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Abstract—We investigate the capability of localizing node
failures in communication networks from binary states (nor-
mal/failed) of end-to-end paths. Given a set of nodes of interest,
uniquely localizing failures within this set requires that different
observable path states associate with different node failure events.
However, this condition is difficult to test on large networks
due to the need to enumerate all possible node failures. Our
first contribution is a set of sufficient/necessary conditions for
identifying a bounded number of failures within an arbitrar y
node set that can be tested in polynomial time. In addition to
network topology and locations of monitors, our conditionsalso
incorporate constraints imposed by the probing mechanism used.
We consider three probing mechanisms that differ accordingto
whether measurement paths are (i) arbitrarily controllable, (ii)
controllable but cycle-free, or (iii) uncontrollable (determined
by the default routing protocol). Our second contribution is
to quantify the capability of failure localization through (1)
the maximum number of failures (anywhere in the network)
such that failures within a given node set can be uniquely
localized, and (2) the largest node set within which failures
can be uniquely localized under a given bound on the total
number of failures. Both measures in (1–2) can be converted
into functions of a per-node property, which can be computed
efficiently based on the above sufficient/necessary conditions. We
demonstrate how measures (1–2) proposed for quantifying failure
localization capability can be used to evaluate the impact of
various parameters, including topology, number of monitors, and
probing mechanisms.

Index Terms—Network Tomography, Failure Localization,
Identifiability Condition, Maximum Identifiability Index

I. I NTRODUCTION

Effective monitoring of network performance is essential
for network operators in building reliable communication
networks that are robust to service disruptions. In order to
achieve this goal, the monitoring infrastructure must be able to
detect network misbehaviors (e.g., unusually high loss/latency,
unreachability) and localize the sources of the anomaly (e.g.,
malfunction of certain routers) in an accurate and timely man-
ner. Knowledge of where problematic network elements reside
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in the network is particularly useful for fast service recovery,
e.g., the network operator can migrate affected services and/or
reroute traffic. However, localizing network elements that
cause a service disruption can be challenging. The straightfor-
ward approach of directly monitoring the health of individual
elements is not always feasible due to traffic overhead, access
control, or lack of protocol support at internal nodes. More-
over, built-in monitoring agents running on network elements
cannot detect problems caused by misconfigured/unanticipated
interactions between network layers, where end-to-end com-
munication is disrupted but individual network elements along
the path remain functional (a.k.a.silent failures) [1]. These
limitations call for a different approach that can diagnose
the health of network elements from the health of end-to-end
communications perceived between measurement points.

One such approach, generally known asnetwork tomog-
raphy [2], focuses on inferring internal network character-
istics based on end-to-end performance measurementsfrom
a subset of nodes with monitoring capabilities, referred to
asmonitors. Unlike direct measurement, network tomography
only relies on end-to-end performance (e.g., path connectivity)
experienced by data packets, thus addressing issues such as
overhead, lack of protocol support, and silent failures. Incases
where the network characteristic of interest is binary (e.g.,
normalor failed), this approach is known asBoolean network
tomography[3].

In this paper, we study an application of Boolean network
tomography to localize node failures from measurements of
path states1. Under the assumption that a measurement path is
normal if and only if all nodes on this path behave normally,
we formulate the problem as a system of Boolean equations,
where the unknown variables are the binary node states, and
the known constants are the observed states of measurement
paths. The goal of Boolean network tomography is essentially
to solve this system of Boolean equations.

Because the observations are coarse-grained (path
normal/failed), it is usually impossible to uniquely identify
node states from path measurements. For example, if two
nodes always appear together in measurement paths, then
upon observing failures of all these paths, we can at most
deduce that one of these nodes (or both) has failed but

1This model can also capture link failures by transforming the topology into
a logical topology with each link represented by a virtual node connected to
the nodes incident to the link.
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cannot determine which one. Because there are often multiple
explanations for given path failures, existing work mostly
focuses on finding the minimum set of failed nodes that most
probably involves failed nodes. Such an approach, however,
does not guarantee that nodes in this minimum set have
failed or that nodes outside the set have not. Generally, to
distinguish between two possible failure sets, there must exist
a measurement path that traverses one and only one of these
two sets. There is, however, a lack of understanding of what
this requires in terms of observable network properties such
as topology, monitor placement, and measurement routing.
On the other hand, even if there exists ambiguity in failure
localization across the entire network, it is still possible to
uniquely localize node failures in a specific sub-network (e.g.,
sub-network with a large fraction of monitors). To determine
such unique failure localization in sub-networks, we need to
understand how it is related to network properties.

In this paper, we consider three closely related problems:
Let S denote a set of nodes of interest (i.e., there can be am-
biguity in determining the states of nodes outsideS; however,
the states of nodes inS must be uniquely determinable). (1)
If the number of simultaneous node failures is bounded byk,
then under what conditions can one uniquely localize failed
nodes inS from path measurements available in the entire
network? (2) What is the maximum number of simultaneous
node failures (i.e., the largest value ofk) such that any failures
within S can be uniquely localized? (3) What is the largest
node set within which failures can be uniquely localized, ifthe
total number of failures is bounded byk? Answers to ques-
tions (2) and (3) together quantify a network’s capability to
localize failures from end-to-end measurements: question(2)
characterizes thescaleof failures and question (3) thescopeof
localization. Clearly, answers to the above questions depend on
which paths are measurable, which in turn depends on network
topology, placement of monitors, and the routing mechanism
of probes. We will study all these problems in the context of
the following classes of probing mechanisms: (i)Controllable
Arbitrary-path Probing (CAP), where any measurement path
can be set up by monitors, (ii)Controllable Simple-path Prob-
ing (CSP), where any measurement path can be set up, pro-
vided it is cycle-free, and (iii)Uncontrollable Probing (UP),
where measurement paths are determined by the default rout-
ing protocol. These probing mechanisms assume different lev-
els of control over routing of probing packets and are feasible
in different network scenarios (see Section II-C); answersto
the above three problems under these probing mechanisms thus
provide insights on how the level of control bestowed on the
monitoring system affects its capability in failure localization.

A. Related Work

Existing work can be broadly classified into single failure
localization and multiple failure localization. Single failure lo-
calization assumes that multiple simultaneous failures happen
with negligible probability. Under this assumption, [4], [5]
propose efficient algorithms for monitor placement such that
any single failure can be detected and localized. To improve
the resolution in characterizing failures, range tomography in

[6] not only localizes the failure, but also estimates its severity
(e.g., congestion level). These works, however, ignore thefact
that multiple failures occur more frequently than one may
imagine [7]. In this paper, we consider the general case of
localizing multiple failures.

Multiple failure localization faces inherent uncertainty. Most
existing works address this uncertainty by attempting to find
the minimum set of network elements whose failures explain
the observed path states. Under the assumption that failures are
low-probability events, this approach generates the most prob-
able failure set among all possibilities. Using this approach,
[8], [9] propose solutions for networks with tree topologies,
which are later extended to general topologies in [1].Similarly,
[10] proposes to localize link failures by minimizing falsepos-
itives; however, it cannot guarantee unique failure localization.
In a Bayesian formulation, [11] proposes a two-stage solution
which first estimates the failure (loss rate above threshold)
probabilities of different links and then infers the most likely
failure set for subsequent measurements. By augmenting path
measurements with (partially) available control plane infor-
mation (e.g., routing messages), [12], [13] propose a greedy
heuristic for troubleshooting network unreachability in multi-
AS (Autonomous System) networks that has better accuracy
than benchmarks using only path measurements.

Little is known when we insist onuniquely localizing
network failures. Given a set of monitors known to uniquely
localize failures on paths between themselves, [14] develops an
algorithm to remove redundant monitors such that all failures
remain identifiable. If the number of failed links is upper
bounded byk and the monitors can probe arbitrary cycles
or paths containing cycles, [15] proves that the network must
be(k+2)-edge-connected to identify any failures up tok links
using one monitor, which is then used to derive requirements
on monitor placement for general topologies. Solving node
failure localization using the results of [15], however, requires
a topology transformation that maps each node to a link
while maintaining adjacency between nodes and feasibility
of measurement paths. To our knowledge, no such transfor-
mation exists whose output satisfies the assumptions of [15]
(undirected graph, measurement paths not containing repeated
links). Later, [16] proves that under a CAP-like probing mech-
anism, the condition can be relaxed to the network beingk-
edge-connected. Both [15], [16] focus on placing monitors and
constructing measurement paths to localize a given number of
failures; in contrast, we focus on characterizing the capability
of failure localization under a given monitor placement and
constraints on measurement paths. In previous work [17], we
propose efficient testing conditions and algorithms to quantify
the capability of localizing node failures in the entire network;
however, we did not consider the case that even if some node
states cannot be uniquely determined, we may still be able to
unambiguously determine the states of some other nodes. In
this paper, we thus investigate the relationships between the ca-
pability of localizing node failures and explicit network prop-
erties such as topology, placement of monitors, probing mech-
anism, and nodes of interest, with focus on developing efficient
algorithms to characterize the capability under given settings.

A related but fundamentally different line of work is graph-
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constrained group testing [18], which studies the minimum
number of measurement paths needed to uniquely localize a
given number of (node/link) failures, using a CAP-like probing
mechanism. In contrast, we seek to characterize the type of
failures (number and location) that can be uniquely localized
using a variety of probing mechanisms.

B. Summary of Contributions

We study the fundamental capability of a network with
arbitrarily placed monitors to uniquely localize node failures
from binary end-to-end measurements between monitors. Our
contributions are five-fold:

1) We propose two novel measures to quantify the capability
of failure localization, (i)maximum identifiability indexof a
given node set, which characterizes the maximum number of
simultaneous failures such that failures within this set can
be uniquely localized, and (ii)maximum identifiable setfor
a given upper bound on the number of simultaneous failures,
which represents the largest node set within which failurescan
be uniquely localized if the failure event satisfies the bound.
We show that both measures can be expressed as functions
of per-node maximum identifiability index (i.e., maximum
number of failures such that the failure of a given node can
be uniquely determined).

2) We establish necessary/sufficient conditions for uniquely
localizing failures in a given set under a bound on the total
number of failures, which are applicable to all probing mech-
anisms. We then convert these conditions into more concrete
conditions in terms of network topology and placement of
monitors, under the three different probing mechanisms (CAP,
CSP, and UP), which can be tested in polynomial time.

3) We show that a special relationship between the above
necessary/sufficient conditions leads to tight upper/lower
bounds on the maximum identifiability index of a given set that
narrows its value to at most two consecutive integers. These
conditions also enable a strategy for constructing inner/outer
bounds (i.e., subset/superset) of the maximum identifiableset.
These bounds are polynomial-time computable under CAP
and CSP. While they are NP-hard to compute under UP, we
present a greedy heuristic to compute a pair of relaxed bounds
that frequently coincide with the original bounds in practice.

4) We evaluate the proposed measures under different prob-
ing mechanisms on random and real topologies. Our evaluation
shows that controllable probing, especially CAP, significantly
improves the capability of node failure localization over un-
controllable probing. Our result also reveals novel insights into
the distribution of per-node maximum identifiability indexand
its relationship with graph-theoretic node properties.

Note: Our results are also applicable to transient failures
as long as node failures persist during probing (i.e., leading
to failures of all traversing paths). We have limited our obser-
vations to binary states (normal/failed) of measurement paths.
It is possible in some networks to obtain extra information
from probes, e.g., rerouted paths after a default path fails,
in which case our solution provides lower bounds on the
capability of localizing failures.Furthermore, we do not make
any assumption on the distribution or correlation of node

TABLE I
GRAPH-RELATED NOTATIONS

Symbol Meaning

V , L set of nodes/links (ξ := |L|)

M, N
set of monitors/non-monitors (M ∪ N = V ,
µ := |M |, σ := |N |)

k
maximum number of simultaneous non-monitor
failures

V (G) set of nodes inG

N (M)
set of non-monitors that are neighbors of at least
one monitor inM (θ := |N (M)|)

L(V, W )
L(V, W ) = {link vw : ∀v ∈ V, w ∈ W,
v 6= w}

G − L′ delete links:G − L′ = (V,L \ L′), where “\”
is setminus

G + L′ add links: G + L′ = (V,L ∪ L′), where the
end-points of links inL′ must be inV

G − V ′

delete nodes:G − V ′ = (V \ V ′, L \ L(V ′)),
whereL(V ′) is the set of links incident to nodes
in V ′

G + V ′ add nodes:G + V ′ = (V ∪ V ′, L)

G∗ auxiliary graph ofG (see Fig. 2)

Gm
auxiliary graph of G w.r.t. monitor m (see
Fig. 2)

G′ extended graph ofG (see Fig. 3)

Ω(S), Ω(v) maximum identifiability index ofS or v (S: a
set of nodes,v: a node)

S∗(k) maximumk-identifiable set

S inner(k) subset ofS∗(k)

Souter(k) superset ofS∗(k)

failures across the network. In some application scenarios
(e.g., datacenter networks), node failures may be correlated
(e.g., all routers sharing the same power/chiller). We leave the
characterization of failure localization in the presence of such
additional information to future work.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III presents the theoretical
foundations for identifying node failures, followed by
verifiable identifiability conditions for specific classes of
probing mechanisms in Section IV. Based on the derived
conditions, tight bounds on the maximum identifiability
index are presented in Section V, and inner/outer
bounds on the maximum identifiable set are established
in Section VI. We evaluate the established bounds on various
synthetic/real topologies in Section VII to study the impact
of various parameters (topology, number of monitors, probing
mechanism) on the capability of node failure localization.
Finally, Section VIII concludes the paper.

II. PROBLEM FORMULATION

A. Models and Assumptions

We assume that the network topology is known and model
it as an undirected graph2 G = (V, L), whereV andL are the

2We use the termsnetworkandgraph interchangeably.
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sets of nodes and links. InG, the number of neighbors of node
v is called thedegreeof v; ξ := |L| denotes the number of
links. Notethat graphG can represent a logical topology where
each node inG corresponds to a physical subnetwork. Without
loss of generality, we assumeG is connected, as different
connected components have to be monitored separately.

A subset of nodesM (M ⊆ V ) aremonitorsthat can initiate
and collect measurements. The rest of the nodes, denoted
by N := V \ M , are non-monitors. Let µ := |M | and
σ := |N | denote the numbers of monitors and non-monitors.
We assume that monitors do not fail during the measurement
process, as failed monitors can be directly detected and ex-
cluded (assuming centralized control within the monitoring
system). Non-monitors, on the other hand, can fail, and a
failure event may involve simultaneous failures of multiple
non-monitors. Depending on the adopted probing mechanism,
monitors measure the states of nodes by sending probes along
certain paths. LetP denote the set of allpossible measurement
paths; for givenG andM , different probing mechanisms can
lead to different sets of measurement paths, which will be
specified later. We usenode state(path state) to refer to the
binary state, failed or normal, of a node (path), where a path
fails if and only if at least one node on the path fails. Table I
summarizes graph-related notations used in this paper.

Let w = (W1, . . . ,Wσ)
T be the binary column vector of the

states of all non-monitors andc = (C1, . . . , Cγ)
T the binary

column vector (γ = |P |) of the states of all measurement
paths. For both node and path states,0 represents “normal”
and1 represents “failed”. We relate the path states to the node
states through the following Boolean linear system:

R⊙ w = c, (1)

whereR = (Rij) is a γ × σ measurement matrix, with each
entryRij ∈ {0, 1} denoting whether non-monitorvj is present
on pathPi (1: yes, 0: no), and “⊙” is the Boolean matrix
product, i.e.,Ci = ∨σ

j=1(Rij ∧ Wj). The goal of Boolean
network tomography is to invert this Boolean linear system
to solve for all/part of the elements inw given R and c.
Intuitively, for a node setS (S ⊆ N ), any node failures in
S are identifiable if and only if the corresponding states ofS
in w are uniquely determinable by (1).

B. Definitions

Let a failure setF be a set of non-monitors (F ⊆ N ) that
fail simultaneously.Note that the collection of all failure sets
in a given network covers all possible failure scenarios (each
corresponds to a failure set) that can occur in this network;
the goal of failure localization is to infer the current failure set
from the states of measurement paths. The challenge for this
problem is that there may exist multiple failure sets leading
to the same path states, causing ambiguity. LetPF denote
the set of all measurement paths affected by a failure setF
(i.e., paths traversing at least one node inF ). To quantify the
capability of uniquely determining the failure set, we introduce
the following definitions.

Definition 1. Given a networkG and a set of measurement
pathsP , two failure setsF1 andF2 are distinguishableif and

only if PF1
6= PF2

, i.e., ∃ a path that traverses one and only
one ofF1 andF2.

Definition 1 implies that two potential failure sets must be
associated with different observable path states for monitors
to determine which set of nodes have failed. While uniquely
localizing arbitrary failures requires all subsets ofN to be
pairwise distinguishable, we can relax this requirement byonly
considering failure sets of size bounded byk (k ≥ 1), which
represents the scale of probable failure events. Moreover,in
practice, we are usually interested in the states of a subsetof
nodesS (S ⊆ N ), in which case the goal is to only ensure
unique failure localization withinS. Note that failures (F )
may occur anywhere in the network (F ⊆ N ) and are not
restricted toS.

Definition 2. Given a networkG (with non-monitor setN )
and a node setS of interest (S ⊆ N ):

1) S is k-identifiable if for any two failure setsF1 andF2

satisfying (1)|Fi| ≤ k (i = 1, 2) and (2)F1∩S 6= F2∩S,
F1 andF2 are distinguishable.

2) The maximum identifiability index ofS, denoted by
Ω(S), is the maximum value ofk such thatS is k-
identifiable.

Intuitively, if a node setS is k-identifiable, then the states
(normal/failed) of all nodes within this set are unambiguously
determinable from the observed path states, provided the total
number of failures (anywhere in the network) is bounded by
k. The maximum identifiability indexΩ(S) characterizes the
network’s capability to uniquely localize failures inS. Defini-
tion 2 generalizes the notion of network-widek-identifiability
and maximum identifiability index introduced in [17], where
only the case ofS = N was considered. In the special case of
S = {v}, we say that nodev is k-identifiable; the maximum
identifiability index ofS = {v} is denoted byΩ(v). Note that
the subset of ak-identifiable set is alsok-identifiable. We are
therefore interested in the maximum such set.

Definition 3. Givenk, the maximumk-identifiable set, denoted
by S∗(k), is the largest-cardinality non-monitor set that isk-
identifiable.

According to Definition 3, it seems that the maximumk-
identifiable set is defined based on its cardinality, and thus
may not be unique. Nevertheless, we prove in Section III-B
that S∗(k) is unique. The significance of the maximumk-
identifiable set is that it measures the completeness of the
inferred network state: it contains all nodes whose states can
be inferred reliably from the observed path states, as long as
the total number of failures in the network is bounded byk.
Note thatk is a design parameter capturing the scale of failures
that the system is designed to handle.

C. Classification of Probing Mechanisms

The above definitions are all defined with respect to (w.r.t.)
a given set of measurement pathsP . Given the topologyG and
monitor locationsM , the probing mechanism plays a crucial
role in determiningP . Depending on the flexibility of probing



5

and the cost of deployment, we classify probing mechanisms
into one of three classes:

1) Controllable Arbitrary-path Probing (CAP):P includes
any path/cycle, allowing repeated nodes/links, provided
each path/cycle starts and ends at monitors.

2) Controllable Simple-path Probing (CSP):P includes any
simple path between distinct monitors, not including
repeated nodes.

3) Uncontrollable Probing (UP):P is the set of paths
between monitors determined by the routing protocol
used by the network, not controllable by the monitors.

Although CAP allows probes to traverse each node/link an
arbitrary number of times, it suffices to consider paths where
each probe traverses each link at most once in either direction
for the sake of localizing node failures.

These probing mechanisms clearly provide decreasing
flexibility to the monitors and therefore decreasing capability
to localize failures. However, they also offer decreasing
deployment cost. CAP represents the most flexible probing
mechanism and provides an upper bound on failure localiza-
tion capability. In traditional networks, CAP is feasible at the
IP layer if (strict) source routing(an IP option) [19] is enabled
at all nodes3, or at the application layer (to localize failures in
overlay networks) if equivalent “source routing” is supported
by the application. Moreover, CAP is also feasible under
an emerging networking paradigm called software-defined
networking (SDN) [20], [21], where monitors can instruct
the SDN controller to set up arbitrary paths for the probing
traffic. In particular, an SDN consisting of OpenFlow switches
[21] can set up paths by configuring the flow table of each
traversed OpenFlow switch to forward a probing flow (e.g.,
one TCP connection) to a next hop based on the ingress port
and the flow identifier, which allows the path to have repeated
nodes/links. In contrast, UP represents the most basic probing
mechanism, feasible in any network supporting data forward-
ing, that provides a lower bound on the capability of failure
localization. CSP represents an intermediate case that allows
control over routing while respecting a basic requirement that
routes must be cycle-free. CSP is implementable by MPLS
(MultiProtocol Label Switching), where the “explicit routing”
mode [22] allows one to set up a controllable, non-shortest
path using labels so long as the path are cycle-free. Note that
the cycle-free constraint here is crucial, as data forwarding in
MPLS will encounter forwarding loops if a path has cycles.

The significance of these three probing mechanisms is that
they capture the main features of several existing and emerging
routing techniques. Specifically, UP is generally supported
in existing networks without special configuration, CSP is
feasible in some of today’s networks running MPLS with cer-
tain configuration (i.e., label propagation via explicit routing),
while CAP represents the capability of future networks once
SDN is broadly deployed.

3Source routing allows nodes to modify the source and the destination
addresses in packet headers hop by hop along the path prescribed by a monitor.
The probe can follow the reverse path to return to the original monitor, thus
effectively probing any path withat leastone end at a monitor.

m1 m3

v4

v1

v2

v3

m2

Fig. 1. Sample network with three monitors:m1, m2, andm3.

Discussion: In [23], “m-trail” (monitoring trails) is em-
ployed as a probing mechanism in all-optical networks, where
measurement paths can contain repeated nodes butnot re-
peated links. It is unclear which routing protocols in communi-
cation networks select paths under the restriction of “m-trails”,
we thus do not consider such a probing mechanism in this pa-
per. In [16], another probing mechanism “m-tour” (monitoring
tours) is used, which allows both repeated nodes and repeated
links in measurement paths; “m-tour” is equivalent to CAP.

In this paper, we quantify how the flexibility of a probing
scheme affects the network’s capability to localize failures.
Although concrete results are only provided for the above
classes of probing mechanisms, our framework and our ab-
stract identifiability conditions (see Section III-A) can also be
used to evaluate the failure localization capabilities of other
probing mechanisms.

D. Objective

Given a network topologyG, a set of monitorsM , and a
probing mechanism (CAP, CSP, or UP), we seek to answer
the following closely related questions: (i) Given a node set
of interestS and a boundk on the number of failures, can
we uniquely localize up tok failed nodes inS from observed
path states? (ii) Given a node setS, what is the maximum
number of failures withinS that can be uniquely localized?
(iii) Given an integerk (1 ≤ k ≤ σ), what is the largest node
set that isk-identifiable? We will study these problems from
the perspectives of both theories and efficient algorithms.

E. Illustrative Example

Consider the sample network in Fig. 1 with three monitors
(m1–m3) and four non-monitors (v1–v4). Under UP, suppose
that the default routing protocol only allows the monitors to
probe the following paths:P1 = m1v1m2, P2 = m2v4m3,
andP3 = m1v2v4m3, which form a measurement matrixRUP:

P1 = m1v1m2

P2 = m2v4m3

P3 = m1v2v4m3

⇛ R
UP =

W1 W2 W3 W4
( )

1 0 0 0
0 0 0 1
0 1 0 1

, (2)

whereRUP
ij = 1 if and only if nodevj is on pathPi. Then

we haveRUP ⊙ w = c, wherec is the binary vector of path
states observed at the destination monitors. LetS′ := {v1, v2,
v4}. Based on Definition 3, we can verify thatΩ(S′) = 2,
and the maximum identifiable setS∗(1) = {v1, v2, v4} and
S∗(2) = S∗(3) = S∗(4) = {v1, v4}. Under CSP, besides
the three paths in (2), we can probe three additional paths:
P4 = m2v3m3, P5 = m1v2v3m3, and P6 = m1v2v1m2,
yielding an expanded measurement matrix in (3):
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P1 = m1v1m2

P2 = m2v4m3

P3 = m1v2v4m3

P4 = m2v3m3

P5 = m1v2v3m3

P6 = m1v2v1m2

⇛ R
CSP =

W1 W2 W3 W4

























1 0 0 0
}

R
UP0 0 0 1

0 1 0 1
0 0 1 0
0 1 1 0
1 1 0 0

(3)

Using the six paths in (3), the maximum identifiability index
of S′ becomesΩ(S′) = 3, and the maximum identifiable set
is enlarged toS∗(1) = S∗(2) = S∗(3) = {v1, v2, v3, v4} and
S∗(4) = {v1, v3, v4}, a notable improvement over UP. Finally,
if CAP is supported, then we can send probes along a cycle
P7 = m1v2m1. In conjunction with the paths in (3), this yields
the measurement matrix in (4):

P1 = m1v1m2

P7 = m1v2m1

P4 = m2v3m3

P2 = m2v4m3

⇛ R
CAP =

W1 W2 W3 W4












1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(4)

Since the paths in (4) can independently determine the
state of each non-monitor, we haveΩ(S′) = 4 andS∗(1) =
S∗(2) = S∗(3) = S∗(4) = {v1, v2, v3, v4} under CAP, i.e.,
all failures can be uniquely localized.

This example shows that the monitor placement and the
probing mechanism significantly affect a network’s capability
to localize failures. In the rest of the paper, we will study this
relationship both theoretically and algorithmically.

III. T HEORETICAL FOUNDATIONS

We start with some basic understanding of failure identifi-
ability. First, the definition ofk-identifiability in Definition 2
requires enumeration of all possible failure events and thus
cannot be tested efficiently. To address this issue, we establish
explicit sufficient/necessary conditions fork-identifiability that
apply to arbitrary probing mechanisms, which will later be
developed into verifiable conditions for the three classes of
probing mechanisms. Moreover, we establish several desirable
properties of maximum identifiability index (Definition 2)
and maximum identifiable set (Definition 3), which greatly
simplify the computation of these measures.

A. Abstract Identifiability Conditions

Our identifiability condition is inspired by a result known
in a related field calledcombinatorial group testing[24].
In short, group testing aims to find abnormal elements in a
given set by running tests on subsets of elements, each test
indicating whether any element in the subset is abnormal.
This is analogous to our problem where abnormal elements are
failed nodes and tests are conducted by probing measurement
paths. A subtle but critical difference is that in our problem, the
subsets of elements that can be tested together are constrained
by the set of measurement pathsP , which is in turn limited by
the topology, probing mechanism, and placement of monitors4.

4In this regard, our problem is similar to a variation of grouptesting under
graph constraints [18]; see Section I-A for the difference.

Most existing solutions for (nonadaptive) group testing aim
at constructing adisjunct testing matrix. Specifically, a testing
matrix R is a binary matrix, whereRi,j = 1 if and only if
elementj is included in thei-th test. MatrixR is k-disjunct
if the Boolean sum of anyk columns does not “contain”any
other column5 [25]. In our problem, the existence of a disjunct
testing matrix translates into the following conditions.

Lemma 4. SetS is k-identifiable:

a) if for any failure setF with |F | ≤ k and any nodev with
v ∈ S \ F , ∃ p ∈ P traversingv but none of the nodes
in F ;

b) only if for any failure setF with |F | ≤ k − 1 and any
nodev with v ∈ S \ F , ∃ p ∈ P traversingv but none
of the nodes inF .

Proof: Consider two distinct failure setsF1 andF2 with
F1∩S 6= F2∩S, each containing no more thank nodes. There
exists a nodev ∈ S in only one of these sets; supposev ∈ F1\
F2. By the condition in the lemma,∃ a pathp traversingv but
not F2, thus distinguishingF1 from F2. Therefore, condition
a) in Lemma 4 is sufficient.

Suppose∃ a non-empty setF with |F | ≤ k−1 andv ∈ S\F
such that all measurement paths traversingv must also traverse
at least one node inF . Therefore, for two failure setsF and
F ∪ {v} satisfying conditions (1–2) in Definition 2-(1) are
not distinguishable asPF = PF∪{v}. Thus, conditionb) in
Lemma 4 is necessary.

These conditions generally apply to any probing mecha-
nism. Although in the current form, they do not directly lead
to efficient testing algorithms, we will show later (SectionIV)
that they can be transformed into verifiable conditions for
several classes of probing mechanisms.

B. Properties of the Maximum Identifiability Index and the
Maximum Identifiable Set

Although the maximum identifiability indexΩ(S) and the
maximum k-identifiable setS∗(k) are defined for sets of
nodes, we show below that they can both be characterized
in terms of a per-node property, which greatly simplifies the
computation of these measures. We start with the following
two observations.

Lemma 5. a) If S is k-identifiable, then anyv ∈ S must be
k-identifiable.

b) If v is k-identifiable∀v ∈ S, thenS is k-identifiable.

Proof: a) Suppose∃ nodev ∈ S that is notk-identifiable,
then ∃ at least two failure setsF1 and F2 with |Fi| ≤ k
(i = {1, 2}) andF1∩{v} 6= F2∩{v} such thatF1 andF2 are
not distinguishable. Thus,S is not k-identifiable asv ∈ S.

b) For any two failure setsF1 andF2 with |Fi| ≤ k (i = {1,
2}) andF1 ∩S 6= F2 ∩S, ∃ a nodev ∈ S that is either inF1

or F2 but not both. Since nodev is k-identifiable,F1 andF2

must be distinguishable. Therefore,S is k-identifiable.

Proposition 6. Ω(S) = minv∈S Ω(v).

5That is, for any subset ofk column indicesS and any other column index
j /∈ S, ∃a row indexi such thatRi,j = 1 andRi,j′ = 0 for all j′ ∈ S.
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Proof: By Lemma 5-(a), anyv ∈ S must haveΩ(v) ≥
Ω(S). Thus,minv∈S Ω(v) ≥ Ω(S). By the definition of max-
imum identifiability index, all nodes inS areminv∈S Ω(v)-
identifiable. By Lemma 5-(b),S is also minv∈S Ω(v)-
identifiable. Thus,Ω(S) ≥ minv∈S Ω(v). Therefore,Ω(S) =
minv∈S Ω(v).

Corollary 7. Maximum identifiability index ofS, Ω(S), is
monotonically non-increasing in the sense thatΩ(S1) ≥
Ω(S2) for any two non-empty setsS1 andS2 with S1 ⊂ S2.

Proof: SinceS1 ⊂ S2, minv∈S1
Ω(v) ≥ minv∈S2

Ω(v).
Therefore, by Proposition 6,Ω(S1) ≥ Ω(S2).

Therefore, we can estimate the maximum identifiability
index of a given non-monitor set using Corollary 7 when the
maximum identifiability index of its subset/superset is known.

Next, we show that maximumk-identifiable sets exhibit
properties that can facilitate fast determination of whichnodes
should be included/excluded in these sets.

Proposition 8. Let S′(k) := {v ∈ N : v is k-identifiable}.
ThenS′(k) = S∗(k).

Proof: By Lemma 5-(a), any node inS∗(k) is k-
identifiable. Therefore,S∗(k) ⊆ S′(k).

Next, S′(k) must bek-identifiable according to Lemma 5-
(b). Thus |S′(k)| ≤ |S∗(k)|. Consequently,S′(k) = S∗(k).

Proposition 8 provides a method to construct the maximum
k-identifiable setS∗(k) by simply collecting allk-identifiable
nodes. Based on this method, we can further prove the
uniqueness and monotonicity ofS∗(k) as follows:

Corollary 9. The maximumk-identifiable setS∗(k) is unique
and monotonically non-increasing ink, i.e., S∗(k + 1) ⊆
S∗(k) for any k.

Proof: Definition 2 implies thatk-identifiability is a per-
node property that is independent of the identifiability of other
nodes. Therefore, for each node inN , it is eitherk-identifiable
or not k-identifiable. By Proposition 8,S∗(k) is a set contain-
ing all k-identifiable nodes; therefore,S∗(k) is unique.

For each nodew ∈ N \ S∗(k), w is not k-identifiable, and
thusw is not(k+1)-identifiable. SinceS∗(k+1) is a collection
of all (k + 1)-identifiable nodes, no nodes inN \ S∗(k) can
be included inS∗(k + 1). Thus,S∗(k + 1) ⊆ S∗(k).

Intuitively, if there exists ak-identifiable setS′(k) with
|S′(k)| = |S∗(k)|, then we must haveS′(k) = S∗(k). Thus,
Corollary 9 suggests one way to obtainS∗(k) is to identify
S∗(j) for j < k and then only study subsets ofS∗(j); nodes
outsideS∗(j) are guaranteed to be excluded fromS∗(k).

Corollary 10. Let S′′(k) := {v ∈ N : ∃ path inP traversing
v but none of the nodes in each failure setF with v /∈ F and
|F | ≤ k}. ThenS′′(k) ⊆ S∗(k).

Proof: S′′(k) satisfies sufficient condition a) in Lemma 4.
Thus,Ω

(
S′′(k)

)
≥ k. Following similar arguments as in the

proof of Proposition 8, again we have that each node inS′′(k)
is at leastk-identifiable. Therefore,S′′(k) ⊆ S∗(k).

By Corollary 10, we note thatS′′(k) underestimates the
size of the maximumk-identifiable setS∗(k), yet it forms an

inner bound (i.e., subset) ofS∗(k), thus providing theoretical
support for determining the must-have nodes in the optimum
setS∗(k); see detailed discussions presented in Section VI.

Remark:Results in this section apply to any probing mecha-
nism. We will show in the following sections how they can be
used to design efficient algorithms for probing mechanisms
CAP, CSP, and UP. The above results can also be used to
design algorithms for other probing mechanisms.

IV. V ERIFIABLE IDENTIFIABILITY CONDITIONS

In this section, starting from the abstract conditions in
Section III-A, we develop concrete conditions suitable for
efficient testing for the three classes of probing mechanisms.

A. Conditions under CAP

CAP essentially allows us to “ping” any node from a moni-
tor along any path. In the face of failures, this allows a monitor
to determine the state of a node as long as it is connected to
the node after removing other failed nodes. This observation
allows us to translate the conditions in Section III-A into more
concrete identifiability conditions (Lemma 11).

Lemma 11. SetS is k-identifiable under CAP if and only if
for any setV ′ of up to k − 1 non-monitors, each connected
component inG−V ′ that contains a node inS has a monitor.

Proof: Necessity.Suppose the above condition does not
hold, i.e., there exists a non-monitorv (v ∈ S) that is
disconnected from all monitors inG − V ′ for a setV ′ of
up to k − 1 non-monitors (v 6∈ V ′). Then if nodes inV ′ fail,
no remaining measurement path can probev, violating the
condition in Lemma 4-(b).

Sufficiency.The proof is similar to that of Theorem 2 in
[16], except that we are only interested in localizing failures
in S. Consider two failure setsF1 and F2 with |Fi| ≤ k
(i = {1, 2}) andF1 ∩ S 6= F2 ∩ S. Then∃ nodev (v ∈ S)
that is in one and only one ofF1 and F2. Without loss of
generality, letv ∈ F1. Let I := F1 ∩F2. Since|I| ≤ k− 1, ∃
a pathp connecting a monitorm with nodev in G − I if the
condition in Lemma 11 holds. Letw be the first node onp
(starting fromm) that is in eitherF1 \ I or F2 \ I. Truncating
p at w gives a pathp′ such thatp′ and its reverse path form a
measurement path fromm to w and back tom that traverses
only F1 or F2, thus distinguishingF1 andF2.

Under CAP, Lemma 11 shows that the necessary condition
derived from Lemma 4 is also sufficient. However, the condi-
tion in Lemma 11 still cannot be tested efficiently because a
combinatorial number of setsV ′ are enumerated. Fortunately,
we can reduce Lemma 11 into explicit conditions on vertex-
cuts of a related topology, which can then be tested in poly-
nomial time. We use the following notion from graph theory.

Definition 12. For two nodess and t in an undirected graph
G, (s, t)-vertex-cut inG, denoted byCG(s, t), is the minimum-
cardinality node set whose deletion destroys all paths froms
to t. If s and t are neighbors,CG(s, t) := V (G) \ {t}.

Our key observation is that requiring each connected com-
ponent in G − V ′ that contains a node inS to have a
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Fig. 2. Auxiliary graphs: (a) Original graphG; (b) G∗ of G; (c) Gmi
of G

w.r.t. monitormi.

monitor is equivalent to requiring each such component in
G − M − V ′ (i.e., after removing all monitors) to contain
a neighbor of a monitor. Thus, if we extendG − M by
adding avirtual monitor m′ and virtual links connectingm′

and all neighbors of monitors to obtain anauxiliary graph
G∗ := G − M + {m′} + L

(
{m′}, N (M)

)
(illustrated in

Fig. 2 (b)), then each node inS\V ′ should be connected tom′

in G∗−V ′. In other words, the minimum cardinality of the (m′,
w)-vertex-cut inG∗ over allw ∈ S must be greater than|V ′|.
For ease of presentation, we introduce the following definition.

Definition 13. Given a graphG, a node setS, and a node
m /∈ S, defineΓG(S,m) := minw∈S |CG(w,m)|.

By this definition, Lemma 11 can be transformed into a
new condition, which reduces the tests over all possibleV ′ to
a single test of the vertex-cuts ofG∗, as stated below (recall
that σ is the total number of non-monitors).

Lemma 14. Each connected component inG − V ′ that
contains a node inS has a monitor for any setV ′ of up toq
(q ≤ σ − 1) non-monitors if and only ifΓG∗(S,m′) ≥ q + 1.

Proof: The proof can be found in [26].
Lemma 14 allows us to rewrite the identifiability conditions

in Lemma 11 in terms of the vertex-cuts ofG∗.

Theorem 15 (k-identifiability under CAP). Set S is k-
identifiable (k ≤ σ) under CAP if and only ifΓG∗(S,m′) ≥ k.

A special case of Theorem 15 occurs whenk = σ, i.e., any
non-monitors can fail simultaneously. In this case, each node
in S must directly connect to at least one monitor inG.

Discussion:Theorem 15 extends and improves the identifi-
ability condition given in Theorem 2 of [16] by (i) considering
failures within an arbitrary subset of nodes instead of the entire
network, and (ii) providing a single condition that can be tested
in polynomial time (see testing algorithm below) instead of
testing a combinatorial number of conditions that enumerate
all possible failure events.

Testing algorithm: A key advantage of the newly derived
conditions over the abstract conditions in Section III-A isthat
they can be tested efficiently. Letθ := |N (M)| denote the
number of non-monitors that are neighbors of at least one
monitor in M . Given nodew, CG∗(w,m′) can be computed
in O(θξ) time6, where ξ is the number of links (refer to

6The (m′, w)-vertex-cut problem in an undirected graph can be reduced
to an (m′, w)-edge-cut problem in a directed graph in linear time [27]. The
(m′, w)-edge-cut problem is solvable by the Ford−Fulkerson algorithm [28]
in O(θξ) time.

Table I for notations). Therefore, we can evaluateΓG∗(S,m′)
in O(θξ|S|) time and compare the result withk to test the
conditions in Theorem 15.

B. Conditions under CSP

Under CSP, we restrict measurement pathsP to the set of
simple pathsbetween monitors, i.e., paths starting/ending at
distinct monitors that contain no cycles. As in CAP, our goalis
again to transform the abstract conditions in Section III-Ainto
concrete sufficient/necessary conditions that can be efficiently
verified. We first give analogous result to Theorem 15.

Lemma 16. SetS is k-identifiable under CSP:
a) if for any node setV ′, |V ′| ≤ k + 1, containing at most

one monitor, each connected component inG − V ′ that
contains a node inS also contains a monitor;

b) only if for any node setV ′, |V ′| ≤ k, containing at most
one monitor, each connected component inG − V ′ that
contains a node inS also contains a monitor.

Proof: The proof can be found in [26].
Due to the restriction to simple paths, the identifiability con-

ditions in Lemma 16 are stronger than those in Lemma 11. As
with Lemma 11, the conditions in Lemma 16 do not directly
lead to efficient tests, and we again seek equivalent conditions
in terms of topological properties. Each condition in the form
of Lemma 16 (a–b) covers two cases: (i)V ′ only contains non-
monitors; (ii)V ′ contains a monitor and|V ′|−1 non-monitors.
The first case has been converted to a vertex-cut property on
an auxiliary topologyG∗ by Lemma 14; we now establish a
similar condition for the second case using similar arguments.

Fix a setV ′ = F ∪ {m}, wherem is a monitor inM
andF a set of non-monitors. Again, the key observation is
that each connected component inG − V ′ that contains a
node in S also containing a monitor is equivalent to each
such component inG − M − F containing a neighbor of
a monitor other thanm (i.e., a node inN (M \ {m})). To
capture this observation, we introduce anotherauxiliary graph
Gm := G−M+{m′}+L

(
{m′}, N (M \{m})

)
w.r.t. monitor

m as illustrated in Fig. 2 (c), wherem′ is again a virtual
monitor. We will show that the second case (V ′ contains a
monitor) is equivalent to requiring that the nodes inS \F and
m′ are in the same connected component withinGm−F , and
thus the following holds.

Lemma 17. The following two conditions are equivalent:
(1) Each connected component inG−V ′ that contains a node

in S also contains a monitor for∀setsV ′ containing
monitor m (m ∈ M ) and up to q (q ≤ σ − 1) non-
monitors;

(2) ΓGm
(S,m′) ≥ q + 1.

Proof: The proof can be found in [26].
Based on Lemmas 14 and 17, we can rewrite Lemma 16 as

follows.

Theorem 18 (k-identifiability under CSP). Set S is k-
identifiable under CSP:

a) if ΓG∗(S,m′) ≥ k+2, andminm∈M ΓGm
(S,m′) ≥ k+1

(k ≤ σ − 2);
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b) only if ΓG∗(S,m′) ≥ k+1, andminm∈M ΓGm
(S,m′) ≥

k (k ≤ σ − 1).

Theorem 18 does not include the cases ofk = σ and
k = σ − 1, which are addressed in Propositions 19 and 20.

Proposition 19. SetS is σ-identifiable under CSP if and only
if each node inS has at least two monitors as neighbors.

Proof: The proof can be found in [26].

Proposition 20. SetS is (σ − 1)-identifiable under CSP if
and only if (i) all nodes inS have at least two monitors as
neighbors, or (ii) all nodes inN \ {v} (v ∈ S) have at least
two monitors as neighbors andv has all nodes inN \ {v}
and one monitor as neighbors.

Proof: The proof can be found in [26].
Testing algorithm: Similar to the case of CAP, we can use

the algorithm in [27], [28] to compute the vertex-cuts of the
auxiliary graphsG∗ andGm (∀m ∈ M ), and test the conditions
in Theorem 18 for any givenk. The overall complexity of the
test isO(µθξ|S|) (refer to Table I for notations).

C. Conditions under UP

Under UP, monitors have no control over the probing paths
between monitors, and the set of measurement pathsP is
limited to the paths between monitors determined by the
network’s native routing protocol. In contrast to the previous
cases (CAP, CSP), identifiability under UP can no longer
be characterized in terms of topological properties. We can,
nevertheless, establish explicit conditions based on the abstract
conditions in Section III-A. The idea is to examine how
many non-monitors need to be removed to disconnect all
measurement paths traversing a given non-monitorv. If the
number is sufficiently large (greater thank), then we can still
infer the state ofv from some measurement path when a set
of other non-monitors fail; if the number is too small (smaller
than or equal tok− 1), then we are not able to determine the
state ofv as the failures of all paths traversingv can already be
explained by the failures of other non-monitors. This intuition
leads to the following results.

In the sequel,Pv ⊆ P denotes the set of measurement
paths traversing a non-monitorv, andCv := {Pw : w ∈ N,
w 6= v} denotes the collection of path sets traversing non-
monitors inN \ {v}. We use MSC(v) to denote the size of
the minimum set coverof Pv by Cv, i.e., MSC(v) := |V ′| for
the minimum setV ′ ⊆ N \ {v} such thatPv ⊆

⋃
w∈V ′ Pw.

Note that covering is only feasible ifv is not on any2-hop
measurement path (i.e., monitor-v-monitor), in which case we
know Pv ⊆

⋃
w∈N,w 6=v Pw and thus MSC(v) ≤ σ− 1. If v is

on a2-hop path, then we define MSC(v) := σ.

Theorem 21 (k-identifiability under UP). Set S is k-
identifiable under UP with measurement pathsP :

a) if MSC(v) ≥ k + 1 for any nodev in S (k ≤ σ − 1);
b) only if MSC(v) ≥ k for any nodev in S (k ≤ σ).

Proof: The proof can be found in [26].
The only case not considered by Theorem 21 is the case

that k = σ, for which we develop the following condition.

Proposition 22. SetS is σ-identifiable under UP if and only
if MSC(v) = σ for any nodev in S, i.e., each node inS is
on a 2-hop path.

Proof: The proof can be found in [26].
Testing algorithm: The conditions in Theorem 21 provide

an explicit way to testk-identifiability under UP, using tests
of the form MSC(v) ≥ q. Unfortunately, evaluating such a
test, known as the decision problem of theset covering prob-
lem, is known to be NP-complete. Nevertheless, we can use
approximation algorithms to compute bounds on MSC(v). An
algorithm with the best approximation guarantee is thegreedy
algorithm, which iteratively selects the set inCv that contains
the largest number of uncovered paths inPv until all the paths
in Pv are covered (assuming thatv is not on any2-hop path).

Let GSC(v) denote the number of sets selected by the
greedy algorithm. This immediately provides an upper bound:
MSC(v) ≤ GSC(v). Moreover, since the greedy algorithm has
an approximation ratio oflog(|Pv|)+1 [29], we can also bound
MSC(v) from below: MSC(v) ≥ GSC(v)/(log(|Pv|)+1). Ap-
plying these bounds to Theorem 21 yields relaxed conditions:

• S is k-identifiable under UP ifk < ⌈minv∈S
GSC(v)

log(|Pv|)+1⌉;
• S is not k-identifiable under UP ifk > minv∈S GSC(v).

These conditions can be tested by running the greedy
algorithm for all nodes in S, each taking time
O(|Pv |2σ) = O(|P |2σ), and the overall test has a complexity
of O(|S||P |2σ) (or O(µ4σ|S|) if there is a measurement path
between each pair of monitors).

D. Special Case: 1-identifiability

In practice, the most common failure event consists of
the failure of a single node. Thus, an interesting question is
whetherS is 1-identifiable under a given monitor placement
and a given probing mechanism. In our previous results,
Theorems 18 and 21 only provide an answer to the above
question if the sufficient condition is satisfied or the necessary
condition is violated fork = 1; however, the answer is
unknown if S satisfies the necessary condition but violates
the sufficient condition under CSP and UP. In contrast, The-
orem 15 establishes a condition under CAP that is both
necessary and sufficient, yet still expressed in a complicated
form (i.e., vertex-cuts). We develop explicit methods below
for testingS for 1-identifiability.

1) Conditions for1-identifiability: We start with a generic
necessary and sufficient condition that applies to all probing
mechanisms. Recall thatPv denotes the set of measurement
paths traversing a non-monitorv. For k = 1, Definition 2-(1)
is equivalent to the following:

Claim 23. S is 1-identifiable if and only if:
(1) Pv 6= ∅ for any v ∈ S, and
(2) Pv 6= Pw for any v ∈ S, w ∈ N , and v 6= w.

In Claim 23, the first condition guarantees that any failure
in S is detectable (i.e., causing at least one path failure), and
the second condition guarantees that the observed path states
can uniquely localize the failed node inS. An efficient test
of these conditions, however, requires different strategies for
different probing mechanisms.



10

G

m1

m2 mi

μm

v

m’

Fig. 3. Extended graphG′.

2) Test under CAP:By Theorem 15,S is 1-identifiable
under CAP if and only ifΓG∗(S,m′) ≥ 1. This is equivalent
to requiring thatG∗ be connected, i.e.,G has one monitor.

Testing for 1-identifiability of S under CAP is therefore
reduced to determining if the network has a monitor.

3) Test under CSP:Under CSP, we derive conditions that
are equivalent to those in Claim 23 but easier to test.

Condition (1) in Claim 23 requires that every non-monitor
in S reside on a monitor-monitor simple path. While an
exhaustive search for such a path incurs an exponential cost,
we can test for its existence efficiently using the following
observation. The idea is to construct anextended graph
G′ := G + {m′} + L({m′}, M), i.e., by adding a virtual
monitor m′ and connecting it to all the monitors; see an
illustration in Fig. 3. We claim that a non-monitorv is on
a monitor-monitor simple path if and only if the size of the
(m′, v)-vertex-cut inG′ is at least two, i.e.,ΓG′(v,m′) ≥ 2,
which implies the existence (see Definition 12) of two vertex-
independent simple paths betweenv and m′, illustrated as
paths vm2m

′ and vmim
′ in Fig. 3. Truncating these two

paths atm2 andmi yields two path segmentsvm2 andvmi,
whose concatenation gives a monitor-to-monitor simple path
traversingv, i.e., m2vmi in Fig. 3. On the other hand, if
∃ a monitor-to-monitor simple path traversingv, then it can
be split into two simple paths connectingv to two distinct
monitors, which impliesΓG′(v,m′) ≥ 2 as each of these two
distinct monitors connects tom′ by a virtual link.

Condition (2) in Claim 23 is violated if and only if there
exist two non-monitorsv 6= w (at least one of them in
S) such that all monitor-to-monitor simple paths traversing
v must traversew (i.e., Pv ⊆ Pw) and vice versa. Since
Pv ⊆ Pw means that there is no monitor-to-monitor simple
path traversingv in G − {w}, by the above argument, we see
thatPv ⊆ Pw if and only if the size of the (m′, v)-vertex-cut in
a new graphG′

w := G−{w}+{m′}+L({m′}, M) is smaller
than two. Therefore, condition (2) in Claim 23 is satisfied if
and only if for every two distinct non-monitorsv (v ∈ S) and
w, either the (m′, v)-vertex-cut inG′

w or the (m′, w)-vertex-cut
in G′

v contains two or more nodes.
In summary, the necessary and sufficient condition for1-

identifiability under CSP is:
i) ΓG′(S,m′) ≥ 2, and
ii) ΓG′

w
(v,m′) ≥ 2 orΓG′

v
(w,m′) ≥ 2 for all v ∈ S,w ∈ N ,

andv 6= w.
SinceΓG(v, w) ≥ 2 can be tested inO(|V |+ |L|) time7, the
overall test takesO(σ|S|(|V |+ |L|)) = O(σ(µ+σ)2|S|) time.

4) Test under UP:Under UP, the total number of mea-
surement paths|P | is reduced toO(µ2) (from exponentially

7We can compute the biconnected component decomposition [30] and test
if v andw belong to the same biconnected component.

many as in the case of CAP/CSP) as the measurable routes are
predetermined. This reduction makes it feasible to directly test
conditions (1–2) in Claim 23 by testing condition (1) for each
node inS and condition (2) for each pair of non-monitors
(one of which is inS). Then the overall complexity of is
O(σµ2|S|), dominated by testing of condition (2) in Claim 23.

V. CHARACTERIZATION OF MAXIMUM IDENTIFIABILITY

INDEX

By Proposition 6, the maximum identifiability index of a
given setS is the minimum per-node maximum identifiability
indexΩ(v) for each nodev ∈ S. It thus suffices to characterize
the per-node maximum identifiability index for each probing
mechanism. Under CAP, we give the exact value ofΩ(v)
based on the necessary and sufficient condition in Theorem 15;
under CSP and UP, we establish tight upper and lower bounds
on Ω(v) based on the conditions in Theorems 18 and 21.

A. Maximum Identifiability Index under CAP

Since Theorem 15 provides necessary and sufficient condi-
tions, it directly determines the value ofΩ(v), as stated below.

Theorem 24 (Maximum Per-node Identifiability under CAP).
The maximum identifiability index of a non-monitorv under
CAP isΩCAP(v) = ΓG∗(v,m′).

Evaluation algorithm: As shown in Section IV-A,ΓG∗(v,
m′) can be computed inO(θξ) time (θ: the number of monitor
neighbors inG, ξ: the number of links inG; see Table I).
Therefore,ΩCAP(S) is computable inO(θξ|S|) time.

B. Maximum Identifiability Index under CSP

Observing that both the sufficient and the necessary con-
ditions in Theorem 18 are imposed on the same property,
i.e., vertex-cuts of the auxiliary graphG∗ and Gm. Let
δ∗ := ΓG∗(v,m′), δmin := minm∈M ΓGm

(v,m′), andπv :=
min(δmin, δ

∗ − 1). We obtain a tight characterization of the
maximum identifiability index under CSP as follows.

Theorem 25 (Maximum Per-node Identifiability under CSP).
If πv ≤ σ − 2, the maximum identifiability index of a non-
monitor v under CSP is bounded byπv − 1 ≤ ΩCSP(v) ≤ πv.

Proof: The proof can be found in [26].
Remark:Because the set of links inGm is a subset of those

in G∗ while the nodes are the same, we always haveδmin ≤ δ∗.
Therefore, the above bounds simplify to:

• δmin − 2 ≤ ΩCSP(v) ≤ δmin − 1 if δmin = δ∗;
• δmin − 1 ≤ ΩCSP(v) ≤ δmin if δmin < δ∗.

In particular, if δ∗ = 1, then it implies that∃ a nodew ∈ N
in G∗, where all simple paths starting atv and terminating
atm′ must traversew, i.e.,∄ simple monitor-to-monitor paths
traversingv (Pv = ∅); thereforeΩCSP(v) = 0 (even single-node
failures inS cannot always be localized ifv ∈ S).

The only cases whenπv ≤ σ− 2 is violated are: (i)δmin =
δ∗ = σ, or (ii) δmin = σ − 1 and δ∗ = σ. In case (i), non-
monitorv still has a monitor as a neighbor after removingm;
by Proposition19, this implies thatΩCSP(v) = σ. In case (ii),
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Theorem 18 (a) can still be applied to show thatΩCSP(S) ≥
σ− 2, and one can verify that the condition inProposition19
is violated, which implies thatΩCSP(v) ≤ σ − 1. In fact, we
can leverageProposition20 to uniquely determineΩCSP(S) in
this case. If the conditions inProposition20 are satisfied, then
ΩCSP(v) = σ − 1; otherwise,ΩCSP(v) = σ − 2.

Evaluation algorithm: EvaluatingΩCSP(S) by Proposition 6
involves computingΩ(v) for all v ∈ S, each requiring the
computation of the vertex-cuts of the auxiliary graphsG∗ and
Gm (∀m ∈ M ) as that in Section IV-A, which altogether takes
O(µθξ|S|) time.

C. Maximum Identifiability Index under UP

As in the case of CSP, we can leverage the sufficient and the
necessary conditions in Theorem 21 to bound the maximum
identifiability index under UP from both sides. The conditions
in Theorem 21 imply the following bounds on the maximum
identifiability index under UP.

Theorem 26 (Maximum Per-node Identifiability under UP).
The maximum identifiability index of a non-monitorv under
UP with measurement pathsP is bounded by MSC(v)− 1 ≤
ΩUP(v) ≤ MSC(v).

Proof: The proof can be found in [26].
Evaluation algorithm: The original bounds in Theorem 26

are hard to evaluate due to the NP-hardness of computing
MSC(·). As in Section IV-C, we resort to the greedy algorithm,
which implies the following relaxed bounds:

⌈ GSC(v)
log(|Pv|) + 1

⌉
− 1 ≤ ΩUP(v) ≤ GSC(v). (5)

Evaluating these bounds forΩUP(S) involves invoking the
greedy algorithm for each node inS, with an overall complex-
ity of O(|S||P |2σ) (or O(µ4σ|S|) if all monitors can probe
each other).

VI. CHARACTERIZATION OF THE MAXIMUM

IDENTIFIABLE SET

By Proposition 8, the maximumk-identifiable setS∗(k) is
related to the per-node maximum identifiability indexΩ(v) by
S∗(k) = {v ∈ N : Ω(v) ≥ k}. Therefore,S∗(k) can be easily
computed based on values ofΩ(v) (v ∈ N ) for any value of
k. Moreover, given upper/lower bounds onΩ(v), i.e.,Ωl(v) ≤
Ω(v) ≤ Ωu(v), S∗(k) can be bounded byS inner(k) ⊆ S∗(k) ⊆
Souter(k) for S inner(k) := {v ∈ N : Ωl(v) ≥ k} andSouter(k) :=
{v ∈ N : Ωu(v) ≥ k}. Based on this observation, we now
characterizeS∗(k) for each of the three probing mechanisms.

A. Maximumk-identifiable Set under CAP

The expression of the maximum per-node identifiability un-
der CAP in Theorem 24 leads to the following characterization
of the maximumk-identifiable set.

Corollary 27. The maximumk-identifiable set under CAP,
denoted byS∗

CAP(k), is S∗
CAP(k) = {v ∈ N : ΓG∗(v,m′) ≥ k}.

Specifically, whenk = σ, S∗
CAP(σ) contains all the non-

monitors directly adjacent to monitors.

Evaluation algorithm: As shown in Section IV-A,ΓG∗(v,
m′) can be computed inO(θξ) time. Thus, the total time
complexity for constructingS∗

CAP(k) is O(θξσ).

B. Maximumk-identifiable Set under CSP

Leveraging Theorem 25, we can establish outer and in-
ner bounds (i.e., superset and subset) for the maximumk-
identifiable set under CSP.

Corollary 28. Let Souter
CSP (k) := {v ∈ N : πv ≥ k}, and

S inner
CSP (k) := {v ∈ N : πv ≥ k+1}. The maximumk-identifiable

set under CSP (k ≤ σ − 1), denoted byS∗
CSP(k), is bounded

by S inner
CSP (k) ⊆ S∗

CSP(k) ⊆ Souter
CSP (k).

Proof: The proof can be found in [26].
One case not covered by Corollary 28 isk = σ. In this

case,S∗
CSP(σ) contains all non-monitors that have at least two

monitors as neighbors according to Proposition 19. Another
non-covered case isk = σ − 1, for which we have the
following result.

Corollary 29. Whenk = σ − 1, S∗
CSP(k) = {v ∈ N : v has

at least two monitor neighbors} ∪ S̃. SetS̃ contains one and
only one non-monitorw if all nodes inN but w have at least
two monitor neighbors andw has one monitor and all nodes
in N \ {w} as neighbors; otherwise,̃S = ∅.

Proof: The proof can be found in [26].
Corollary 29 implies that wheñS is not empty (i.e.,|S̃| =

1), thenS∗
CSP(σ− 1) = N andS∗

CSP(σ) = N \ S̃ (i.e., |S∗
CSP(σ−

1)| = σ and |S∗
CSP(σ)| = σ − 1).

Evaluation algorithm: Corollary 29 is computable in linear
time. Similar to Section IV-B,πv in Corollary 28 is inO(µθξ)
complexity. Therefore, the overall complexity isO(µθξσ).

C. Maximumk-identifiable Set under UP

Analogous to the case of CSP, we leverage Theorem 26 to
develop the following outer and inner bounds for the maximum
k-identifiable set under UP.

Corollary 30. Let Souter
UP (k) := {v ∈ N : MSC(v) ≥ k} and

S inner
UP (k) := {v ∈ N : MSC(v) ≥ k + 1} with measurement

pathsP . The maximumk-identifiable set under UP (k ≤ σ−
1), denoted byS∗

UP(k), is bounded byS inner
UP (k) ⊆ S∗

UP(k) ⊆
Souter

UP (k).

Proof: The proof can be found in [26].
A special case left out by Corollary 30 isk = σ. In this

case, we use Proposition 22 to determineS∗
UP(σ), i.e.,S∗

UP(σ) =
{w ∈ N : w is on a2-hop path}.

Evaluation algorithm: Due to the NP-hardness of comput-
ing MSC(·), we again resort to the greedy algorithm, whereby
the outer and inner bounds ofS∗

UP(k) can be relaxed by
computing GSC(·). Let Ŝouter

UP (k) := {v ∈ N : GSC(v) ≥ k}
and Ŝ inner

UP (k) := {v ∈ N : GSC(v)/
(
log(|Pv|) + 1

)
≥ k + 1}.

We haveSouter
UP (k) ⊆ Ŝouter

UP (k) and Ŝ inner
UP (k) ⊆ S inner

UP (k) according
to Proposition 8. The computation of these relaxed bounds
involves O(σ|P |2) time complexity w.r.t. each node inN .
Thus, the overall complexity isO(σ2|P |2).
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Fig. 4. Maximumk-identifiable setS∗(k) under CAP, CSP, and UP for ER
graphs (|V | = 20, µ = {2, 10}, E[|L|] = 51, 200 graph instances,σ: total
number of non-monitors).
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Fig. 5. Maximumk-identifiable setS∗(k) under CAP, CSP, and UP for
Rocketfuel AS1755 (|V | = 172, |L| = 381, µ = {50, 163}, 100 Monte
Carlo runs,σ: total number of non-monitors).

VII. E VALUATION OF FAILURE LOCALIZATION

CAPABILITY

We demonstrate how the proposed measures of maximum
identifiability index and maximum identifiable set can be
used to evaluate the impact of various parameters, including
topology, number of monitors, and probing mechanisms (CAP,
CSP, UP), on the capability of failure localization. In this
study, we assume (hop count-based) shortest path routing as
the default routing protocol under UP, i.e., measurement paths
under UP are the shortest paths between monitors, with ties
broken arbitrarily.

A. Topologies for Evaluation

We first employ random graph models to generate a compre-
hensive set of topologies without artifacts of specific network
deployments. We consider random Erdös-Rényi (ER) graphs
[31], generated by independently connecting each pair of
nodes by a link with a fixed probabilityp. The result is a purely
random topology where all graphs with an equal number of
links are equally likely to be selected (note that the numberof
nodes is an input parameter). In addition to ER graphs, other
random graph models are also considered; the corresponding
results are presented in [26] due to space limitation.

We then evaluate realAutonomous System(AS) topolo-
gies collected by the Rocketfuel [32] and the CAIDA [33]
projects, which represents IP-level connections between back-
bone/gateway routers of several ASes from majorInternet
Service Providers (ISPs)around the globe.

B. Evaluation Results

We focus on evaluating per-node maximum identifiability
index Ω(v) since it determines both the per-set maximum
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Fig. 6. Maximumk-identifiable setS∗(k) under CAP, CSP, and UP for
CAIDA AS26788 (|V | = 355, |L| = 483, µ = {200, 346}, 100 Monte
Carlo runs,σ: total number of non-monitors).

identifiability index Ω(S) and the maximum identifiable set
S∗(k). In particular, thecomplementary cumulative distribu-
tion function (CCDF)of Ω(v) over allv ∈ N (refer to Table I
for notations) coincides with the normalized cardinality of the
maximum identifiable set|S∗(k)|/σ, and thus we character-
ize the distribution ofΩ(v) by evaluating|S∗(k)|/σ wrt k.
Moreover, we examine the specific value ofΩ(v) and compare
it with the degree (i.e., number of neighbors) ofv among
monitor/non-monitor nodes to evaluate the correlation between
maximum identifiability index and the graph property (i.e.,
degree) of a node. Under UP, our extensive simulations under
multiple graph models have shown that MSC(v) can be closely
approximated by GSC(v); hence, we use GSC(v) in place of
MSC(v) for computingΩUP andS∗

UP; see [26] for details.
1) Distribution ofΩ(v): To characterize the overall distri-

bution of Ω(v), we compute (bounds on)8 S∗
CAP(k), S

∗
CSP(k),

and S∗
UP(k) to evaluate|S∗(k)|/σ for different values ofk

(σ: total number of non-monitors). Fig. 4 reports averages of
|S∗(k)|/σ computed on ER graphs over randomly selected
multiple instances of topology and monitor locations, where
|S∗(k)|/σ under CSP and UP is represented by a band with
its width determined by(|Souter(k)|− |S inner(k)|)/σ. The results
show large differences in the failure localization capabilities of
different probing mechanisms: When the number of monitors
is small (µ = 2) andk = 2, S∗

UP(k) is almost empty, i.e., no
(non-monitor) node state can be uniquely determined by UP
when there are multiple failures; in contrast,|S∗

CSP(k)|/σ ≈ 0.5
and |S∗

CAP(k)|/σ ≈ 1, i.e., CSP can uniquely determine the
states of half of the nodes and CAP can determine the states
of all the nodes whenµ = 2 andk = 2. When the number of
monitors increases (µ = 10), there exist more measurement
paths between monitors, and thus the fraction of identifiable
nodes increases for all three probing mechanisms. In addition,
we observe a stable phase in Fig. 4 where the value of
|S∗(k)|/σ remains the same as we increasek; this is because
some non-monitors have monitors as neighbors, thus directly
measurable by these neighboring monitors without traversing
other non-monitors. Specifically, if there are non-monitors that
neighbor at least one monitor under CAP, neighbor at least two
monitors under CSP, or lie on 2-hop paths between monitors
under UP, then the failure of these non-monitors can always
be identified regardless of the total number of failures in the
network, i.e., the maximum identifiability index of these non-
monitors is the total number of non-monitors. Note that in

8Propositions 19, Corollary 29, and Proposition 22 are used to determine
the exact elements inS∗

CSP(σ), S
∗

CSP(σ − 1), andS∗

UP(σ).
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Fig. 4, the number of such directly measurable non-monitors
is smaller under UP than under CSP. This is because for non-
monitors that neighbor the same pair of monitors (e.g.,m1 and
m2), all these non-monitors are directly measurable on 2-hop
m1-to-m2 paths under CSP; however, only one of these non-
monitors is on a 2-hopm1-to-m2 path under UP as UP probes
only one routing path between each pair of monitors (assuming
stable single-path routing). Similar results have been obtained
for other random graph models (see [26] for details).

We repeat the above evaluation on AS topologies. We select
AS1755 from Rocketfuel topologies [32] and AS26788 from
CAIDA topologies [33], and evaluate the bounds on|S∗(k)|/σ
under multiple instances of random monitor placements; av-
erage results are reported in Fig. 5 and 6. Similar to the
case of random topologies, there are clear differences between
different probing mechanisms. Unlike the uniformly connected
random topologies in Fig. 4, these AS topologies contain many
sparse subgraphs where the removal of a few nodes can discon-
nect the network. Thus, unless a node is directly measurable
by monitors, it is likely that failures of a few other nodes
will disconnect it from monitors and thus make its failure
undetectable. Comparing results from Rocketfuel and CAIDA,
we observe that the CAIDA AS requires more monitors to
achieve the same level of identifiability. Moreover, deploying
more monitors in CAIDA AS only slightly improves the level
of identifiability. This can be explained by examining the link
density|L|/|V | of the network:|L|/|V | = 1.36 for the CAIDA
AS, whereas|L|/|V | = 2.22 for the Rocketfuel AS, i.e.,
CAIDA AS topology is nearly a tree. Therefore, it is likely for
a node to not reside on any paths between monitors or become
unmeasurable after the failure of one other node in the CAIDA
AS, even if the paths are controllable but cycle-free (CSP).

2) Correlation of Ω(v) and Degree: Next, we examine
specific values ofΩ(v) for each non-monitorv ∈ N for
selected instances of network topology and monitor placement.
Our goal is to compare these values with node degrees to
understand the correlation between the proposed identifiability
measure and typical graph-theoretic node properties. Specifi-
cally, we sort non-monitors in a non-increasing order ofΩ(v)
under each of the three probing mechanisms, and compare
Ω(v) with the degrees ofv among monitors/non-monitors9;
see results in Fig. 7 for random topologies and in Fig. 8–9 for
AS topologies. The results show strong correlations between
Ω(v) and the degree ofv, denoted by d(v). Specifically, denote
the number of neighbors ofv that are monitors by dm(v)
and the number of neighbors ofv that are non-monitors by
dn(v); the overall degree d(v) = dm(v)+dn(v). If nodev has
sufficient monitor neighbors (dm(v) ≥ 1 for CAP, dm(v) ≥ 2
for CSP), thenv is directly measurable and thusΩ(v) = σ
regardless of the actual degree ofv; if nodev does not have a
sufficient number of monitors as neighbors, thenΩ(v) ≤d(v)
because if all neighbors ofv fail, then the state ofv cannot be
determined by path measurements. However, in the latter case,
d(v) is only a loose upper bound, and the exact value ofΩ(v)
depends on the overall topology, the locations of monitors,

9Note that node IDs are different under different probing mechanisms due
to the different order ofΩ(v) values.

and the constraints on measurement paths. In this regard, our
result can also be viewed as defining a new node property
(Ω(v)) that takes into account all these parameters.

Overall, we observe that CAP-type probing is hugely ad-
vantageous in uniquely monitoring node states under failures,
especially when there are multiple failures and the networkis
sparse. This implies that in the absence of deploying monitors
at every node, implementing controllable probing is an effec-
tive way to uniquely localize node failures. Our observation
also stresses the importance of optimized monitor placement,
especially when we are only interested in monitoring a subset
of nodes, which is left to future work.

VIII. C ONCLUSION

We studied the fundamental capability of a network in local-
izing failed nodes from binary measurements (normal/failed)
of paths between monitors. We proposed two novel mea-
sures:maximum identifiability indexthat quantifies the scale
of uniquely localizable failures wrt a given node set, and
maximum identifiable setthat quantifies the scope of unique
localization under a given scale of failures. We showed that
both measures are functions of the maximum identifiability
index per node. We studied these measures for three types
of probing mechanisms that offer different controllability of
probes and complexity of implementation. For each prob-
ing mechanism, we established necessary/sufficient conditions
for unique failure localization based on network topology,
placement of monitors, constraints on measurement paths,
and scale of failures. We further showed that these con-
ditions lead to tight upper/lower bounds on the maximum
identifiability index, as well as inner/outer bounds on the
maximum identifiable set. We showed that both the conditions
and the bounds can be evaluated efficiently using polynomial-
time algorithms. Our evaluations on random and real network
topologies showed that probing mechanisms that allow moni-
tors to control the routing of probes have significantly better
capability to uniquely localize failures.
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