arXiv:1509.06333v1 [cs.NI] 21 Sep 2015

Network Capability in Localizing Node Failures via
End-to-end Path Measurements

Liang Mal, Ting He', Ananthram Swarj Don Towsley, and Kin K. Leund
fIBM T. J. Watson Research Center, Yorktown, NY, USA. Eméihaliang, thé @us.ibm.com
§Army Research Laboratory, Adelphi, MD, USA. Email: anaathrswami.civ@mail.mil
*University of Massachusetts, Amherst, MA, USA. Email: tteyg)cs.umass.edu

{Imperial College, London, UK.

Abstract—We investigate the capability of localizing node
failures in communication networks from binary states (nor
mal/failed) of end-to-end paths. Given a set of nodes of intest,
uniquely localizing failures within this set requires that different
observable path states associate with different node faite events.
However, this condition is difficult to test on large networks

due to the need to enumerate all possible node failures. Our

first contribution is a set of sufficient/necessary conditias for
identifying a bounded number of failures within an arbitrar y
node set that can be tested in polynomial time. In addition to
network topology and locations of monitors, our conditionsalso
incorporate constraints imposed by the probing mechanism sed.
We consider three probing mechanisms that differ accordingto
whether measurement paths are (i) arbitrarily controllable, (ii)
controllable but cycle-free, or (iii) uncontrollable (determined
by the default routing protocol). Our second contribution is
to quantify the capability of failure localization through (1)
the maximum number of failures (anywhere in the network)
such that failures within a given node set can be uniquely
localized, and (2) the largest node set within which failure
can be uniquely localized under a given bound on the total
number of failures. Both measures in (1-2) can be converted
into functions of a per-node property, which can be computed
efficiently based on the above sufficient/necessary conditis. We
demonstrate how measures (1-2) proposed for quantifying flare
localization capability can be used to evaluate the impact fo
various parameters, including topology, number of monitos, and
probing mechanisms.

Index Terms—Network Tomography, Failure Localization,
Identifiability Condition, Maximum Identifiability Index

|. INTRODUCTION
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in the network is particularly useful for fast service reeoy
e.g., the network operator can migrate affected servicdfan
reroute traffic. However, localizing network elements that
cause a service disruption can be challenging. The stfaight
ward approach of directly monitoring the health of indivadu
elements is not always feasible due to traffic overhead,sacce
control, or lack of protocol support at internal nodes. More
over, built-in monitoring agents running on network elemsen
cannot detect problems caused by misconfigured/unangcipa
interactions between network layers, where end-to-end-com
munication is disrupted but individual network elementsaj
the path remain functional (a.k.ailent failureg [I]. These
limitations call for adifferent approach that can diagnose
the health of network elements from the health of end-to-end
communications perceived between measurement points.

One such approach, generally known rastwork tomog-
raphy [2], focuses on inferring internal network character-
istics based on end-to-end performance measurenients
a subset of nodes with monitoring capabilities, referred to
asmonitors Unlike direct measurement, network tomography
only relies on end-to-end performance (e.g., path corviggti
experienced by data packets, thus addressing issues such as
overhead, lack of protocol support, and silent failurexdaes
where the network characteristic of interest is binary .(e.g
normal or failed), this approach is known @oolean network
tomography[3].

In this paper, we study an application of Boolean network
tomography to localize node failures from measurements of

Effective monitoring of network performance is essentigdath statdk Under the assumption that a measurement path is
for network operators in building reliable communicatiomormal if and only if all nodes on this path behave normally,

networks that are robust to service disruptions. In order
achieve this goal, the monitoring infrastructure must be &t
detect network misbehaviors (e.g., unusually high lotsiliey,

e formulate the problem as a system of Boolean equations,
where the unknown variables are the binary node states, and
the known constants are the observed states of measurement

unreachability) and localize the sources of the anomaly.,(€.paths. The goal of Boolean network tomography is essentiall
malfunction of certain routers) in an accurate and timelyimato solve this system of Boolean equations.

ner. Knowledge of where problematic network elements eesid Because
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the observations are coarse-grained (path
normal/failed), it is usually impossible to uniquely idéynt

node states from path measurements. For example, if two
nodes always appear together in measurement paths, then
upon observing failures of all these paths, we can at most
deduce that one of these nodes (or both) has failed but

1This model can also capture link failures by transforming tibpology into
a logical topology with each link represented by a virtuale@onnected to
the nodes incident to the link.


http://arxiv.org/abs/1509.06333v1

cannot determine which one. Because there are often naultiff] not only localizes the failure, but also estimates itgesity
explanations for given path failures, existing work mostlye.g., congestion level). These works, however, ignordabe
focuses on finding the minimum set of failed nodes that matstat multiple failures occur more frequently than one may
probably involves failed nodes. Such an approach, howevienagine [7]. In this paper, we consider the general case of
does not guarantee that nodes in this minimum set hadeealizing multiple failures.
failed or that nodes outside the set have not. Generally, toMultiple failure localization faces inherent uncertairijost
distinguish between two possible failure sets, there mxist e existing works address this uncertainty by attempting td fin
a measurement path that traverses one and only one of thisgeminimum set of network elements whose failures explain
two sets. There is, however, a lack of understanding of whhe observed path states. Under the assumption that faéuee
this requires in terms of observable network properties sulow-probability events, this approach generates the mmasi-p
as topology, monitor placement, and measurement routiradple failure set among all possibilities. Using this appiga
On the other hand, even if there exists ambiguity in failuf@], [9] propose solutions for networks with tree topolagjie
localization across the entire network, it is still possilib which are later extended to general topologie§in$linilarly,
uniquely localize node failures in a specific sub-networlg(e [10] proposes to localize link failures by minimizing falges-
sub-network with a large fraction of monitors). To detereninitives; however, it cannot guarantee unique failure Ia@zdion.
such unique failure localization in sub-networks, we ne®d tn a Bayesian formulation [11] proposes a two-stage smiuti
understand how it is related to network properties. which first estimates the failure (loss rate above threghold
In this paper, we consider three closely related problenpobabilities of different links and then infers the mogely
Let S denote a set of nodes of interest (i.e., there can be afailure set for subsequent measurements. By augmentitng pat
biguity in determining the states of nodes outsitfehowever, measurements with (partially) available control planeoiinf
the states of nodes i must be uniquely determinable). (1)mation (e.g., routing messages), [[12],1[13] propose a greed
If the number of simultaneous node failures is bounded by heuristic for troubleshooting network unreachability imlti
then under what conditions can one uniquely localize faileS (Autonomous System) networks that has better accuracy
nodes inS from path measurements available in the entitdan benchmarks using only path measurements.
network? (2) What is the maximum number of simultaneous Little is known when we insist oruniquely localizing
node failures (i.e., the largest value/9fsuch that any failures network failures. Given a set of monitors known to uniquely
within S can be uniquely localized? (3) What is the largesocalize failures on paths between themseles, [14] dpeso
node set within which failures can be uniquely localizedh& algorithm to remove redundant monitors such that all fagur
total number of failures is bounded l&y? Answers to ques- remain identifiable. If the number of failed links is upper
tions (2) and (3) together quantify a network’s capability tbounded byt and the monitors can probe arbitrary cycles
localize failures from end-to-end measurements: quegdn or paths containing cycles, [15] proves that the networktmus
characterizes thecaleof failures and question (3) trezopeof  be (k+2)-edge-connected to identify any failures upktbnks
localization. Clearly, answers to the above questionsmgpa using one monitor, which is then used to derive requirements
which paths are measurable, which in turn depends on network monitor placement for general topologies. Solving node
topology, placement of monitors, and the routing mechanidiailure localization using the results 6f[15], howevequées
of probes. We will study all these problems in the context @ topology transformation that maps each node to a link
the following classes of probing mechanisms:Gintrollable while maintaining adjacency between nodes and feasibility
Arbitrary-path Probing (CAP)where any measurement pattof measurement paths. To our knowledge, no such transfor-
can be set up by monitors, (iQontrollable Simple-path Prob- mation exists whose output satisfies the assumptions_of [15]
ing (CSP) where any measurement path can be set up, pfondirected graph, measurement paths not containing teghea
vided it is cycle-free, and (iiiluncontrollable Probing (UP) links). Later, [16] proves that under a CAP-like probing tmec
where measurement paths are determined by the default r@autism, the condition can be relaxed to the network being
ing protocol. These probing mechanisms assume different l@edge-connected. Both [115], [16] focus on placing moniters a
els of control over routing of probing packets and are fdasibconstructing measurement paths to localize a given nuntber o
in different network scenarios (see Section ]I-C); answers failures; in contrast, we focus on characterizing the cdipab
the above three problems under these probing mechanisms iufailure localization under a given monitor placement and
provide insights on how the level of control bestowed on theonstraints on measurement paths. In previous [17], we
monitoring system affects its capability in failure localtion. propose efficient testing conditions and algorithms to ¢jfian
the capability of localizing node failures in the entirewetk;
however, we did not consider the case that even if some node
A. Related Work states cannot be uniquely determined, we may still be able to
Existing work can be broadly classified into single failurenambiguously determine the states of some other nodes. In
localization and multiple failure localization. Singldltae lo- this paper, we thus investigate the relationships betwesnd-
calization assumes that multiple simultaneous failurggba pability of localizing node failures and explicit networkgp-
with negligible probability. Under this assumption, [4B][ erties such as topology, placement of monitors, probingmec
propose efficient algorithms for monitor placement such thanism, and nodes of interest, with focus on developing efiici
any single failure can be detected and localized. To improaggorithms to characterize the capability under givenirsgst
the resolution in characterizing failures, range tomobyain A related but fundamentally different line of work is graph-



constrained group testing [18], which studies the minimum
number of measurement paths needed to uniquely localize a

TABLE |
GRAPH-RELATED NOTATIONS

Meaning

set of nodes/links{(:= |L|)

set of monitors/non-monitorsM U N = V,
p = M|, o :=|N))

maximum number of simultaneous non-monitor
failures

set of nodes irg

set of non-monitors that are neighbors of at least
one monitor inM (0 := [N (M)|)

LWV, W) = {linkovw : Yo € V, w € W,
v #£ w}

delete links:G — L' = (V, L\ L"), where \"
is setminus

add links: G + L' = (V,L U L'), where the
end-points of links inL’ must be inV

delete nodesg — V' = (V \ V', L\ L(V")),
whereL (V") is the set of links incident to nodes
in V'

add nodesg + V' = (VUV', L)

auxiliary graph ofG (see Fig[R)

auxiliary graph of G w.r.t. monitor m (see

Fig.[2)

extended graph of (see Fig[B)

maximum identifiability index ofS or v (S: a
set of nodesy: a node)

maximum k-identifiable set

subset ofS™ (k)

given number of (node/link) failures, using a CAP-like pirab Symbol
mechanism. In contrast, we seek to characterize the type of V, L
failures (number and location) that can be uniquely loealiz
using a variety of probing mechanisms. M, N
k
B. Summary of Contributions -
We study the fundamental capability of a network with ©)
arbitrarily placed monitors to uniquely localize node failures N(M)
from binary end-to-end measurements between monitors. Out
contributions are five-fold: LV, W)
1) We propose two novel measures to quantify the capability
of failure localization, (i)maximum identifiability indexf a g-1
given node set, which characterizes the maximum number of
simultaneous failures such that failures within this set ca G+L
be uniquely localized, and (iiinaximum identifiable sefor
a given upper bound on the number of simultaneous failures, ¢ -V’
which represents the largest node set within which failcess
be uniquely localized if the failure event satisfies the wbun G+V’
We show that both measures can be expressed as functions G*
of per-node maximum identifiability index (i.e., maximum
number of failures such that the failure of a given node can Gm
be uniquely determined). g
2) We establish necessary/sufficient conditions for uniquely
localizing failures in a given set under a bound on the total 2(5), (v)
number of failures, which are applicable to all probing mech S (k)
anisms. We then convert these conditions into more concrete S )
conditions in terms of network topology and placement of S )

superset ofS* (k)

monitors, under the three different probing mechanismsRCA
CSP, and UP), which can be tested in polynomial time.

3) We show that a special relationship between the abofalures across the network. In some application scenarios

necessary/sufficient conditions leads to tight upper/towée.g., datacenter networks), node failures may be coeelat
bounds on the maximum identifiability index of a given setthde.qg., all routers sharing the same power/chiller). Wedehe
narrows its value to at most two consecutive integers. Thesaracterization of failure localization in the presentsuzch
conditions also enable a strategy for constructing inngefo additional information to future work.

bounds (i.e., subset/superset) of the maximum identifiséie

The rest of the paper is organized as follows. Sedcfion I

Thgsgsbounfj arr(]a ponnomiarI]—tirge computable lénder C%)rmulates the problem. Sectidnllll presents the theaaktic
an P. While they are NP-hard to compute under UP, W&, qations  for identifying node failures, followed by

present a greedy _hel_Jristic_to compl_Jtc_aapair of re!axed @u%rifiable identifiability conditions for specific classes o
that frequently coincide with the original bounds in preeti robing mechanisms in SectidnllV. Based on the derived
 4) We evaluate the proposed measures under different pri fion tight bounds on the maximum identifiability
ing mechanisms on random and real topologies. Our evaluatifjoy  are presented in Sectiofi] V, and inner/outer
shows that controllable probing, especially CAP, signiitba 1), ,n4s on the maximum identifiable set are established

improves the CaPab"“y of node failure Iocalizatiqn OVET U i Sectior[W]. We evaluate the established bounds on various
contrplla}ble_probmg. Our result also re_veals _noy(_al ms;ghto synthetic/real topologies in Sectign VIl to study the impac
the distribution of per-node maximum identifiability inderd of various parameters (topology, number of monitors, prgbi

its relationship with graph-theoretic node properties. i achanism) on the capability of node failure localization.
Note: Our results are also applicable to transient fallurq_ﬁna”y Sectior[VI) concludes the paper
as long as node failures persist during probing (i.e., legadi '

to failures of all traversing paths). We have limited ourebs
vations to binary states (normal/failed) of measuremettiga
It is possible in some networks to obtain extra informatioA. Models and Assumptions

from probes, e.g., rerouted paths after a default path, fails \\e assume that the network topology is known and model

in which case our solution provides lower bounds on theas an undirected graplg = (V, L), whereV and L are the
capability of localizing failuresFurthermore, we do not make

any assumption on the distribution or correlation of node2we use the termaetworkand graph interchangeably.

Il. PROBLEM FORMULATION



sets of nodes and links. &, the number of neighbors of nodeonly if Pr, # Pr,, i.e.,3 a path that traverses one and only
v is called thedegreeof v; £ := |L| denotes the number ofone of F; and F.
links. Notethat graphi can represent a logical topology where

e node 1 corresponds o  ohysical sbnetvor Witau D°TIONC e 1at o potentel e sets must o
loss of generality, we assum@ is connected, as different P

) to determine which set of nodes have failed. While uniquely
connected components have to be monitored separately. - . ) :
: - localizing arbitrary failures requires all subsets §fto be
A subset of nodesd/ (M C V) aremonitorsthat can initiate o T . )
and collect measurements. The rest of the nodes, den wise distinguishable, we can relax this requiremerdrtly
by N := V \ M, are non-monitors Let i = |M| ,and considering failure sets of size bounded byk > 1), which
: § g represents the scale of probable failure events. Moreaver,

o := |N| denote the numbers of monitors and non-monitors;

We assume that monitors do not fail during the measuremgrﬁ?cnce' we are usually interested in the states of a sutiset

process, as failed monitors can be directly detected and g)(()__desS (S c N), n Wh'Ch case the goal is to (_)nly ensure
cluded (assuming centralized control within the monitgrinunlque failure Iocahzapon withinS'. Note that failures £)
system). Non-monitors, on the other hand, can fall, and &Y oceur anywhere in the network”(C ) and are not
failure event may involve simultaneous failures of mukipl restricted tos.

non-monitors. Depending on the adopted probing mechanisbefinition 2. Given a networkg (with non-monitor setlV)
monitors measure the states of nodes by sending probes aland a node sef of interest § C N):

certain paths. LeP denote the set of abqssible mea;urement 1) S is k-identifiableif for any two failure sets”;, and F
paths for gweng and M, different probing mechan!sms can satisfying (1)|F;| < k (i = 1,2) and (2) F1 NS # F>NS,
lead _t_o different sets of measurement paths, which will be F, and F; are distinguishable.

specified later. We userode statg(path statg to refer to the 2) The maximum identifiability index ofS, denoted by

binary state, failed or normal, of a node (path), where a path Q(S), is the maximum value of such thatS is k-
fails if and only if at least one node on the path fails. Tdble | ;

) ; L identifiable.
summarizes graph-related notations used in this paper.
Letw = (Wy,...,W,)T be the binary column vector of the Intuitively, if a node setS is k-identifiable, then the states
states of all non-monitors and= (Cj,...,C,)T the binary (normal/failed) of all nodes within this set are unambigsigu

column vector ¢ = |P|) of the states of all measurementieterminable from the observed path states, provided taé to
paths. For both node and path stateégepresents “normal” number of failures (anywhere in the network) is bounded by
and1 represents “failed”. We relate the path states to the nofle The maximum identifiability index2(S) characterizes the
states through the following Boolean linear system: network’s capability to uniquely localize failures # Defini-
tion[2 generalizes the notion of network-wigiédentifiability
Row=cgc, @) and maximum identifiability index introduced ih J17], where
whereR = (R;;) is ay x ¢ measurement matrjxwith each only the case ob = N was considered. In the special case of
entry R;; € {0, 1} denoting whether non-monites, is present S = {v}, we say that node is k-identifiable; the maximum
on pathP; (1: yes, 0: no), and ©" is the Boolean matrix identifiability index of S = {v} is denoted by2(v). Note that
product, i.e.,C; = \/}7:1(Rij A W;). The goal of Boolean the subset of &-identifiable set is als&-identifiable. We are
network tomography is to invert this Boolean linear systetherefore interested in the maximum such set.
to solve for all/part of the elements iw given R and c.
Intuitively, for a node setS (S C N), any node failures in
S are identifiable if and only if the corresponding statesSof
in w are uniquely determinable bl(1).

Definition 3. Givenk, the maximunk-identifiable set, denoted
by S*(k), is the largest-cardinality non-monitor set that/s
identifiable.

According to Definition B, it seems that the maximum
B. Definitions identifiable set is defined based on its cardinality, and thus

: i . may not be unique. Nevertheless, we prove in Sedfionllll-B
Let afailure setl” be a set of non-monitorgC N) that that S*(k) is unique. The significance of the maximuka

fail simultaneouslyNote that the collection of all failure sets. o . .
) . . . : identifiable set is that it measures the completeness of the
in a given network covers all possible failure scenarioglea. . .

: . . inferred network state: it contains all nodes whose stad®s ¢
corresponds to a failure set) that can occur in this networ,

the goal of failure localization is to infer the current tai set D& inferred reliably from the observed path states, as lang a

from the states of measurement paths. The challenge for th|g total number of failures in the network is boundedby

; ; . . . Note thatk is a design parameter capturing the scale of failures
problem is that there may exist multiple failure sets Iegdlr[ X .
) o hat the system is designed to handle.
to the same path states, causing ambiguity. Pet denote
the set of all measurement paths affected by a failurefset
(i.e., paths traversing at least one nodein To quantify the C. Classification of Probing Mechanisms
capability of uniquely determining the failure set, we aduce

the following definitions. The above definitions are all defined with respect to (w.r.t.)

a given set of measurement pafisGiven the topology and
Definition 1. Given a networki and a set of measurementmonitor locations)M, the probing mechanism plays a crucial
pathsP, two failure setsF; and F, are distinguishabléf and role in determiningP. Depending on the flexibility of probing



and the cost of deployment, we classify probing mechanisms msy
into one of three classes:

1) Controllable Arbitrary-path Probing (CAP)P includes
any path/cycle, allowing repeated nodes/links, provided
each path/cycle starts and ends at monitors. va 4

2) Controllable Simple-path Probing (CSP}. includes any Fig. 1. Sample network with three monitorsii, m2, andms.
simple path between distinct monitors, not including

repeated nodes. o Discussion: In [23], “m-trail” (monitoring trails) is em-
3) Uncontrollable Probing (UP): P is the set of paths ,1oueq as a probing mechanism in all-optical networks, wher

between monitors determined by the routing protocpheasyrement paths can contain repeated nodesidiute-

used by the network, not controllable by the monitors. yeateq Jinks. It is unclear which routing protocols in conmiau

Although CAP allows probes to traverse each node/link &&tion networks select paths under the restriction of “ailstt,
arbitrary number of times, it suffices to consider paths whewe thus do not consider such a probing mechanism in this pa-

each probe traverses each link at most once in either directper. In [16], another probing mechanism “m-tour” (monitayi
for the sake of localizing node failures. tours) is used, which allows both repeated nodes and repeate

These probing mechanisms clearly provide decreasiligks in measurement paths; “m-tour” is equivalent to CAP.

flexibility to the monitors and therefore decreasing caligbi  |n this paper, we quantify how the flexibility of a probing
to localize failures. However, they also offer decreasingcheme affects the network’s capability to localize faikir
deployment cost. CAP represents the most flexible probipgthough concrete results are only provided for the above
mechanism and provides an upper bound on failure localizflasses of probing mechanisms, our framework and our ab-
tion capability. In traditional networks, CAP is feasiblethe stract identifiability conditions (see Sectibnll-A) cals@ be

IP layer if (strict) source routingan IP option)/[19] is enabled used to evaluate the failure localization capabilities tifeo

at all nodes, or at the application layer (to localize failures inprobing mechanisms.

overlay networks) if equivalent “source routing” is supiear

by the application. Moreover, CAP is also feasible und%
an emerging networking paradigm called software-defined
networking (SDN) [[20], [[21], where monitors can instruct Given a network topology;, a set of monitors\/, and a

the SDN controller to set up arbitrary paths for the probingrobing mechanism (CAP, CSP, or UP), we seek to answer
traffic. In particular, an SDN consisting of OpenFlow swigsh the following closely related questions: (i) Given a node se
[21] can set up paths by configuring the flow table of eaddf interestS and a bound: on the number of failures, can
traversed OpenFlow switch to forward a probing flow (e.gWe uniquely localize up t& failed nodes inS from observed
one TCP connection) to a next hop based on the ingress péath states? (i) Given a node s&f what is the maximum
and the flow identifier, which allows the path to have repeatégmber of failures withinS that can be uniquely localized?
nodes/links. In contrast, UP represents the most basidngobl(iil) Given an integerk (1 < k < o), what is the largest node
mechanism' feasible in any network Supporting data forwarépt that isk-identifiable? We will Study these prOblemS from
ing, that provides a lower bound on the capability of failurthe perspectives of both theories and efficient algorithms.
localization. CSP represents an intermediate case travsall

control over routing while respecting a basic requirembat t g_ |justrative Example

routes must be cycle-free. CSP is implementable by MPLS
(MultiProtocol Label Switching), where the “explicit rang”
mode [22] allows one to set up a controllable, non-short
path using labels so long as the path are cycle-free. Note
the cycle-free constraint here is crucial, as data forvaydt
MPLS will encounter forwarding loops if a path has cycles.

The significance of these three probing mechanisms is that P1 = mivima 1 0 0 0
they capture the main features of several existing and @ntgrg Py =mavamg =R = < 0 0 0 1 > . @
routing techniques. Specifically, UP is generally suppmbrte P3 = mivavams 0 ! 0 !
in existing networks without special configuration, CSP is _ ) )
feasible in some of today’s networks running MPLS with cefvhere k7 = 1 if and only if nodev; is on pathP;. Then
tain configuration (i.e., label propagation via expliciutmg), We haveR” © w = ¢, wherec is the binary vector of path

while CAP represents the capability of future networks oncdates observed at the destination monitors.'et= {u;, vs,
SDN is broadly deployed. vs}. Based on Definitiof]3, we can verify th&(S’) = 2,
and the maximum identifiable se&t*(1) = {vy,v2,v4} and
S*(2) = S*(3) = S*(4) = {v1,v4}. Under CSP, besides
3Source_routing allows nodes to modify the source and 'theimg;m the three paths irﬂZ), we can probe three additional paths:
addresses in packet headers hop by hop along the path pessbsi a monitor. d
The probe can follow the reverse path to return to the origimanitor, thus P4 = Mm2v3ms, Ps = mivavgms, an Pﬁl = M1v2v1M2,
effectively probing any path witlat leastone end at a monitor. yielding an expanded measurement matrix(ih (3):

Objective

Consider the sample network in FI[d. 1 with three monitors
r?l—mg) and four non-monitorsuf—v4). Under UP, suppose
eﬁ at the default routing protocol only allows the monitoos t
tha .

probe the following pathsP; = mjvime, P2 = movyams,
andPs; = myvevams, Which form a measurement matdx“":

W1 W2 W3 W4



Most existing solutions for (nonadaptive) group testing ali

Wi We W Wi at constructing aisjunct testing matrixSpecifically, a testing
P1 = mivima : . . . . . .
Py — mavams 1 0 0 0 matrix R is a binary matrix, where?; ; = 1 if and only if
Py = mivsvams e ( o 00 \ } R element; is included in thei-th test. Matrix R is k-disjunct
Pa = mavams O X T T0 0 1 0 if the Boolen sum of any columns does not “contaireiny
Ps = myivavsms k (IJ } (1) 8 ) oth(_ar colum [25]. In our problem, the e_xistence_qf a disjunct
Ps = mivavima testing matrix translates into the following conditions.

3) . . -
Using the six paths i {3), the maximum identifiability index-emma 4. Set$ is k-identifiable:
of S’ becomes2(S’) = 3, and the maximum identifiable set @) if for any failure sett” with [F| < k and any node with
is enlarged taS*(1) = S*(2) = S*(3) = {v1, v, v3,v4} and v e S\ F, 3 p € P traversingv but none of the nodes
S*(4) = {v1,v3,v4}, @ notable improvement over UP. Finally, in F;
if CAP is supported, then we can send probes along a cycl®) only if for any failure sett” with [F'| < k — 1 and any
P; = myvamy. In conjunction with the paths ifl}(3), this yields ~ nhodev with v € S\ F', 3 p € P traversingv but none

the measurement matrix ifil (4): of the nodes in".
Py = myvrma w Proof: Consider two distinct failure sets; and F;, with
Do = vy o (1) FinS # F>,NS, each containing no more th&@modes. There
Pa = mgvams X | 0 @ exists a node € S in only one of these sets; suppase F \
Po = mavams 0 F5. By the condition in the lemmaj a pathp traversingv but

not Iy, thus distinguishing; from F,. Therefore, condition
Since the paths in[]4) can independently determine th®in Lemmal? is sufficient.

)—AOOOE

state of each non-monitor, we hat®s’) = 4 andS*(1) = Supposé a non-empty sef’ with |F| < k—1 andv € S\F
5%(2) = 57(3) = 57(4) = {v1,v2,v3,va} under CAP, i.e., such that all measurement paths traversimgust also traverse
all failures can be uniquely localized. at least one node i¥'. Therefore, for two failure set8 and

This example shows that the monitor placement and they {4} satisfying conditions (1-2) in Definitioll 2-(1) are
probing mechanism significantly affect a network’s cagabil not distinguishable a®» = Prugey- Thus, conditionb) in

to localize failures. In the rest of the paper, we will stutlist | emma[2 is necessary. m
relationship both theoretically and algorithmically. These conditions genera”y app|y to any probing mecha-
nism. Although in the current form, they do not directly lead
I1l. THEORETICAL FOUNDATIONS to efficient testing algorithms, we will show later (Secti®df

dhat they can be transformed into verifiable conditions for

We start with some basic understanding of failure identi ! .
several classes of probing mechanisms.

ability. First, the definition ofi-identifiability in Definition[2
requires enumeration of all possible failure events and thu

cannot be tested efficiently. To address this issue, we lestabB. Properties of the Maximum Identifiability Index and the
explicit sufficient/necessary conditions fleidentifiability that Maximum Identifiable Set

apply to arbitrary probing mechanisms, which will later be Although the maximum identifiability inde(S) and the
developed into verifiable conditions for the three classes §aximum k-identifiable setS*(k) are defined for sets of
probing mechanisms. Moreover, we establish several d#siranodes, we show below that they can both be characterized
properties of maximum identifiability index (Definitioll 2)in terms of a per-node property, which greatly simplifies the

and maximum identifiable set (Definitidd 3), which greatltomputation of these measures. We start with the following
simplify the computation of these measures. two observations.

o . Lemma 5. a) If S is k-identifiable, then any € S must be
A. Abstract Identifiability Conditions k-identifiable.
Our identifiability condition is inspired by a result known b) If v is k-identifiablevYv € S, then S is k-identifiable.
in a related field calledcombinatorial group testing24].
In short, group testing aims to find abnormal elements in

e e o e of e, soth B (12 ana i (1) £ ur o) such htr, an, e
9 y not distinguishable. Thusy is not k-identifiable asv € S.

This is analogous to our problem where abnormal elements ar%[) For any two failure set§) andF with |F}| < k (i = {1,

failed nodes and tests are conducted by probing measuren&gjn L .
paths. A subtle but critical difference is that in our prahlehe or)Fant?ulflnr;f bit: QQrieHn?)cr;g?seZ |€ dgni:}?;gfee;h;:jn?
2 . - L1 2

subsets of elements that can be tested together are comstral,, i ¢ igtinguishable. Therefor is k-identifiable.  m
by the set of measurement patAswhich is in turn limited by
the topology, probing mechanism, and placement of moﬁitor@roposition 6. Q(S) = min,es Q(v).

Proof: a) Supposél nodev € S that is notk-identifiable,
Ejlgtn 3 at least two failure setd’ and F» with |F;| < k

4In this regard, our problem is similar to a variation of graepting under 5That is, for any subset df column indicesS and any other column index
graph constraints [18]; see Sectionll-A for the difference. j ¢ S, Jarow index: such thatR; ; = 1 andR; ;» = 0 for all j' € S.



Proof: By Lemmal%-(a), anyw € S must haveQ(v) >
Q(S). Thus,min,cg Q(v) > Q(S). By the definition of max-
imum identifiability index, all nodes it are min,cg Q(v)-
identifiable. By Lemmall5-(b),S is also min,es Q(v)-
identifiable. Thus£2(S) > min,ecgs Q(v). Therefore Q(S) =
ming,egs Q(v). |
Corollary 7. Maximum identifiability index ofS, Q(S), is
monotonically non-increasing in the sense thHafs;) >
Q(S2) for any two non-empty set$; and Sy with S; C Ss.

Proof: SinceS; C So, minyeg, Q(v) > ming,egs, Q(v).
Therefore, by Proposition 62(51) > Q(S2).

Therefore, we can estimate the maximum identifiabilit§

inner bound (i.e., subset) & (k), thus providing theoretical
support for determining the must-have nodes in the optimum
setS*(k); see detailed discussions presented in Se€fion VI.

Remark:Results in this section apply to any probing mecha-
nism. We will show in the following sections how they can be
used to design efficient algorithms for probing mechanisms
CAP, CSP, and UP. The above results can also be used to
design algorithms for other probing mechanisms.

IV. VERIFIABLE IDENTIFIABILITY CONDITIONS

In this section, starting from the abstract conditions in
ection[II-A, we develop concrete conditions suitable for

index of a given non-monitor set using Corollaty 7 when th%fficient testing for the three classes of probing mechasism

maximum identifiability index of its subset/superset is wno

Next, we show that maximuni-identifiable sets exhibit
properties that can facilitate fast determination of whictles
should be included/excluded in these sets.

Proposition 8. Let S’(k) := {v € N : v is k-identifiable }.
ThenS'(k) = S*(k).

Proof: By Lemma[5-(a), any node in5*(k) is k-
identifiable. ThereforeS*(k) C S’(k).
Next, S’(k) must bek-identifiable according to Lemnid 5-
(b). Thus|S’(k)| < |S*(k)|. ConsequentlyS’(k) = S*(k).
|

A. Conditions under CAP

CAP essentially allows us to “ping” any node from a moni-
tor along any path. In the face of failures, this allows a nmmi
to determine the state of a node as long as it is connected to
the node after removing other failed nodes. This obsematio
allows us to translate the conditions in SecfionTlI-A intoma
concrete identifiability conditions (Lemnhall1).

Lemma 11. SetS is k-identifiable under CAP if and only if
for any setV’ of up tok — 1 non-monitors, each connected
component irg — V' that contains a node i¥ has a monitor.

Propositior B provides a method to construct the maximum Proof: NecessitySuppose the above condition does not

k-identifiable setS* (k) by simply collecting allk-identifiable

hold, i.e., there exists a non-moniter (v € S) that is

nodes. Based on this method, we can further prove thssconnected from all monitors ig — V' for a setV’ of

unigueness and monotonicity 6 (k) as follows:

Corollary 9. The maximunk-identifiable set5*(k) is unique
and monotonically non-increasing i, i.e., S*(k+1) C
S*(k) for any k.

Proof: Definition[2 implies that-identifiability is a per-
node property that is independent of the identifiability tfer
nodes. Therefore, for each nodein it is eitherk-identifiable
or not k-identifiable. By Proposition]85* (k) is a set contain-
ing all k-identifiable nodes; therefor&*(k) is unique.

For each nodev € N \ S*(k), w is not k-identifiable, and
thusw is not(k+1)-identifiable. Since5* (k+1) is a collection
of all (k + 1)-identifiable nodes, no nodes N \ S*(k) can
be included inS*(k + 1). Thus,S*(k + 1) C S*(k). |

Intuitively, if there exists ak-identifiable setS’(k) with
|S'(k)| = |S*(k)|, then we must havé’ (k) = S*(k). Thus,
Corollary[9 suggests one way to obtaiti(k) is to identify
S*(j) for j < k and then only study subsets 8f(j); nodes
outsideS*(j) are guaranteed to be excluded frém(k).

Corollary 10. Let S”(k) := {v € N : 3 path in P traversing
v but none of the nodes in each failure getwith v ¢ F' and
|F| < k}. ThenS” (k) C S*(k).

Proof: 5" (k) satisfies sufficient condition a) in Lemina 4
Thus, (5" (k)) > k. Following similar arguments as in the

proof of Propositio 8, again we have that each nodg'if¥)

is at leastk-identifiable. ThereforeS” (k) C S* (k). [ |
By Corollary[I0, we note that” (k) underestimates the

size of the maximunk-identifiable setS*(k), yet it forms an

up to k — 1 non-monitors ¢ € V'). Then if nodes in/’’ fail,
no remaining measurement path can prabheviolating the
condition in Lemmd.}#-(b).

Sufficiency.The proof is similar to that of Theorem 2 in
[16], except that we are only interested in localizing fedlsi
in S. Consider two failure set$’} and F, with |F;| < k
(t={1,2})andF; NS # F;, N S. Then3 nodewv (v € S)
that is in one and only one aof; and F;. Without loss of
generality, letv € Fy. LetI := Fy N Fy. Since|l| <k—1,3
a pathp connecting a monitom with nodewv in G — I if the
condition in Lemmd 11 holds. Let be the first node omp
(starting fromm) that is in eitherFy \ I or F» \ I. Truncating
p atw gives a pathy’ such thap’ and its reverse path form a
measurement path from to w and back tom that traverses
only Fy or Fy, thus distinguishing; and F. [ |

Under CAP, Lemm&_11 shows that the necessary condition
derived from Lemma&l4 is also sufficient. However, the condi-
tion in Lemmal Il still cannot be tested efficiently because a
combinatorial number of sefg’ are enumerated. Fortunately,
we can reduce Lemnialll into explicit conditions on vertex-
cuts of a related topology, which can then be tested in poly-
nomial time. We use the following notion from graph theory.

Definition 12. For two nodess andt in an undirected graph
G, (s,t)-vertex-cut inG, denoted by’ (s, t), is the minimum-
cardinality node set whose deletion destroys all paths from
to ¢t. If s and ¢ are neighborsCg(s,t) :== V(G) \ {t}.

Our key observation is that requiring each connected com-
ponent inG — V'’ that contains a node i to have a
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in O(0¢|S]) time and compare the result with to test the

/ “.I ! : ! — T conditions in Theorer15.
' e e R
V5 R ; Ve - - e/ B. Conditions under CSP
g+ g Under CSP, we restrict measurement pakhto the set of
() © simple pathsbetween monitors, i.e., paths starting/ending at

distinct monitors that contain no cycles. As in CAP, our geal
again to transform the abstract conditions in Sedfion ]ik#
concrete sufficient/necessary conditions that can be eitiyi
monitor is equivalent to requiring each such component {rified. We first give analogous result to Theoriem 15.
G — M — V' (i.e., after removing all monitors) to contain
a neighbor of a monitor. Thus, if we exter@ — M by
adding avirtual monitor m’ andvirtual links connectingm’ @) if for any node set”, |V’| < k + 1, containing at most
and all neighbors of monitors to obtain @uxiliary graph one monitor, each connected componengin- V" that
G* = G — M+ {m'} + L({m'}, N(M)) (llustrated in contains a node irf also contains a monitor;
Fig.[2 (b)), then each node i1\ V" should be connected to’ ~ b) only if for any node set”, [V’| < k, containing at most
in G*—V". In other words, the minimum cardinality of the(, one monitor, each connected componengin- V" that
w)-vertex-cut inG* over allw € S must be greater thaf”’|. contains a node i’ also contains a monitor.
For ease of presentation, we introduce the following dédinit Proof: The proof can be found in [26]. =
Due to the restriction to simple paths, the identifiabilibne
ditions in Lemma_ Ik are stronger than those in Lerinda 11. As
with Lemma[TIl, the conditions in Lemmall6 do not directly
By this definition, Lemmd 11 can be transformed into Rad to efficient tests, and we again seek equivalent comditi
new condition, which reduces the tests over all possiiléo  in terms of topological properties. Each condition in thefo
a single test of the vertex-cuts gf, as stated below (recall of LemmdIb (a—b) covers two cases:¥(f) only contains non-
thato is the total number of non-monitors). monitors; (i) VV’ contains a monitor and’’| — 1 non-monitors.
The first case has been converted to a vertex-cut property on
an auxiliary topologyG* by LemmalI%; we now establish a
similar condition for the second case using similar arguien
Fix a setV’ = F U {m}, wherem is a monitor in M

Fig. 2. Auxiliary graphs: (a) Original grapdi; (b) G* of G; (c) Gm, of G
Ww.r.t. monitorm;.

Lemma 16. SetS is k-identifiable under CSP:

Definition 13. Given a graphg, a node setS, and a node
m ¢ S, definel'g (S, m) := minyegs |Cg(w, m)|.

Lemma 14. Each connected component i — V' that
contains a node irb has a monitor for any sel’’ of up togq
(¢ < o — 1) non-monitors if and only if'g-(S,m’) > ¢+ 1.

Proof: The proof can be found in_[26]. B and F a set of non-monitors. Again, the key observation is
Lemmé[ 14 allows us to rewrite the identifiability conditionshat each connected component Gn— V' that contains a
in LemmalIl in terms of the vertex-cuts Gf. node in S also containing a monitor is equivalent to each

. - . such component irG — M — F containing a neighbor of
e e o S5, a montor otter tha (. a node V(A1 (). To
- ’ — " capture this observation, we introduce anotiexiliary graph
A special case of TheoremI15 occurs whes o, i.e., any G, :== G— M +{m/}+ L({m'}, N (M \ {m})) w.r.t. monitor
non-monitors can fail simultaneously. In this case, eaatienom as illustrated in Fig[]2 (c), where:' is again a virtual
in S must directly connect to at least one monitordn monitor. We will show that the second casg’(contains a
Discussion:Theoren_Ib extends and improves the identifionitor) is equivalent to requiring that the nodesSiy F' and
ability condition given in Theorem 2 of [16] by (i) consideg m’ are in the same connected component within— F, and
failures within an arbitrary subset of nodes instead of titee thus the following holds.

network, and (ii) providing a single condition that can betee OITemma 17. The following two conditions are equivalent:

in polynomial time (see testing algorithm below) instead , .
testing a combinatorial number of conditions that enuneaerat(l) .Each connected.componen_tgr-vv that CO?tamS a n_ode
. : in S also contains a monitor folvsets V' containing
all possible failure events. .
monitor m (m € M) and up tog (¢ < o — 1) non-
Testing algorithm: A key advantage of the newly derived monitors;
conditions over the abstract conditions in Seclion Tll-Ahat  (2) T'g, (S,m/) > ¢+ 1.
they can be tested efficiently. Lét := |A/(M)| denote the

number of non-monitors that are neighbors of at least oneB Prodof: Tte progglin f107und in_[26]. ite L m.m
monitor in M. Given nodew, Cg-(w, m') can be computed follof\;/l\'/sse on Lemm andiLf, we can rewrite Lemma 25 as

in O(0¢) timef, where ¢ is the number of links (refer to
Theorem 18 (k-identifiability under CSPR) Set S is k-
6The (n’,w)-vertex-cut problem in an undirected graph can be reducddentifiable under CSP:

to an (n’, w)-edge-cut problem in a directed graph in linear timel [2HeT . ’ . ,
(m/, w)-edge-cut problem is solvable by the Ferulkerson algorithm[[28] a) if g« (S,m') > k+2, andminyep I'g,, (S, m') > k+1

in O(0¢) time. (k<o-2)



b) only ifT'g-(S,m’') > k+1, andmin,,ca g, (S,m’) > Proposition 22. SetS is o-identifiable under UP if and only
k(k<o-1). if MSC(v) = o for any nodev in S, i.e., each node irb' is

Theorem[IB does not include the caseskof= ¢ and on a2-hop path.

k = o — 1, which are addressed in Propositi¢n$ 19 20. Proof: The proof can be found il [26]. [ ]
Testing algorithm: The conditions in Theore 21 provide
an explicit way to test-identifiability under UP, using tests
of the form MSQuv) > ¢. Unfortunately, evaluating such a
Proof: The proof can be found ir _[26]. B test, known as the decision problem of tet covering prob-
Proposition 20. SetS is (o — 1)-identifiable under CSP if lem is _knoyvn to be_ NP-complete. Nevertheless, we can use
. : . approximation algorithms to compute bounds on M&CAN
and only if (i) all nodes inS have at least two monitors asalgorithm with the best approximation guarantee isgteedy
neighbors, or (ii) all nodes inV \ {v} (v € S) have at least

two monitors as neighbors and has all nodes inV \ {v} algorithm, which iteratively selects the set (njl that contains
. . the largest number of uncovered pathgHnuntil all the paths
and one monitor as neighbors.

in P, are covered (assuming thats not on any2-hop path).
Proof: The proof can be found i [26]. [ | Let GSGu) denote the number of sets selected by the
Testing algorithm: Similar to the case of CAP, we can usareedy algorithm. This immediately provides an upper bound
the algorithm in[[27],[[2B] to compute the vertex-cuts of th&1SC(v) < GSQw). Moreover, since the greedy algorithm has
auxiliary graphs7* andg,,, (vm € M), and test the conditions an approximation ratio dbg(|P,|)+1 [29], we can also bound
in Theoren{_IB for any giveh. The overall complexity of the MSC(v) from below: MSGuv) > GSQv)/(log(|P,|)+1). Ap-

Proposition 19. SetS is o-identifiable under CSP if and only
if each node inS has at least two monitors as neighbors.

test isO(u0€|S|) (refer to Tabld]l for notations). plying these bounds to Theordm] 21 yields relaxed conditions
« §is k-identifiable under UP if: < [min,cs pompatd T,
C. Conditions under UP o S is not k-identifiable under UP it > min,cs GSQv).

Under UP, monitors have no control over the probing patidiese conditions can be tested by running the greedy
between monitors, and the set of measurement p&hs algorithm for all nodes in S, each taking time
limited to the paths between monitors determined by the(|P,|?c) = O(|P|?c), and the overall test has a complexity
network’s native routing protocol. In contrast to the poais  of O(|S||P|>0) (or O(uc|S]) if there is a measurement path
cases (CAP, CSP), identifiability under UP can no longéetween each pair of monitors).
be characterized in terms of topological properties. We, can
nevertheless, establish explicit conditions based ontikract D. Special Case: 1-identifiability
conditions in Sectior II-A. The idea is to examine how |n practice, the most common failure event consists of
many non-monitors need to be removed to disconnect gle failure of a single node. Thus, an interesting queston i
measurement paths traversing a given non-monitof the whetherS is 1-identifiable under a given monitor placement
number is sufficiently large (greater tha then we can still and a given probing mechanism. In our previous results,
infer the state ofy from some measurement path when a sgtheoremd 118 anf 21 only provide an answer to the above
of other non-monitors fail; if the number is too small (sreall question if the sufficient condition is satisfied or the neaeg
than or equal td: — 1), then we are not able to determine theondition is violated fork = 1; however, the answer is
state ofv as the failures of all paths traversingan already be unknown if S satisfies the necessary condition but violates
explained by the failures of other non-monitors. This ititwi  the sufficient condition under CSP and UP. In contrast, The-
leads to the following results. orem[I} establishes a condition under CAP that is both

In the sequel,P, C P denotes the set of measuremeniecessary and sufficient, yet still expressed in a complicat
paths traversing a non-monitef andC, := {P,, : w € N, form (i.e., vertex-cuts). We develop explicit methods belo
w # v} denotes the collection of path sets traversing nofor testing S for 1-identifiability.
monitors in N \ {v}. We use MSCv) to denote the size of 1) Conditions forl-identifiability: We start with a generic
the minimum set coveof P, by C,, i.e., MSQu) := |V’| for necessary and sufficient condition that applies to all prgbi
the minimum set”” C N \ {v} such thatP, € .y Po- mechanisms. Recall tha®, denotes the set of measurement
Note that covering is only feasible if is not on any2-hop paths traversing a non-monitor For k = 1, Definition[2-(1)
measurement path (i.e., monitomonitor), in which case we is equivalent to the following:
know P, C UweN’w#v P, and thus MSCv) <o —1. If vis

on a2-hop path, then we define M$Q :— o. Claim 23. S is 1-identifiable if and only if:

(1) P, #0 for anyv € S, and
Theorem 21 (k-identifiability under UP) Set S is k- (2) P, # P, foranyv € S, w € N, andv # w.
identifiable under UP with measurement patis
a) if MSQv) > k + 1 for any nodev in S (k <o —1);
b) only if MSQuv) > k for any nodev in S (k < o).

In Claim[23, the first condition guarantees that any failure
in S is detectable (i.e., causing at least one path failure), and
the second condition guarantees that the observed pa#s stat

Proof: The proof can be found il [26]. H can uniquely localize the failed node . An efficient test

The only case not considered by Theorem 21 is the casfethese conditions, however, requires different stragdor

that k = o, for which we develop the following condition.  different probing mechanisms.
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many as in the case of CAP/CSP) as the measurable routes are
predetermined. This reduction makes it feasible to diyaett
conditions (1-2) in Clairii23 by testing condition (1) for kac
node inS and condition (2) for each pair of non-monitors
NG (one of which is inS). Then the overall complexity of is
O(ou?|S|), dominated by testing of condition (2) in Clalm]23.

Fig. 3. Extended graply’.

2) Test under CAP:By Theorem[1b,S is l-identifiable V- CHARACTERIZATION OF MAXIMUM [DENTIFIABILITY
under CAP if and only ifl'g- (S, m’) > 1. This is equivalent INDEX
to requiring thatG* be connected, i.eG has one monitor. By Proposition[B, the maximum identifiability index of a
Testing for 1-identifiability of S under CAP is therefore given setS is the minimum per-node maximum identifiability
reduced to determining if the network has a monitor. index((v) for each node < S. It thus suffices to characterize
3) Test under CSPUnder CSP, we derive conditions thathe per-node maximum identifiability index for each probing
are equivalent to those in Claiml]23 but easier to test. mechanism. Under CAP, we give the exact value(Xt)
Condition (1) in Clain{2B requires that every non-monitosased on the necessary and sufficient condition in Thelorem 15
in S reside on a monitor-monitor simple path. While amnder CSP and UP, we establish tight upper and lower bounds
exhaustive search for such a path incurs an exponential c@st)(v) based on the conditions in Theoreins 18 21.
we can test for its existence efficiently using the following
observation. The idea is to construct @&xtended graph
"= m’ L{m'}, M), i.e., by adding a virtual
gmnitorgr:’ {and} ;—onrgictir}{g’g it )to all th)é monitgors; see an Since Theoreri 15 provides necessary and sufficient condi-
illustration in Fig.[3. We claim that a non-monitaer is on tions, it directly determines the value 9{v), as stated below.

a monitor-monitor simple path if and only if the size of therheorem 24 (Maximum Per-node Identifiability under CAP)

(m', v)-vertex-cut inG’ is at least two, i.e.I'g:(v,m’) > 2, The maximum identifiability index of a non-monitounder
which implies the existence (see Definition 12) of two vertexcap is Q**(v) = g (v, m).

independent simple paths betweenand m/, illustrated as ) ] . )
paths vmom’ and vmgm’ in Fig. [@. Truncating these two Evaluation algorithm: As shown in Sectiof IV-AI'g- (v,

paths atm, andm; yields two path segmentsn, andvm;, m’_) can be_computed i (0¢) time (9_: the _number of monitor
whose concatenation gives a monitor-to-monitor simplér pi€ighbors ing, &: the number of links inG; see Tablell).
traversingv, i.e., moum,; in Fig. 3. On the other hand, if Therefore Q2°*"(S) is computable inO(6<|5|) time.

3 a monitor-to-monitor simple path traversing then it can

be split into two simple paths connectingto two distinct B. Maximum Identifiability Index under CSP

monitors, which impliedg: (v, m') > 2 as each of these two  gpserying that both the sufficient and the necessary con-

distinct monitors connects ta’ by a virtual link. _ ditions in Theoreni 18 are imposed on the same property,
Condition (2) in Claim2ZB is violated if and only if there; o yvertex-cuts of the auxiliary grapt* and G,. Let

exist two non-monitorsy # w (at least one of them in g« ._ Tg-(v,m'), Smin = mingmer L, (v,m’), andm, =
. . . . A ) 1 min - m m ) 1 v o
S) such that all monitor-to-monitor simple paths traversmgﬁn(&mim(;* — 1). We obtain a tight characterization of the

v must traversew (i.e., P, C F,) and vice versa. Since mayimum identifiability index under CSP as follows.
P, C P, means that there is no monitor-to-monitor simple

path traversing in G — {w}, by the above argument, we sed heorem 25 (Maximum Per-node Identifiability under CSP)
thatP, C P, if and only if the size of theit/, v)-vertex-cutin If m < o — 2, the maximum identifiability index of a non-
anew grapty, := G —{w}+{m’} + L({m'}, M) is smaller monitorv under CSP is bounded by, — 1 < Q**(v) < .
than two. Therefore, condition (2) in Claim]23 is satisfied if Proof: The proof can be found i [26]. -

and only if for every two distinct non-monitors(v € S) and  Remark-Because the set of links i, is a subset of those
i !/ i !/ !/
w, either the o', v)-vertex-cut inG;, or the (n’, w)-vertex-cut G* while the nodes are the same, we always hiayg < 5*.

N .
in G, contains two or more nodes. = Therefore, the above bounds simplify to:

In summary, the necessary and sufficient condition Ifor 5 2 < (v < & Lif s 5

® Omin — 4 > > Omin — min — )

identifiability under CSP is: o Gt — 1 < Q1) < G i Grin < 6%

i !/
"I; gg: (5}”%,))2222’ ;r}dg/ (w,m’) > 2forallv € S,w € N, _In pgrticular, if 9 = 1, then it impIieg. thatl a nodew_ € N
andv £ w. v in G*, where all S|mple paths startlng. atand termlnatlng
. . . atm’ must traversey, i.e., 7 simple monitor-to-monitor paths
Sincel'g (v, w) > 2 can be tested iD(|V| + |L|)2t|md1_ the traversingv (P, = 0); thereforeQ®"(v) = 0 (even single-node
overall test takes)(o| S|(|V'| +|L|)) = Ol (n+0)7|S]) ime. i o in §” cannot always be localized if € S).
4) Test under UP:Under UP, the total number of mea- . only cases when, < o —2 is violated are: (i —

surement path$P| is reduced taO(;2) (from exponentially 5* = o, of (i) 6mn — o — 1 ands* = o. In case (i), non-

"We can compute the biconnected component decompositigrafgDtest monitor v S_t_'” has a mqnltor asa nelghbor after removm
if v andw belong to the same biconnected component. by PropositiorfI3, this implies thaf2°s"(v) = o. In case (ii),

A. Maximum Identifiability Index under CAP
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TheorenTIB (a) can still be applied to show tlese*(S) > Evaluation algorithm: As shown in SectioR IV-AJ'g- (v,

o — 2, and one can verify that the condition RropositiolId m') can be computed iO(0¢) time. Thus, the total time

is violated, which implies thaf2*s"(v) < ¢ — 1. In fact, we complexity for constructing,.(k) is O(0¢o).

can leveragéropositior20 to uniquely determin@°"(.S) in

this case. If the conditions iRropositior2d are satisfied, then g\ .\ dentifiable Set under CSP

Q" (v) = o — 1; otherwise Q°(v) = o — 2. _ _ _
Evaluation algorithm: Evaluating2°s*(S) by Propositiofils ~ Leveraging Theorenh 25, we can establish outer and in-

involves computing(v) for all v € S, each requiring the Ner bounds (i.e., superset and subset) for the maxirkum

computation of the vertex-cuts of the auxiliary graghsand identifiable set under CSP.

Gm (Ym € M) as that in Section IV-A, which altogethertake%oro"ary 28. Let $2(k) := {v € N : m > k}, and

Csp

O(pb¢|S]) time. Sme(k) i= {v € N : m, > k+1}. The maximun-identifiable
set under CSPK < o — 1), denoted byS:(k), is bounded
C. Maximum ldentifiability Index under UP by Simer(k) C Si(k) € See(k).

As in the case of CSP, we can leverage the sufficient and the p. ¢ The proof can be found i [26]. -
necessary conditions in Theoréml 21 to bound the maximumOne case not covered by Corolldry] 28is= o. In this
!dentlflab|llty md_ex under UP fro_m both sides. The cond_mo case,S*.() contains all non-monitors that have at least two
in Theoren{ 2L imply the following bounds on the maximumy,yitors as neighbors according to Proposifich 19. Another
identifiability index under UP. non-covered case i = o — 1, for which we have the
Theorem 26 (Maximum Per-node Identifiability under UP) following result.

The maximum identifiability index of a non-monitounder Corollary 29. Whenk = o — 1, §%(k) = {v € N : v has

. . » Ocsd
UP with measurement pathis is bounded by MS@) — 1 < at least two monitor neighbofsJ S. SetS contains one and
Q% (v) < MSQu).

only one non-monitotw if all nodes inN butw have at least
Proof: The proof can be found i [26]. m two monitor neighbors and has one monitor and all nodes
Evaluation algorithm: The original bounds in Theorem26in NV \ {w} as neighbors; otherwise§ = (.
are hard to evaluate due to the NP-hardness of computing i .
MSC(-). As in Sectio IV=C, we resort to the greedy algorithm, Proof: The _proc_)f can be foch.j _{26]. LT !
which implies the following relaxed bounds: Corollary[29 implies that whes is not empty (i.e.}5| =
P g ' 1), thenS: (0 — 1) = N andS:(o) = N\ S (i.e., |S: (0 —
GSQu) 1)| = o and|S5(0)| = o — 1).
— | -1 < Q%(v) < GSQw). 5 csP
[1og(|Pv|) + J < () < GSQ) ®) Evaluation algorithm: Corollaryi29 is computable in linear
Evaluating these bounds fd2*?(S) involves invoking the tMe: Similar to Sectioh IV-Brr,, in Corollary[28 is inO(46¢)
greedy algorithm for each node i with an overall complex- COMPlexity. Therefore, the overall complexity @(1.6¢0).
ity of O(|S||P|?c) (or O(u*c|S]) if all monitors can probe
each other). C. Maximumk-identifiable Set under UP
Analogous to the case of CSP, we leverage Thedrdm 26 to

develop the following outer and inner bounds for the maximum
k-identifiable set under UP.

VI. CHARACTERIZATION OF THE MAXIMUM
IDENTIFIABLE SET

By Propositior 8, the maximurh-identifiable setS*(k) is
related to the per-node maximum identifiability indegw) by ~Corollary 30. Let Si(k) := {v € N : MSQ) > k} and
S*(k) = {v € N : Q(v) > k}. ThereforeS* (k) can be easily St (¥) := {v € N : MSQu) > k + 1} with measurement
computed based on values @fv) (v € N) for any value of pathsP. The maX|mu®-|dent|f|abIe set under UPK(< o —
k. Moreover, given upper/lower bounds ), i.e., 2 (v) < 1), denoted bySi,(k), is bounded bySi(k) < Si(k) <
Q(v) < Qu(v), S*(k) can be bounded bg™(k) C S*(k) S (K)-
Sewei(k) for S™(k) := {v € N : y(v) > k} and S**(k) := Proof: The proof can be found i [26]. n
{v € N : Qu(v) > k}. Based on this observation, we now A special case left out by Corollafy 30 is = o. In this
characterize5™ (k) for each of the three probing mechanismsase, we use Propositibnl22 to determitje o), i.e., S’ (0) =

{w € N :w is on a2-hop path.

A. Maximumk-identifiable Set under CAP Evaluation algorithm: Due to the NP-hardness of comput-

The expression of the maximum per-node identifiability uddg MSC(-), we again resort to the greedy algorithm, whereby
der CAP in Theorerfi24 leads to the following characterizatighe outer and inner bounds dfj.(k) can be relaxed by
of the maximumk-identifiable set. computing GSC). Let Sgie(k) := {v € N : GSQu) > k}
Corollary 27. The maximumk-identifiable set under CAP, and 53 (kzm'er_ loeN: quv)l.(\lOgGP”')mj; 2>kt 1.}'
denoted by, (k), is St (k) = {v € N : Tg- (v, m') > k} We haveS3:*(k) C Sgue(k) and Sine(k) C Sie(k) according

capRE AP B =" to Propositior[B. The computation of these relaxed bounds

Specifically, whenk = o, S;,.(o) contains all the non- involves O(c|P|?) time complexity w.r.t. each node V.

monitors directly adjacent to monitors. Thus, the overall complexity i€ (2| P|?).
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Fig. 4. Maximumk-identifiable setS* (k) under CAP, CSP, and UP for ER Fig. 6. Maximum k-identifiable setS*(k) under CAP, CSP, and UP for
graphs (V| = 20, p = {2, 10}, E[|L|] = 51, 200 graph instancesy: total CAIDA AS26788 (V| = 355, |L| = 483, p = {200,346}, 100 Monte

number of non-monitors). Carlo runs,o: total number of non-monitors).
— 1 \ identifiability index 2(S) and the maximum identifiable set
08 —1r 08 S*(k). In particular, thecomplementary cumulative distribu-
© er\ © 06 “x\ tion function (CCDF)of Q(v) over allv € N (refer to Tabléll
= = e for notations) coincides with the normalized cardinalifytiee
ﬂ‘“L @ o4 LR maximum identifiable setS*(k)|/o, and thus we character-
02 02 “ ize the distribution ofQ(v) by evaluating|S*(k)|/o wrt k.
. . Moreover, we examine the specific valueftfv) and compare
L TR oot F it with the degree (i.e., number of neighbors) @famong
(@) p =50 (b) = 163 monitor/non-monitor nodes to evaluate the correlatiomben

Fig. 5. Maximum k-identifiable setS*(k) under CAP, CSP, and UP for (rjneaXImum identifiability index and the graph. propgrty (ie.,
Rocketfuel AS1755 |¢/| = 172, |L| = 381, u — {50,163}, 100 Monte gree) of a node. Under UP, our extensive simulations under
Carlo runs,o: total number of non-monitors). multiple graph models have shown that M@Ccan be closely
approximated by GS@); hence, we use GS@) in place of
MSC(v) for computingQ“® and S,; see [26] for details.

1) Distribution of 2(v): To characterize the overall distri-
bution of Q(v), we compute (bounds ¢h)Sz,.(k), Si.(k),

We demonstrate how the proposed measures of maximyiy S+ (k) to evaluate|S*(k)|/o for different values ofk
|dent|f|ab|l|ty index and maximum identifiable set can b?o—: total number of non_monitors)_ F|E 4 reports averages of
used to evaluate the impact of various parameters, inc@;.;diry*(k”/a computed on ER graphs over randomly selected
topology, number of monitors, and probing mechanisms (CARultiple instances of topology and monitor locations, vener
CSP, UP), on the Capablllty of failure localization. In thl?s*(kﬂ/a under CSP and UP is represented by a band with
study, we assume (hop count-based) shortest path routingtsvidth determined by|S*=(k)| — | S™(k)|)/o. The results
the default routing protocol under UP, i.e., measuremetitashow large differences in the failure localization capibi of
under UP are the shortest paths between monitors, with tiiferent probing mechanisms: When the number of monitors

VIl. EVALUATION OF FAILURE LOCALIZATION
CAPABILITY

broken arbitrarily. is small (x = 2) andk = 2, S%(k) is almost empty, i.e., no
. . (non-monitor) node state can be uniquely determined by UP
A. Topologies for Evaluation when there are multiple failures; in contrast}.(k)|/o ~ 0.5

We first employ random graph models to generate a compg#d |S¢,.(k)| /o ~ 1, i.e., CSP can uniquely determine the
hensive set of topologies without artifacts of specific raetwv  States of half of the nodes and CAP can determine the states
deployments. We consider random Erdds-Rényi (ER) grapbisall the nodes whep = 2 andk = 2. When the number of
[31], generated by independently connecting each pair @onitors increasesu(= 10), there exist more measurement
nodes by a link with a fixed probability. The result is a purely paths between monitors, and thus the fraction of ident#iabl
random topology where all graphs with an equal number Bpdes increases for all three probing mechanisms. In addliti
links are equally likely to be selected (note that the nunatier we observe a stable phase in Fig. 4 where the value of
nodes is an input parameter). In addition to ER graphs, othéf (k)|/o remains the same as we increasehis is because
random graph models are also considered; the correspondiagie non-monitors have monitors as neighbors, thus directl
results are presented in [|26] due to space limitation. measurable by these neighboring monitors without tramgrsi

We then evaluate reahutonomous SysterfAS) topolo- other non-monitors. Specifically, if there are non-morstiat
gies collected by the Rocketfuel [32] and the CAIDA J[33]eighbor at least one monitor under CAP, neighbor at least tw
projects, which represents IP-level connections betweehk-b monitors under CSP, or lie on 2-hop paths between monitors
bone/gateway routers of several ASes from mdjuernet under UP, then the failure of these non-monitors can always

Service Providers (ISP9round the globe. be identified regardless of the total number of failures i th
network, i.e., the maximum identifiability index of thesenro
B. Evaluation Results monitors is the total number of non-monitors. Note that in

] We focus on ev_aluating Per'nOde maximum identiﬁa_‘bi“ty 8Propositiond 119, Corollarf29, and Propositlod 22 are usedetermine
index Q(v) since it determines both the per-set maximunne exact elements i8%sx(c), Sésp(o — 1), and Sgip(o).
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Fig.[4, the number of such directly measurable non-monitaaad the constraints on measurement paths. In this regard, ou
is smaller under UP than under CSP. This is because for noesult can also be viewed as defining a new node property
monitors that neighbor the same pair of monitors (erg.and (2(v)) that takes into account all these parameters.

ms), all these non-monitors are directly measurable on Z'hOvaeraII, we observe that CAP-type probing is hugely ad-

my-t0-m paths under CSP; however, only one of these N%0antageous in uniquely monitoring node states under tslur

MOonitors is on a 2-hope -to-m; path under UP as UP prObeS_especiaIIy when there are multiple failures and the netvimrk

only one routing path between each pair of monitors (assgmi parse. This implies that in the absence of deploying mmito

stable single-path routing). Similar results have beeiokd ; ; L
- . at every node, implementing controllable probing is anceffe
for other random graph models (séel[26] for details). tive way to uniquely localize node failures. Our observatio

We repeat the above evaluation on AS topologies. We selegl, yresses the importance of optimized monitor placemen
AS1755 from Rocketfuel topologies [32] and AS26788 fromgeially when we are only interested in monitoring a suibse

CAIDA topologies [33], and evaluate the bounds|6ti(k)| /o ¢ nodes, which is left to future work.
under multiple instances of random monitor placements; av-

erage results are reported in F[g. 5 ddd 6. Similar to the
case of random topologies, there are clear differencesdastw
different probing mechanisms. Unlike the uniformly corteec ~ We studied the fundamental capability of a network in local-
random topologies in Fiff] 4, these AS topologies containymaizing failed nodes from binary measurements (normaligile
sparse subgraphs where the removal of a few nodes can dissgnpaths between monitors. We proposed two novel mea-
nect the network. Thus, unless a node is directly measurapies:maximum identifiability indexhat quantifies the scale
by monitors, it is likely that failures of a few other node®f uniquely localizable failures wrt a given node set, and
will disconnect it from monitors and thus make its failurénaximum identifiable sethat quantifies the scope of unique
undetectable. Comparing results from Rocketfuel and CAlDApcalization under a given scale of failures. We showed that
we observe that the CAIDA AS requires more monitors tBoth measures are functions of the maximum identifiability
achieve the same level of identifiability. Moreover, dephgy index per node. We studied these measures for three types
more monitors in CAIDA AS only slightly improves the levelof probing mechanisms that offer different controllalyilif
of identifiability. This can be explained by examining thekli probes and complexity of implementation. For each prob-
density|L|/|V| of the network{L|/|V'| = 1.36 for the CAIDA ing mechanism, we established necessary/sufficient ¢ondlit
AS, whereas|L|/|V| = 2.22 for the Rocketfuel AS, i.e., for unique failure localization based on network topology,
CAIDA AS topology is nearly a tree. Therefore, it is likelyrfo placement of monitors, constraints on measurement paths,
a node to not reside on any paths between monitors or becoang scale of failures. We further showed that these con-
unmeasurable after the failure of one other node in the CAIDdtions lead to tight upper/lower bounds on the maximum
AS, even if the paths are controllable but cycle-free (CSP).identifiability index, as well as inner/outer bounds on the
2) Correlation of Q(v) and Degree: Next, we examine Maximum identifiable set. We showeq Fhat both the conditiqns
specific values of2(v) for each non-monitow € N for and the bounds can be evaluated efficiently using polynemial
selected instances of network topology and monitor placemelime algorithms. Our evaluations on random and real network
Our goal is to compare these values with node degreest@pologies showed that probing mechanisms that allow moni-
understand the correlation between the proposed ideififjab t0rs to control the routing of probes have significantly @ett
measure and typical graph-theoretic node properties.ifspecapability to uniquely localize failures.
cally, we sort non-monitors in a non-increasing ordefdf)

VIII. CONCLUSION

under each of the three probing mechanisms, and compare
Q(v) with the degrees of» among monitors/non-monitdts [1]
see results in Fid.]7 for random topologies and in Eif] 8-9 for
AS topologies. The results show strong correlations batwed?]
Q(v) and the degree af, denoted by v). Specifically, denote 3]
the number of neighbors of that are monitors by "d(v)

and the number of neighbors ofthat are non-monitors by [4]
d"(v); the overall degree(@) = d™(v)+d"(v). If nodewv has 5]
sufficient monitor neighbors (&(v) > 1 for CAP, d"(v) > 2
for CSP), thenw is directly measurable and th&¥(v) = o (6]
regardless of the actual degreewfif node v does not have a
sufficient number of monitors as neighbors, thef) <d(v)
because if all neighbors effail, then the state of cannot be
determined by path measurements. However, in the latter, cagy
d(v) is only a loose upper bound, and the exact valu@ @f)
depends on the overall topology, the locations of monitordl

(7]

9Note that node IDs are different under different probing haeisms due [10]
to the different order of2(v) values.
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