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Abstract

We propose a novel, practical solution for high qual-
ity reconstruction of axially-symmetric transparent objects.
While a special case, such transparent objects are ubiq-
uitous in the real world. Common examples of these are
glasses, tumblers, goblets, carafes, etc., that can have very
unique and visually appealing forms making their recon-
struction interesting for vision and graphics applications.
Our acquisition setup involves imaging such objects from
a single viewpoint while illuminating them from directly
behind with a few patterns emitted from an LCD panel.
Our reconstruction step is then based on optimization of
the object’s geometry and its refractive index to minimize
the difference between observed and simulated transmis-
sion/refraction of rays passing through the object. We ex-
ploit the object’s axial symmetry as a strong shape prior
which allows us to achieve robust reconstruction from a sin-
gle viewpoint using a simple, commodity acquisition setup.
We demonstrate high quality reconstruction of several com-
mon rotationally symmetric as well as more complex n-fold
symmetric transparent objects with our approach.

1. Introduction

Significant advances have been achieved in vision and
graphics in the area of 3D scanning of objects including
non-lambertian and specular surfaces. However, accurate
modeling and reconstruction of transparent objects has con-
tinued to be a challenging problem due to the transmissive
and refractive properties of such objects. Generally, the
problem involves the estimation of optical properties such
as index of refraction as well as shape estimation (multiple
surfaces) of a target object. Previous work in vision and
graphics has tried to tackle the more general problem of 3D
reconstruction of transparent objects, achieving results with
limited quality in practice with relatively simple optical se-
tups [11], or requiring more complicated optical setups for
volumetric reconstruction with multiview acquisition [12]
or immersion in various types of liquids to simplify the im-

Figure 1: Examples of acquired axially-symmetric transparent
objects rendered lit with two frontal area light sources.

age formation model [20, 5].

In this work, we focus on high quality reconstruction for
the special case of axially-symmetric transparent objects.
We note that such transparent objects are ubiquitous in the
real world with common examples being glasses, goblets,
tumblers, carafes, etc. (see Fig. 1). Such everyday objects
can have very unique and visually appealing forms which
makes their reconstruction interesting for various vision and
graphics applications. We propose a practical approach to-
wards such reconstruction using a very simple setup with
commodity components involving a camera and an LCD
panel and exploit the inherent (vertical) axial-symmetry of
the objects to acquire data from just a single viewpoint
for efficient acquisition. Our reconstruction method takes
an analysis-by-synthesis approach where we optimize the
shape and refractive index of the target object by compar-
ing the acquired and simulated (using ray-tracing) transmis-
sion/refraction of patterns emitted by the LCD panel in the
background. We demonstrate high quality reconstruction
for two classes of axially-symmetric transparent objects -
those exhibiting complete rotational symmetry, and more
complex objects exhibiting n-fold axial-symmetry - using
our practical acquisition approach. Unlike works that tar-



get a volumetric reconstruction, we target a surface (mesh
based) reconstruction which has the advantage of achiev-
ing reconstruction at near camera resolution (∼2K) without
being memory limited for such high resolution.

The rest of the paper is organized as follows: we first cover
some relevant previous work in Section 2. We then describe
our practical acquisition setup and procedure in Section 3,
before describing our analysis-by-synthesis approach for re-
constructing rotationally symmetric transparent objects in
Section 4. We then present the extension of the approach
for more complex objects exhibiting n-fold axial symmetry
in Section 5. Finally, we present additional reconstruction
results and analysis of our method in Section 6.

2. Related Work

While there exists a vast literature on general 3D scanning,
we will restrict the discussion here to acquisition and mod-
eling of transparent objects. A recent survey on the topic
can be found in [7]. We review some closely related works
in the following:

Our acquisition setup is inspired by environment mat-
ting [24]. However, compared to an image based repre-
sentation obtained with environment matting, we estimate
a full 3D representation of a transparent object including
shape and refractive index. Matusik et al. [14] proposed a
data-driven technique for acquisition and rendering of trans-
parent objects. Their approach is based on acquiring an
approximate geometry using shape-from-silhouette recon-
struction, coupled with view dependent reflectance field ac-
quired using multiple cameras and light sources. While ef-
fective in creating a realistic rendering result, the approach
is not suitable for simulating accurate light transport with
the acquired model.

Model based reconstruction has previously been explored
for transparent objects with simple known parametric
shapes [2]. Closer to our approach, shapes of transparent
objects have been estimated using direct ray measurements
in [11, 4, 17] or time-of-flight distortion [18]. These meth-
ods however requires for each ray to cross no more than
two interfaces, restricting its application to solid transparent
objects that satisfy this condition. In comparison, our ap-
proach allows reconstruction of hollow axially-symmetric
transparent objects with up to four interfaces.

Researchers have also investigated volumetric reconstruc-
tion of transparent objects. Here, immersion of the object in
a liquid with matching index of refraction has been explored
to prevent refractive bending of rays, enabling tomographic
reconstruction from transmissive imaging [20, 5]. Addition-
ally, immersion in a fluorescent liquid has been proposed for

estimating the outer surface of a transparent object [5]. Flu-
orescent dye has also been employed for extinction based
tomographic reconstruction of liquid volumes [6]. While
very general solutions, these approaches may not always be
desirable due to requiring immersion in various liquids.

Volumetric reconstruction of refractive transparent objects
is a challenging inverse problem, known from the optics lit-
erature [21]. In particular, there were earlier attempts to
recover axially-symmetric objects [13], but the proposed
solutions were limited by complicated optical setup which
are not easy to scale for larger objects and the methods
proved to work in practice only for low levels of refrac-
tion inside the object. Recently, Ma et al. [12] have pro-
posed a more practical setup for volumetric reconstruction
of transparent objects using refractive tomography based
on transport of intensity formulation. Their measurement
approach involves a collimated beam source transmitting
through a transparent object while the resulting refractions
are imaged on screens placed at two different focal depths
to estimate entry and exit ray correspondence for tomogra-
phy. The object then needs to be rotated to observe such
projections from multiple viewpoints for volumetric recon-
struction. In comparison, our approach just requires acqui-
sition from a single viewpoint using a very simple optical
setup and exploits the object’s inherent axial-symmetry as a
strong shape prior for reconstruction. We also note that in
contrast to tomographic approaches which tend to smooth
out sharp features, our method enables high resolution re-
construction while preserving high frequencies in the recon-
structed shape.

Also related is background oriented schlieren imaging
which has also been applied to the problem of tomorgraphic
reconstruction of gas flows and liquids [1]. Wetzstein et
al. [23] have proposed a single image acquisition approach
for reconstructing thin transparent surfaces using distor-
tion of light field background illumination. The approach
was extended to background illumination with light field
probes as a way of imaging refractions in a transparent vol-
ume [22, 9]. These above approaches are however suitable
for volumes with small magnitudes of refraction.

Also related to our method is the work of Miyazaki and
Ikeuchi [15] who proposed an inverse raytracing framework
(with polarization imaging) for reconstructing the outer sur-
face of transparent objects from surface reflection. Fi-
nally, Morris and Kutulakos [16] have proposed scatter trace
photography as solution for reconstructing the outer sur-
face of complex transparent objects with inhomogeneous
interiors. Their method works by separating the first sur-
face reflection from the complex secondary bounces inside
such objects. Our method purely operates on transmis-
sion/refraction through a clear transparent object while ig-
noring any surface reflection effects.
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Figure 2: Acquisition setup consisting of a camera and an LCD
monitor.

We employ a very simple “environment matting” like acqui-
sition setup which consists of the target transparent object
placed between a camera and an LCD panel (see Fig. 2).
We employ a Point Grey Grasshopper3 (GS3-U3-41C6C-
C 4.1MP CMOS) machine vision camera (2K resolution),
and an LG 27” LCD monitor (1920 × 1080 resolution) for
our experiments. We place the object close to the monitor at
about 5 cm distance in order to keep both the object and the
panel in focus during acquisition. We then emit a few light-
ing patterns on the LCD panel while observing their distor-
tion due to transmission through the object. This allows us
to estimate a ray deflection map which we later employ for
estimating the object’s shape and refractive index.

In order to obtain accurate pixel-screen correspondence
with a small set of measurements, we employ a combina-
tion of horizontal and vertical linear gradients (and their in-
verses) and a few high frequency gray codes (Fig.3, a). We
employ the linear gradients to compute approximate1 screen
coordinates for camera rays and then refine the position esti-
mate using the high frequency gray codes. We also employ
the horizontal gradients later in our pipeline for inner shape
estimation. This results in a capture sequence of 13 patterns
from a single viewpoint - one constant white screen illumi-
nation, four patterns consisting of X and Y linear gradients
and their inverses, and four patterns each of the X and Y
high frequency gray codes. Each photograph is taken with
400 ms exposure time at full 2K resolution in 16 bit pixel
depth, and the acquisition finishes in under 10 seconds. We
also perform camera calibration using Bouguet’s calibration
toolbox [3].

In the following, we explain how the acquired data is use-
ful for reconstructing axially-symmetric transparent objects

1Employing only gradients is not precise enough in practice due to any
potential optical non-linearities such as screen gamma/falloff and/or global
illumination effects.

(a) Sample photographs with gradient and gray code patterns

(b) Def. vector (c) Def. amp (d) Flip image

Figure 3: Acquired data used for computation of a deflection
map. (a) Sample photographs taken with horizontal X gradient,
and high frequency vertical and horizontal patterns respectively.
(b) Visualization of deflection vectors with R, G encoding x, y de-
flection respectively, and B encoding missing data. (c) Deflection
amplitude. (d) Flip image computed from deflection map used for
identifying solid (2-interface) vs hollow (4-interface) sections.

exhibiting complete rotational symmetry (Section 4), and
more complex n-fold axial-symmetry (Section 5).

4. Rotationally symmetric objects

Given the acquired data, our reconstruction pipeline for
completely rotationally symmetric objects proceeds as fol-
lows: we first detect the outer silhouette of the object
against the background and employ the 2D silhouette to
reconstruct the outer surface through its rotation about the
symmetry axis. We assume that the object consists of solid
or hollow sections, with 2- or 4-interfaces respectively for
ray traversal, which are detected next. The algorithm then
focuses on the estimation of the object’s refractive index as
well as inner shape estimation of any hollow sections using
an inverse rendering procedure. An overview of the recon-
struction pipeline can be seen in Fig. 4.

4.1. Outer shape and rotation axis

We first detect the outer silhouette of the object using the
two images acquired with a horizontal gradient and its in-
verse pattern on the LCD screen. The outer silhouette can
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Figure 4: Proposed pipeline for reconstructing an axially-
symmetric transparent object with solid and hollow sections.

be easily computed from the magnitude of the difference of
these two gradient images (shown in Fig. 5, a) which en-
hances the vertical edges. The next step is to estimate the
3D position and orientation of the symmetry axis. In or-
der to do this, we first find the 2D axis of symmetry on the
camera image plane. Given the 2D outer silhouette, this can
be done using line fitting. As the 2D symmetry axis is a
projection of the object’s 3D symmetry axis, we can cal-
culate 3D position of the axis using known position of the
LCD screen and the known distance from the screen to the
center of rotation of the object (pre-calibrated). The LCD
plane and the object’s rotation axis are parallel to each other
in our setup allowing us to project the axis from 2D to 3D.
Finally, using the object’s 3D axis of rotation, 2D silhou-
ette and the camera’s intrinsics, we can estimate the object’s
circular radius for each cross-section along the axis of rota-
tion. We sample the rotation axis at the resolution of the
2D silhouette and create a rotational cross-section for each
scan-line to define the outer shape.

4.2. Deflection map and flip-image

Before proceeding further with the reconstruction, we need
to segment the object into separate solid and hollow sections
with 2- and 4-interfaces respectively. The solid sections are
purely described by the outer shape of the object. However,
the hollow 4-interface sections need additional estimation
of the inner shape and thickness. In order to do this, we first
compute a ray deflection map of how the transparent ob-
ject distorts the intersection of camera rays with points on
the LCD screen due to refraction. Such deflection informa-
tion is computed from the camera-screen point correspon-
dence obtained using the gradient and gray code patterns.
To effectively capture the deflection information, the data
includes both 2D direction and magnitude (Fig. 3 b, c).

Using the above estimated deflection map and axis of sym-
metry, we compute a so called flip image (Fig. 3, d) neces-
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(b) Approx. geometry

Figure 5: Initial estimation of inner and outer geometry. An edge
enhanced image (a) is generated by subtracting a photograph under
horizontal gradient (Fig. 3 top-left) from its inverse. Initial inner
and outer geometry (b) is then estimated by processing (a).

sary for our reconstruction pipeline. The flip image marks
rays that cross over from one side of the symmetry axis to
the other during propagation between screen and camera.
Given the vertical axis of symmetry of the objects we ac-
quire, this results in marking of rays that cross over from the
left side of the axis (marked green) to the right side (marked
red) or vice versa. A flip in the color coding with respect to
the background then represents a solid section, while the
absence of flip represents a hollow section for subsequent
processing. This works well in our case due to the relatively
high refractive index of the transparent objects (1.3 − 1.6)
along with their circular cross-sections that cause the solid
sections to flip rays about the symmetry axis.

4.3. Initialization of inner shape

After segmenting the object into solid and hollow sections,
the next step is to initialize the inner shape of the object’s
hollow sections. This can be done using inner silhouette de-
tection in conjunction with the computed flip image. First,
we approximately determine the cross-sections along the
rotation axis where there is a change in the number of inter-
faces using the previously obtained flip image. Next, we ob-
tain an initial estimate of the thickness of the inner walls of
the determined hollow sections. Initializing the wall thick-
ness simply amounts to determining the inner radius of cir-
cular cross-sections orthogonal to the symmetry axis which
we determine as follows:

1. Given the outer silhouette, we once again employ the
edge enhanced image shown in Fig. 5 (a) to detect the in-
ner silhouette. This is done by detecting the inner left and
right edges along a scan line (cross-section) in the hollow
4-interface section of this enhanced image as local maxima
of horizontal intensity gradients.
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Figure 6: Ray diagrams for the unknown refractive index and
inner geometry estimation based on inverse ray tracing.

2. The thickness of a cross-section is then estimated as
the mean of the left and right wall thickness. Finally, for
smoothness of the estimated wall thickness across cross-
sections, we fit a 4-th degree polynomial curve to the es-
timated cross-section thicknesses. This is done in order to
filter out any noise in the inner silhouette detection and to
obtain a smooth profile of the inner shape (Fig. 5, b).

These steps provide us with an initial estimate of the 3D
shape of the object which we then refine using an inverse
rendering procedure that estimates the object’s refractive in-
dex and the final optimized shape.

4.4. Refractive index estimation

We take a sequential approach of first estimating the un-
known refractive index η, followed by refining the final (in-
ner) geometry. We restrict the refractive index estimation to
the solid 2-interface section of the transparent object where
the 3D shape is completely described by the outer silhou-
ette. For each ray corresponding to pixels in the ROI (seg-
mented using flip image), ray tracing is performed to com-
pute the trajectory of refraction with a chosen η as shown
in Fig. 6 (left). Then, the sum of error, ei,ref , is calcu-
lated between the computed trajectory for the chosen η and
a measured deflection map.

arg min
n

∑
i∈[x,y]

ei,ref = arg min
n

∑
i∈[x,y]

|Pi,mea − Pi,tra|

(1)

This process is iterated over a sufficiently wide range of val-
ues for η ∈ [1.0, 2.0] while searching for the value that min-
imizes error sum in Equation 1. Fig. 7 (left) shows the itera-
tions for the wineglass in Fig. 3 with an estimated η = 1.57,
which is in the range of crown and flint glass2.

2Department of Physics and Astronomy, Georgia State Univer-
sity http://hyperphysics.phy-astr.gsu.edu/hbase/
tables/indrf.html
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Figure 7: The refractive index is estimated by searching for a
value that minimizes the error between ray traced and measured
ray deflections. The error plots present the estimated η for a wine-
glass (left), and a transparent plastic goblet (right).

4.5. Refinement of inner shape

Once the refractive index is determined, the last step of the
pipeline is to refine the initial estimate of the inner shape of
the hollow sections to obtain the final estimated 3D shape
of the transparent object. The problem now reduces to esti-
mating the final unknown radius ry for each circular cross-
section given a known refractive index using inverse render-
ing (Fig. 6, right). While the solid 2-interface section was
used for estimating a single value of refractive index for the
entire object, in this case the inverse rendering error sum is
computed separately for each cross-section for estimating
the final cross-section radii. Again, the sum of minimum er-
ror ey,geo is chosen as the best estimation of unknown radii
for each cross-section of the hollow 4-interface section as
given by Equation 2.

arg min
ry

∑
y

ey,geo = arg min
ry

∑
y

|Py,mea − Py,tra| (2)

We provide the initial wall thickness previously estimated
in Section 4.3 as an initial guess to the shape optimization
procedure for efficient convergence. Figure 8 (a) shows the
initial estimate of the wall thickness in blue and the final
estimated result for the inner radii in red. Note that the sin-
gular curvature between lines 650 and 700 is the result of
a more accurate estimation for the actual shape of the bot-
tom of the glass bowl after the optimization. This singular
curvature creates the bright oval pattern in the correspond-
ing area of the reference photograph in Fig. 8 (b) with con-
stant backlighting. Additionally, various other noticeable
patterns are created around the interface between the solid
and hollow sections and near the solid base of the wine glass
in the photograph that arise due to the high curvature and
geometry of these sections of the glass. The rendering re-
sult in Fig. 8 (c) shows a faithful reproduction of much of
these patterns in addition to the overall shape and appear-
ance compared to the photograph. We present additional
results of such reconstruction in Section 6.

http://hyperphysics.phy-astr.gsu.edu/hbase/tables/indrf.html
http://hyperphysics.phy-astr.gsu.edu/hbase/tables/indrf.html
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Figure 8: Final estimated inner geometry and rendering result.
(a) The estimated inner radii for the hollow section is marked in
red compared to the initial estimate shown in blue. The final object
rendering (c) is a good match with reference photograph (b).

5. N-fold symmetric objects

The reconstruction method for a rotationally symmetric ob-
ject as described in the previous section can be extended
for the reconstruction of an n-fold symmetric transparent
object with similar solid and hollow sections. We assume
that the outer cross-section is n-fold symmetric while the
inner cross-section is still circular which is true for many
everyday n-fold symmetric objects such as goblets, tum-
blers, etc. We observe that in most cases such objects can
be categorized as a combination of sections with complete
rotational symmetry and sections with n-fold symmetry as
shown in Fig. 9. We propose a reconstruction method for
the n-fold symmetric sections using a polygonal shape for
the outer cross-sections. The method requires a single user
input which is the vertex number of a polygon. The first
step of the method is separating any rotationally symmet-
ric sections from the n-fold symmetric sections. We ob-
serve that for vertical axially symmetric objects, an n-fold
symmetric section has stronger vertical edges than a rota-
tionally symmetric section as shown in Fig. 9 (center). A
horizontal projection over the vertical edges intensifies the
edge signals for the n-fold symmetric sections and allows
us to separate them using a simple threshold (Fig. 9, right).

Unlike a rotationally symmetric section for which the outer
cross-section is circular, a specific modeling method is re-
quired for generating the outer geometry of an n-fold sym-
metric section. We model the n-fold geometry as curved
lines between vertices of an n polygonal shape which is in-
scribed by the virtual circular shape of rotational symmetry
(Fig. 10). The curved n-fold shape also includes the planar
n-polygonal shape as a special case when the curvature, v,
is zero. We model the curved lines as a quadratic function
with vertex f which is parameterized by the local curvature,
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y=aLx+bL

Figure 10: Notation for modeling curved faces in an n-fold sym-
metric region.

v. The fixed position of each n-polygonal vertex, pi is spec-
ified by the user input of the vertex number of the polygon.
The curved line between points p1, p2, and f is described by
the standard quadratic equation ax2+bx+c = y. To gener-
ate the various faces of the n-fold curve, the quadratic is ro-
tated by θ which is the slope angle of line p1p2. Equation 3
then expresses the constant terms of the rotated quadratic
equation ax′2 + bx′ + c = y′, where xi and yi are x and y
coordinates of p1, p2, and f. Note that the relative orienta-
tion of the n-polygon with respect to the camera is obtained
by rotating the model by 1◦ intervals about the symmetry
axis (within a search range [0− 90]) and comparing the 2D
projection of each rotation with the reference photograph.

a =
(B1 −B3)(A2 −A3)− (B2 −B3)(A1 −A3)

(A2
1 −A2

3)(A2 −A3)− (A2
2 −A2

3)(A1 −A3)

b =
(B1 −B3)− a(A2

1 −A2
3)

(A1 −A3)

c = B1 − aA2
1 − bA1

where A = x′icosθ + y′isinθ,B = y′icosθ − x′isinθ

(3)

Examples of curved shape modeling for the n-fold symmet-
ric sections are shown in Fig. 11 including faces with con-
cave, flat, and convex shapes respectively. Note that the



Figure 11: Examples of curved face modeling for the n-fold sym-
metric cross-sections of the object in Figure 9 including concave,
planar, and convex modeling respectively.

local curvature of the n-fold outer faces is not known ini-
tially. Hence, we propose to iteratively estimate the inner
shape and the outer n-fold face curvature in a sequential
manner. We first initialize the outer geometry with planar
faces for the n-fold sections and employ this outer shape
approximation to estimate the inner shape (with circular
cross-sections) using inverse rendering as described in Sec-
tion 4. This results in a semi-accurate reconstruction of n-
fold symmetric sections (Fig. 12, first column) with larger
residual errors in sections that have considerable curvature
in the outer faces (e.g., the lower n-fold region shown in the
bottom of the first column), and low residual errors in sec-
tions with negligible curvature in the outer faces (e.g., the
upper n-fold section). In a second phase, we then optimize
for the face curvature, v, of the n-fold faces by minimizing
the residual error between ray tracing and measured deflec-
tions (Fig. 12, second column). For a candidate curvature
value, the unknown vertex point f of the rotated quadratic
equation is specified by Equation 4.

(1 + a2L)x
2
f + (2B′aL − 2A′)xf +A′2 +B′2 − v2 = 0

yf = aLxf + bL

where A′ =
x1 + x2

2
, B′ = bL −

y1 + y2
2

(4)
Since the equation is quadratic its two solutions suggest two
possible positions for the vertex, one creating a concave
shape and the other convex. We try a range of curvature
candidates spanning from concave to convex outer geome-
try to search for a configuration with minimal residual error.
We then iterate the sequential estimation of inner geometry
and outer face curvature until the change in residual errors
is lower than a threshold, giving us the final reconstruction
result (Fig. 12, last column). The final rendering result is
comparable to the reference photograph in Figure 9. We
present an additional example in the next section.

6. Results

We have tested our acquisition and reconstruction method
for a wide range of axially symmetric transparent objects.

Figure 12: Rendering results (top row) and corresponding resid-
ual errors (bottom row) with iterative estimation of inner geometry
and curvature of n-fold faces. The first and the second columns are
initial inner geometry estimation with flat surface and initial cur-
vature estimation for n-fold faces, respectively. The fourth and
the fifth columns are final estimation for inner geometry and face
curvature, respectively.

Fig. 1 presents a realistic rendering of various acquired glass
objects lit with two frontal area light sources using Mit-
suba [8]. We also present rendering comparisons to pho-
tographs of the acquired objects under constant screen back-
ground illumination as seen in Figs. 8 and 12. A few addi-
tional representative results can be seen in Fig. 13. Note
that the cocktail glass (a) has two distinct hollow sections
including a small spherical section at the bottom that is well
reconstructed using our approach. (b) presents a rotation-
ally symmetric champagne glass, and (c) a pint glass. Here,
the pint glass has a few labels on the surface that cause oc-
clusions for transmission measurements in our setup. De-
spite this, our reconstruction is fairly accurate demonstrat-
ing the robustness of the approach for shape estimation. (d)
presents a more complex example of n-fold axial symme-
try: a glass tumbler with lozenge-pattern. Here, we pro-
vided the number of lozenges in a cross-section as an input
to the reconstruction algorithm. Finally, we present the re-
construction result of a shot glass containing some vodka
in (e). Here, we first acquired an empty shot glass in or-
der to accurately recover the inner geometry of the glass.
We then recaptured the glass filled with vodka in order to
estimate the liquid’s refractive index (η = 1.36) for the ren-
dering. As can be seen, unlike some previous approaches
which require immersion of a transparent object in various
liquids, our approach scales to also acquiring axially sym-
metric transparent objects containing transparent liquids.

The refractive index estimation requires around 10 min-
utes on a machine with Intel iCore7 2.5 GHz quad-core
processor and 16 GB RAM. The inner geometry optimiza-
tion requires around 30 minutes for a rotationally symmet-
ric object, while an n-fold symmetric object takes around
90 minutes due to the iterative estimation of both inner and
outer shape. In order to quantitatively verify the accuracy



(a) Cocktail glass (b) Champg. gl. (c) Pint glass (d) Tumbler with lozenge pattern (e) Shot glass containing vodka

Figure 13: Additional examples of reconstructed transparent objects. Left: photographs. Right: renderings.

(unit: mm)
Rotational symmetry N-fold symmetry

Avg. Error 0.351 0.859
St. dev. 0.171 0.321

Table 1: Reconstruction accuracy compared to physical measure-
ments with vernier calipers.

of our reconstruction, we made physical measurements of
the cross-section thicknesses using a high precision vernier
caliper (Mitutoyo 500-196-30, 0.01mm res.). We did this
because of difficulties in comparison against alternate ac-
quisition approaches. For example, scanning with powder
coating would only enable acquisition of the outer surface
as the inner surface would be occluded for many of the ac-
quired objects, while dyeing would still require somehow
eliminating refractions for reconstruction (e.g., immersing
in refractive index matching liquid). Instead, we made sev-
eral cross-sectional caliper measurements (at 10 different
positions) of six different objects (three each in the two cat-
egories of rotationally and n-fold symmetric) to compute
the mean and std. deviation of the reconstruction error (Ta-
ble 1). The mean error is less than 1mm in both cases.
As expected, we achieve higher accuracy for completely
rotationally symmetric objects due to their simpler cross-
sections. We also obtain consistent estimates of η for var-
ious transparent solids and liquids [10, 19]. We include a
few additional results in the supplemental material.

Discussion and Limitations: Our approach is specific to
axially symmetric objects and we take advantage of this
symmetry for robust single view reconstruction. Given the
strong symmetry assumption, any minor asymmetries in
the actual object are not reconstructed. We further rely on
model based reconstruction for objects with n-fold symme-
try. However, due to an extensive set of possible variations,
it is somewhat necessary to adopt the surface modeling for
individual types of such symmetry (e.g., lozenge pattern).
It might be possible to extend the approach somewhat to re-
construct more general shapes with multiview acquisition.
However, there are limits to how many interfaces can be
resolved in the general case [11]. While less general than

tomography based volumetric reconstruction, our approach
can produce very high quality results which preserve high
frequency shape features due to near camera resolution esti-
mation of discrete refractive boundaries. Our renderings un-
der constant background illumination are a good qualitative
match to photographs. However, there are some noticeable
differences due to us not accurately modeling the angular
fall-off of the LCD screen illumination or its polarization
characteristics in the renderings. We rely on being able to
observe ray deflections through a solid 2-interface section
for estimating the refractive index and currently only em-
ploy the green channel (central wavelength) data for this
purpose. Our approach will require modifications for ac-
quisition of birefringent transparent objects. The accuracy
of our reconstruction is also limited by the resolution of the
LCD screen which impacts the deflection map resolution.

7. Conclusions

We have presented a very practical approach for high qual-
ity reconstruction of axially symmetric transparent objects.
Such objects are quite common in the real world and can
have very unique, aesthetic and complex shape and appear-
ance. Our approach employs a simple environment mat-
ting style setup for efficient single view acquisition and ro-
bust reconstruction of such transparent objects including
estimation of shape and refractive index. We demonstrate
high quality reconstruction results for a wide range of rota-
tionally symmetric and n-fold symmetric everyday objects.
For these classes of objects, we achieve significantly better
qualitative results compared to prior work targeting more
general transparent object reconstruction.
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