only be in contact with
the endocardium at sparse points and while a large number of points yields
better mapping accuracy, this increases pre-procedural time. Emerging multi-
electrode systems such as Rhythmia (Boston Scientific, Marlborough, MA, USA
with their basket catheter configuration limit the reachability of narrow sites in
CHD patients, despite being able to collect many mapping points in the same
time [6]. Moreover, the construction of a clinically informative map is a skill of
experienced clinicians, who are able to adapt general electrophysiology principles
to the specific CHD and patient anatomy and to decide on the position of the
mapping points.

As part of the procedural pre-planning and also for better understanding of
the electrophysiology, several electromechanical models have been proposed [10,
14]. The models were built and parameterised from a small number of measure-
ments, thus limiting the instantiation ability at finer level of deformed anatomy
and atypical activation caused for example by surgical scars. Other approaches
focused on improving the electrophysiology model by coupling a generic equa-
tion of the anisotropic myocardial fibre orientation [7] and further enhancing it
with ECG-derived measures [16]. However, these have proved unable to describe
activation patterns measured intraoperatively [7].

Parameterisation of shape atlases has also been in extensive use in describ-
ing cardiac anatomy. Since their introduction [5], statistical shape models (SSM)
have moved from simple shape descriptions on Riemannian manifolds to more
complicated multi-dimensional spaces such as parameters of rigid transforma-
tions [3] and to combined statistical atlases of shape and texture [1] or shape
and pose [11], thus showing their applicability outside the traditional point dis-
tribution models commonly implemented in cardiac shape analysis. Furthermore,
combined inter- and intra-subject shape modelling has been used in the study of
cardiac [9] and respiratory motion [15]. In CHD patients, shape analysis on the
myocardium in Tetralogy of Fallot showed that disease-specific markers can be
computed from medical images [8, 17]. Moreover, the values differed significantly
from the healthy subjects, thus encouraging cohort-specific statistical analysis.

In this paper, a novel approach for optimal electroanatomical mapping of
CHD is proposed. Firstly, a statistical electroanatomical model (SEAM) is built
for each disease and cardiac chamber separately. Secondly, the frequency of
anatomical sites chosen as mapping points in the specific CHD anatomy is com-
puted. Finally, the vertices of a new shape are classified into mapping and regular
points based on the atlas electroanatomical knowledge and sorted in descending
order of their mapping frequency across the anatomy-specific dataset. The frame-
work was tested in 5 CHD groups, adding to 66 CHD electrophysiology studies,
to propose subject-specific mapping points location and compute the error re-
duction in electrical feature instantiation of the SEAM, i.e. unipolar and bipolar
voltages and local activation times (LAT). The instantiation errors from the
proposed sequence of mapping points were compared against the instantiation
errors from the retrospective sequence of mapping points acquired in CARTO.
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The results showed a steeper reduction in the electroanatomical reconstruction
error when the mapping points were selected with the proposed approach.

2 Methods

2.1 Data Acquisition

Electroanatomical data from CARTO 3 studies of 66 CHD anatomies was ex-
ported. Two CHD groups were represented: Tetralogy of Fallot (34 studies) and
univentricular hearts repaired by Fontan procedure with total cavo-pulmonary
connection (32 studies). In the Fallot group, there were 21 studies of right ven-
tricle (RV) and 13 of right atrium (RAFallot), while in the Fontan group, there
were 16 left atria (LA), 9 right atria (RAFontan), and 7 total cavo-pulmonary
connections (TCPC).

Each CARTO study included the preoperative MRI, the fast electroanatom-
ical map (FAM) created by the mapping catheter, the unipolar and bipolar
voltages and the LAT at each FAM vertex, the list and position of the sparse
mapping points, as well as the rigid transformation from the intraoperative man-
ual registration of the MRI onto the FAM. The number of mapping points varied
within the same anatomy and the same CHD, with 49±35 points in RV, 35±18
in RAFallot, 33±21 in LA, 34±23 in RAFontan, and 33±22 in TCPC. The MRI
meshes were smoothed in MeshLab [2].

For each of the five groups, an analysis inspired by mutual information was
performed, in order to select as template the mesh that is closest to the group
mean in terms of Cartesian distance and unipolar and bipolar voltages and
LAT difference between pairwise vertices. This yielded 6206 vertices for RV,
3940 for RAFallot, 6508 for LA, 7973 for RAFontan, and 5086 for TCPC. The
correspondences were chosen as the list of vertices on each template mesh and
were propagated on the other meshes using landmark-free nonrigid registration
[12]. In order to match the electrical values, the MRI meshes were registered
nonrigidly on their corresponding FAM. All distances and electrical values were
normalised within each case dataset.

2.2 Statistical Models

A statistical shape model was first built to fit a new shape s to the atlas de-
scribed by the mean shape s̄ and the matrix of eigenvectors Pa. The shape s
was approximated by the SSM as ŝa from the set of parameters ba, the result of
least square optimisation. This can be represented by:

ŝa = s̄ + Paba (1)

Simultaneously, the correspondences on shape s built a subset of an instance
in the statistical electroanatomical model (SEAM) defined by the mean elec-
troanatomical vector [s̄T ēT]T and the eigenvectors Pae. Again using least square
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optimisation, the current electroanatomical vector [sT eT]T was approximated
as [ŝTae êT]T, defined by the model through the parameters bae (Eq. (2)).[

ŝae
ê

]
=

[
s̄
ē

]
+ Paebae (2)

Due to least square optimisation forcing the approximated shape to converge to
the original in both models, it can be assumed that s ≈ ŝa ≈ ŝae and therefore
Pa ba ≈ Pae,sbae, whereby Pae,s is the matrix formed by the rows of Pae

corresponding to the shape vector s. Finally, the unknown parameter vector bae

and subsequently the electrical values ê can be recovered as in Eq. (3) and (4),
where P+

ae,s = (PT
ae Pae)

−1 ·PT
ae is the Moore-Penrose pseudoinverse of Pae,s and

Pae,e are the rows of matrix Pae corresponding to the electrical value vector.

bae ≈ P+
ae,sPaba (3)

ê ≈ ē + Pae,ebae (4)

Simultaneously to building the statistical models, the template meshes were
further decimated until the number of vertices was below 200, thus clustering
the vertices of each template mesh around sparse points, while still preserving
the anatomy. The value of 200 was chosen empirically in order to cover the
maximal number of mapping points per anatomy in the dataset (136 for one
RV).

Each mapping vertex of the full mesh was then approximated to the nearest
vertex of the decimated template mesh. This was performed for all subjects
within the same CHD group. The mapping frequency of each vertex on the low-
resolution mesh was defined as the sum of mapping vertices on the full-resolution
mesh, across all subjects in the anatomy-specific dataset.

2.3 Classification

RUSBoost classification of the vertices on a new instantiated shape was per-
formed in order to define target mapping areas (Alg. 1). This particular boosting
algorithm is suitable for classes with imbalanced numbers, i.e. regular vertices
vs. mapping vertices [13]. The features on which the classifier is trained are the
concatenated normalised coordinates of all shapes in the database [x y z] and
their corresponding normalised electrical features [uni bi LAT]. The anatomical
features in the test set [xtest ytest ztest] are the normalised Cartesian coordinates
of the current shape s, while the unipolar (uni) and bipolar voltages (bi) and
the local activation time (LAT) are the normalised electrical features estimated
from the SEAM Eq. (4).

2.4 Iterative Addition of Mapping Points

In order to assess the performance of the proposed framework, the computed
mapping points were added iteratively to the SEAM in decreasing order of their
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Data:
– (ytrain,[xtrain ytrain ztrain unitrain bitrain LATtrain]), ytrain ∈ {0, 1},

where 0 denotes regular vertex and 1 mapping vertex.
– number of mapping vertices is significantly lower than the number of

regular vertices, i.e. n1 � n0.
– ([xtest ytest ztest unitest bitest LATtest])
– weak learner,

which does not necessarily yield a good initial classification.

Initialisation: w1,i = 1
ntrain

, i = 1, ntrain, where wk,i is the weight of
sample i in iteration k and ntrain is the number of samples in the training
set;
while preset number of iterations not reached do

1. subsample from the full set using the weights wk,i, i = 1, ntrain;
2. feed the subset and the weights to the learner;
3. learner estimates the labels of the training data;
4. update the weights with the classification error;

end
Result: ytest

Algorithm 1: RUSBoost classification algorithm for computing mapping
points on a given electroanatomical map. Adapted from [13].

probability. In each iteration, the known shape vector s was enhanced with the
electrical features of the computed mapping vertices. The electrical parameters
of the remaining vertices were estimated as in Eq. (3) and (4). The instantiation
error was compared to the one obtained from the ground truth mapping points.
For each electrophysiology study, the number of iterations was equal to the
number of mapping points exported from CARTO. The iterative instantiation
is presented comparatively in Alg. 2.

3 Results

3.1 Statistical Models

Tab. 1 shows the first mode of variation of the SEAM for each anatomy. Among
the noticeable features, the SEAM is able to describe the variation in the amount
of septal activation in RV and the atrial dilatation, a common issue in CHD.
Cross-validation on a leave-one-out basis was performed within the dataset of
each CHD anatomy. The mean instantiation errors for shape and electrical prop-
erties were also computed. The shape instantiation error errs was evaluated in
terms of mean Cartesian distance between SEAM-computed vertices position
and ground truth, while the error for the electrical values was computed as
vertex-wise L1-norm between the true and estimated parameters.
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Data:
– decimated template mesh and mapping frequency of each vertex,

computed according to Sec. 2.2
– descending order of the vertices on the decimated mesh according to

mapping frequency (cluster vertices)
– nP number of CARTO mapping points

Initialisation: perform SEAM according to Eq. (2–4);
for i← 1 to nP do

Proposed framework Ground truth

1. classify vertices on instantiated
electroanatomy;

2. select only vertices mapped
to the cluster vertex with i-
highest probability;

3. perform SEAM as in Eq. (2–4);

1. add mapping vertices corre-
sponding to the next chronolog-
ical CARTO point;

2. perform SEAM as in Eq. (2–4);

end

Algorithm 2: Iterative addition of mapping points for SEAM with points
computed from the proposed framework and points added chronologically
from the ground-truth CARTO point list.

The mapping frequency of the vertices on the low-resolution template mesh of
each anatomy was computed according to Sec. 2.2 (Tab. 1). The atlas of mapping
frequency was also built on a leave-one-out basis, as for SEAM validation. The
atlas was further used in ranking potential mapping points in decreasing order
of their probability and added iteratively to refine the SEAM instantiation. The
resulting colour-coded maps in Tab. 1 indicate the outflow tract in the RV and
the interatrial septum as frequent mapping areas.

3.2 Classification

The adapted RUSBoost classifier was cross-validated CHD-specifically by train-
ing and testing it on normalised electroanatomical values within the same anatom-
ical group. Overall, the accuracy averaged at 67.91 %, with a true positive rate
(sensitivity) of 54.35 %. The high accuracy at low sensitivity in RAFontan indi-
cates that the true negative rate is high, i.e. the model is reluctant to recommend
a vertex as a mapping point if not enough previous cases are available.

3.3 Iterative Addition of Mapping Points

Mapping points selected by the classifier and ordered by their mapping frequency
according to the anatomy-specific atlas were added iteratively to the SEAM to
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Table 1: SEAM modes of variation and instantiation errors, probabilistic map-
ping atlas (second set of meshes), accuracy and sensitivity of the RUSBoost
classifier and SEAM error reduction with the addition of mapping points com-
puted by the proposed method (green) when compared with the addition of
CARTO-exported mapping points (red). The mesh orientation is given by the
superior-inferior axis (red), left-right axis (black), and anterior-posterior axis
(green).
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improve its performance and test the contribution of the proposed mapping
points. Starting with no electrical information (original SEAM), the unipolar
and bipolar voltages and LATs of vertices in the regional cluster with i-highest
mapping probability were added in iteration i. Fig. 1 shows snapshots of the
improvement over 3 iterations for a RV. Tab. 1 also includes the curves of error
reduction for one case of each CHD anatomy.
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Fig. 1. Iterative addition of mapping points for a RV. Comparison of proposed com-
bined SEAM-classification method with the chronological addition of mapping points
as exported from CARTO. The electroanatomical maps show electrical propagation in
terms of LAT. The ground truth is the CARTO-exported LAT map.

4 Discussion and Conclusion

Electroanatomical mapping as pre-procedural planning of cardiac catheter ab-
lation is a patient-specific and time consuming step which requires high skills
and knowledge from the electrophysiologist. In this paper, a novel combination
of statistical electroanatomical mapping model instantiation and classification is
employed in order to compute areas of potential interest based on previous cases
of similar disease and on patient preoperative anatomical data.

The chain of methods relies on the instantiation of a pure shape model from
known anatomy and the direct substitution into a combined SEAM to recover
the electrical data. While initial results presented in Tab. 1 are promising, the
method relies on the approximation that the shapes in the two models are equal.
A quantitative analysis showed that they differ in reality by an average of 3 mm,
which is in the range of the shape recovery error of the SEAM. The proposed
framework was tested in an iterative addition of the computed mapping points
to the SEAM. The error curves in Tab. 1 show good results for a large represen-
tative training dataset, e.g. RV (21 cases), but inconclusive results for a database
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smaller than 10 subjects (e.g. TCPC). Moreover, a statistical analysis on CHD
electroanatomy was only possible due to the electrical activation pattern homo-
geneity, which needs further investigation in application to other patient groups,
such as myocardial infarction survivors.

In conclusion, a novel method for objective identification of electroanatomical
mapping areas was proposed. The framework can be regarded as a first step in
computer-aided standardisation of pre-procedural mapping in cardiac catheter
ablation and can be used to transfer expert knowledge to trainees. Moreover,
targeted patient-specific electroanatomical mapping can help in reducing the
overall intervention time and to effectively detect potential ablation sites.
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