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Abstract

This thesis seeks to gain further insight into the connection between stochastic

optimal control and forward and backward stochastic differential equations and

its applications in solving continuous-time constrained portfolio optimization

problems. Three topics are studied in this thesis.

• In the first part of the thesis, we focus on stochastic maximum princi-

ple, which seeks to establish the connection between stochastic optimal

control and backward stochastic differential differential equations coupled

with static optimality condition on the Hamiltonian. We prove a weak nec-

essary and sufficient maximum principle for Markovian regime switching

stochastic optimal control problems. Instead of insisting on the maxi-

mum condition of the Hamiltonian, we show that 0 belongs to the sum of

Clarkes generalized gradient of the Hamiltonian and Clarkes normal cone

of the control constraint set at the optimal control. Under a joint concavity

condition on the Hamiltonian and a convexity condition on the terminal

objective function, the necessary condition becomes sufficient. We give

four examples to demonstrate the weak stochastic maximum principle.

• In the second part of the thesis, we study a continuous-time stochastic

linear quadratic control problem arising from mathematical finance. We

model the asset dynamics with random market coefficients and portfolio

strategies with convex constraints. Following the convex duality approach,
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we show that the necessary and sufficient optimality conditions for both the

primal and dual problems can be written in terms of processes satisfying

a system of FBSDEs together with other conditions. We characterise ex-

plicitly the optimal wealth and portfolio processes as functions of adjoint

processes from the dual FBSDEs in a dynamic fashion and vice versa.

We apply the results to solve quadratic risk minimization problems with

cone-constraints and derive the explicit representations of solutions to the

extended stochastic Riccati equations for such problems.

• In the final section of the thesis, we extend the previous result to utility

maximization problems. After formulating the primal and dual problems,

we construct the necessary and sufficient conditions for both the primal

and dual problems in terms of FBSDEs plus additional conditions. Such

formulation then allows us to explicitly characterize the primal optimal

control as a function of the adjoint processes coming from the dual FBSDEs

in a dynamic fashion and vice versa. Moreover, we also find that the

optimal primal wealth process coincides with the optimal adjoint process

of the dual problem and vice versa. Finally we solve three constrained

utility maximization problems and contrasts the simplicity of the duality

approach we propose with the technical complexity in solving the primal

problem directly.

Keywords: stochastic maximum principle, regime switching, convex duality,

forward and backward stochastic differential equation, quadratic risk minimiza-

tion, stochastic Riccati equation, constrained utility maximization
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Notations

• (Ω,F ,P) - probability triple consisting of a sample space Ω, the σ-algebra

F which is the set of all measurable events, an the probability measure P;

• (Ft)t≥0 - a filtration, an increasing family of sub σ-algebras of F ;Fs ⊂

Ft, 0 ≤ s ≤ t;

• Rd - the d-dimensional Euclidean space;

• a+ - = max{a, 0} for any real number a;

• a− - = max{a, 0} for any real number a;

• 1A - the indicator function of any set A;

• Mᵀ - the transpose of any vector or matrix M ;

• |M | - =
√∑

i,jm
2
ij for any matrix or vector M = (mij);

In this thesis, by convention, all vectors are column vectors.
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Chapter 1

Introduction

1.1 Background

Uncertainty is inherent in most real world systems. The decision maker with

certain objectives needs to come up with an optimal strategy to achieve the best

expected outcome related to their ultimate goals. The above problem can often

be formulated mathematically as a stochastic optimal control problem.

Two most commonly used approaches in solving stochastic optimal control

problems are Bellman’s dynamic programming principle (DPP) and Pontryagin’s

maximum principle (MP). The DPP was introduced by R. Bellman in the early

1950s with the following basic idea behind it (see [3, Chapter III.3]):

An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first deci-

sion.

The DPP led to the so-called Hamilton-Jacobi-Bellman equation (HJB), which

is a non-linear partial differential equation satisfied by the value function. In

addition, the notion of viscosity solution introduced by Crandall and Lions in the
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early 1980s allows us to go beyond the classical verification approach by relaxing

the lack of regularity of the value function. Since then, the DPP approach has

become a powerful tool to tackle optimal control problems.

Another well known approach to solve optimal control problems is the so

called maximum principle (MP) introduced by Pontryagin and his group in the

1950s. It states that an optimal control problem can be decoupled into solving a

forward backward differential equation system plus a maximum condition on the

Hamiltonian function. The key breakthrough of this theory lies in reducing an

infinite-dimensional problem into a static finite-dimensional problem, which is

much easier to solve. The original version of deterministic MP was then extended

to stochastic case by [53], [36], [11] and [6]. However, prior to 1988, most of

the work on around stochastic maximum principle were carried out under the

assumption that the control does not enter into the diffusion coefficients and the

control space is convex. Following the research seminar study at the Department

of Mathematics at Fudan University led by X. Li, the SMP for control dependent

diffusion coefficients was introduced in [67] and later simplified in [91].

Stochastic optimal control theory finds numerous applications in many fields

that involves decision making under uncertainty. One of the most popular ap-

plications of stochastic optimal control lies in the field of portfolio optimization

in finance. A classical example of portfolio optimization is as follows. Consider

a investor with some initial wealth and wants to invest in financial markets with

instruments such as bonds, stocks, currencies and commodities. Portfolio op-

timization theory studies the optimal investment strategy that maximizes the

expected gain and minimizes the risk over the investment horizon.

One of the revolutionary works in modern finance is the portfolio selection

theory developed by Harry Markowitz in [61]. He argued that the risk and return

characteristics of an investment should be considered together at the portfolio

level instead of in isolation. The vehicle to quantify the trade-offs between

13



risk and return inherent in a portfolio was the so-called mean-variance analysis.

The portfolio selection work of Markowitz brought mathematics to the art of

investment management. Since then, the single period mean-variance framework

has initially been extended to multi-period (see [33],[34] and [56]) and then to

continuous-time models (see [93], [79] and [87]).

Besides using the return of an investment, a perhaps more realistic way to

measure investor satisfaction is the utility function. The concept of utility origi-

nates from rational choice theory in Microeconomics and was used as a measure

of preferences over certain sets of goods and services. Two landmark papers

of Merton [62, 63] studied continuous-time portfolio optimization problems un-

der power and log utility functions with the tools of stochastic optimal control

theory. Since then, there has been a great amount of work on continuous-time

utility maximization (see [47] and references therein).

1.2 Outline of the thesis

In Chapter 2, we focus on stochastic maximum principle, which seeks to estab-

lish the connection between stochastic optimal control and backward stochastic

differential differential equations coupled with static optimality condition on the

Hamiltonian. We prove a weak necessary and sufficient maximum principle for

Markov regime switching stochastic optimal control problems. Instead of insist-

ing on the maximum condition of the Hamiltonian, we show that 0 belongs to

the sum of Clarke’s generalized gradient of the Hamiltonian and Clarke’s normal

cone of the control constraint set at the optimal control. Under a joint con-

cavity condition on the Hamiltonian and a convexity condition on the terminal

objective function, the necessary condition becomes sufficient. In addition to

the theory and proof, we give four examples to demonstrate the weak stochastic

maximum principle.
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In Chapter 3, we turn our attention to applications of stochastic optimal

control theory in mathematical finance. We model the asset dynamics using

stochastic differential equations with random market coefficients and portfolio

strategies with convex constraints. Following the convex duality approach, we

show that the necessary and sufficient optimality conditions for both the primal

and dual problems can be written in terms of processes satisfying a system of

FBSDEs together with other conditions. We characterise explicitly the optimal

wealth and portfolio processes as functions of adjoint processes from the dual

FBSDEs in a dynamic fashion and vice versa. We apply the results to solve

quadratic risk minimization problems with cone-constraints and derive the ex-

plicit representations of solutions to the extended stochastic Riccati equations

for such problems.

In Chapter 4, we study constrained utility maximization problems where

utility functions are defined on the positive real line. After formulating the

primal and dual problems, we construct the necessary and sufficient conditions

for both the primal and dual problems in terms of FBSDEs plus additional

conditions. Such formulation then allows us to explicitly characterize the primal

optimal control as a function of the adjoint processes coming from the dual

FBSDEs in a dynamic fashion and vice versa. Moreover, we also find that

the optimal primal wealth process coincides with the optimal adjoint process

of the dual problem and vice versa. Finally we solve three constrained utility

maximization problems and contrasts the simplicity of the duality approach we

propose with the technical complexity in solving the primal problem directly.

Finally we conclude the thesis and propose possible areas of future research

in the last chapter.
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Chapter 2

Weak Necessary and Sufficient

Stochastic Maximum Principle

for Markovian Regime-Switching

Diffusion Models

2.1 Introduction

There has been extensive research in the stochastic control theory. Two principal

and most commonly used methods in solving stochastic optimal control prob-

lems are the dynamic programming principle (DPP) and the stochastic maxi-

mum principle (SMP). The books by Fleming-Rishel [30], Fleming-Soner [31],

and Yong-Zhou [89] provide excellent expositions and rigorous treatment of the

subject of the dynamic programming principle in the optimal deterministic and

stochastic control theory.

Many people have made great contributions in the research of the SMP. Kush-

ner [52, 53] is the first to study the necessary SMP. Haussmann [37], Bensoussan
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[5] and Bismut [8, 10, 11] extend Kushner’s SMP to more general stochastic con-

trol problems with control-free diffusion coefficients. Peng [67] applies the second

order spike variation technique to derive the necessary SMP to stochastic con-

trol problems with controlled diffusion coefficients. Zhou [91] simplifies Peng’s

proof. Cadenillas-Karatzas [13] extends Peng’s SMP to systems with random

coefficients and Tang-Li [80] with jump diffusions. Bismut [11] is the first to in-

vestigate the sufficient SMP. Zhou [92] proves that Peng’s SMP is also sufficient

in the presence of certain convexity condition. Framstad-Øksendal-Sulem [32]

extends the sufficient SMP to systems with jump diffusion, Donnelly [26] with

Markovian regime-switching diffusion and, most recently, Zhang-Elliott-Siu [90]

with Markovian regime-switching jump diffusion.

Briefly speaking, the necessary SMP states that any optimal control along

with the optimal state trajectory must solve a system of forward-backward SDEs

(stochastic differential equations) plus a maximum condition of the optimal con-

trol on the Hamiltonian. The necessary condition together with certain concavity

conditions on the Hamiltonian give the sufficient condition of optimality. The

major difficulty of generalizing the classical Pontryagin’s maximum principle to a

stochastic control problem with controlled diffusion term is that, in some cases,

the Hamiltonian is a convex function of the control variable and achieves the

minimum at the optimal control (see [89, Example 3.3.1]). One of the major

contributions of Peng’s SMP is the introduction of the generalized Hamiltonian

and the second order adjoint stochastic processes. In those cases where the

Hamiltonian is convex, it is the second order term that turns the generalized

Hamiltonian to a concave function which achieves the maximum at the optimal

control. The generalized Hamiltonian and the second order adjoint equation

are introduced to preserve the maximum condition of Pontryagin’s maximum

principle.

However, the second order terms also pose problems. Firstly, one has to

18



assume that all functions involved are twice continuously differentiable in the

state variable in order to use the second order variation, which limits the scope

of problems applicable to the theorem. Secondly, one has to solve the associated

second order adjoint backward stochastic differential equation (BSDE) with the

dimensionality equal to the square of that of its first order counterpart, which

makes the problem more difficult to solve, at least numerically. Lastly, one can

not get the sufficient condition by enhancing the necessary condition with some

joint concavity condition to the generalized Hamiltonian and instead one has to

add some joint concavity condition to the Hamiltonian (compare [89, Theorem

3.3.2] and [89, Theorem 3.5.2]), which illustrates that the necessary SMP is not

completely compatible with the sufficient SMP. This motivates us to relax the

requirement of the maximality of the Hamiltonian at the optimal control and to

seek a weak but compatible necessary and sufficient SMP.

The main contribution of this chapter is that we prove a weak version of the

necessary and sufficient SMP for Markovian regime switching diffusion stochastic

optimal control problems. Instead of insisting on the Hamiltonian to achieve the

maximum at the optimal control, which is in general impossible, we relax the

necessary condition by only requiring the optimal control to be a stationary point

of the Hamiltonian. Specifically, we prove that 0 belongs to the sum of Clarke’s

generalized gradient of the Hamiltonian and Clarke’s normal cone of the control

constraint set at the optimal control almost surely almost everywhere. Under

the joint concavity condition on the Hamiltonian and the convexity condition on

the terminal objective function, the necessary condition becomes the sufficient

condition.

The advantage of the weak SMP is the following. Firstly, the second order

differentiability of the coefficients and the objective functions in the state variable

is not required as the weak SMP does not have any second order terms. Secondly,

the differentiability of the coefficients and the objective functions in the control
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variable is not required as the weak SMP uses Clarke’s generalized gradients

to describe the optimal control. Thirdly, the dimensionality of the BSDE is

much reduced as the second order adjoint process is not involved. Lastly, the

necessary condition and the sufficient condition are compatible with each other

in the sense that the necessary condition provides a stationary point while the

sufficient condition confirms its optimality, which is in the same spirit as the

necessary and sufficient conditions in the finite dimensional optimization.

In this chapter the control constraint set is assumed to be convex. Under this

condition [89] (see case 2, page 120) show that the second order adjoint process

can be removed from the SMP but the differentiability condition of the coeffi-

cients to the control variable is still required. In the weak SMP, we only assume

the differentiability condition in the state variable and the Lipschitz condition

in the control variable. This suggests that the Weak SMP is applicable to a

more broad range of problems. Example 4.2 shows a non-smooth Hamiltonian

in control variable and can not be solved by the existing literature on SMP. The

key idea of this chapter is to work on the stationary condition rather than the

maximal condition, which opens the possibility of new results when the control

constraint set is non-convex.

The rest of the chapter is organized as follows. Section 2 introduces the

notations, the formulation of the regime switching stochastic control problem

and the basic assumptions. Section 3 states the main theorems of the chapter,

the weak necessary SMP (Theorem 2.3.1) and the weak sufficient SMP (Theo-

rem 2.3.2). Section 4 gives four examples to demonstrate the usefulness of the

weak SMP in solving regime switching stochastic control problems, including

non-smooth non-concave case and regime-switching non-concave case. Section 5

establishes some useful preliminary results on Clarke’s generalized gradient and

normal cone, Markovian regime switching SDE and BSDE, moment estimates,

Lipschitz property, Taylor expansion and duality analysis. Section 6 proves the

20



main theorems. Section 7 concludes. The appendix gives the proof of Theorem

2.5.15 (existence and uniqueness of the solution to a regime switching BSDE)

for completeness.

2.2 Problem Formulation

In this section, we formulate the stochastic control problem in a regime switching

diffusion model and introduce some assumptions. Here we adopt the model in

[26]

Let (Ω,F ,P) be a complete probability space with a P complete right con-

tinuous filtration. Let the previsible σ-algebra on Ω× [0, T ] associated with the

filtration {Ft : t ∈ [0, T ]}, denoted by P?, be the smallest σ-algebra on Ω× [0, T ]

such that every {Ft}-adapted stochastic process which is left continuous with

right limit is P? measurable. A stochastic process X is previsible, written as

X ∈ P?, provided it is P? measurable.

Let W (·) be an m-dimensional standard Brownian motion and α(·) a contin-

uous time finite state observable Markov chain, which are independent of each

other. {Ft} is the natural filtration generated by W and α, completed with all

P-null sets, denoted by

Ft = σ [W (s) : 0 ≤ s ≤ t]
∨

σ [α(s) : 0 ≤ s ≤ t]
∨
N ,

where N denotes the totality of P-null sets.

Let the Markov chain α take values in the state space I = {1, 2, · · · , d− 1, d}

and start from initial state i0 ∈ I with a d× d generator matrix Q = {qij}di,j=1.

For each pair of distinct states (i, j), define the counting process [Qij] : Ω ×

[0, T ]→ N by

[Qij](ω, t) :=
∑

0<s≤t

X [α(s−) = i] (ω)X [α(s) = j](ω),∀t ∈ [0, T ],
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and the compensator process 〈Qij〉 : Ω× [0, T ]→ [0,+∞) by

〈Qij〉(ω, t) := qij

∫ t

0

X [α(s−) = i] (ω)ds,∀t ∈ [0, T ],

where X is an indicator function. The processes

Qij(ω, t) := [Qij](ω, t)− 〈Qij〉(ω, t)

is a purely discontinuous square-integrable martingale with initial value zero

([74, Lemma IV.21.12]).

Consider a stochastic control model where the state of the system is governed

by a controlled Markovian regime-switching SDE: dx(t) = b(t, x(t), u(t), α(t−))dt+ σ(t, x(t), u(t), α(t−))dW (t)

x(0) = x0 ∈ Rn, α(0) = i0 ∈ I,
(2.1)

where u(·) is a Rk valued previsible process, T > 0 is a fixed finite time horizon,

b : [0, T ] × Rn × Rk × I → Rn and σ : [0, T ] × Rn × Rk × I → Rn×m are given

continuous functions satisfying the following assumptions:

(A1) The maps b and σ are measurable, and there exist constant K > 0 such

that for ϕ = b and σ, we have
|ϕ(t, x, u, i)− ϕ(t, x̂, û, i)| ≤ K (|x− x̂|+ |u− û|)

∀t ∈ [0, T ]; i ∈ I;x, x̂ ∈ Rn;u, û ∈ Rk,

|ϕ(t, 0, 0, i)| < K, ∀t ∈ [0, T ],∀i ∈ I.

(A2) The maps b and σ are C1 in x and there exists a constant L > 0 and a

modulus of continuity ω̄ : [0,+∞)→ [0,+∞) such that |ϕx(t, x, u, i)− ϕx(t, x̂, û, i)| ≤ L|x− x̂|+ ω̄(d(u, ū))

∀t ∈ [0, T ]; i ∈ I;x, x̂ ∈ Rn;u, û ∈ Rk,

where ϕx(t, x, u, i) is the partial derivative of ϕ with respect to x at the

point (t, x, u, i).
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Consider the cost functional

J(u) = E

[∫ T

0

f(t, x(t), u(t), α(t))dt+ h(x(T ), α(T ))

]
, (2.2)

where f : [0, T ] × Rn × Rk × I → R and h : Rn × I → R are given functions

satisfying the following assumptions:

(A3) The maps f and h are measurable and there exist constants K1, K2 ≥ 0

such that |f(t, x, u, i)− f(t, x, û, i)| ≤ [K1 +K2(|x|+ |u|+ |û|)] |u− û|,

|f(t, 0, 0, i)|+ |h(0, i)| < K1, ∀t ∈ [0, T ],∀i ∈ I.

(A4) The maps f and h are C1 in x and there exist a constant L > 0 and a

modulus of continuity ω̄ : [0,+∞) → [0,+∞) such that for ϕ = f and h,

we have 
|ϕx(t, x, u, i)− ϕx(t, x̂, û, i)| ≤ L|x− x̂|+ ω̄(d(u, ū)),

∀t ∈ [0, T ]; i ∈ I;x, x̂ ∈ Rn;u, û ∈ Rk,

|ϕx(t, 0, 0, i)| ≤ L,∀t ∈ [0, T ], i ∈ I.

Remark 2.2.1. Assumptions (A3) and (A4) together cover many cases, in-

cluding all quadratic functions in x and u. For instance, if f is Lipschitz in u,

then K2 = 0. On the other hand, if f is differentiable with respect to u and fu

satisfies a linear growth condition in u, then K2 is a positive constant.

Remark 2.2.2. The regime switching component is not critical in this work

as our focus is on the stochastic maximum principle approach. One advantage

of stochastic maximum principle over dynamic programming is that it does not

require Markovian property on the state process. Introducing a jump diffusion

process will make the model setup more complicated but will not affect the

derivation of the main proof of our result. Moreover, this case has been covered

by the paper [90]. Therefore we decided to adopt the simple Brownian setup,

23



which allows read to focus on the main ideas without being distracted by rather

complicated setup of the framework.

Consider a measure space (S,P?, µ), where S = Ω × [0, T ] and µ = P ×

Leb. Define Lp(S;Rq) for p, q ∈ N+ to be the Banach space of Rq valued P?

measurable functions f : Ω× [0, T ]→ Rq such that

‖f‖ :=

(∫ T

0

E|f(t)|pdt
) 1

p

<∞. (2.3)

Similarly, define LpF(S;Rq) for p, q ∈ N+ to be the space of Rq valued Ft pro-

gressively measurable pth order integrable processes.

According to Theorem 2.5.12, under assumption (A1), for any u ∈ L4(S;Rk),

the state equation (2.1) admits a unique solution and the cost functional (2.2) is

well defined. A control is called admissible if it is valued in U , a non-empty closed

convex subset of Rk and u ∈ L4(S;Rk). Denoted by Uad the set of admissible

controls. In the case that x is a solution of (2.1) corresponding to an admissible

control u ∈ Uad, we call (x, u) an admissible pair and x an admissible state

process.

Our optimal control problem can be stated as follows

Problem (S) Minimize (2.2) over Uad.

Any ū ∈ Uad satisfying

J(ū) = inf
u∈Uad

J(u)

is called an optimal control. The corresponding x̄ and (x̄, ū) are called an optimal

state process and optimal pair, respectively.
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2.3 Weak Stochastic Maximum Principle

In this section we state the weak necessary and sufficient stochastic maximum

principle in the regime-switching diffusion model.

The Hamiltonian H : [0, T ]×Rn×Rk×I×Rn×Rn×m → R for the stochastic

control problem (2.1) and (2.2) is defined by:

H(t, x, u, i, p, q) :=− f(t, x, u, i) + bᵀ(t, x, u, i)p+ tr(σᵀ(t, x, u, i)q). (2.4)

Given an admissible pair (x, u), the adjoint equation in the unknown adapted

processes p(t−) ∈ Rn, q(t) ∈ Rn×m and s(t) = (s(1)(t), · · · , s(n)(t)), where

s(l)(t) ∈ Rd×d for l = 1, · · · , n, is the following regime-switching BSDE: dp(t−) = −Hx(t, x(t), u(t), α(t−), p(t−), q(t))dt+ q(t)dW (t) + s(t) • dQ(t)

p(T ) = −hx(x(T ), α(T )),

(2.5)

where

s(t) • dQ(t) ≡

(∑
j 6=i

s
(1)
ij (t)dQij(t), · · · ,

∑
j 6=i

s
(n)
ij (t)dQij(t)

)ᵀ
.

By Theorem 2.5.15, we claim that under assumptions (A1)-(A4), for any

(x, u) ∈ L2
F(S;Rn)×L4(S;Rk), (2.5) admits a unique solution {(p(t−), q(t), s(t))|t ∈

[0, T ]} in the sense of Definition 2.5.14. If (x̄, ū) is an optimal (resp. admissible)

pair and (p̄, q̄, s̄) is the adapted solution of (2.5), then (x̄, ū, p̄, q̄, s̄) is called an

optimal (resp. admissible) 5-tuple.

We can now state the main results of the chapter.

Theorem 2.3.1. (Weak Necessary SMP with Regime-Switching) Let assump-

tions (A1)-(A4) hold. Let (x̄, ū) be an optimal pair of Problem (S). Then

there exists stochastic process (p̄, q̄, s̄) which is an adapted solution to (2.5), such

that

0 ∈ ∂u(−H)(t, x̄(t), ū(t), α(t−), p̄(t), q̄(t)) +NU(ū(t)), a.e. t ∈ [0, T ],P-a.s.,

(2.6)
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where ∂u(−H)(t, x̄(t), ū(t), α(t−), p̄(t), q̄(t)) is Clarke’s generalized gradient of

−H with respect to variable u at point (t, x̄(t), ū(t), α(t−), p̄(t), q̄(t)) and NU(ū(t))

is Clarke’s normal cone of U at point ū(t) (see Subsection 2.5.1 for details).

Theorem 2.3.2. (Weak Sufficient SMP with Regime-Switching) Let assump-

tions (A1)-(A4) hold and let (x̄, ū, p̄, q̄, s̄) be an admissible 5-tuple satisfying

(2.6). Suppose further that h(·, α(T )) is convex and the Hamiltonian function

H(t, ·, ·, α(t−), p̄(t), q̄(t)) is concave for all t ∈ [0, T ] a.s. Then (x̄, ū) is an opti-

mal pair for Problem (S).

Remark 2.3.3. In the special case where Ft = σ[W (s) : 0 ≤ s ≤ t]
∨
N , i.e.,

the randomness of the system is generated only by the Brownian motion, the

Hamiltonian (2.4) and all other functions are free of index i or Markov chain

process value α(t−). The adjoint equation (2.5) is a pure Brownian BSDE (no

s(t)•dQ(t) term). The weak SMP remains the same as Theorem 2.3.1 and 2.3.2,

but only involves the 4-tuple (x̄, ū, p̄, q̄).

Remark 2.3.4. We call the SMP “weak” because in Peng’s necessary stochastic

maximum principle it requires the Hamiltonian to reach maximum at the optimal

control (see [67]) whereas in our necessary condition we only requires the optimal

control to be s stationary point (see Theorem 2.3.1 and Example 2.4.2).

2.4 Examples

In this section, we present four examples to demonstrate our main theorems.

2.4.1 Examples: Weak SMP without Regime-Switching

In this subsection, we consider two examples from [89] and derive the same

results as those in [89] using Theorem 2.3.1 and Theorem 2.3.2. A key property
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used in our approach is that the adjoint process must be adapted to the filtration

Ft.

Example 2.4.1. (Concave Hamiltonian) Consider the following stochastic con-

trol problem [89, Example 3.5.3]: dx(t) = u(t)dW (t), t ∈ [0, 1]

x(0) = 0
(2.7)

with the control constraint set U = [0, 1] and the cost functional

J(u) = E

{
−
∫ 1

0

u(t)dt+
1

2
x(1)2

}
.

Suppose (x̄, ū) is an optimal pair, then the corresponding adjoint equation is dp̄(t) = q̄(t)dW (t), t ∈ [0, 1]

p̄(1) = −x̄(1).
(2.8)

Using (2.7) and (2.8) and via a simple calculation we obtain

p̄(t) = −
∫ t

0

ū(s)dW (s)−
∫ 1

t

(ū(s) + q̄(s)) dW (s).

Since the adjoint process p̄(t) is adapted to the filtration Ft , we must have

ū(t) + q̄(t) = 0 for all t ∈ [0, 1],P-a.s. (2.9)

The corresponding Hamiltonian is

H(t, x, u, p̄(t), q̄(t)) = q̄(t)u+ u.

Since the problem satisfies (A1)-(A4), by Theorem 2.3.1 and (2.6), we have

0 ∈ −(q̄(t) + 1) +N[0,1](ū(t)) for all t ∈ [0, 1],P-a.s.

Consequently, on any non-zero measurable set E ∈ S = Ω × [0, 1], we can only

have the following three cases:
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Case 1 : 0 < ū(t) < 1 =⇒ N[0,1] (ū(t)) = {0} and q̄(t) = −1.

Case 2 : ū(t) = 0 =⇒ N[0,1] (ū(t)) = (−∞, 0] and q̄(t) + 1 ≤ 0.

Case 3 : ū(t) = 1 =⇒ N[0,1] (ū(t)) = [0,+∞) and q̄(t) + 1 ≥ 0.

Suppose Case 1 or Case 2 is true, then ū(t) + q̄(t) ≤ ū(t) − 1 < 0 for some

non-zero measurable set E ∈ S, contradiction to (2.9). Hence, we have ū(t) = 1

for every t ∈ [0, 1],P-a.s. and x̄(t) = W (t) and (p̄(t), ¯q(t)) = (−W (t),−1) for

t ∈ [0, 1]. Since (x, u) 7→ H(t, x, u, p̄(t), q̄(t)) = −u + u = 0 is concave and

x 7→ h(x) = 1
2
x2 is convex, we conclude that ū(t) = 1 is the optimal control

using Theorem 2.3.2.

Example 2.4.2. (Nonconcave nonsmooth Hamiltonian) Consider the following

stochastic control problem dx(t) =
1

2
|u(t)|dW (t), t ∈ [0, 1]

x(0) = 0
(2.10)

with the control constraint set U = [−1, 1] and the cost functional

J(u) = E

{∫ 1

0

[x(t)2 − 1

2
u(t)2]dt+ x(1)2

}
.

Suppose (x̄, ū) is an optimal pair, then the corresponding adjoint equation is dp̄(t) = 2x̄(t)dt+ q̄(t)dW (t), t ∈ [0, 1]

p̄(1) = −2x̄(1).
(2.11)

Using (2.10), (2.11) and via a simple calculation, we obtain

p̄(t) = −
∫ t

0

(2− t)|ū(s)|dW (s)−
∫ 1

t

((2− s)|ū(s)|+ q̄(s))dW (s).

Since the adjoint process p̄(t) is adapted to the filtration Ft, we must have

(2− t)|ū(t)|+ q̄(t) = 0 for all t ∈ [0, 1],P-a.s. (2.12)

28



The corresponding Hamiltonian is

H(t, x, u, p̄(t), q̄(t)) =
1

2
q̄(t)|u| − x2 +

1

2
u2.

Since the problem satisfies assumptions (A1)-(A4), by Theorem 2.3.1 and (2.6),

we have

0 ∈ ∂u
(
x(t)2 − 1

2
q(t)|u(t)| − 1

2
u(t)2

)
+N[−1,1](ū(t)) for all t ∈ [0, 1],P-a.s.

(2.13)

Consequently, on any non-zero measurable set E ∈ S, we can only have the

following five cases:

Case 1 ū(t) = 1 =⇒ 0 ∈
{
−1

2
q(t)− 1

}
+ [0,+∞) which is compatible with

the adaptedness condition (2.12) q̄(t) = t− 2.

Case 2 ū(t) = −1 =⇒ 0 ∈
{

1

2
q(t) + 1

}
+ (−∞, 0] which is compatible with

(2.12) q̄(t) = t− 2.

Case 3 ū(t) = 0 =⇒ 0 ∈
[

1

2
q(t),−1

2
q(t)

]
+{0} which is compatible with (2.12)

q̄(t) = 0.

Case 4 ū(t) ∈ (0, 1) =⇒ 0 ∈
{
−1

2
q(t)− ū(t)

}
+ {0} which gives q(t) =

−2ū(t) < 0, a contradiction to (2.12) q̄(t) = (t− 2)ū(t) > 0.

Case 5 ū(t) ∈ (−1, 0) =⇒ 0 ∈
{

1

2
q(t)− ū(t)

}
+ {0} which gives q(t) = 2ū(t),

a contradiction to (2.12) q̄(t) = (2− t)ū(t).

Hence, the set of optimal candidates from Weak Necessary SMP consists of all the

progressively measurable processes valued in the set {−1, 0, 1}. However, since

the Hamiltonian is not concave, Theorem 2.3.2 cannot be applied. Substituting

x(t) =
∫ t

0
1
2
|u(s)|dW (s) into the cost functional and by simple calculations, we

obtain

J(u) = −1

4
E

∫ 1

0

t|u(t)|2dt.
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Hence J(u) reaches the minimum at |ū(t)| = 1 a.s. for all t, which implies there

are infinitely many optimal controls with any measurable combination of 1 and

−1. The optimal state process is x̄(t) = 1
2
W (t) and the adjoint processes are

p̄(t−) = (t− 2)W (t) and q̄(t) = t− 2 for all t ∈ [0, 1].

Remark 2.4.3. Example 2.4.2 shows that the weak necessary SMP can find not

only the optimal control for minimization problem (any progressively measurable

process taking values −1 or 1) but also the optimal control for maximization

problem (the unique progressively measurable process taking value 0), which is

in the same spirit of the necessary condition for finite dimensional optimization.

The Hamiltonian in Example 2.4.2 is non-smooth in control variable u, which is

beyond any known literature on SMP.

Remark 2.4.4. When dx(t) = u(t)dW (t) and U = [0, 1] and everything else is

kept the same as that in Example 2.4.2, the problem is the same as that of [89,

Example 3.3.1]. Theorem 2.3.1 can again be applied to find the optimal control

candidate ū(t) = 0. (We leave this to the reader to check.) The Hamiltonian is

a convex function of u and ū(t) = 0 is a minimum point. This is the reason that

[67] introduces the generalized Hamiltonian H which makes ū(t) = 0 a maximum

point.

2.4.2 Examples: Weak SMP with Regime-Switching

Example 2.4.5. (Quadratic Loss Minimization) Here we adopt the setting in

[26, Section 6]. Let (Ω,F , {Ft}0≤t≤T ,P) be a complete probability space on

which defined a 1-dimensional standard Brownian motion W and a continuous

time Markov chain α valued in a finite state space I = {1, · · · d} with generator

matrix Q = [qij]i,j∈I and initial mode α(0) = i0. Assume that W and α are inde-

pendent of each other and the filtration is generated jointly by W and α. Con-

sider a market consisting of one risk-free bank account S0 = {S0(t), t ∈ [0, T ]}
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and one risky stock S1 = {S1(t), t ∈ [0, T ]}. The risk-free asset’s price process

satisfies the following equation: dS0(t) = r(t, α(t−))S0(t)dt t ∈ [0, T ]

S0(0) = 1,

where the risk-free rate of return r(t, i) is a bounded deterministic function for

i ∈ I. The price process of the risky stock is given by dS1(t) = S1(t) {b(t, α(t−))dt+ σ(t, α(t−))dW (t)} t ∈ [0, T ]

S1(0) = S1 > 0,

where the mean rate of return b(t, i) and the volatility σ(t, i) are bounded nonzero

deterministic functions for i ∈ I. Define the market price of risk θ(t, i) ≡

σ−1(t, i)(b(t, i)− r(t, i)).

Consider an agent with an initial wealth x0 > 0. Let the Ft previsible real

valued process u(t) be the amount allocated to the stock at time t. Then the

wealth process x can be written as dx(t) = [r(t, α(t−))x(t) + u(t)σ(t, α(t−))θ(t, α(t−))] dt+ u(t)σ(t, α(t−))dW (t)

x(0) = x0.

(2.14)

A portfolio u(·) is said to be admissible, written as u(·) ∈ Uad if it is Ft-

previsible, square integrable and such that the regime switching SDE (2.14) has

a unique solution x(·) corresponding to u(·). In this case, we refer to (x(·), u(·)) as

an admissible pair. The agent’s objective is to find an admissible pair (x̄(·), ū(·))

such that

E (x̄(T )− d)2 = inf
u∈Uad

E(x(T )− d)2

for some fixed constant d ∈ R.

To solve this problem, first we find potential optimal candidate using Theo-

rem 2.3.1. Suppose that (x̄(·), ū(·)) is an optimal pair. Then the corresponding
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adjoint equation is dp(t−) = −r(t, α(t−))p(t−)dt+ q(t)dW (t) + s(t) • dQ(t) t ∈ [0, T )

−p(T ) = 2x̄(T )− 2d.
(2.15)

To find a solution (p̄, q̄, s̄) to (2.15), we try a process

p̄(t) = φ(t, α(t))x̄(t) + ψ(t, α(t)), (2.16)

where φ(t, i) and ψ(t, i) are deterministic smooth functions with terminal con-

ditions

φ(T, i) = 2 and ψ(T, i) = −2d for ∀i ∈ I.

Applying Ito’s formula to (2.16) and comparing coefficients with (2.15) leads to

−r(t, α(t−))p̄(t) =
∑d

i=1X [α(t−) = i]

{
x̄(t) (φ(t, i)r(t, i) + ∆φ(t, i))

+φ(t, i)ū(t)σ(t, i)θ(t, i) + ∆ψ(t, i)

}
,

(2.17)

q̄(t) = φ(t, α(t−))σ(t, α(t−))ū(t), (2.18)

s̄ij(t) = x̄(t)(φ(t, j)− φ(t, i)) + (ψ(t, j)− ψ(t, i)), (2.19)

where for ϕ = φ and ψ, denote by

∆ϕ(t, i) , ϕt(t, i) +
d∑
j=1

qij(ϕ(t, j)− ϕ(t, i)).

The Hamiltonian is given by

H(t, x, u, α, p, q) = r(t, α)xp+ uσ(t, α)q + uσ(t, α)θ(t, α)p. (2.20)

By Theorem 2.3.1, we have

0 ∈ ∂u(−H)(t, x̄(t), ū(t), α(t−), p̄(t), q̄(t)).

Since H is a linear function of ū, we must have

q̄(t) = −θ(t, α(t−))p̄(t). (2.21)
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Substituting (2.21) and (2.16) into (2.18) we obtain

ū(t) = −σ−1(t, α(t−))θ(t, α(t−))(x̄(t) + φ−1(t, α(t−))ψ(t, α(t−))). (2.22)

Substituting (2.16) and (2.22) into (2.17) leads to the following two differential

equations

φ(t, i)(2r(t, i)− |θ(t, i)|2) + ∆φ(t, i) = 0, (2.23)

ψ(t, i)(r(t, i)− |θ(t, i)|2) + ∆ψ(t, i) = 0, (2.24)

with terminal conditions

φ(T, i) = 2 and ψ(T, i) = −2d for ∀i ∈ I.

It can be showed that the solutions are

φ(t, i) = 2E

{
exp

[ ∫ T

t

(
2r(s, α(s))− |θ(s, α(s))|2

)
ds

]∣∣∣∣α(t) = i

}
, (2.25)

ψ(t, i) = −2dE

{
exp

[ ∫ T

t

(
r(s, α(s))− |θ(s, α(s))|2

)
ds

]∣∣∣∣α(t) = i

}
. (2.26)

Detailed proofs can be found in [26, Section 6] and [90, Section 5]. Substituting

(2.25) and (2.26) back into (2.22) gives the potential optimal portfolio ū and the

corresponding potential optimal wealth process x̄.

To verify the optimality of our candidate solution, we apply Theorem 2.3.2.

Since (A1)-(A4) are satisfied, h(x(T ), α(T )) ≡ (x(T ) − d)2 is convex and the

Hamiltonian (2.20) is concave, we conclude that (x̄(·), ū(·)) is indeed the optimal

pair.

Remark 2.4.6. Notice that in this case h is a convex function and the Hamil-

tonian is concave. Therefore, one can skip the necessary conditions and use a

sufficient stochastic maximum principle of Pontryagin’s type directly to find the

optimal portfolio process. Detailed steps can be found in [26, Section 6] and

[90, Section 5]. However, we follow a different approach here. Instead of using
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the sufficient SMP directly, we first find all admissible portfolios satisfying the

necessary conditions stated in Theorem 2.3.1. Combining that with the adjoint

equations, we then construct candidate optimal portfolio ū. Finally, an appli-

cation of Theorem 2.3.2 confirms that ū is indeed the optimal portfolio. This

approach is particularly useful when the conditions for sufficient SMP are not

satisfied, e.g. non-concave Hamiltonian.

Example 2.4.7. (Non-concave Hamiltonian) Let (Ω,F , {Ft}0≤t≤1,P) be a com-

plete probability space. Consider a one-dimensional Brownian motion W and

a continuous time finite state Markov chain {α(t)|t ∈ [0, 1]} with state space

I := {1, 2} and generator matrix Q := [qij]i,j=1,2. Assume q12 + q21 ≥ 2. Con-

sider the following Markovian regime-switching control system dx(t) = u(t)dW (t), t ∈ [0, 1]

x(0) = 0

with the control domain U = [0, 1] and the cost functional

J(u(·)) = E

[ ∫ 1

0

(
A(α(t))u(t) +B(α(t))u2(t) + C(α(t))x2(t)

)
dt+D(α(1))x2(1)

]
,

where functions A,B,C,D : I → R satisfy A(1) = −1

A(2) = 0
,

 B(1) = 0

B(2) = −1
2

,

 C(1) = 0

C(2) = 1
,

 D(1) = 1
2

D(2) = 1
.

To solve this problem, first we find potential optimal solutions using Theorem

2.3.1. Suppose (x̄(·), ū(·)) is an optimal pair. Then the corresponding adjoint

equation is  dp̄(t) = 2C(α(t))x̄(t)dt+ q̄(t)dW (t) + s̄(t) • dQ(t)

p̄(1) = −2D(α(1))x̄(1)
. (2.27)

To find a solution (p̄, q̄, s̄) to (2.27), we try a process p̄(t) = φ(t, α(t))x̄(t), where

φ(t, i), i = 1, 2 are deterministic functions satisfying the terminal condition
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φ(1, i) = −2D(i), i = 1, 2. Applying Ito’s formula

dp̄(t) =
2∑
i=1

X [α(t−) = i]

{
x̄(t)

(
φt(t, i) +

2∑
j=1

qij

(
φ(t, j)− φ(t, i)

))}
dt

+φ(t, α(t))ū(t)dW (t) +
∑
i 6=j

x̄(t) (φ(t, j)− φ(t, i)) dQij.

(2.28)

Comparing the coefficients of (2.27) and (2.28) leads to

2C(α(t))x̄(t) =
2∑
i=1

X [α(t−) = i]

{
x̄(t)

(
φt(t, i) +

2∑
j=1

qij(φ(t, j)− φ(t, i))

)}
(2.29)

q̄(t) =φ(t, α(t))ū(t) (2.30)

s̄ij(t) =x̄(t)(φ(t, j)− φ(t, i)) (2.31)

As (2.29) is a linear equation of x̄(t), we guess that the coefficient of x̄(t) vanishes

at optimality and obtain the following two equations −φt(t, 1)− q12(φ(t, 2)− φ(t, 1)) = 0,

2− φt(t, 2)− q21(φ(t, 1)− φ(t, 2)) = 0,
(2.32)

with terminal conditions

φ(1, 1) = −1 and φ(1, 2) = −2. (2.33)

Solving the system of ordinary differential equations (2.32) with terminal condi-

tions (2.33) gives
φ(t, 1) =

q12(q12 + q21 − 2)

(q12 + q21)2

(
e(q12+q21−2)(t−1) − 1

)
+

2q12

q12 + q21

(t− 1)− 1

φ(t, 2) =
q21(q12 + q21 − 2)

(q12 + q21)2

(
1− e(q12+q21−2)(t−1)

)
+

2q12

q12 + q21

(t− 1)− 2

Moreover, since q12 + q21 ≥ 2 and q21(q12+q21−2)
(q12+q21)2

< 1, we obtain that φ(t, i) <

−1, ∀t ∈ [0, 1), i ∈ I. Consider the Hamiltonian H(t, x, u, 1, p, q) = u+ qu

H(t, x, u, 2, p, q) = 1
2
u2 − x2 + uq.

(2.34)
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By Theorem 2.3.1, we have

0 ∈ ∂u(−H)(t, x̄(t), ū(t), α(t−), p̄(t), q̄(t)) +NU(ū(t)) ∀t ∈ [0, 1], P− a.s.

Consequently on any non-zero measurable set E ∈ S = Ω × [0, 1) such that

α(t−) = 1, we can only have three cases:

Case 1 : ū(t) = 0⇒ N[0,1](ū(t)) = (−∞, 0] and q̄(t) + 1 ≤ 0.

According to (2.30), φ(t, 1)ū(t) ≤ −1, ū(t) ≥ − 1
φ(t,1)

> 0, contradiction.

Case 2 : ū(t) = 1⇒ N[0,1](ū(t)) = [0,+∞) and q̄(t) + 1 ≥ 0.

According to (2.30), φ(t, 1)ū(t) ≥ −1, ū(t) ≤ − 1
φ(t,1)

< 1, contradiction.

Case 3 : 0 < ū(t) < 1⇒ N[0,1](ū(t)) = {0} and q̄(t) = −1.

According to (2.30), ū(t) = − 1
φ(t,1)

∈ (0, 1).

Hence we conclude that ū(t) = − 1
φ(t,1)

provided α(t−) = 1. Similarly on any

non-zero measurable set E ∈ S = Ω × [0, 1) such that α(t−) = 2, we can only

have three cases:

Case 1 : ū(t) = 1⇒ N[0,1](ū(t)) = [0,+∞) and q̄(t) + ū(t) ≥ 0.

According to (2.30), (φ(t, 2)+1)ū(t) ≥ 0, ū(t) ≤ 1
φ(t,2)+1

< 0, contradiction.

Case 2 : ū(t) ∈ (0, 1)⇒ N[0,1](ū(t)) = {0} and q̄(t) + ū(t) = 0.

According to (2.30), (φ(t, 2) + 1)ū(t) = 0, ū(t) = 0, contradiction.

Case 3 : ū(t) = 0⇒ N[0,1](ū(t)) = (−∞, 0] and q̄(t) + ū(t) ≤ 0.

According to (2.30), (φ(t, 2) + 1)ū(t) ≤ 0, ū(t) = 0.

Hence we must have ū(t) = 0 provided α(t−) = 2.

In conclusion, the potential optimal control can be written as

ū(t) = − 1

φ(t, 1)
X [α(t−) = 1]. (2.35)
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Let us now show that (x̄(·), ū(·)) is indeed an optimal pair. Notice that the

Hamiltonian (2.34) is not concave function of u, and therefore Theorem 2.3.2

cannot be applied. We have to use other methods to check the optimality of ū.

Given any admissible pair (x(·), u(·)), apply Ito’s formula on φ(t, α(t))x2(t) and

write it in integral form,

E
[
φ(1, α(1))x2(1)

]
= E

[ ∫ 1

0

x2(t)

(
φt(t, α(t))+

2∑
j=1

qij(φ(t, j)−φ(t, α(t)))

)
+φ(t, α(t))u2(t)dt

]
.

(2.36)

Substituting (2.36) into the cost functional and according to (2.29),

J(u(·)) = E

[ ∫ 1

0

(
A(α(t))u(t) +B(α(t))u2(t)− 1

2
φ(t, α(t))u2(t)

)
dt

]
= E

[ ∫
S1

(
−u(t)− 1

2
φ(t, 1)u2(t)

)
dt+

∫
S2

−1

2
(1 + φ(t, 2))u2(t)dt

]
= E

[ ∫
S1

(
−1

2
φ(t, 1)

(
u(t) +

1

φ(t, 1)

)2

+
1

2φ(t, 1)

)
dt+

∫
S2

−1

2
(1 + φ(t, 2))u2(t)dt

]
,

where S1 ≡ {t|t ∈ [0, 1] such that α(t−) = 1} and S2 ≡ {t|t ∈ [0, 1] such that α(t−) = 2} =

[0, 1]\S1. Since φ(t, 1) < −1 and φ(t, 2) < −1 ∀t ∈ [0, 1], the minimum value of

the cost functional is achieved at ū defined in (2.35).

2.5 Preliminary Results

In this section, we introduce some preliminary results, which will be useful in

the sequel. Hereafter, K represents a generic constant.

2.5.1 Clarke’s Generalized Gradient and Normal Cone

In this subsection we recall some basic concepts and properties in non-smooth

analysis and optimization, which are needed in the statement and proof of the

main results (Theorems 2.3.1 and 2.3.2). Clarke’s generalized gradient is first

introduced to the finite dimensional space in [14] and then extended to the
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infinite dimensional space in [15, 16] and [1]. Interested readers may refer to [17]

for a detailed and complete treatment of the topic.

Definition 2.5.1. (Generalized directional derivative, see definition in Chapter

3 of [17]) Let C be an open subset of a Banach space X, and let a function

f : C −→ R be given. We assume that f is Lipschitz on C. The generalized

directional derivative of f at x in the direction v, denoted f o(x; v), is given by

f o(x; v) = lim sup
y→Cx,λ↓0

f(y + λv)− f(y)

λ
.

Definition 2.5.2. (Clarke’s generalized gradient) Let X∗ denote the dual of X

and 〈·, ·〉 be the duality pairing between X and X∗. The generalized gradient of

f at x, denoted ∂f(x), is the set of all ζ in X∗ satisfying

f o(x; v) ≥ 〈v, ζ〉 for ∀v ∈ X.

Theorem 2.5.3. If f attains a local minimum or maximum at x, then 0 ∈ ∂f(x).

Theorem 2.5.3 is only valid in the case where C is open. When the function is

defined on a general non-empty subset of X, we need to introduce the so-called

distance function and the concept of Clarke’s tangent cone and normal cone.

Definition 2.5.4. (Distance function) Let X be a Banach space and C be a

non-empty subset of X. The distance function dC : X → R is defined as

dC(x) = inf{‖x− c‖ : c ∈ C}.

Theorem 2.5.5. The function dC satisfies the following global Lipschitz condi-

tion on X

|dC(x)− dC(y)| ≤ ‖x− y‖.

Definition 2.5.6. (Adjacent cone) Let C̄ be the closure of C and x ∈ C̄. The

adjacent cone to C at x, denoted as T bC(x), is defined by

T bC(x) := {v| lim
h→0+

dC(x+ hv)/h = 0}.
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Definition 2.5.7. (Tangent cone) Suppose x ∈ C. A vector v in X is a tangent

to C at x provided doC(x; v) = 0. The tangent cone to C at x, denoted as TC(x),

is the set of all tangents to C at x.

In addition, when the set C is convex, it can be proved that the adjacent and

tangent cones coincide, see [1, Proposition 4.2.1].

Theorem 2.5.8. Assume that C is convex. Then TC(x) = T bC(x).

Definition 2.5.9. (Normal cone) Let x ∈ C. The normal cone to C at x is

defined by the polarity with TC(x):

NC(x) = {ξ ∈ X∗ : 〈ξ, v〉 ≤ 0 for all v ∈ TC(x)}.

For example, take C = [0, 1], we have N[0,1](0) = (−∞, 0] and N[0,1](1) =

[0,+∞). The following necessary optimality condition is proved in [17, page 52

Corollary].

Theorem 2.5.10. Assume that f is Lipschitz near x and attains a minimum

over C at x. Then 0 ∈ ∂f(x) +NC(x).

2.5.2 Markovian Regime-Switching SDE and BSDE

In this subsection, we establish the existence and uniqueness theorem of solutions

to regime switching SDEs of the form (2.1). First, we give the definition of the

solution.

Definition 2.5.11. [60, Definition 3.11] An Rn valued stochastic process {x(t)}0≤t≤T

is called a solution of equation (2.1) if it has the following properties:

1. {x(t)} is continuous and Ft-adapted;

2. {b(t, x(t), u(t), α(t−))} ∈ L1
F(S;Rn) and {σ(t, x(t), u(t), α(t−)) ∈ L2

F(S;Rn×m)};
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3. for any t ∈ [0, T ], equation

x(t) = x0 +

∫ t

0

b(s, x(s), u(s), α(s−))ds+

∫ t

0

σ(t, x(s), u(s), α(s−))dW (s)

holds with probability 1.

A solution {x(t)} is said to be unique if any other solution {x̃(t)} is indistin-

guishable from {x(t)}, that is

P{x(t) = x̃(t) for all 0 ≤ t ≤ T} = 1

Using the same method as in [60, Chapter 3, Theorem 3.13], the existence

and uniqueness of solutions to regime-switching SDE of type (2.1) can be proved.

Theorem 2.5.12. Under assumption (A1), given control u ∈ L4(S;Rk), there

exists a unique solution x(t) to equation (2.1) and moreover,

E

(
sup

0≤t≤T
|x(t)|2

)
≤ K

(
1 + |x|2 +

∫ T

0

E|u(t)|2dt
)

(2.37)

for some constant K ≥ 0.

There has been extensive research in BSDE and Markov chain BSDE. Here

are some related recent papers on the topic. Cohen [18] studies the existence and

uniqueness of solution to Markov chain BSDEs and relates the solution to the

nonlinear expectation in [19], in the spirit of [68]. Tao-Wu [81] study the control

system driven by 1-dimensional Markov chain FBSDEs and derive the SMP when

the coefficients are smooth functions of all variables. Tao-Wu-Zhang [82] study a

system of SDEs and BSDEs driven by both Brownian motion and Markov chain

with interactions among different groups and with different intensities. Crepey

[22] gives a survey on SDEs and their applications, including BSDE, FBSDE

and related PDE and Partial Integral Differential Equation (PIDE), etc.

We now develop results for existence and uniqueness of adapted solutions to

regime switching BSDEs of type (2.5). Here we use the method of contraction
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mapping as in [89, Chapter 6, Section 3] and [69, Chapter 6, Section 2] with the

help of a martingale representation theorem for the joint filtration of a vector

Brownian motion and a finite state Markov chain. Here we introduce the Doléans

measure v[Qij ] on the measure space (Ω× [0, T ],P?):

v[Qij ][A] := E

∫ T

0

XA(ω, t)d[Qij](t),∀A ∈ P?,∀i, j ∈ I, i 6= j.

By G = H v[Q]-a.e. for Rd×d mappings G and H on the set Ω× [0, T ], we mean

that

Gij = Hij v[Qij ]-a.e. ∀i, j ∈ I, i 6= j

and Gii = Hii (P⊗ Leb) -a.e. ∀i ∈ I.

We start by defining the following spaces for stochastic processes.

S2([0, T ]) :=

{
Y : Ω× [0, T ]→ Rn|Y is Ft progressively measurable

and E

(
sup

0≤t≤T
|Y (t)|2

)
<∞

}
,

L2 (W, [0, T ]) :=

{
Λ : Ω× [0, T ]→ Rn×m|Λ ∈ P? and E

∫ T

0

‖Λ(t)‖2dt <∞
}
,

L2 (Q, [0, T ]) :=

{
Γ =

{(
Γ

(1)
ij

)d
i,j=1

, · · · ,
(

Γ
(n)
ij

)d
i,j=1

}∣∣∣∣Γ(l)
ii = 0 P⊗ Leb− a.e.∀i ∈ I,

Γ
(l)
ij ∈ P? and

n∑
l=1

d∑
i,j=1

E

∫ T

0

‖Γ(l)
ij (t)‖2d [Qij] (t) <∞ ∀i, j ∈ I, i 6= j

}
.

It can be proved that L2(W, [0, T ]) and L2(Q, [0, T ]) are Hilbert spaces (see [25,

Lemma A.2.5]). Next we present a martingale representation theorem for square

integrable martingales with joint filtration generated by a Brownian motion and

a finite state Markov chain. The proof can be found in [25, Theorem B.4.6] and

[27, Proposition 3.9].

Theorem 2.5.13. Suppose the Rn-valued process {Y (t), t ∈ [0, T ]} is a square-

integrable {Ft}-martingale and null at the origin. Then there exists processes
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Λ ∈ L2(W, [0, T ]) and Γ ∈ L2(Q, [0, T ]) such that Y has the stochastic integral

representation

Y (t) = Y (0) +
m∑
j=1

∫ t

0

Λj(s)dW
j(s) +

∫ t

0

Γ(s) • dQ(s) a.s. ∀t ∈ [0, T ] (2.38)

with the square-bracket quadratic variation process of Y given by

[Y ] (t) :=
n∑
i=1

m∑
j=1

∫ t

0

Λ2
ij(s)ds+

n∑
l=1

d∑
i,j=1

∫ t

0

(
Γ

(l)
ij (s)

)2

d [Qij] (t) a.s. ∀t ∈ [0, T ].

Moreover, Λ and Γ are unique in the sense that if Λ̃ ∈ L2(W, [0, T ]) and Γ̃ ∈

L2(Q, [0, T ]) are such that (2.38) holds, then Λ = Λ̃ P ⊗ Leb − a.e. and Γ =

Γ̃ v[Q] − a.e.

Suppose we are given a pair (ξ, f) called the terminal and generator satisfying

the following conditions:

(a) E|ξ|2 <∞,

(b) f : Ω× [0, T ]× Rn × Rn×m → Rn such that

(i) f(t, y, z) is Ft-progressively measurable for all y, z.

(ii) f(t, 0, 0) ∈ L2
F(S;Rn),

(iii) f satisfies uniform Lipschitz condition in (y, z), i.e ∃Cf > 0 such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ Cf (|y1 − y2|+ |z1 − z2|)

∀y1, y2 ∈ Rn, z1, z2 ∈ Rn×m P⊗ Leb a.e.

Consider the regime switching BSDE

−dY (t) = f(t, Y (t), Z(t))dt− Z(t)dW (t)− S(t) • dQ(t), Y (T ) = ξ. (2.39)

Definition 2.5.14. A solution to the regime switching BSDE (2.39) is a set

(Y, Z, S) ∈ S2([0, T ])× L2(W, [0, T ])× L2(Q, [0, T ]) satisfying

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s)))ds−
∫ T

t

Z(s)dW (s)−
∫ T

t

S(s) • dQ(t).
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Now we prove the existence and uniqueness of a solution to the regime switch-

ing BSDE of type (2.39).

Theorem 2.5.15. Given a pair (ξ, f) satisfying (a) and (b), there exists a unique

solution (Y, Z, S) to the regime switching BSDE (2.39).

The proof follows a contraction mapping argument similar to that in [69,

Chapter 6, Section 2]. For completeness, we give details in Appendix.

2.5.3 A Moment Estimation

In this subsection, we prove a moment estimation result. A simplified version of

the moment estimate can be found in [89, Chapter 3 Lemma 4.2 ].

Lemma 2.5.16. Let Y (t) ∈ L2
F(S;Rn) be the solution of the following regime

switching SDE
dY (t) = [A(t)Y (t) + β(t)]dt+

m∑
j=1

[
Bj(t)Y (t) + γj(t)

]
dW j(t)

Y (0) = y0

(2.40)

where A,Bj : Ω× [0, T ]→ Rn×n and β, γj : Ω× [0, T ]→ Rn are {Ft}t≥0-adapted

and 
|A(t)|, |Bj(t)| ≤ K a.e.t ∈ [0, T ],P-a.s.∫ T

0

E|β(s)|2kds+

∫ T

0

E|γj(s)|2kds <∞ for some k ≥ 1.
(2.41)

Then

sup
t∈[0,T ]

E|Y (t)|2k ≤ K

{
E|y0|2k +

∫ T

0

E|β(s)|2kds+
m∑
j=1

∫ T

0

E|γj(s)|2kds

}
(2.42)

Proof. For notation simplicity, we prove only the case m = n = 1, leaving the

case m,n > 1 to the interested reader. We first assume that β, γ are bounded.
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Let ε > 0 and define

〈Y 〉ε ,
√
|Y |2 + ε2,∀Y ∈ L2

F(S;Rn). (2.43)

Note that for any ε > 0, the map Y → 〈Y 〉ε is smooth and 〈Y 〉ε → |Y | as ε→ 0.

Applying Ito’s formula to 〈Y (t)〉2kε , we have

d〈Y (t)〉2kε = 2k〈Y (t)〉2k−1
ε

|Y (t)|
〈Y (t)〉ε

{
[A(t)Y (t) + β(t)] dt+ [B(t)Y (t) + γ(t)] dW (t)

}
+

[
k(2k − 1)〈Y (t)〉2k−2

ε

|Y (t)|2

〈Y (t)〉2ε
+ k〈Y (t)〉2k−1

ε

ε2

〈Y (t)〉3ε

]
[B(t)Y (t) + γ(t)]2 dt.

Writing it in integral form and taking expectation. Since 〈Y (t)〉ε > |Y (t)| and

2k − 1 ≥ 1, we obtain

E〈Y (t)〉2kε ≤E〈Y (0)〉2kε + 2kE

∫ t

0

〈Y (s)〉2k−1
ε {|A(s)|〈Y (s)〉ε + |β(s)|} ds

+ k(2k − 1)E

∫ t

0

〈Y (s)〉2k−2
ε [|B(s)|〈Y (s)〉ε + |γ(s)|]2 ds

≤E〈Y (0)〉2kε + KE

∫ t

0

{
〈Y (s)〉2kε + |β(s)|〈Y (s)〉2k−1

ε + |γ(s)|2〈Y (s)〉2k−2
ε

}
ds,

where K is a constant independent of t. Applying Young’s inequality, we get

E〈Y (t)〉2kε ≤E〈Y (0)〉2kε +KE

∫ t

0

{
〈Y (s)〉2kε + |β(s)|2k + |γ(s)|2k

}
ds.

Finally, Gronwall’s inequality yields

sup
t∈[0,T ]

E〈Y (t)〉2kε ≤ K

{
E〈Y (0)〉2kε + E

∫ T

0

[
|β(s)|2k + |γ(s)|2k

]
ds

}
, (2.44)

for some constant K. Letting ε→ 0 in (2.43), then (2.44) becomes (2.42).

2.5.4 Lipschitz Property

Lemma 2.5.17. Let u1, u2 ∈ L4(S;Rk) and x1, x2 be the associated state pro-

cesses satisfying (2.1). Then we have the following inequality:

sup
t∈[0,T ]

E|x1(t)− x2(t)|4 ≤ K‖u1 − u2‖4
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Proof. Let ξ(t) , x1(t)− x2(t). Then we have

dξ(t) = [b(t, x1(t), u1(t), α(t−))− b(t, x2(t), u2(t), α(t−))] dt

+ [σ(t, x1(t), u1(t), α(t−))− σ(t, x2(t), u2(t), α(t−))] dW (t)

For ϕ = b and σ, let

ϕ̃x(t) =

∫ 1

0

ϕx (t, x2(t) + θ(x1(t)− x2(t)), u1(t), α(t−)) dθ. (2.45)

Substitute (2.45), we obtain

dξ(t) =
[
b̃x(t)ξ(t) + b(t, x2(t), u1(t), α(t−))− b(t, x2(t), u2(t), α(t−))

]
dt

+ [σ̃x(t)ξ(t) + σ(t, x2(t), u1(t), α(t−))− σ(t, x2(t), u2(t), α(t−))] dW (t).

By Lemma 2.5.16, we obtain

sup
t∈[0,T ]

E|ξ(t)|4 ≤K
{∫ T

0

E|b(t, x2(t), u2(t), α(t−))− b(t, x2(t), u1(t), α(t−))|4dt

+

∫ T

0

E|σ(t, x2(t), u2(t), α(t−))− σ(t, x2(t), u1(t), α(t−))|4dt

≤K
{∫ T

0

E|u1(t)− u2(t)|4dt
}

Lemma 2.5.18. The cost functional J : L4(S;Rk)→ R is locally Lipschitz, i.e.

for all û ∈ L4(S;Rk), there exists a small ball BM
û with radius M > 0 containing

û on which, we have

|J(u1)− J(u2)| ≤ KM,û‖u1 − u2‖, (2.46)

for ∀u1, u2 ∈ BM
û , where KM,û is a constant dependent on M and û.

Proof. Given û ∈ L4(S;Rk) and M > 0, define

BM
û ,

{
u ∈ L4(S;Rk) : ‖u− û‖ < M

}
.
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For any u1, u2 ∈ BM
û with associated state processes x1, x2, according to (A4),

we have

E|h(x1(T ), α(T ))− h(x2(T ), α(T ))|

≤ E

∫ 1

0

|〈hx(x1(T ) + θ(x2(T )− x1(T )), α(T )), x2(T )− x1(T )〉|dθ

≤ K
{
E
(
1 + |x1(T )|2 + |x2(T )|2

)} 1
2
{
E|x2(T )− x1(T )|2

} 1
2

≤ K
{
E(1 + |x̂(T )|2 + |x̂(T )− x1(T )|2 + |x̂(T )− x2(T )|2)

} 1
2
{
E|x2(T )− x1(T )|2

} 1
2

by Hölder’s inequality and Minkowski’s inequality. According to Theorem 2.5.12,

Jensen’s inequality and Lemma 2.5.17,

E|h(x1(T ), α(T ))− h(x2(T ), α(T ))| ≤KM

{
1 +

(∫ T

0

E|û(t)|2dt
) 1

2

}{
E|x2(T )− x1(T )|2

} 1
2

≤KM

{
1 +

(∫ T

0

E|û(t)|4dt
) 1

4

}{
E|x2(T )− x1(T )|4

} 1
4

≤KM,û‖u1 − u2‖.

On the other hand,

E

∫ T

0

|f(t, x1(t), u1(t), α(t))− f(t, x2(t), u2(t), α(t))|dt

≤E
∫ T

0

(|f(t, x1(t), u1(t), α(t))− f(t, x2(t), u1(t), α(t))|

+ |f(t, x2(t), u1(t), α(t))− f(t, x2(t), u2(t), α(t))|) dt.

Following similar arguments, we have

E

∫ T

0

|f(t, x1(t), u1(t), α(t))− f(t, x2(t), u1(t), α(t))|dt ≤ KM,û‖u1 − u2‖.
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For the second term, by (A3) we have

E

∫ T

0

|f(t, x2(t), u1(t), α(t))− f(t, x2(t), u2(t), α(t))|dt

≤ E

∫ T

0

{K1 +K2(|x2(t)|+ |u1(t)|+ |u2(t)|)} |u1(t)− u2(t)|dt

≤ K

{
E

∫ T

0

(1 + |x2(t)|2 + |u1(t)|2 + |u2(t)|2)dt

} 1
2

‖u1 − u2‖

≤ KM

(
1 +

{
E

∫ T

0

|û(t)|4dt
} 1

4

)
‖u1 − u2‖

≤ KM,û‖u1 − u2‖,

and (2.46) follows by combining the above inequalities.

2.5.5 Taylor Expansions

Let (x, u) be an admissible pair. Let v ∈  L4(S;Rk) and ε > 0. Define uε(t) ,

u(t) + εv(t) for all t ∈ [0, T ]. Let (xε, uε) satisfy the following stochastic control

system: dxε(t) = b(t, xε(t), uε(t), α(t−))dt+ σ(t, xε(t), uε(t), α(t−))dW (t), t ∈ [0, T ],

xε(0) = x0 ∈ RL, α(0) = i0 ∈ I.

Next, for ϕ = b, σj(1 ≤ j ≤M) and f , we define ϕx(t) , ϕx(t, x(t), u(t), α(t−)),

δϕ(t) , ϕ(t, x(t), uε(t), α(t−))− ϕ(t, x(t), u(t), α(t−)).

Let yε be the solution of the following regime-switching SDE:
dyε(t) = {bx(t)yε(t) + δb(t)} dt+

m∑
j=1

{σjx(t)yε(t) + δσj(t)} dW j(t), t ∈ [0, T ],

yε(0) = 0, α(0) = i0 ∈ I.
(2.47)

Remark 2.5.19. The variation in our proof is different from the so-called spike

variation technique in the proof of Peng’s maximum principle in [67] and [89].
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In their proof, where uε(t) = u(t) + 1[τ,τ+ε]v(t), one first perturbs an optimal

control on a small set of size ε and then let ε → 0. Whereas, in our proof we

perturbs an optimal control over the whole space. The reason behind this is that

in the definition of Clarke’s generalized directional derivative, v(t) represents a

directional vector in L4(S;Rk) and must be fixed. One perturbs the control

through multiplication of a scalar ε and letting ε→ 0.

The following lemma gives the Taylor expansion result of the state process

and cost functional.

Lemma 2.5.20. Let assumptions (A1)-(A4) hold. Then, we have

sup
t∈[0,T ]

E |xε(t)− x(t)|2 = O(ε2), (2.48)

sup
t∈[0,T ]

E |yε(t)|2 = O(ε2), (2.49)

sup
t∈[0,T ]

E |xε(t)− x(t)− yε(t)|2 = o(ε2). (2.50)

Moreover, the following expansion holds for the cost functional:

J(uε) = J(u) + E〈hx(x(T ), α(T )), yε(t)〉+ E

∫ T

0

{〈fx(t), yε(t)〉+ δf(t)} dt+ o(ε).

(2.51)

Proof. For simplicity, we carry out the proof only for the case n = m = 1.

Proof of (2.48). Let ξε(t) , xε(t)− x(t). The we have dξε(t) =
{
b̃εx(t)ξ

ε(t) + δb(t)
}
dt+ {σ̃εx(t)ξε(t) + δσ(t)} dW (t)

ξ(0) = 0, α(0) = i0.
(2.52)

where for φ = b and σ,

φ̃εx(t) ,
∫ 1

0

φx(t, x(t) + θ(xε(t)− x(t)), uε(t), α(t−))dθ. (2.53)
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By Lemma 2.5.16, since b̃εx(t), and σ̃εx(t) are bounded according to assumption

(A1), we obtain

sup
t∈[0,T ]

E|ξε(t)|2 ≤ K

∫ T

0

E

{
|δb(s)|2 + |δσ(s)|2

}
ds

≤ Kε2
∫ T

0

E|v(s)|2ds

≤ Kε2.

This proves (2.48).

Proof of (2.49). Similarly, bx(t) and σx(t) are bounded according to assumption

(A1). Applying Lemma 2.5.16 to (2.47), we obtain

sup
t∈[0,T ]

E|yε(t)|2 ≤ K

∫ T

0

E

{
|δb(s)|2 + |δσ(s)|2

}
ds ≤ Kε2.

This proves (2.49).

Proof of (2.50). Let ζε(t) , xε(t)− x(t)− yε(t) ≡ ξε(t)− yε(t). Then, by (2.52)

and (2.47) we have

dζε(t) =dξε(t)− dyε(t)

=
{
b̃εx(t)ξ

ε(t)− bx(t)yε(t)
}
dt+ {σ̃εx(t)ξε(t)− σx(t)yε(t)} dW (t)

=
{
b̃εx(t)ζ

ε(t) +
[
b̃εx(t)− bx(t)

]
yε(t)

}
dt+ {σ̃εx(t)ζε(t) + [σ̃εx(t)− σx(t)] yε(t)} dW (t)

Since b̃εx(t) and σ̃εx(t) are bounded by assumption (A1), applying Lemma 2.5.16

we obtain

supt∈[0,T ] E|ζε(t)|2 ≤ K

∫ T

0

E

{ ∣∣∣[b̃εx(t)− bx(t)] yε(t)∣∣∣2 + |[σ̃εx(t)− σx(t)] yε(t)|
2

}
dt.

(2.54)

Recall that ω̄ appearing in (A4) is a modulus of continuity. Thus for any ρ > 0,

there exists a constant Kρ > 0 such that

ω̄(r) ≤ ρ+ rKρ, ∀r ≥ 0. (2.55)
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By Hölder’s inequality, (2.53), (2.49), (2.48) and (2.55), we have∫ T

0

E
∣∣∣[b̃εx(t)− bx(t)] yε(t)∣∣∣2 dt

≤
∫ T

0

(
E
∣∣∣b̃εx(t)− bx(t)∣∣∣4) 1

2 (
E |yε(t)|4

) 1
2 dt

≤ K

∫ T

0

{
E

∫ 1

0

|bx (t, x(t) + θξε(t), uε(t), α(t−))− bx(t)|4 dθ
} 1

2

ε2dt

≤ K

∫ T

0

{
E
(
ξε(t)4 + ω̄(εv(t))4

)} 1
2 ε2dt

≤ K

∫ T

0

{
ε4 + E[ρ+Kρε|v(t)|]4

} 1
2 dtε2.

Hence the first term in (2.54) is o(ε2). Similarly the second and third terms are

also o(ε2), which gives (2.50).

Proof of (2.51). By definition of the cost functional (2.2), we have

J(uε)− J(u)

= E {h(xε(T ), α(T ))− h(x(T ), α(T ))}

+E

∫ T

0

{f(t, xε(t), uε(t), α(t))− f(t, x(t), u(t), α(t))} dt

For the first term on the right side of (3.22) we have

E {h(xε(T ), α(T ))− h(x(T ), α(T ))}

= E

∫ 1

0

〈hx(x(T ) + θξε(T ), α(T )), ξε(T )〉dθ

= E〈hx(x(T ), α(T )), yε(T )〉+ E〈hx(x(T ), α(T )), ζε(T )〉

+ E

∫ 1

0

〈hx(x(T ) + θξε(T ), α(T ))− hx(x(T ), α(T )), ξε(T )〉dθ.

Then, by (2.48), (2.50), (A4) and applying Hölder’s inequality, we have

E {h(xε(T ), α(T ))− h(x(T ), α(T ))} = E〈hx(x(T ), α(T )), yε(T )〉+ o(ε). (2.56)
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For the second term on the right side of (3.22) we have

E

∫ T

0

{f(t, xε(t), uε(t), α(t))− f(t, x(t), u(t), α(t))} dt

=E

∫ T

0

{∫ 1

0

〈fx(t, x(t) + θξε(t), uε(t), α(t)), ξε(t)〉dθ
}

+ {f(t, x(t), uε(t), α(t))− f(t, x(t), u(t), α(t))} dt

=E

∫ T

0

{〈fx(t), yε(t)〉+ δf(t)}

+

{∫ 1

0

〈fx(t, x(t) + θξε(t), uε(t), α(t))− fx(t), yε(t)〉dθ
}

+

{∫ 1

0

〈fx(t, x(t) + θξε(t), uε(t), α(t)), ζε(t)〉dθ
}
dt

Then, using (A4) and by a similar argument as in the proof of (2.50), we have

E

∫ T

0

{f(t, xε(t), uε(t), α(t))− f(t, x(t), u(t), α(t))} dt

= E

∫ T

0

{〈fx(t), yε(t)〉+ δf(t)}+ o(ε).

(2.57)

(2.51) follows from (2.56) and (2.57).

2.5.6 Duality Analysis

Lemma 2.5.21. Let assumptions (A1)-(A4) hold. Let yε be the solution of

(2.47) and (p, q, s) be the adapted solution of (2.5). Then

E〈p(T ), yε(T )〉 = E

∫ T

0

{
〈p(t−), δb(t)〉+ 〈fx(t), yε(t)〉+ tr (q(t)ᵀδσ(t))

}
dt

(2.58)

Proof. Applying Ito’s lemma and taking expectation immediately lead to (2.58).

Now we are able to give the following lemma, which is of great importance.
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Lemma 2.5.22. Let assumptions (A1)-(A4) hold. For any ε > 0 and v ∈

L4(S;RK), define

uε(t) , u(t) + εv(t) for ∀t ∈ [0, T ].

Then we have

J(uε)− J(u)

= E

∫ T

0

(−H(t, x(t), uε(t), α(t−), p(t−), q(t)))− (−H(t, x(t), u(t), α(t−), p(t−), q(t)))dt+ o(ε)

Proof. According to Lemma 2.5.20, we have

J(uε)− J(u)

= E〈hx(x(T ), α(T )), yε(T )〉+ E

∫ T

0

{〈fx(t), yε(t)〉+ δf(t)} dt+ o(ε)

= E〈−p(T ), yε(T )〉+ E

∫ T

0

{〈fx(t), yε(t)〉+ δf(t)} dt+ o(ε).

Applying (2.58), we obtain

J(uε)− J(u) = E

∫ T

0

−
{
〈p(t−), δb(t)〉+ tr (q(t)ᵀδσ(t))− δf(t)

}
dt+ o(ε)

= E

∫ T

0

(−H(t, x(t), uε(t), α(t−), p(t−), q(t)))− (−H(t, x(t), u(t), α(t−), p(t−), q(t)))dt+ o(ε)

2.6 Proof of the Main Theorems

2.6.1 Proof of Theorem 2.3.1

We follow the technique developed in [15]. Given an optimal 5-tuple (x̄, ū, p̄, q̄, s̄),

define a functional Hū : L4(S;Rk)→ R as following

Hū(u) = E

∫ T

0

−H(t, x̄(t), u(t), α(t−), p̄(t), q̄(t))dt.

By a similar argument as in Lemma 2.5.18, it can be proved that the functional

Hū is also locally Lipschitz on L4(S;Rk). Next, we define Clarke’s generalized

gradient of the functionals J and Hū at ū and explore their properties.
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Definition 2.6.1. (This is the same definition as in the previous chapter but

applied to J) Let L
4
3 (S;Rk) denote the dual space of L4(S;Rk) and 〈·, ·〉 denote

the duality pairing between L4(S;Rk) and L
4
3 (S;Rk). Given an admissible control

ū ∈ L4(S;Rk), Clarke’s generalized gradient of J at ū, denoted by ∂J(ū), is the

set of all ζ ∈ L 4
3 (S;Rk) satisfying

Jo(ū; v) = lim sup
u→ū,ε→0

J(u+ εv)− J(u)

ε
≥ 〈v, ζ〉, (2.59)

for all v ∈ L4(S;Rk). Clarke’s generalized gradient of Hū at ū is defined simi-

larly.

Then, according to Lemma 2.5.22, given u ∈ L4(S;Rk), for any ε > 0 and

v ∈ L4(S;Rk) such that u+ εv ∈ L4(S;Rk), we have

J(u+ εv)− J(u) = Hū(u+ εv)−Hū(u) + o(ε).

Hence, we have

Jo(ū; v) = (Hū)o(ū; v), for ∀v ∈ L4(S;Rk).

Therefore, by Definition 2.6.1, we conclude

∂J(ū) = ∂Hū(ū).

Since ū is an optimal control on Uad, according to Theorem 2.5.10,

0 ∈ ∂J(ū) +NUad(ū) = ∂Hū(ū) +NUad(ū). (2.60)

To characterize Clarke’s tangent cone in the L4(S;Rk) space, we recall [1,

Theorem 8.5.1]. Let (Ω, S, µ) be a complete σ-finite measure space and X be a

separable Banach space. Consider a measurable set-valued map K : Ω  X.

We associate with it the subset K ⊂ Lp(Ω;X,µ) of selections defined by

K := {x ∈ Lp(Ω;X,µ)| for almost all ω ∈ Ω, x(ω) ∈ K(ω)}.
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Theorem 2.6.2. Assume that the set-valued map K is measurable and has closed

images. Then for every x ∈ K, the set valued map ω → T bK(ω)(x(ω)) is measur-

able. Furthermore

{v ∈ Lp(Ω;X,µ)| for almost all ω, v(ω) ∈ T bK(ω)(x(ω))} ⊂ T bK(x).

Returning to our proof, since U is convex, by definition, Uad is also a convex

subset of L4(S;Rk). Therefore, by Theorem 2.5.8 and Theorem 2.6.2, we obtain

TUad(ū) ⊃ {v ∈ L4(S;Rk)|v(ω, t) ∈ TU(ū(ω, t)) µ-almost surely}. (2.61)

The optimality condition (2.60) together with (2.61) implies that ∃ζ ∈ L 4
3 (S;Rk)

such that
E

∫ T

0

〈ζ(t), v(t)〉dt ≤ 0 for ∀v ∈ L4(S;Rk) such that

v(t) ∈ TU(ū(t)) for every t ∈ [0, T ],P-almost surely

(Hū)o(ū; v) + E

∫ T

0

〈ζ(t), v(t)〉dt ≥ 0 for ∀v ∈ L4(S;Rk).

(2.62)

Now, we recall a version of the measurable selection theorem in [1].

Definition 2.6.3. [1, Definition 8.1.2] Let (Ω,A) be a measurable space and X

be a complete separable metric space. Consider a set-valued map F : Ω X. A

measurable map f : Ω 7→ X satisfying

∀ω ∈ Ω, f(ω) ∈ F (ω)

is called a measurable selection of F .

Theorem 2.6.4. [1, Theorem 8.1.3] Let X be a complete separable metric space,

(Ω,A) a measurable space, F a measurable set-valued map from Ω to closed non-

empty subsets of X. Then there exists a measurable selection of F .
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Return to our problem. Fix u ∈ Uad and (ω, t) ∈ S. Let Q+ denote the set of

all strictly positive rationals. Following the argument in [1, Page 325] , we have

TU(u(ω, t)) = T bU(u(ω, t)) =
⋂
n>0

cl

 ⋃
α∈Q+

⋂
h∈[0,α]∩Q+

U − u(ω, t)

h
+

1

n
B

 ,

where B denotes the unit ball centred at 0. By [1, Theorem 8.2.4], we conclude

that the set-valued function TU(ū) is measurable.

For the first inequality in (2.62), let M > 0 and define B̄M , {v ∈ Rk : ‖v‖ ≤

M}. For any positive integer n, define a set-valued function ΠM
n as follows

ΠM
n (ω, t) =


{0}, if 〈ζ(ω, t), v〉 < 1

n
, ∀v ∈ B̄M ∩ TU(ū(ω, t))

{v ∈ B̄M ∩ TU(ū(ω, t)) : 〈ζ(ω, t), v〉 ≥ 1

n
}, otherwise.

The map (ω, t, v)→ 〈ζ(ω, t), v〉 is continuous in v. Moreover, since Rk is sep-

arable, the map can be expressed as the upper limit of a countable family of mea-

surable functions and therefore is measurable. Therefore ΠM
n is measurable since

countable intersection of measurable set-valued functions is still measurable.

Hence, by Theorem 2.6.4, ΠM
n admits a measurable selection vMn ∈ L4(S;Rk).

Note that (2.62) implies that the set

{(ω, t) : ΠM
n (ω, t) 6= {0}}

must have µ measure 0. Hence, we conclude that there exists a set, denoted as

SMn , where

SMn = {(ω, t) : ΠM
n (ω, t) = {0}}

and µ(SMn ) = 1. Consequently, we have

〈ζ(ω, t), v〉 < 1

n
∀v ∈ B̄M ∩ TU(ū(ω, t)) on SMn . (2.63)

Define SM =
⋂∞
n=1 S

M
n with µ(SM) = 1 since µ(SMn ) = 1 ∀n ∈ N. Moreover,

since (2.63) holds for all n, we have

〈ζ(ω, t), v〉 ≤ 0 ∀v ∈ B̄M ∩ TU(ū(ω, t)) on SM . (2.64)
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Since (2.64) holds for arbitrary M , we obtain that

〈ζ(ω, t), v〉 ≤ 0 for ∀v ∈ TU(ū(ω, t)) µ-almost surely. (2.65)

Next, we consider the second inequality in (2.62). Define the partial gener-

alized directional derivative of the Hamiltonian H at ū(t) in the direction v(t)

as

−Ho
u(ū(t); v(t)) = lim sup

u→ū,ε→0

1

ε

{
−H(t, x̄(t), u(t) + εv(t), α(t−), p̄(t), q̄(t), s(t))

+H(t, x̄(t), u(t), α(t−), p̄(t), q̄(t), s(t))

}
.

Using Fatou’s Lemma on the second inequality in (2.62), we have

E

{∫ T

0

−Ho
u(ū(t); v(t)) + 〈ζ(t), v(t)〉dt

}
≥ (Hū)o(ū; v) + E

∫ T

0

〈ζ(t), v(t)〉dt ≥ 0

(2.66)

Let M > 0 and define B̄M , {v ∈ Rk : ‖v‖ ≤ M}. For any n ∈ N, define a

set-valued function ΓMn as follows

ΓMn (ω, t) =


{0}, if −Ho

u(ū(ω, t); v) + 〈ζ(ω, t), v〉 > − 1

n
∀v ∈ B̄M

{v ∈ B̄M : −Ho
u(ū(ω, t); v) + 〈ζ(ω, t), v〉 ≤ − 1

n
}, otherwise.

Using a similar argument as above, with the help of Theorem 2.6.4 and (2.66),

we can show that the set {(ω, t) : ΓMn (ω, t) 6= {0}} must have µ measure 0, which

implies that

−Ho
u(ū(ω, t); v)) + 〈ζ(ω, t), v〉 ≥ 0 µ-almost surely. (2.67)

Combining (2.65) and (2.67), we conclude

0 ∈ ∂u(−H)(t, x̄(t), ū(t), α(t−), p̄(t), q̄(t)) +NU(ū(t)), a.e.t ∈ [0, T ], P-a.s.
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2.6.2 Proof of Theorem 2.3.2

Given admissible pair (x, u), define

H(t, x(t), u(t)) , H(t, x(t), u(t), α(t−), p̄(t), q̄(t)) for ∀t ∈ [0, T ], P-a.s.

Under the convexity condition, Clarke’s generalized gradient and normal cone

coincide with the subdifferential and normal cone in the sense of convex analysis.

Moreover, combining (2.6) and the concavity of H(t, x̄(t), ·) for all t ∈ [0, T ] a.s,

we conclude that

H(t, x̄(t), ū(t)) = max
u∈U

H(t, x̄(t), u), a.e. t ∈ [0, T ], P-a.s.

Define ξ(t) , x(t)− x̄(t) satisfying
dξ(t) = {b(t, x(t), u(t), α(t−))− b(t, x̄(t), ū(t), α(t−))} dt

+
m∑
j=1

{σj(t, x(t), u(t), α(t−))− σj(t, x̄(t), ū(t), α(t−))} dW j(t), t ∈ [0, T ],

ξ(0) = 0, α(0) = i0.

Following a standard separating hyperplane argument in convex analysis (see

[72, Chapter 5]), we obtain∫ T

0

{H(t, x(t), u(t))−H(t, x̄(t), ū(t))} ≤
∫ T

0

〈Hx(t, x̄(t), ū(t)), ξ(t)〉dt (2.68)

for any admissible pair (x, u). Detailed proof of (2.68) can be found in [32].

Applying Ito’s formula to 〈p̄(t), ξ(t)〉, noting the convexity of h, the inequality
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(2.68) and the definition of the Hamilitonian (2.4), we have

E{h(x(T ), α(T ))− h(x̄(T ), α(T ))}

≥E〈hx(x̄(T ), α(T )), ξ(T 〉)〉

=− E〈p̄(T ), ξ(T )〉

=E

∫ T

0

{
〈Hx(t, x̄(t), ū(t)), ξ(t)〉

− 〈p̄(t), b(t, x(t), u(t), α(t−))− b(t, x̄(t), ū(t), α(t−))〉

−
m∑
j=1

〈q̄j(t), σj(t, x(t), u(t), α(t−))− σj(t, x̄(t), ū(t), α(t−))〉
}
dt

≥− E
∫ T

0

{f(t, x(t), u(t), α(t−))− f(t, x̄(t), ū(t), α(t−))}dt.

Therefore J(ū) ≤ J(u) for all u ∈ Uad.

2.7 Conclusion

We have proved in the chapter a weak version of the necessary and sufficient

stochastic maximum principle in a regime-switching diffusion model. Instead

of insisting on the maximum condition of the Hamiltonian, we showed that 0

belongs to the sum of Clarke’s generalized gradient of −H and Clarke’s normal

cone at the optimal control ū, which also removes the requirement of the dif-

ferentiability of the functions in the control variable. Under certain concavity

conditions on the Hamiltonian, the necessary condition becomes sufficient. The

theorem does not involve any second order terms, hence the second order differ-

entiability of the functions in the state variable is not required. Moreover, the

absence of the second order adjoint equation considerably simplifies the SMP.

Further research on this topic includes the extension of the weak SMP to more

general stochastic control systems such as non-convex control constraints and

locally Lipschitz coefficients. We are currently working on these problems.
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Chapter 3

Dynamic Convex Duality in

Constrained Quadratic Risk

Minimization

3.1 Introduction

In this chapter we study a stochastic control problem arising from mathematical

finance. The goal is to minimize a convex cost function that is quadratic in both

the wealth process and portfolio strategy in a continuous time complete market

with random market parameters and portfolio constraints. Problems of this kind

arise naturally in financial applications. We assume that the portfolio must take

value in a given closed convex set which is general enough to model short selling,

borrowing, and other trading restrictions, see Karatzas-Shreve [47].

There are vast literatures on stochastic linear quadratic (SLQ) optimal con-

trol, see Yong-Zhou [89] and references therein. Majority of the existing results

are for unconstrained problems. Using the stochastic maximum principle, one

can solve the SLQ problem by deriving the optimal control as a linear feed-
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back control of the state and proving the existence and uniqueness of a solution

to the resulting stochastic Riccati equation (SRE). When there are no control

constraints, the feedback control constructed from the solution of the SRE is

automatically admissible, see Zhou-Lim [94] for an example of this method to

problems with random coefficients but no portfolio constraints. When there are

control constraints, the optimal control is no longer a simple linear feedback

control of the state and the SRE method becomes much more difficult and sub-

tle. Hu-Zhou [41] shows the solvability of an extended SRE for constrained SLQ

problems with random coefficients.

For convex SLQ problems, it is also natural to use the convex duality method

that has been extensively applied to solve utility maximization problems in math-

ematical finance, see Kramkov-Schachermayer [48, 49] and reference therein.

When there are no control constraints and the filtration is generated by driv-

ing Brownian motions, one may first convert the original dynamic optimiza-

tion problem into an equivalent static one, then formulate and solve the static

dual problem, and use the dual relation and the martingale property to find

the optimal state process for the original problem, finally use the martingale

representation theorem to find a replicating portfolio which is the optimal con-

trol process. When there are control constraints, the duality method becomes

much more complicated. Karatzas-Shreve [47] introduces and solves a family

of auxiliary unconstrained problems and shows one of them solves the original

constrained problem. Labbé-Heunis [54] applies the convex duality approach, in-

spired by [9, 73], to solve a mean-variance problem with both random coefficients

and portfolio constraints and shows the existence of an optimal solution to the

dual problem and constructs the optimal wealth process with the optimal dual

solution and the optimal portfolio process with the martingale representation

theorem.

Øksendal-Sulem [66] extends the results of [49] to a dynamic setting and
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proves a close relation between optimal solutions and adjoint processes obtained

from forward backward stochastic differential equations (FBSDEs). Specifically,

they show that the optimal primal wealth and portfolio processes can be ex-

pressed as functions of the optimal adjoint processes of the dual problem and

vice versa. This demystifies the opaque relation of the optimal solutions of the

primal and dual problems in utility maximization, i.e., given the solution of the

dual problem, the optimal control of the primal problem can only be derived

from the martingale representation theorem. There are no control constraints in

[66] but the asset price process is a general semi-martingale process with some

technical conditions.

Inspired by the work of [66], we use the convex duality method to solve the

quadratic risk minimization problem with both random coefficients and control

constraints. To get a correct formulation of the dual problem, we follow the

approach of [54] by first converting the original problem into a static problem in

an abstract space, then applying convex analysis to derive its dual problem, and

finally getting a specific dual stochastic control problem. It turns out there are

three controls in the dual problem, one corresponds to the control constraint set,

one to the running cost function, and one to the no-duality-gap relation. Using

FBSDEs, we derive the necessary and sufficient conditions for both primal and

dual problems, which allows us to explicitly characterise the primal control as

a function of the adjoint process coming from the dual FBSDEs in a dynamic

fashion and vice versa, similar to those in [66]. Moreover, we also find that the

optimal primal wealth process coincides with the optimal adjoint process of the

dual problem and vice versa. To the best of our knowledge, this is the first time

the dynamic relations of primal and dual problems with control constraints have

been explicitly characterized in the literature.

After establishing the optimality conditions for both primal and dual prob-

lems, we solve a quadratic risk minimization problem with cone-constraints.
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Instead of attacking the primal problem directly, we start from the dual problem

and then construct the optimal solution to the primal problem from that of the

dual problem. Moreover, we derive the explicit representations of solutions to

the extended SREs introduced in [41] in terms of the optimal solutions from the

dual problem. The simplicity in solving the dual problem is in good contrast

to the technical complexity in solving the extended SREs directly, as discussed

in [41]. In addition, we show that when the coefficients are deterministic, the

closed form optimal solution to the dual problem can be constructed.

The rest of the chapter is organised as follows. In Section 2 we set up the

model and formulate the primal and dual problems following the approach in [54].

In Section 3 we characterise the necessary and sufficient optimality conditions for

both the primal and dual problems and establish their connection in a dynamic

fashion through FBSDEs. In Section 4 we discuss quadratic risk minimization

problems with cone constraints and demonstrate how to construct explicitly the

solutions of the extended SREs from those of the dual FBSDEs. In Section 5 we

prove the main results. Section 6 concludes.

3.2 Market Model and Primal and Dual Prob-

lems

Through out the chapter, we denote by T > 0 a fixed terminal time, {W (t), t ∈

[0, T ]} a RN -valued standard Brownian motion with scalar entries Wm(t), m =

1, · · · , N , on a complete probability space (Ω,F ,P), {Ft} the P-augmentation of

the filtration FWt = σ(W (s), 0 ≤ s ≤ t) generated by W , P(0, T ;RN) the set of

all RN -valued progressively measurable processes on [0, T ]×Ω, H2(0, T ;RN) the

set of processes x in P(0, T ;RN) satisfying E[
∫ T

0
|x(t)|2dt] <∞, and S2(0, T ;RN)

the set of processes x in P(0, T ;RN) satisfying E[sup0≤t≤T |x2
t |] <∞. We write
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SDE for stochastic differential equation, BSDE for backward SDE, and FBSDE

for forward and backward SDE. We also follow the customary convention that

ω is suppressed in SDEs and integrals, except in places where an explicit ω is

needed.

Consider a market consisting of a bank account with price {S0(t)} given by

dS0(t) = r(t)S0(t)dt, 0 ≤ t ≤ T, S0(0) = 1, (3.1)

and N stocks with prices {Sn(t)}, n = 1, · · · , N , given by

dSn(t) = Sn(t)

[
bn(t)dt+

N∑
m=1

σnm(t)dWm(t)

]
, 0 ≤ t ≤ T, Sn(0) > 0. (3.2)

We assume that r ∈ P(0, T ;R) (scalar interest rate), b ∈ P(0, T ;RN) (vector

of appreciation rates), and σ ∈ P(0, T ;RN×N) (volatility matrix) are uniformly

bounded. We also assume that there exists a positive constant k such that

zᵀσ(t)σᵀ(t)z ≥ k|z|2

for all (z, ω, t) ∈ RN×Ω×[0, T ], where zᵀ is the transpose of z. Consequently, by

[47, Problem 5.8.1, page 372], ∃k1 ∈ (0,∞) s.t max{‖σ−1(t, ω)z‖, ‖[σᵀ]−1(ω, t)z‖}

≤ k1‖z‖, ∀(z, ω, t) ∈ RN × Ω× [0, T ].

Consider a small investor with initial wealth x0 > 0 and a self-financing

strategy. Define the set of admissible portfolio strategies by

A :=
{
π ∈ H2(0, T ;RN) : π(t) ∈ K for t ∈ [0, T ] a.e.

}
,

where K ⊆ RN is a closed convex set and π is a portfolio process with each entry

πn(t) defined as the amount invested in the stock n for n = 1, . . . , N . Given any

π ∈ A, the investor’s total wealth Xπ satisfies the SDE dXπ(t) = [r(t)Xπ(t) + πᵀ(t)σ(t)θ(t)]dt+ πᵀ(t)σ(t)dW (t), 0 ≤ t ≤ T,

Xπ(0) = x0,

(3.3)
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where θ(t) := σ−1(t) [b(t)− r(t)1] is the market price of risk at time t and is

uniformly bounded and 1 ∈ RN has all unit entries. A pair (X, π) is admissible

if π ∈ A and X is a strong solution to the SDE (3.3) with control process π.

Define a functional J : A → R by

J(π) := E

[∫ T

0

f(t,Xπ(t), π(t))dt+ g(Xπ(T ))

]
,

where f : Ω× [0, T ]× R× RN → R and g : Ω× R→ R are defined by
f(ω, t, x, π) :=

1

2
[Q(t)x2 + 2Sᵀ(t)xπ + πᵀR(t)π] ,

g(ω, x) :=
1

2
[ax2 + 2cx] .

(3.4)

We assume that random variable a ∈ L∞FT (R) satisfy

sup
ω∈Ω

a(ω) <∞

and processes Q ∈ P(0, T ;R), S ∈ P(0, T ;RN), R ∈ P(0, T ;RN×N) are uni-

formly bounded, R(t) is a symmetric matrix, and the matrix Q(t) Sᵀ(t)

S(t) R(t)


is nonnegative definite for all (ω, t) ∈ Ω × [0, T ]. Under these assumptions we

know J is a convex functional of π.

We consider the following optimization problem:

Minimize J(π) subject to (X, π) admissible. (3.5)

An admissible control π̂ is optimal if J(π̂) ≤ J(π) for all π ∈ A.

Following the approach introduced in [54], we now set up the dual problem.

Denote by

B :=R×H2(0, T ;R)×H2(0, T ;RN).
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We write X ∈ B if and only if

X(t) = x0 +

∫ t

0

Ẋ(τ)dτ +

∫ t

0

ΛᵀX(τ)dW (τ), 0 ≤ t ≤ T,

for some (x0, Ẋ,ΛX) ∈ B. We now reformulate (3.5) as a primal optimization

problem over the whole set B. For each X ≡ (x0, Ẋ,ΛX) ∈ B, define

U(X) := {π ∈ A such that Ẋ(t) = r(t)X(t) + πᵀ(t)σ(t)θ(t)

and ΛX(t) = σᵀ(t)π(t) for ∀t ∈ [0, T ], P− a.e.}.

The set U(X) contains all admissible controls π ∈ A that make X an admissible

wealth process. Note that U(X) 6= ∅ if and only if (Ẋ(t),ΛX(t)) ∈ S(X(t)) for

(P⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ], where S is a set valued function defined by

S(ω, t, x) := {(v, ξ) : v = r(t)x+ ξᵀθ(t) and [σᵀ]−1 (t)ξ ∈ K}.

Define the penalty function L : Ω× [0, T ]× R× R× RN → [0,∞] by

L(ω, t, x, v, ξ) = f
(
ω, t, x, [σᵀ]−1(t)ξ

)
+ ΨS(ω,t,x)(v, ξ)

and the penalty function l0 : R→ [0,∞] by

l0(x) = Ψ{x0}(x),

where ΨU(u) is a penalty function which equals 0 if u is in set U and +∞

otherwise.

For X ∈ B, define the cost functional as

Φ(X) := l0(x0) + E [g(X(T ))] + E

[∫ T

0

L(t,X(t), Ẋ(t),ΛX(t))dt

]
.

Note that Φ(X) =∞ if X(0) 6= x0 or U(X) = ∅. Problem (3.5) is equivalent to

Minimize Φ(X) subject to X ∈ B.
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We now establish the dual problem over the set B. Define the following convex

conjugate functions

m0(y) := sup
x∈R
{xy − l0(x)},

mT (ω, y) := sup
x∈R
{−xy − g(ω, x)},

M(ω, t, y, s, γ) := sup
x,v∈R,ξ∈RN

{xs+ vy + ξᵀγ − L(ω, t, x, v, ξ)},

for all (ω, t, y, s, γ) ∈ Ω × [0, T ] × R × R × RN . For each Y ≡ (y, Ẏ ,ΛY ) ∈ B,

define

Ψ(Y ) := m0(y) + E [mT (Y (T ))] + E

[∫ T

0

M(t, Y (t), Ẏ (t),ΛY (t))dt

]
.

Then the dual problem is given by

Minimize Ψ(Y ) subject to Y ∈ B.

We can write the dual problem equivalently as a stochastic control problem.

Some simple calculus gives

m0(y) = x0y,

mT (ω, y) =
(y + c)2

2a
,

M(ω, t, y, s, γ) = φ(t, s+ r(t)y, σ(t) [θ(t)y + γ]), (3.6)

where φ is the conjugate function of f̃(ω, t, x, π) = f(ω, t, x, π)+ΨK(π), namely,

φ(ω, t, α, β) := sup
x∈R,π∈K

{xα + πᵀβ − f(ω, t, x, π)}.

The dual control problem is therefore given by

Minimize m0(y) + E [mT (Y (T ))] + E
[∫ T

0
φ(t, α(t), β(t))dt

]
, (3.7)

where Y satisfies
dY (t) = [α(t)− r(t)Y (t)] dt+ [σ−1(t)β(t)− θ(t)Y (t)]

ᵀ
dW (t)

Y (0) = y.

(3.8)
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The dual control process for Y is (y, α, β) ∈ B. From [51, Corollary 2.5.10], we

have Y (y,α,β) ∈ S2(0, T ;R). Note that the control constraint is implicit for the

dual problem. For example, if Q = 0, S = 0, R = 0, then α must be zero and

may be simply dropped in (3.7) and (3.8).

3.3 Main Results

In this section, we derive the necessary and sufficient optimality conditions for

primal and dual problems and show the connection between the optimal solu-

tions through their corresponding FBSDEs. To highlight the main results and

streamline the discussion, we leave the proofs of all the theorems in Section 5.

Given any admissible control π ∈ A and solution Xπ to the SDE (3.3), the

associated adjoint equation in unknown processes p1 ∈ S2(0, T ;R) and q1 ∈

H2(0, t;RN) is the following linear BSDE
dp1(t) = [−r(t)p1(t) +Q(t)X(t) + Sᵀ(t)π(t)] dt+ qᵀ1(t)dW (t)

p1(T ) = −aXπ(T )− c.
(3.9)

From [69, Theorem 6.2.1] we know that there exists a unique solution (p1, q1) to

the BSDE (3.9). We now state the necessary and sufficient conditions for the

primal problem.

Theorem 3.3.1. (Primal problem and associated FBSDE) Let π̂ ∈ A. Then

π̂ is optimal for the primal problem if and only if the solution (X π̂, p̂1, q̂1) of

FBSDE

dX π̂(t) =
[
r(t)X π̂(t) + π̂ᵀ(t)σ(t)θ(t)

]
dt+ π̂ᵀ(t)σ(t)dW (t)

X π̂(0) = x0

dp̂1(t) =
[
−r(t)p̂1(t) +Q(t)X π̂(t) + Sᵀ(t)π̂(t)

]
dt+ q̂ᵀ1(t)dW (t)

p̂1(T ) = −aX π̂(T )− c

(3.10)
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satisfies the condition

[π̂ᵀ − πᵀ]
[
p̂1(t)σ(t)θ(t) + σ(t)q̂1(t)− S(t)X π̂(t)−R(t)π̂(t)

]
≥ 0 (3.11)

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ] and π ∈ K.

Remark 3.3.2. If K = RN , then condition (3.11) becomes

p̂1(t)σ(t)θ(t) + σ(t)q̂1(t)− S(t)X π̂(t)−R(t)π̂(t) = 0.

If we further assume R(t) is positive definite and R(t)−1 is uniformly bounded,

then we can substitute the optimal control π̂(t) into the FBSDE (3.10) to get a

fully-coupled linear FBSDE with random coefficients, see [88] for discussions on

the solvability of linear FBSDEs.

Given any admissible control (y, α, β) ∈ B and solution Y (y,α,β) to the SDE

(3.8), the associated adjoint equation in unknown processes p2 ∈ S2(0, T ;R) and

q2 ∈ H2(0, t;RN) is the following linear BSDE
dp2(t) = [r(t)p2(t) + qᵀ2(t)θ(t)] dt+ qᵀ2(t)dW (t)

p2(T ) = −Y
(y,α,β)(T ) + c

a
.

(3.12)

From [69, Theorem 6.2.1], we know that there exists a unique solution (p2, q2)

to the BSDE (4.19). To derive the necessary condition, we need to impose the

following assumption on φ at the optimal dual control process (α̂, β̂).

Assumption 3.3.3. Let (α̂, β̂) be given and α, β be any admissible control. Then

there exists a Z ∈ P(0, T ;R) satisfying E[
∫ T

0
|Z(t)|dt] <∞ and

Z(t) ≥ φ(t, α̂(t) + εα(t), β̂(t) + εβ(t))− φ(t, α̂(t), β̂(t))

ε
(3.13)

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ] and ε ∈ (0, 1].

Remark 3.3.4. Here are a few comments on Assumption 3.3.3.
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1. Condition (3.13) is a technical condition that ensures one can apply the

monotone convergence theorem and pass the limit under the expectation and

integral as ε ↓ 0, which is used in proving the second and third relations in

(3.15), see the proof of Theorem 3.3.5 in Section 3.5. A similar assumption

is used in [13, Assumption 1.2] on the data of the primal problem.

2. It is difficult to replace this assumption by one on the parameters. I cannot

not find counter-examples but this does not justify the assumption itself. In

the unconstrained case it is possible to derive more characteristics of the

dual function from primal function (such as Lipschitz). However, this is

more difficult when it comes to constrained case. I have searched classical

books such as [72], but did not find any result that applies to our case

3. If K = RN , S(t) = 0 and Q(t), R(t) are positive definite and their in-

verses are uniformly bounded, then φ(t, α, β) = 1
2
Q(t)−1α2 + 1

2
βᵀR(t)−1β.

Condition (3.13) holds if Z is chosen to be

Z(t) := Q(t)−1α̂(t)α(t)+β̂ᵀ(t)R(t)−1β(t)+
1

2
Q(t)−1α(t)2+

1

2
βᵀ(t)R(t)−1β(t).

4. If Q(t) = 0, S(t) = 0, R(t) = 0, then α(t) = 0 for the dual problem. We

may drop α in the expression of φ which becomes a support function of

K, i.e., φ is given by φ(t, β) = δ(β) := supπ∈K π
ᵀβ. If we further assume

that K is a bounded set, then condition (3.13) holds if Z is chosen to be

Z(t) = δ(β(t)). However, if K is unbounded, then Assumption 3.3.3 may

not hold and we cannot use the monotone convergence theorem to prove

(3.15). Other methods may have to be used, see Remark 3.4.1 for further

discussions.

We now state the necessary and sufficient conditions for the dual problem.

Theorem 3.3.5. (Dual problem and associated FBSDE) Let (ŷ, α̂, β̂) ∈ B satisfy

Assumption 3.3.3. Then (ŷ, α̂, β̂) is optimal for the dual problem if and only if
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the solution (Y (ŷ,α̂,β̂), p̂2, q̂2) of FBSDE

dY (ŷ,α̂,β̂)(t) =
[
α̂(t)− r(t)Y (ŷ,α̂,β̂)(t)

]
dt+

[
σ−1(t)β̂(t)− θ(t)Y (ŷ,α̂,β̂)(t)

]ᵀ
dW (t)

Y (ŷ,α̂,β̂)(0) = ŷ

dp̂2(t) = [r(t)p̂2(t) + q̂ᵀ2(t)θ(t)] dt+ q̂ᵀ2(t)dW (t)

p̂2(T ) = −Y
(ŷ,α̂,β̂)(T ) + c

a
(3.14)

satisfies the conditions
p̂2(0) = x0,

[σᵀ]−1 (t)q̂2(t) ∈ K,(
p̂2(t), [σᵀ]−1 (t)q̂2(t)

)
∈ ∂φ(α̂(t), β̂(t)),

(3.15)

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ].

Remark 3.3.6. If K = RN , S(t) = 0 and Q(t), R(t) are positive definite, then

from Remark 3.3.4, φ is a quadratic function of α and β and we can write optimal

controls α̂ and β̂ in terms of adjoint processes p̂2 and q̂2. The FBSDE (3.14)

becomes a fully coupled linear FBSDE with an additional condition p̂2(0) = x0,

which is used to determine the constant control ŷ.

We can now state the dynamic relations of the optimal portfolio and wealth

processes of the primal problem and the adjoint processes of the dual problem

and vice versa.

Theorem 3.3.7. (From dual problem to primal problem) Suppose that (ŷ, α̂, β̂)

is optimal for the dual problem. Let
(
Y (ŷ,α̂,β̂), p̂2, q̂2

)
be the associated process

that satisfies the FBSDE (3.14) and condition (4.26). Define

π̂(t) := [σᵀ]−1 (t)q̂2(t), t ∈ [0, T ]. (3.16)
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Then π̂ is the optimal control for the primal problem with initial wealth x0. The

optimal wealth process and associated adjoint processes are given by
X π̂(t) = p̂2(t),

p̂1(t) = Y (ŷ,α̂,β̂)(t),

q̂1(t) = σ−1(t)β̂(t)− θ(t)Y (ŷ,α̂,β̂)(t) for ∀t ∈ [0, T ].

(3.17)

Theorem 3.3.8. (From primal problem to dual problem) Suppose that π̂ ∈ A

is optimal for the primal problem with initial wealth x0. Let
(
X π̂, p̂1, q̂1

)
be the

associated process that satisfies the FBSDE (3.10) and condition (3.11). Define
ŷ = p̂1(0),

α̂(t) = Q(t)X π̂(t) + Sᵀ(t)π̂(t),

β̂(t) = σ(t) [q̂1(t) + θ(t)p̂1(t)] .

(3.18)

Then (ŷ, α̂, β̂) is the optimal control for the dual problem. The optimal dual state

process and associated adjoint processes are given by
Y (ŷ,α̂,β̂)(t) = p̂1(t),

p̂2(t) = X π̂(t),

q̂2(t) = σᵀ(t)π̂(t).

(3.19)

Example 3.3.9. Assume Q(t) = 0, S(t) = 0, R(t) = 0 for t ∈ [0, T ] and c = 0

and K = RN . Then we must have α(t) = 0, β(t) = 0 for t ∈ [0, T ] a.e. (otherwise

φ(t, α(t), β(t)) = ∞) and Assumption 3.3.3 is not needed. The solution to the

SDE (3.8) is given by Y (t) = yΓ(t) for t ∈ [0, T ] a.e., where Γ satisfies the linear

SDE

dΓ(t) = Γ(t)[−r(t)dt− θᵀ(t)dW (t)], Γ(0) = 1.

The minimum point ŷ for dual problem (3.7) is given by

ŷ = − x0

E

[
Γ(T )2

a

] .
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Let (p̂2, q̂2) be the adjoint process associated with the optimal control (ŷ, 0, 0),

satisfying the BSDE

dp̂2(t) = [r(t)p̂2(t) + θᵀ(t)q̂2(t)]dt+ q̂ᵀ2(t)dW (t), p̂2(T ) = − Ŷ (T )

a
.

Hence we obtain that

p̂2(t) = Γ(t)−1E

[
Γ(T )p̂2(T )

∣∣∣∣Ft] = −ŷΓ(t)−1E

[
1

a
Γ(T )2

∣∣∣∣Ft] .
By Theorem 3.3.7, we conclude that the optimal wealth and portfolio processes

are given by

X π̂(t) = p̂2(t), π̂(t) := [σᵀ]−1 (t)q̂2(t), ∀t ∈ [0, T ].

If we define X̂(t) := X π̂(t) exp(−
∫ t

0
r(s)ds), then X̄ satisfies

dX̄(t) = e−
∫ t
0 r(s)dsq̂ᵀ2(t)(θ(t)dt+ dW (t)),

which shows that q̂2 is the martingale representation for the discounted optimal

wealth process X̄ under the equivalent probability measure Q defined by dQ/dP =

ε(−
∫ T

0
θ(t)dW (t)).

One can also solve the primal problem directly using the stochastic linear

quadratic control theory and stochastic Riccati equation (SRE), see [94]. Since

p̂2(t) 6= 0 for t ∈ [0, T ] a.e. if x0 6= 0, we may define a process P by

P (t) := − Ŷ (t)

p̂2(t)
, ∀t ∈ [0, T ].

Applying Ito’s formula to P , we obtain

dP (t) = −2r(t)P (t)dt+
1

p̂2(t)2
P (t)q̂ᵀ2(t)q̂2(t)dt−P (t)

(
θ(t) +

1

p̂2(t)
q̂2(t)

)ᵀ
dW (t).

Define a process

Λ(t) :=
q̂2(t)Ŷ (t)

p̂2(t)2
+
θ(t)Ŷ (t)

p̂2(t)
.
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Substituting Λ into the above equation and rearranging, we have

dP (t) =

[
−2r(t)P (t) + 2θᵀ(t)Λ(t) + θᵀ(t)θ(t)P (t) +

Λᵀ(t)Λ(t)

P (t)

]
dt+ Λᵀ(t)dW (t),

which is the SRE introduced in [94]. Using the duality approach, we obtain an

explicit representation of the unique solution to the SRE.

3.4 Quadratic Risk Minimization with Cone Con-

straints

In this section we consider the following quadratic risk minimization problem:
Minimize J(π(·)) = E

[
1

2
aX(T )2

]
,

Subject to (X(·), π(·)) is admissible.

(3.20)

Assume K ⊂ RN is a closed convex cone. The dual problem is given by

Minimize x0y + E

[
Y (T )2

2a

]
+ E

[∫ T

0

δ(β(t))dt

]
(3.21)

over (y, β) ∈ R × H2(0, T ;RN), where Y satisfies the SDE (3.8) with α(t) = 0

and δ(β) = supπ∈K π
ᵀβ, the support function of K. [54, Proposition 5.4] states

that there exists an optimal control (ŷ, β̂) to (3.21) with associated optimal state

process Ŷ .

Remark 3.4.1. Since K is unbounded, Assumption 3.3.3 may not hold. Using

the subadditivity and positive homogeneity of δ, we have (see (3.46))

E

[∫ T

0

[
δ(β(t))− q̂ᵀ2(t)σ−1(t)β(t)

]
dt

]
≥ 0. (3.22)

Let B := {(ω, t) ∈ Ω× [0, T ] : [σᵀ]−1 (t)q̂2(t) ∈ K}. By [47, Lemma 5.4.2], there

exists ν ∈ P(0, T ;RN) such that |ν(t)| ≤ 1 and |δ(ν(t))| ≤ 1 and

[σᵀ]−1 (t)q̂2(t) ∈ K ⇔ ν(t) = 0,

[σᵀ]−1 (t)q̂2(t) 6∈ K ⇔ δ(ν(t))− q̂ᵀ2(t)σ−1(t)ν(t) < 0
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for (P⊗ Leb)-a.e. (ω, t) ∈ Ω×[0, T ]. The existence of ν ensures that the comple-

ment set of B has measure zero on Ω× [0, T ] (otherwise there is a contradiction

to (3.22)). Hence we conclude [σᵀ]−1 (t)q̂2(t) ∈ K for (P⊗ Leb)-a.e. The third

relation in (3.15) can also be proved directly.

3.4.1 Random coefficient case

We have the following result.

Lemma 3.4.2. Let (ŷ, β̂) be the optimal control of the dual problem (3.21) and

Ŷ be the corresponding optimal state process. Then β̂(t) = 0 if Ŷ (t) = 0 for

(P⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ].

Proof. Applying Ito’s formula to Ŷ (t)2, we get

dŶ (t)2 =
[
−2r(t)Ŷ (t)2 +

(
σ−1(t)β̂(t)− θ(t)Ŷ (t)

)ᵀ (
σ−1(t)β̂(t)− θ(t)Ŷ (t)

)]
dt

+ 2Ŷ (t)
[
σ−1(t)β̂(t)− θ(t)Ŷ (t)

]ᵀ
dW (t).

Define the process

S̃(t) :=

∫ t

0

2Ŷ (s)[σ−1(s)β̂(s)− θ(s)Ŷ (s)]ᵀdW (s).

Following a similar argument as in the proof of Theorem 3.3.1, we know S̃ is a

martingale. Taking expectation of
Ŷ (T )2

2a
, we have

E

[
Ŷ (T )2

2a

]
:=

E

[
ŷ

2a

]
+ E


∫ T

0

[
− r(t)Ŷ (t)2

a
+

(
σ−1(t)β̂(t)− θ(t)Ŷ (t)

)ᵀ (
σ−1(t)β̂(t)− θ(t)Ŷ (t)

)
2a

]
dt

 .

Define the set

Π :=
{

(ω, t) ∈ Ω× [0, T ] : Ŷ (t) = 0, β̂(t) 6= 0
}
.

We must have (P⊗ Leb) (Π) = 0, otherwise, there is a contradiction.
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Let β̂(t) = γ̂(t)Ŷ (t) for t ∈ [0, T ]. Then Ŷ follows the SDE dŶ (t) = −r(t)Ŷ (t)dt+ [σ−1(t)γ̂(t)− θ(t)]ᵀ Ŷ (t)dW (t)

Ŷ (0) = ŷ.

Hence, we have Ŷ (t) = ŷĤ(t), where

Ĥ(t) := exp

(∫ t

0

[
−r(s)− 1

2

(
σ−1(s)γ̂(s)− θ(s)

)ᵀ (
σ−1(s)γ̂(s)− θ(s)

)]
ds

+
[
σ−1(s)γ̂(s)− θ(s)

]ᵀ
dW (s)

)
.

By Theorem 3.3.7, we obtain

p̂2(0) = E [Γ(T )p̂2(T )] = E

[
−Γ(T )

Ŷ (T )

a

]
= −ŷE

[
Γ(T )

Ĥ(T )

a

]
= x0,

which implies

ŷ = − x0

E

[
Γ(T )Ĥ(T )

a

] .
Moreover, we have

p̂2(t) = Γ(t)−1E

[
−Γ(T )

Ŷ (T )

a

∣∣∣∣Ft
]

= −ŷΓ(t)−1E

[
Γ(T )

Ĥ(T )

a

∣∣∣∣Ft
]
,

which shows that p̂2(t) 6= 0 P-a.e. for t ∈ [0, T ].

Suppose x0 > 0, then Ŷ (t) < 0 and p̂2(t) > 0 for ∀t ∈ [0, T ], P-a.e. Define

P+(t) := − Ŷ (t)

p̂2(t)
= − p̂1(t)

X̂(t)
, ∀t ∈ [0, T ].

Applying Ito’s formula, we have

dP+(t) =

[
−2r(t)P+(t)− P+(t)

π̂ᵀ(t)

X̂(t)
σ(t)θ(t) +

πᵀ(t)σ(t)q̂1(t)

X̂(t)2
+
P+(t)πᵀ(t)σ(t)σᵀ(t)π(t)

X̂(t)2

]
dt

+

[
− q̂1(t)

X̂(t)
− P+(t)σᵀ(t)

π(t)

X̂(t)

]ᵀ
dW (t),

=
[
−2r(t)P+(t)− ξ̂ᵀ+(t) (σ(t)θ(t)P+(t) + σ(t)Λ+(t))

]
dt+ Λᵀ+(t)dW (t),

(3.23)
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where

Λ+(t) := − q̂1(t)

X̂(t)
− P+(t)σᵀ(t)π(t)

X̂(t)
, ξ̂+(t) :=

π̂(t)

X̂(t)
.

Define

H+(t, v, P,Λ) :=vᵀPσ(t)σᵀ(t)v + 2vᵀ [σ(t)θ(t)P + σ(t)Λ] ,

H∗+(t, P,Λ) := inf
v∈K

H+(t, v, P,Λ).

We have

∂vH+(t, ξ̂+(t), P+(t),Λ+(t)) =2

[
P+(t)σ(t)σᵀ(t)

π̂(t)

X̂(t)
+ σ(t)θ(t)P+(t) + σ(t)Λ+(t)

]

=2

[
−σ(t)

q̂1(t)

X̂(t)
− σ(t)θ(t)

p̂1(t)

X̂(t)

]
.

Recall that by Theorem 3.3.1, we have

[π̂(t)− π]ᵀ[p̂1(t)σ(t)θ(t) + σ(t)q̂1(t)] ≥ 0 (3.24)

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω × [0, T ] and π ∈ K. According to Theorem 3.3.8,

X̂(t) = p̂2(t) > 0. Dividing both sides of (3.24) by X̂(t)2, we obtain that

[ξ̂+(t)− ξ]ᵀ∂vH+(t, ξ̂+(t), P+(t),Λ+(t)) ≤ 0

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω × [0, T ] and ξ ∈ K. By [29, Proposition 2.2.1], we

conclude that

H∗+(t, P+(t),Λ+(t)) = H+(t, ξ̂+(t), P+(t),Λ+(t)) ∀t ∈ [0, T ], P− a.e. (3.25)

Moreover, by [17, Page 52, Corollary], we have

0 ∈ P+(t)σ(t)σᵀ(t)ξ̂+(t) +σ(t)[θ(t)P+(t) + Λ+(t)] +NK(ξ̂+(t)), ∀t ∈ [0, T ] P-a.e.

where NK(x) := {p ∈ RN : pᵀ(x∗ − x) ≤ 0,∀x∗ ∈ K}, the normal cone of K at

x ∈ K. For all p ∈ NK(x), since K is a cone, by choosing x∗ = 2x and x∗ = 1
2
x,

we have pᵀx ≤ 0 and −1
2
pᵀx ≤ 0, which gives pᵀx = 0. Therefore

ξ̂ᵀ+(t)P+(t)σ(t)σᵀ(t)ξ̂+(t) + ξ̂ᵀ+(t)σ(t)[θ(t)P+(t) + Λ+(t)] = 0. (3.26)
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Substituting (3.26) into (3.25), we obtain

H∗+(t, P+(t),Λ+(t)) = ξ̂ᵀ+(t) [σ(t)θ(t)P+(t) + σ(t)Λ+(t)] ∀t ∈ [0, T ]. (3.27)

Substituting (3.27) back into (3.23), we have that P+ is the solution to the

following nonlinear BSDE
dP+(t) = −

[
2r(t)P+(t) +H∗+(t, P+(t),Λ+(t))

]
dt+ Λᵀ+(t)dW (t),

P+(T ) = a,

P+(t) > 0. ∀t ∈ [0, T ].

(3.28)

Similarly, if x0 < 0, then Ŷ (t) > 0 and p̂2(t) < 0 for t ∈ [0, T ], P-a.e. Define

P−(t) := − Ŷ (t)

p̂2(t)
= − p̂1(t)

X̂(t)
, ∀t ∈ [0, T ].

Using a similar approach, it can be shown that P− is the solution to the following

nonlinear BSDE
dP−(t) = −

[
2r(t)P−(t) +H∗−(t, P−(t),Λ−(t))

]
dt+ Λᵀ−(t)dW (t),

P−(T ) = a,

P−(t) > 0, ∀t ∈ [0, T ].

(3.29)

where

H−(t, v, P,Λ) :=vᵀPσ(t)σᵀ(t)v − 2vᵀ [σ(t)θ(t)P + σ(t)Λ] ,

H∗−(t, P,Λ) := inf
v∈K

H−(t, v, P,Λ).

We find that (3.28) and (3.29) are the extended SRE introduced in [41].

Through the dual approach, we have obtained an explicit representation of the

unique solution to the SREs in terms of the optimal state and adjoint processes.

Finally, according to Theorem 3.3.7 we conclude that the optimal solution to

the primal problem is given by
π̂ᵀ(t) = [σᵀ]−1(t)q̂2(t),

X̂(t) = p̂2(t) = −Ŷ (t)

[
1{x0>0}

P+(t)
+

1{x0<0}

P−(t)

]
.
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3.4.2 Deterministic coefficient case

Assume K ⊂ RN is a closed convex cone and r, b, σ are deterministic functions

and a > 0 is a constant. In this case, the dual problem can be written as

Minimize x0y + E

[
Y (T )2

2a

]
over (y, β) ∈ R×H2(0, T ;RN) and Y satisfies the SDE (3.8) with α(t) = 0 and

β(t) ∈ K0 for t ∈ [0, T ] a.e., where K0 := {β : βᵀπ ≤ 0,∀π ∈ K}, the polar cone

of K. We solve the above problem in two steps: first, fix y and find the optimal

control β̂(y); second, find the optimal ŷ. We can then construct the optimal

solution explicitly.

Step 1: Consider the associated HJB equation:
vt(s, y)− r(s)yvy(s, y) + 1

2
infβ∈K0 |σ−1(s)β − θ(s)y|2vyy(s, y) = 0,

v(T, y) = y2,

(3.30)

for each (s, y) ∈ [t, T ]×R. The infimum term in (3.30) can be written explicitly

as

1. If y = 0, then it is trivial to obtain that

inf
β∈K0

|σ−1(s)β − θ(s)y|2 = inf
β∈K0

|σ−1(s)β|2 = 0.

2. If y > 0, then we have

inf
β∈K0

|σ−1(s)β − θ(s)y|2 = y2 inf
β∈K0

∣∣∣∣σ−1(s)

(
β

y

)
− θ(s)

∣∣∣∣2
= y2 inf

yβ̄∈K0

∣∣∣∣σ−1(s)β̄ − θ(s)
∣∣∣∣2

= y2|σ−1(s)β+(s)− θ(s)|2,

where β+(s) := arg minβ∈K0 |σ−1(s)β − θ(s)|2.
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3. If y < 0, then similarly we have

inf
β∈K0

|σ−1(s)β − θ(s)y|2 =y2 inf
β∈K0

∣∣∣∣σ−1(s)
β

y
− θ(s)

∣∣∣∣2
=y2 inf

β̄∈K0

∣∣∣∣σ−1(s)β̄ + θ(s)

∣∣∣∣2
=y2|σ−1(s)β−(s) + θ(s)|2,

where β−(s) := arg minβ∈K0 |σ−1(s)β + θ(s)|2.

Define

σ(s, y) :=


σ−1(s)β+(s)− θ(s), if y > 0

σ−1(s)β−(s) + θ(s), if y < 0

0, if y = 0.

The HJB equation (3.30) becomes vt(s, y)− r(s)yvy(s, y) + 1
2
y2|σ(s, y)|2vyy(s, y) = 0,

v(T, y) = y2.

According to the Feynman-Kac formula, we have

v(t, y) = E
[
Y 2(T )|Y (t) = y

]
= y2e

∫ T
t [−2r(s)+|σ(s,Y (s))|2]ds,

where the stochastic process Y follows the following geometric Brownian motion

dY (s) = −r(s)Y (s)ds+ σᵀ(s, Y (s))Y (s)dW (s), Y (t) = y.

Moreover, since Y follows a geometric Brownian motion and sign(Y (s)) = sign(y), ∀s ∈

[t, T ], we have

σ(s, Y (s)) = σ(s, y), ∀s ∈ [t, T ].

In particular, we have

v(0, y) = y2e
∫ T
0 [−2r(s)+|σ(s,y)|2]ds. (3.31)
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Step 2: Consider the following static optimization problem:

inf
y∈R

x0y +
1

2a
v(0, y) (3.32)

Substituting (3.31) into the objective function, we obtain that problem (3.32)

achieves minimum at

ŷ = −ax0e
∫ T
0 [2r(s)−|σ(s,−x0)|2]ds.

Hence, we conclude that the optimal control is given by

β̂(t) =


ax0e

∫ T
t [2r(s)−|σ(s,−x0)|2]dsβ−(t), if x0 > 0

−ax0e
∫ T
t [2r(s)−|σ(s,−x0)|2]dsβ+(t), if x0 < 0

0, if x0 = 0.

Moreover, in this case we can construct the solution to the SREs (3.28) and

(3.29) explicitly as

P̂+(t) = P̂−(t) = ae
∫ T
t [2r(s)+σᵀ(s,−x0)θ(s)]ds. (3.33)

Next, we verify that (3.33) are indeed solutions to the SREs (3.28) and (3.29)

with Λ+(t) = 0 and Λ−(t) = 0, respectively. To this end, we consider the case

x0 > 0 and y < 0. According to Theorem 3.3.7, we have

X̂(t) = p̂2(t),∀t ∈ [0, T ], a.e.

Hence,

X̂(t) = E

[
−Γ(T )Y (T )

aΓ(t)

∣∣∣∣Ft] = −Y (t)

a
E

[
Γ(T )Y (T )

Γ(t)Y (t)

∣∣∣∣Ft] , (3.34)

where Γ follows the SDE

dΓ(t) = Γ(t)[−r(t)dt− θᵀ(t)dW (t)],∀t ∈ [0, T ],Γ(0) = 1.
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Applying Ito’s lemma, we obtain

dΓ(t)Y (t) = [−2r(t)− θᵀ(t)σ(t, y)]Y (t)Γ(t)dt− [σᵀ(t, y) + θᵀ(t)]Y (t)Γ(t)dW (t).

(3.35)

Combining (3.34) and (3.35), we have

X̂(t) = −Y (t)

a
e
∫ T
t [−2r(s)−θᵀ(s)σ(s,y)]ds.

Applying Ito’s lemma again, we have X̂ satisfies the SDE

dX̂(t) = [r(t)X̂(t) + θᵀ(t)σ(t, y)X̂(t)]dt+ σᵀ(t, y)X̂(t)dW (t). (3.36)

Comparing (3.36) with (3.3), we conclude that

π̂ᵀ(t) = σᵀ(t, y)σ−1(t)X̂(t),

which implies that

ξ̂ᵀ+(t) =
π̂ᵀ(t)

X̂(t)
= σᵀ(t, y)σ−1(t). (3.37)

Substituting (3.37) back into (3.27), we have

H∗(t, P+(t),Λ+(t)) = σᵀ(t, y)θ(t)P+(t).

Taking x0 < 0 and following the same steps, we obtain

H∗(t, P−(t),Λ−(t)) = σᵀ(t, y)θ(t)P−(t).

Hence, we conclude that P̂+(t) and P̂−(t) defined in (3.33) are indeed solutions

to SREs (3.28) and (3.29).

Remark 3.4.3. The example was covered by [54] but the focus was different.

The focus of [54] was to apply the duality approach to solve the risk minimisation

problem, whereas I would like to demonstrate the dynamic relationship between

the primal FBSDE and dual FBSDE. Moreover, from the relationship I was able

to recover the explicit construction of SRE that was introduced in [94] and [41].

This is beyond the scope of [54].
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3.5 Proofs of the Main Results

In this section we give proofs of the main results in Section 3.3.

Proof of Theorem 3.3.1. Since the cost functional J is convex, according to [29,

Proposition 2.2.1], a necessary and sufficient condition for π̂ to be optimal is

that

〈J ′(π̂), π̂ − π〉 ≤ 0, ∀π ∈ A, (3.38)

where J ′(π̂) is the Gâteaux-derivative of J at π̂ and can be computed explicitly

as (3.3) is a linear SDE and J is a quadratic functional. The optimality condition

(3.38) can be written as

E

[ ∫ T

0

[
Q(t)X π̂(t)

(
X π̂(t)−Xπ(t)

)
+ Sᵀ(t)

(
π̂(t)

(
X π̂(t)−Xπ(t)

)
+ (π̂(t)− π(t))X π̂(t)

)
+ (π̂ᵀ(t)− πᵀ(t))R(t)π̂(t)

]
dt+

[
aX π̂(T ) + c

] (
X π̂(T )−Xπ(T )

) ]
≤ 0,

(3.39)

for all π ∈ A. Applying Ito’s formula to X π̂(t)p̂1(t), we have

d(X π̂(t)p̂1(t)) =
[
p̂1(t)π̂ᵀ(t)σ(t)θ(t) + π̂ᵀ(t)σ(t)q̂1(t) +Q(t)X π̂(t)2 + Sᵀ(t)X π̂(t)π̂(t)

]
dt

+
[
p̂1(t)π̂ᵀ(t)σ(t) + q̂ᵀ1(t)X π̂(t)

]
dW (t). (3.40)

Define the process S̃ as

S̃(t) :=

∫ t

0

(
p̂1(s)π̂ᵀ(s)σ(s) + q̂ᵀ1(s)X π̂(s)

)
dW (s), 0 ≤ t ≤ T.

Obviously, S̃ is a local martingale. To prove that S̃ is a true martingale, it is

sufficient to show that E
[
sup0≤s≤T |S̃(s)|

]
<∞. According to the Burkholder-

Davis-Gundy inequality [46, Theorem 3.3.28], it is sufficient to verify that

E

[(∫ T

0

[|p̂1(s)πᵀ(s)σ(s)|2 + |q̂1(s)X π̂(s)|2]ds

) 1
2

]
<∞.
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Note that from [51, Corollary 2.5.10], we have that X π̂ ∈ S2(0, T ;R). Combining

with p1 ∈ S2(0, T ;R) and q1 ∈ H2(0, t;RN) and by Höder’s inequality, we have

E

[(∫ T

0

[|p̂1(s)πᵀ(s)σ(s)|2 + |q̂1(s)X π̂(s)|2]ds

) 1
2

]

≤E

[(
sup

0≤s≤T
|p̂1(s)|2

∫ T

0

|πᵀ(s)σ(s)|2ds+ sup
0≤s≤T

|X π̂(s)|2
∫ T

0

|q1(s)|2ds
) 1

2

]

≤1

2
E

[
sup

0≤s≤T
|p̂1(s)|2

]
+

1

2
E

[∫ T

0

|πᵀ(s)σ(s)|2ds
]

+
1

2
E

[
sup

0≤s≤T
|X π̂(s)|2

]
+

1

2
E

[∫ T

0

|q̂1(s)|2ds
]

<∞,

which implies that S̃ is a true martingale. Taking expectation of X π̂(T )p̂1(T ),

we have

E
[
X π̂(T )p̂1(T )

]
= x0p̂1(0) + E

[ ∫ T

0

[
p̂1(t)π̂ᵀ(t)σ(t)θ(t) + π̂ᵀ(t)σ(t)q̂1(t)

(3.41)

+Q(t)X π̂(t)2 + Sᵀ(t)X π̂(t)π̂(t)

]
dt

]
Similarly, applying Ito’s formula to Xπ(t)p̂1(t) and taking expectation, we obtain

that

E [Xπ(T )p̂1(T )] = x0p̂1(0) + E

[ ∫ T

0

[
p̂1(t)πᵀ(t)σ(t)θ(t) + πᵀ(t)σ(t)q̂1(t) (3.42)

+Q(t)X π̂(t)Xπ(t) + Sᵀ(t)Xπ(t)π̂(t)

]
dt

]
Combining (3.39),(3.41) and (3.42), we obtain that π̂ ∈ A is an optimal control

of the primal problem if and only if

E

[∫ T

0

[π̂ᵀ(t)− πᵀ(t)]
[
p̂1(t)σ(t)θ(t) + σ(t)q̂1(t) + S(t)X π̂(t) +R(t)π̂(t)

]
dt

]
≥ 0

(3.43)
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for all π ∈ A. Define the Hamiltonian function H : Ω× [0, T ]×R×RN → R as

H(ω, t, x, π) ,πᵀ
[
p̂1(t)σ(t)θ(t) + σ(t)q̂1(t)− S(t)x− 1

2
R(t)π

]
+ r(t)p̂1(t)x− 1

2
Q(t)x2

and define the set-valued map F : Ω× [0, T ]→ K as

F (ω, t) :=
{
π ∈ K : [π̂ᵀ(t)− πᵀ]Hπ

(
ω, t,X π̂(t), π̂(t)

)
≥ 0
}
.

Then F is a measurable set-valued map, see [1, Definition 8.1.1]. Given π ∈ K,

define the set Bπ as

Bπ :=
{

(ω, t) ∈ Ω× [0, T ] : [π̂ᵀ(t)− πᵀ]Hπ(t,X π̂(t), π̂(t)) < 0
}
.

According to [1, Theorem 8.14], Bπt ∈ Ft for t ∈ [0, T ]. Define an adapted control

π̃ : Ω× [0, T ]→ K as

π̃(ω, t) :=

 π if (ω, t) ∈ Bπ

π̂(ω, t), otherwise.

Suppose that (P⊗ Leb) (Bπ) > 0, then

E

[∫ T

0

[π̂ᵀ(t)− π̃ᵀ(t)]Hπ(t,X π̂(t), π̂(t))dt

]
< 0,

contradicting with (3.43). Hence, we conclude that (P⊗ Leb) (Bπ) = 0 for any

fixed π ∈ K. Moreover, since K is separable, we conclude that

[π̂ᵀ(t)− πᵀ]Hπ(t,X π̂(t), π̂(t)) ≥ 0, ∀π ∈ K

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ]. �

Proof of Theorem 3.3.5. Let (ŷ, α̂, β̂) be optimal for the dual problem and

(Y (ŷ,α̂,β̂), p̂2, q̂2) satisfy (3.14). Let (y, α, β) ∈ B and Y (y,α,β) satisfy the SDE

(3.8). Applying Ito’s formula to p̂2(t)Y (y,α,β)(t), we have

d(p̂2(t)Y (y,α,β)(t)) =
[
α(t)p̂2(t) + q̂ᵀ2(t)σ−1(t)β(t)

]
dt

+
[
q̂ᵀ2(t)Y (y,α,β)(t) +

(
σ−1(t)β(t)− θ(t)Y (y,α,β)(t)

)ᵀ
p̂2(t)

]
dW (t).
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It can be shown, following a similar argument as in the proof of Theorem 3.3.1,

that the process∫ t

0

[
q̂ᵀ2(s)Y (y,α,β)(s) + (σ−1(s)β(s)− θ(s)Y (y,α,β)(s))ᵀp̂2(s)

]
dW (s), 0 ≤ t ≤ T,

is a martingale. Taking the expectation of p̂2(T )Y (y,α,β)(T ), we obtain

E
[
p̂2(T )Y (y,α,β)(T )

]
= p̂2(0)y + E

[∫ T

0

[
α(t)p̂2(t) + q̂ᵀ2(t)σ−1(t)β(t)

]
dt

]
.

(3.44)

For ε > 0 define (yε, αε, βε) ∈ B by

(yε, αε, βε) = (ŷ, α̂, β̂) + ε(y, α, β).

Then

Y (yε,αε,βε)(t) = Y (ŷ,α̂,β̂)(t) + εY (y,α,β)(t).

Since (ŷ, α̂, β̂) is optimal, we have

1

ε

[
Ψ(yε, αε, βε)−Ψ(ŷ, α̂, β̂)

]
≥ 0.

Substituting (3.7) into the above inequality, also noting p̂2(T ) = −Y
(ŷ,α̂,β̂)(T ) + c

a
,

we get

yx0 − E
[
Y (y,α,β)(T )p̂2(T )

]
+ εE

[
Y (y,α,β)(T )2

2a

]
+

1

ε
E

[∫ T

0

[
φ(αε(t), βε(t))− φ(α̂(t), β̂(t))

]
dt

]
≥ 0.

(3.45)

Combining (3.45) with (3.44) and then letting ε ↓ 0, we have

y (x0 − p̂2(0)) + lim
ε↓0

E

[∫ T

0

[g̃(t, ε)− q̂ᵀ2(t)σ−1(t)β(t)− α(t)p̂2(t)]dt

]
≥ 0,

where g̃(ω, t, ε) =
1

ε
(φ(t, αε(t), βε(t))−φ(t, α̂(t), β̂(t))). Let α(t) = 0 and β(t) =

0 for t ∈ [0, T ], we get

y(x0 − p̂2(0)) ≥ 0, ∀y ∈ R.
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Hence, p̂2(0) = x0. Recall that the function f in (3.4) is convex and the set

K is convex, according to [72, Theorem 26.3], φ has directional derivative at

(α̂(t), β̂(t)) in any direction (P⊗ Leb) a.e. on Ω × [0.T ]. Since ε → g̃(ω, t, ε)

is a nondecreasing function, Assumption 3.3.3 and the monotone convergence

theorem imply that

E

[∫ T

0

[
φo
(
t, α̂(t), β̂(t);α(t), β(t)

)
− q̂ᵀ2(t)σ−1(t)β(t)− α(t)p̂2(t)

]
dt

]
≥ 0

(3.46)

where

φo
(
ω, t, α̂, β̂;α, β

)
:= lim

ε↓0

φ(t, α̂ + εα, β̂ + εβ)− φ(t, α̂, β̂)

ε
.

For (α, β) ∈ R× RN , define the set B(α,β) as

B(α,β) :=
{

(ω, t) ∈ Ω× [0, T ] : φo
(
α̂(t), β̂(t);α, β

)
− q̂ᵀ2(t)σ−1(t)β − αp̂2(t) < 0

}
.

Using a similar argument as in the proof of Theorem 3.3.1, we conclude that

B(α,β)
t ∈ Ft for t ∈ [0, T ] and (P⊗ Leb) (B(α,β)) = 0 for all (α, β) ∈ R × RN .

Equivalently, given any (α, β) ∈ R× RN ,

φo
(
α̂(t), β̂(t);α, β

)
− q̂ᵀ2(t)σ−1(t)β − αp̂2(t) ≥ 0,

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω × [0, T ]. In addition, by the separability of the

space RN+1, we conclude that

φo
(
α̂(t), β̂(t);α, β

)
− q̂ᵀ2(t)σ−1(t)β − αp̂2(t) ≥ 0,∀(α, β) ∈ R× RN

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω × [0, T ]. By the definition of Clarke’s generalized

gradient [17, Chapter 2], the above condition can be written as(
p̂2(t), [σᵀ]−1(t)q̂2(t)

)
∈ ∂φ

(
α̂(t), β̂(t)

)
.

According to [72, Theorem 23.5] , we conclude that xα̂(t) + πᵀβ̂(t) − f̃(t, x, π)

achieves the supreme at (p̂2(t), [σᵀ]−1(t)q̂2(t)) for (P⊗ Leb)-a.e. (ω, t) ∈ Ω ×

[0, T ], which implies

[σᵀ]−1(t)q̂2(t) ∈ K,

86



for (P⊗ Leb)-a.e. (ω, t) ∈ Ω × [0, T ]. We have proved the necessary condition.

Let (ŷ, α̂, β̂) ∈ B be an admissible control to the dual problem with processes(
Y (ŷ,α̂,β̂), p̂2, q̂2

)
satisfying the FBSDE (3.14) and conditions (3.15). Define the

Hamiltonian function H : Ω× [0, T ]× R× RN → R as

H(ω, t, α, β) = q̂ᵀ2(t)σ−1(t)β + αp̂2(t)− φ(t, α, β).

By condition (4.26) and the classical result in duality theorem, we have

(0, 0) ∈ ∂H
(
α̂(t), β̂(t)

)
, (3.47)

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ]. Given any admissible control (y, α, β) ∈ B,

define

ỹ = y − ŷ, α̃ = α− α̂, β̃ = β − β̂.

Let Y (y,α,β) and Y (ỹ,α̃,β̃) be the associated state processes satisfying the SDE

(3.8). According to the definition of the dual problem, also noting mT is a

convex function, we have

Ψ (y, α, β)−Ψ
(
ŷ, α̂, β̂

)
≥ỹx0 + E

[
Y (ỹ,α̃,β̃)(T )

Y (ŷ,α̂,β̂)(T ) + c

a

]

+ E

[∫ T

0

[
φ(t, α(t), β(t))− φ(t, α̂(t), β̂(t))

]
dt

]
.

Replacing
Y (ŷ,α̂,β̂) + c

a
with −p̂2(T ) in the above inequality, we have

Ψ (y, α, β)−Ψ
(
ŷ, α̂, β̂

)
≥ỹ(x0 − p̂2(0)) + E

[∫ T

0

[
q̂ᵀ2(t)σ−1(t)β̃(t)− α̃(t)q̂2(t)

]
dt

]
+ E

[ ∫ T

0

[
φ(t, α(t), β(t))− φ(t, α̂(t), β̂(t))

]
dt

]
=E

[∫ T

0

[
−H(t, α(t), β(t)) +H(t, α̂(t), β̂(t))

]
dt

]
.

According to condition (3.47) and the concavity of H, we conclude that

Ψ
(
ȳ, ᾱ, β̄

)
−Ψ

(
ŷ, α̂, β̂

)
≥ 0.
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Since (y, α, β) ∈ B is arbitrary, we have proved the sufficient condition. �

Proof of Theorem 3.3.7. Suppose that (ŷ, α̂, β̂) ∈ B is optimal for the dual

problem. By Theorem 3.3.5, the process
(
Y (ŷ,α̂,β̂)(t), p̂2(t), q̂2(t)

)
solves the dual

FBSDE (3.14) and satisfies condition (3.15). Define π̂(t) and (X π̂(t), p̂1(t), q̂1(t))

as in (3.16) and (3.17), respectively. According to Theorem 3.3.5 and condition

(3.15), we have π̂(t) ∈ K P-a.s. and(
X π̂(t), π̂(t)

)
∈ ∂φ

(
α̂(t), β̂(t)

)
.

The classical result in conjugate duality theory (see [72, Theorem 23.5]) implies(
α̂(t), β̂(t)

)
∈ ∂f̃

(
X π̂(t), π̂(t)

)
.

Recall that f̃(ω, t, x, π) = f(ω, t, x, π) + ΨK(π), we can get

α̂(t) = Q(t)X π̂(t) + Sᵀ(t)π̂(t), (3.48)

β̂(t) ∈ S(t)X π̂(t) +R(t)π̂(t) + ∂ΦK(π̂(t)) (3.49)

for (P⊗ Leb)-a.e. (ω, t) ∈ Ω × [0, T ]. Combining (3.16), (3.17) and (3.48), we

obtain that
(
X π̂, p̂1, q̂1

)
solves the primal FBSDE (3.10). Moreover, combining

(3.17) and (3.49) gives condition (3.11). Using the sufficient condition for opti-

mality in Theorem 3.3.1, we conclude that π̂ is indeed an optimal control for the

primal problem. �

Proof of Theorem 3.3.8. Suppose that π̂ ∈ A is an optimal control for the primal

problem. By Theorem 3.3.1, the process
(
X π̂(t), p̂1(t), q̂1(t)

)
solves the FBSDE

(3.10) and satisfies condition (3.11). Define (ŷ, α̂(t), β̂(t)) and (Y (ŷ,α̂,β̂)(t), p̂2(t), q̂2(t))

as in (3.18) and (3.19), respectively. Substituting them into the primal FBSDE

(3.10), we obtain that
(
Y (ŷ,α̂,β̂), p̂2, q̂2

)
satisfies the dual FBSDE (3.14). By the

construction in (3.18) and (3.19), the first two conditions in (3.15) are satisfied.

In addition, by condition (3.11) and the concavity of H, we have

β̂(t) ∈ ∂πf̃
(
X π̂(t), π̂(t)

)
.
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Consequently, we have (
α̂(t), β̂(t)

)
∈ ∂f̃

(
X π̂(t), π̂(t)

)
,

which is equivalent to the third condition in (3.15). By Theorem 3.3.5, we

conclude that
(
ŷ, α̂, β̂

)
is indeed an optimal control to the dual problem. �

3.6 Conclusion

In this chapter, we discuss a continuous-time constrained quadratic risk mini-

mization problem with random market coefficients. Following a convex duality

approach, we derive the necessary and sufficient optimality conditions for primal

and dual problems in terms of FBSDEs plus additional conditions. We estab-

lish an explicit connection between primal and dual problems in terms of their

associated forward backward systems. We prove that the optimal controls of

primal and dual problems can be written as functions of adjoint processes of

their counterpart. Moreover, we also find that the optimal state processes for

both problems coincide with the optimal adjoint processes of their counterpart.

We solve both the unconstrained and cone-constrained quadratic risk minimiza-

tion problems using the dual approach. We recover the solutions to the extended

SREs introduced in the literature from the optimal solutions to the dual problem

and find the closed-form solutions to the extended SREs when the coefficients

are deterministic.
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Chapter 4

Dynamic Convex Duality in

Constrained Utility

Maximization

4.1 Introduction

One of the most commonly studied problems in mathematical economics is the

optimal consumption/investment problem. Such problems have as their goal

of constructing the investment strategy that maximizes the agent’s expected

utility of the wealth at the end of the planning horizon. Here we assume that

the problem must take value in a closed convex set which is general enough to

incorporate the case of short selling, borrowing, and other trading restrictions,

see [47].

There has been extensive research in the area of utility maximization. The

stochastic control approach was first introduced in the two landmark papers

of Merton [62, 63], which was wedded to the Hamilton-Jacobi-Bellman equa-

tion and the requirement of an underlying Markov state process. The opti-
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mal consumption/investment problem in a non-Markov setting was solved using

the martingale method by, among others, Pliska [70], Cox and Huang [20, 21],

Karatzas, Lehoczky and Shreve [42]. The stochastic duality theory of Bismut

[9] was first employed to study the constrained optimal investment problem in

Shreve and Xu [86] where the authors studied the problems of long only con-

strains with K = [0,∞)N . The effectiveness of convex duality method was later

adopted to tackle the more traditional incomplete market models in the works of,

among others, Karatzas, Lehoczky, Shreve and Xu[43], Pearson and He [39, 38],

Cvitanić and Karatzas [23]. The spirit of this approach is to suitably embed the

constrained problem in an appropriate family of unconstrained ones and find a

member of this family for which the corresponding optimal policy obeys the con-

strains. However, despite the evident power of this approach, it is nevertheless

true that obtaining the corresponding dual problem remains a challenge as it

often involves clever experimentation and subsequently show to work as desire.

To bring some transparency to the dual problem, Labbé and Heunis [55] estab-

lished a simple synthetic method of arriving at a dual functional, bypassing the

need to formulate a fictitious market. It often happens that the dual problem

is much nicer than the primal problem in the sense that it is easier to show the

existence of a solution and in some cases explicitly obtain a solution to the dual

problem than it is to do likewise for the primal problem.

In this chapter, we follow the approach as in Labbé and Heunis [55] by first

converting the original problem into a static problem in an abstract space. Then

we apply convex analysis to derive its dual problem and get the specific dual

stochastic control problem. Subsequently, following the approach in [75] and [83]

we progress to a stochastic approach to simultaneously characterise the necessary

and sufficient optimality conditions for both the primal and dual problems as

systems of Forward and Backward Stochastic Differential Equations (FBSDEs)

coupled with static optimality conditions. Such formulation then allows us to
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characterize the primal optimal control as a function of the adjoint processes

coming from the dual FBSDEs in a dynamic fashion and vice versa. Moreover,

we also find that the optimal primal wealth process coincides with the optimal

adjoint process of the dual problem and vice versa. To the best of our knowledge,

this is the first time the dynamic relations of the primal and dual problems

have been explicitly established for constrained utility maximization problems

under a non-Markov setting. After establishing the optimality conditions and

the relations for the primal and dual problems, we solve three constrained utility

maximization problems with both Markov and non-Markov setups. Instead of

tackling the primal problem directly, we start from the dual problem and then

construct the optimal solution to the primal problem from that to the dual

problem. In all examples, we contrasts the simplicity of the duality approach we

propose with the technical complexity in solving the primal problem directly.

The rest of the chapter is organised as follows. In Section 2, we set up the

market model and formulate the primal and dual problems following the ap-

proach in [55]. Section 3 is devoted to the main proof of necessary and sufficient

optimality conditions for the the primal and dual problems and their connections

in a dynamic fashion. To demonstrate the effectiveness of the dynamic duality

approach in solving constrained utility maximization problems, we give three

examples in Section 4. Section 5 concludes the chapter.

4.2 Market Model and Primal and Dual Prob-

lems

Let (Ω,F ,P) be a complete probability space on which is defined some RN -

valued standard Brownian motion {W (t), t ∈ [0, T ]} with T > 0 denoting a

fixed terminal time. Let {Ft, t ∈ [0, T ]} be the standard filtration induced by

92



W , where

Ft , σ{W (s), s ∈ [0, t]}
∨
N (P ), t ∈ [0, T ],

in which N (P ) denotes the collection of all P-null events in (Ω,F ,P). We denote

by F∗ the σ-algebra of Ft progressively measurable sets on Ω × [0, T ]. For any

stochastic process v : Ω× [0, T ] → Rm, m ∈ Z+, we write v ∈ F∗ to indicate v

is F∗ measurable. We introduce the following notations:

H1(0, T ;Rm) ,

{
v : Ω× [0, T ]→ Rm | v ∈ F∗, E

[∫ T

0

‖v(t)‖dt
]
<∞

}
,

H2(0, T ;Rm) ,

{
ξ : Ω× [0, T ]→ Rm | ξ ∈ F∗, E

[∫ T

0

‖ξ(t)‖2dt

]
<∞

}
,

where m ∈ Z+.

Consider a market consisting of a bank account with price {S0(t)} given by

dS0(t) = r(t)S0(t)dt, 0 ≤ t ≤ T, S0(0) = 1, (4.1)

and N stocks with prices {Sn(t)}, n = 1, · · · , N , given by

dSn(t) = Sn(t)

[
bn(t)dt+

N∑
m=1

σnm(t)dWm(t)

]
, 0 ≤ t ≤ T, Sn(0) > 0. (4.2)

Through out the chapter we assume that the interest rate {r(t)}, the apprecia-

tion rates on stocks denoted by entries of the RN -valued process {b(t)} and the

volatility process denoted by entries of the N ×N matrix {σ(t)} are uniformly

bounded {Ft}-progressively measurable scalar processes on Ω × [0, T ]. We also

assume that there exists a positive constant k such that

zᵀσ(t)σᵀ(t)z ≥ k|z|2

for all (z, ω, t) ∈ RN × Ω × [0, T ], where zᵀ is the transpose of z. According

to [86, p.90 (2.4) and (2.5)], the strong non-degeneracy condition above ensures

that matrices σ(t), σᵀ(t) are invertible and uniformly bounded.
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Consider a small investor with initial wealth x0 > 0 and a self-financing

strategy. Define the set of admissible portfolio strategies by

A :=
{
π ∈ H2(0, T ;RN) : π(t) ∈ K for t ∈ [0, T ] a.e.

}
,

where K ⊆ RN is a closed convex set with 0 ∈ K and π is a portfolio process

with each entry πn(t) defined as the fraction of the investor’s total wealth put

into the stock n for n = 1, . . . , N at time t. Given any π ∈ A, the investor’s

total wealth Xπ satisfies the SDE dXπ(t) = Xπ(t){[r(t) + πᵀ(t)σ(t)θ(t)]dt+ πᵀ(t)σ(t)dW (t)}, 0 ≤ t ≤ T,

Xπ(0) = x0,

(4.3)

where θ(t) := σ−1(t) [b(t)− r(t)1] is the market price of risk at time t and is

uniformly bounded and 1 ∈ RN has all unit entries. A pair (X, π) is admissible

if π ∈ A and X is a strong solution to the SDE (4.3) with control process π.

Remark 4.2.1. Here we define the nth entry of π(t) as the fraction of small in-

vestor’s wealth invested in the stock n at time t.Such set-up ensures the positivity

of the wealth process Xπ, but surrenders the Lipschitz property of the coefficients

in both X and π. Hence, the stochastic maximum principle developed in [13] and

[67] are not directly applicable in our case.

Let U : [0,∞] → R of class C2 be a given utility function assumed to be

strictly increasing, strictly concave and satisfies the following conditions:

U(0) , lim
x↘0

U(x) > −∞, lim
x→∞

U(x) =∞, lim
x↘0

U ′(x) =∞, and lim
x→∞

U ′(x) = 0.

Define the value of the expected utility maximization problem as

V , sup
π∈A

E [U (Xπ(T ))] .

To avoid trivialities, we assume that

V < +∞.
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The constrained utility maximization can be written as the following stochastic

optimization problem:

Find optimal π∗ ∈ A such that E
[
U
(
Xπ∗(T )

)]
= sup

π∈A
E [U (Xπ(T ))] = V.

In the rest of this section, we formulate the dual problem following the approach

in [55]. Given any continuous {Ft} semimartingale process X, we write X ∈

R×H1(0, T ;R)×H2(0, T ;RN) if

X(t) = X0 +

∫ T

0

Ẋ(s)ds+

∫ T

0

ΛᵀX(s)dW (s),

where (X0, Ẋ,ΛX) ∈ R×H1(0, T ;R)×H2(0, T ;RN).

Define the following sets:

U(X) ,
{
π ∈ A|Ẋ(t) = X(t) [r(t) + πᵀ(t)σ(t)θ(t)] and Λx(t) = X(t)σᵀ(t)π(t) a.e.

}
,

B ,
{
X ∈ R×H1(0, T ;R)×H2(0, T ;RN)|X(0) = x0 and U(x) = ∅

}
.

Moreover, to remove the portfolio constraints, define the penalty functions:

l0(x) =

 0, if x = x0,

+∞, otherwise,
lT (x) =

 − U(x), if x ∈ (0,∞)

+∞, otherwise
(4.4)

L(t, x, v, ξ) =

 0, if x > 0, v = xr(t) + ξᵀθ(t) and x−1[σᵀ(t)]−1ξ ∈ K,

+∞, otherwise.

(4.5)

Hence, following [55, Remark 3.4], we obtain

−V = inf
X∈B

Φp(X) = Φp(X̂) for some X̂ ∈ B,

where Φp , l0(X(0)) +E [lT (X(T ))] +E
∫ T

0
L(t,X(t), Ẋ(t),ΛX(t))dt. The dual

problem is formulated in terms of the following pointwise convex conjugate trans-
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forms of the three penalty functions:

m0(y) , sup
x∈R

[xy − l0(x)] = x0y,

mT (y) , sup
x∈R

[x(−y)− lT (y)] =


Ũ(y) , sup

x>0
[U(x)− xy], if y ∈ [0,∞),

∞, otherwise.

M(t, y, s, γ) , sup
x,v∈R, ξ∈RN

{xs+ vy + ξᵀγ − L(t, x, v, ξ)}

=

 0, if s+ yr(t) + δK(−σ(t)[yθ(t) + γ]) <∞,

∞, otherwise,

where δK(·) is the support function of the set −K defined by

δK(z) , sup
π∈K
{−πᵀz}, z ∈ RN . (4.6)

Consequently, the dual objective function ΦD is given by

ΦD(Y ) , m0(Y (0)) + E [mT (Y (T ))] + E

∫ T

0

M(t, Y (t), Ẏ (t),ΛY (t))dt,

∀Y ∈ R×H1(0, T ;R)×H2(0, T ;RN). Define the set

D ,
{
v , Ω× [0, T ]→ RN |v ∈ F∗ and

∫ T

0

[
δK(v(t)) + ‖v(t)‖2

]
dt <∞ a.s.

}
.

Given (y, v) ∈ (0,∞) × D, the corresponding state process Y (y,v) satisfies the

SDE dY (y,v)(t) = −Y (y,v)(t)
{

[r(t) + δK(v(t))]dt+ [θ(t) + σ−1(t)v(t)]
ᵀ
dW (t)

}
, 0 ≤ t ≤ T,

Y (y,v)(0) = y,

(4.7)

The optimal value of the dual function is given by

Ṽ , inf
(y,v)∈(0,∞)×D

{
x0y + E

[
Ũ(Y (y,v)(T ))

]}
.

The dual problem can be written as the following stochastic optimization prob-

lem:

Find the optimal (y∗, v∗) ∈ (0,∞)×D such that Ṽ = x0y
∗+E

[
Ũ(Y (y∗,v∗)(T ))

]
.
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The duality relation follows from [55, Corollary 4.12]. In this chapter, instead of

applying the convex duality method of [9], we use the machinery of stochastic

maximum principle and BSDEs to derive the necessary and sufficient conditions

of the primal and dual problems separately. After establishing the optimal con-

ditions as two systems of FBSDEs, we explicitly characterise the primal optimal

solution as functions of the adjoint process coming from the dual FBSDEs in a

dynamic fashion and vice versa.

4.3 Main Results

In this section, we derive the necessary and sufficient optimality conditions for

the primal and dual problems and show that the connection between the optimal

solutions through their corresponding FBSDEs.

Given an admissible control π ∈ A and solution Xπ to the SDE (4.3), the

associated adjoint equation in the unknown processes p1 ∈ H2(0, T ;R) and q1 ∈

H2(0, T ;RN) is the following BSDE:
dp1(t) = −{[r(t) + πᵀ(t)σ(t)θ(t)] p1(t) + qᵀ1(t)σᵀ(t)π(t)} dt+ qᵀ1(t)dW (t),

p1(T ) = −U ′(Xπ(T )).

(4.8)

Assumption 4.3.1. The utility function U satisfies the following conditions

(i) x→ xU ′(x) is non-decreasing on (0,∞).

(ii) There exists γ ∈ (1,∞) and β ∈ (0, 1) such that βU ′(x) ≥ U ′(γx) for all

x ∈ (0,∞).

Moreover, we assume that for ∀π ∈ A and corresponding Xπ satisfying the SDE

(4.3), E[|U(Xπ(T ))|] <∞ and E
[
(U ′(Xπ(T ))Xπ(T ))2] <∞.
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Remark 4.3.2. The above assumption corresponds to Remark 3.4.4 in [47].

Firstly, under Assumption 4.3.1 (i),

(i’) For a utility function U of class C2(0,∞) (which is true in our set-up),

the Arrow-Pratt index of relative risk aversion R(x) = −xU ′′(x)
U ′(x)

does not

exceed 1.

Moreover, set y = U ′(x) and we have xU ′(x) = yI(y) = −yŨ ′(y). Hence, we

conclude:

(ii’) z → Ũ(ez) is convex in R when Ũ is the convex dual of U .

Finally, replacing x by −Ũ ′(y), we claim that Assumption 4.3.1 (ii) is equivalent

to Ũ ′(βy) ≥ γŨ ′(y) for ∀y ∈ (0,∞) and some β ∈ (0, 1), γ ∈ (1,∞). Iterating

the above inequality we obtain

(iii’) ∀β ∈ (0, 1) ∃γ ∈ (1,∞) s.t Ũ ′(βy) ≥ γŨ ′(y) for ∀y ∈ (0,∞).

Lemma 4.3.3. Let π̂ ∈ A be an optimal control to the primal problem with

corresponding wealth process X π̂ satisfying the SDE (4.3). The there exists a

solution to the adjoint BSDE (4.8).

Proof. The process defined as

α(t) , E
[
−X π̂(T )U ′(X π̂(T )

∣∣Ft] , t ∈ [0, T ] (4.9)

is square integrable. In addition, it is the unique solution of the BSDE

α(t) = −X π̂(T )U ′(X π̂(T ))−
∫ T

t

βᵀ(t)dW (t), t ∈ [0, T ],

where β is a square integrable process with values in RN . Applying Ito’s lemma

to α(t)
Xπ̂(t)

, we have

d
α(t)

X π̂(t)
=
β(t)

X π̂(t)
dW (t)− α(t)

X π̂(t)

{
[r(t) + π̂ᵀ(t)σ(t)θ(t)]dt+ π̂ᵀ(t)σ(t)dW (t) + |πᵀ(t)σ(t)|2dt

}
− π̂ᵀ(t)σ(t)β(t)

X π̂(t)
dt

= −{[r(t) + π̂ᵀ(t)σ(t)θ(t)]p̂1(t) + q̂ᵀ1(t)σ(t)π̂(t)} dt+ q̂ᵀ1(t)dW (t),
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where we define

p̂1(t) ,
α(t)

X π̂(t)
and q̂1(t) , − β(t)

X π̂(t)
− α(t)σᵀ(t)π̂(t)

X π̂(t)
. (4.10)

Hence, we conclude that (p̂1, q̂1) solves the adjoint BSDE (4.8).

We now state the necessary condition for the optimality of primal problem.

Theorem 4.3.4. (Necessary condition for the primal problem) Let π̂ ∈ A be

the optimal control of the primal problem with corresponding wealth process X π̂.

Then there exists a solution (X π̂, p̂1, q̂1) to the following FBSDE:

dX π̂(t) = X π̂(t){[r(t) + π̂ᵀ(t)σ(t)θ(t)]dt+ π̂ᵀ(t)σ(t)dW (t)},

X π̂(0) = x0,

dp1(t) = −{[r(t) + π̂ᵀ(t)σ(t)θ(t)] p1(t) + qᵀ1(t)σᵀ(t)π̂(t)} dt+ qᵀ1(t)dW (t),

p1(T ) = −U ′(X π̂(T )).

(4.11)

Moreover, let NK(x) be the normal cone to the closed convex set K at x ∈ K,

defined as

NK(x) ,
{
y ∈ RN : ∀x∗ ∈ K, yᵀ(x∗ − x) ≤ 0

}
.

Then the following condition hold

−X π̂(t)σ(t) [p̂1(t)θ(t) + q̂1(t)] ∈ NK(π̂(t)) for ∀t ∈ [0, T ], P− a.s. (4.12)

Proof. Let π̃ ∈ A be an admissible control and ρ , π̃ − π̂. Let τn , T ∧

inf
{
t ≥ 0,

∫ t
0
‖ρ(s)σ(s)‖2ds ≥ n or

∫ t
0
‖ρᵀ(s)σ(s)σᵀ(s)π̂(s)‖2ds ≥ n

}
. Hence,

limn→∞ τn = T almost surely. Define ρn(t) , ρ(t)1{t≤τn}. Define the function

φn(ε) , U
(
X π̂+ερn(T )

)
where ε ∈ [0, 1]. Set G(x) , U(x0e

x) and taking deriva-

tives, we have

G′(x) = U ′(x0e
x)x0e

x ≥ 0,

G′′(x) = x0e
x (U ′(x0e

x) + U ′(x0e
x)x0e

x) ≥ 0,
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by Assumption 4.3.1. Differentiating φ on (0, 1), we have

φ′n(ε) =G′(·)
[ ∫ T

0

(ρᵀn(t)σ(t)θ(t)− ρᵀn(t)σᵀ(t)σ(t) (π̂(t) + ερn(t))) dt

+

∫ T

0

ρᵀn(t)σ(t)dW (t)

]
.

φ′′n(ε) =G′′(·)
[ ∫ T

0

(ρᵀn(t)σ(t)θ(t)− ρᵀn(t)σᵀ(t)σ(t) (π̂(t) + ερn(t))) dt

+

∫ T

0

ρᵀn(t)σ(t)dW (t)

]2

−G′(·)
[∫ T

0

ρᵀn(t)σᵀ(t)σ(t)ρn(t)dt

]
≥0.

Hence we conclude that the function Φn(ε) , φn(ε)−φ(0)
ε

is a decreasing function

and we have

lim
ε→0

Φn(ε) = U ′(X π̂(T ))X π̂(T )Hρ
n(T ), (4.13)

where Hρ
n(t) ,

∫ t
0

(ρᵀn(s)σ(s)θ(s)− ρᵀn(s)σᵀ(s)σ(s)π̂(s)) ds+
∫ t

0
ρᵀn(s)σ(s)dW (s).

Moreover, we obtain

E
[
|U ′(X π̂(T ))X π̂(T )Hρ

n(T )|
]
≤ E

[(
U ′(X π̂(T ))X π̂(T )

)2
] 1

2
E
[
Hρ
n(T )2

] 1
2 <∞.

Note that for ∀ε ∈ [0, 1],Φn(ε) ≥ Φn(1) = U(X π̂+ρn(T )) − U(X π̂(T )) with

E [Φn(1)] < ∞. Therefore the sequence Φn(ε) is bounded from below. By

Monotonic Convergence Theorem, we have

lim
ε→0

E
[
U(X π̂+ερn(T ))

]
− E

[
U(X π̂(T ))

]
ε

= E
[
U ′(X π̂(T ))X π̂(T )Hρ

n(T )
]
.

In addition, since π̂ is optimal, we conclude

E
[
U ′(X π̂(T ))X π̂(T )Hρ

n(T )
]
≤ 0. (4.14)

To this end, let (α, β) be as defined in Lemma 4.3.3 and (p̂2), q̂2) be the adjoint
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process corresponding to π̂. Applying Ito’s lemma to −α(t)Hρ
n(t), we have

−dα(t)Hρ
n(t) =βᵀ(t)Hρ(t)dW (t)− α(t) (ρᵀn(t)σ(t)θ(t)− ρᵀn(t)σ(t)σᵀ(t)π̂(t)) dt

− α(t)ρᵀn(t)σ(t)dW (t) + ρᵀn(t)σ(t)β(t)dt

=
[
−p̂1(t)X π̂(t)ρᵀn(t)σ(t)

(
θ(t)− σᵀ(t)π̂(t)

)
−ρᵀn(t)σ(t)

(
X π̂(t)q̂1(t) +X π̂(t)p̂1(t)σᵀ(t)π̂(t)

)]
dt

+ [βᵀ(t)Hρ
n(t)− α(t)ρᵀn(t)σ(t)] dW (t).

Rearranging the above equation, we obtain

−dα(t)Hρ
n(t) = −X π̂(t)ρᵀn(t)σ(t)

(
p̂1(t)θ(t)+q̂1(t)

)
dt+[βᵀ(t)Hρ

n(t)− α(t)ρᵀn(t)σ(t)] dW (t).

(4.15)

Next, we prove that the local martingale
∫ t

0
βᵀ(s)Hρ(s)−α(s)ρᵀ(s)σ(s)dW (s) is

indeed a true martingale.

E

[
sup
t∈[0,T ]

|Hρ
n(t)|2

]

=E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

(ρᵀn(s)σ(s)θ(s)− ρᵀn(s)σ(s)σᵀ(s)π̂(s)) ds+

∫ t

0

ρᵀn(s)σ(s)dW (s)

∣∣∣∣2
]

≤C

{
E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

ρᵀn(s)σ(s)dW (s)

∣∣∣∣2
]

+ E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

(ρᵀn(s)σ(s)θ(s)− ρᵀn(s)σ(s)σᵀ(s)π̂(s)) ds

∣∣∣∣2
]}

≤C
{
E

[∫ T

0

|ρᵀn(s)σ(s)|2ds
]

+ E

[∫ T

0

|ρᵀn(s)σ(s)|2ds
]

+ E

[∫ T

0

|ρᵀn(s)σ(s)σᵀ(s)π̂(s)|2ds
]}

<∞,

by Burkeholder-Davis-Gundy inequality. In addition, we have

E

[∫ t

0

|α(s)ρᵀn(s)σ(s)|2ds
]
<∞.

Hence, (4.14) can be reduced to the following

E

[∫ τn

0

−X π̂(t)ρᵀn(t)σ(t)

(
p̂1(t)θ(t) + q̂1(t)

)
dt

]
≤ 0 ∀n ∈ N. (4.16)
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To this end,we define the following sets:

B , {(t, ω) ∈ [0, T ]× Ω : (πᵀ − π̂ᵀ(t))σ(t) (p̂1(t)θ(t) + q̂1(t)) < 0, for ∀π ∈ K} .

Moreover, for any π ∈ K

Bπ , {(t, ω) ∈ [0, T ]× Ω : (πᵀ − π̂ᵀ(t))σ(t) (p̂1(t)θ(t) + q̂1(t)) < 0} .

Obviously for each t ∈ [0, T ], Bπ
t ∈ Ft. Let us consider the control π̃ : [0, T ] ×

Ω→ K defined by

π̃(t, ω) ,

π, if (t, ω) ∈ Bπ

π̂(t, ω), otherwise.

Then π̃ is adapted and ∃n∗ ∈ N such that

E

[∫ τn

0

X π̃(t) (π̃ᵀ(t)− π̂ᵀ(t))σ(t) (p̂1(t)θ(t) + q̂1(t)) dt

]
< 0 ∀n > n∗,

contradicting (4.16), unless (Leb ⊗ P){Bπ} = 0 for ∀π ∈ K. Since RN is a

separable metric space, we denote {πn} to be a countable dense subset of K.

Consequently, we have B = ∪∞n=1B
πn and (Leb⊗P){B} = (Leb⊗P){∪∞n=1B

πn} ≤∑∞
n=1(Leb⊗ P){Bπn} = 0. Hence, we conclude that

−X π̂(t)σ(t) [p̂1(t)θ(t) + q̂1(t)] ∈ NK(π̂(t)) for ∀t ∈ [0, T ], P− a.s.

We now state the sufficient condition for the optimality of primal problem.

Theorem 4.3.5. (Sufficient condition for the primal problem) Let π̂ ∈ A. Then

π̂ is optimal for the primal problem if there exists a solution (X π̂, p̂1, q̂1) to the
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following FBSDE:

dX π̂(t) = X π̂(t){[r(t) + π̂ᵀ(t)σ(t)θ(t)]dt+ π̂ᵀ(t)σ(t)dW (t)},

X π̂(0) = x0,

dp1(t) = −{[r(t) + π̂ᵀ(t)σ(t)θ(t)] p1(t) + qᵀ1(t)σᵀ(t)π̂(t)} dt+ qᵀ1(t)dW (t),

p1(T ) = −U ′(X π̂(T )).

(4.17)

and satisfies

−X π̂(t)σ(t) [p̂1(t)θ(t) + q̂1(t)] ∈ NK(π̂(t)) for ∀t ∈ [0, T ], P− a.s. (4.18)

where NK(x) is the normal cone to the closed convex set K at x ∈ K, defined as

NK(x) ,
{
y ∈ RN : ∀x∗ ∈ K, yᵀ(x∗ − x) ≤ 0

}
.

Proof. Let(X π̂, π̂) be an admissible pair such that (X π̂, p̂1, q̂1) is a solution to the

FBSDE (4.17) and satisfied condition (4.18). Applying Ito’s formula, we have(
X π̂(t)−Xπ(t)

)
p̂1(t)

=

∫ t

0

(
X π̂(s)−Xπ(s)

)
{− [(r(s) + π̂ᵀ(s)σ(s)θ(s)) p̂1(s) + q̂ᵀ1(t)σᵀ(t)π(t)] dt+ q̂ᵀ1(t)dW (t)}

+

∫ t

0

p̂ᵀ1(s)

{[
X π̂(t) (r(s) + π̂ᵀ(s)σ(s)θ(s))−Xπ(s) (r(s) + πᵀ(s)σ(s)θ(s))

]
ds

+
[
X π̂(s)π̂ᵀ(s)σ(s)−X π̂(s)πᵀ(s)σ(s)

]
dW (s)

}
+

∫ t

0

[
X π̂(s)π̂ᵀ(s)σ(s)−Xπ(s)πᵀ(s)σ(s)

]
q̂1(s)ds.

Rearranging the above equation, we have(
X π̂(t)−Xπ(t)

)
p̂1(t)

=

∫ t

0

(π̂ᵀ(s)− πᵀ(s))X π̂(s)σ(s) [p̂1(s)θ(s) + q̂1(s)] ds

+

∫ t

0

[(
X π̂(s)−Xπ(s)

)
qᵀ(s) +X π̂(s) (π̂ᵀ(t)− πᵀ(t))σ(s)

]
dW (s).
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Hence, by Condition (4.18) and the definition of normal cone, taking expectation

of the above, we have

E
[(
X π̂(T )−Xπ(T )

)
p̂1(T )

]
≤ 0.

Combining with concavity of U gives us

E
[
U (Xπ(T ))− U

(
X π̂(T )

)]
≤ E

[(
Xπ(T )−X π̂(T )

)
U ′
(
X π̂(T )

)]
= E

[(
X π̂(T )−Xπ(T )

)
p̂1(T )

]
≤ 0.

Hence π̂ is indeed an optimal control.

Next we address the dual problem. To establish the existence of an optimal

solution, we impose the following condition:

Assumption 4.3.6. ([55, Condition 4.14]) For any (y, v) ∈ (0,∞)×D, we have

E
[
Ũ
(
Y (y,v)(T )

)2
]
<∞.

According to [55, Proposition 4.15], there exists some (ŷ, v̂) ∈ (0,∞)×D such

that Ṽ = x0ŷ +E
[
Ũ
(
Y (ŷ,v̂)(T )

)]
. Given admissible control (ŷ, v̂) ∈ (0,∞)×D

with the state process Y (y,v) that solves the SDE (4.7) and E
[
Ũ
(
Y (y,v)(T )

)2
]
<

∞, the associated adjoint equation for the dual problem is the following linear

BSDE in the unknown processes p2 ∈ H2(0, T ;R) and q2 ∈ H2(0, T ;RN):
dp2(t) = {[r(t) + δK(v(t))]ᵀ p2(t) + qᵀ1(t) [θ(t) + σ−1(t)v(t)]} dt+ qᵀ2(t)dW (t),

p2(T ) = −Ũ ′(Y (y,v)(T )).

(4.19)

Lemma 4.3.7. Let (y, v) ∈ (0,∞) × D and Y (y,v) be the corresponding state

process satisfying the SDE (4.7) with E
[
Ũ
(
Y (y,v)(T )

)2
]
<∞. Then the random

variable Y (y,v)(T )Ũ ′(Y (y,v)(T )) is square integrable and there exists a solution to

the adjont BSDE (4.19).
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Proof. According to Assumption 4.3.6 (i), we have E
[
Ũ
(
Y (ŷ,v̂)(T )

)2
]
< ∞.

Following similar arguments as in [47, page 290] we have that since Ũ is a

decreasing function

Ũ(η)− Ũ(∞) ≥ Ũ(η)− Ũ(
η

β
)

=

∫ η
β

η

I(d)du

≥
(
η

β
− η
)
I

(
η

β

)
≥ 1− β

βγ
ηI(η),

for 0 < η < ∞, where β ∈ (0, 1) and γ ∈ (1,∞) are as in Condition 4.3.6.

Consequently, we conclude that the random variable Y (ŷ,v̂)(T )Ũ ′(Y (ŷ,v̂)(T )) is

square integrable. To this end, define the process

φ(t) , E

[
−Y (ŷ,v̂)(T )Ũ ′(Y (ŷ,v̂)(T ))

∣∣∣∣Ft] , t ∈ [0, T ].

By the martingale representation theorem, it is the unique solution to the BSDE

φ(t) = −Y (ŷ,v̂)(T )Ũ ′(Y (ŷ,v̂)(T ))−
∫ T

t

ϕᵀ(s)dW (s),

where ϕ is a square integrable process with values in RN . Applying Ito’s formula

to φ(t)

Y (ŷ,v̂)(t)
, we have

d
φ(t)

Y (ŷ,v̂)(t)
=

{
φ(t)

Y (ŷ,v̂)(t)

[
r(t) + δK(v̂(t)) + |θ(t) + σ−1(t)v̂(t)|2

]
+

ϕ(t)

Y (ŷ,v̂)(t)
[θ(t) + σ(t)−1v̂(t)]

}
dt

+

{
φ(t)

Y (ŷ,v̂)(t)

[
θ(t) + σ(t)−1v̂(t)

]ᵀ
+

ϕᵀ(t)

Y (ŷ,v̂)(t)

}
dW (t).

Rearranging the above equation, we have

dp̂2(t) =
{

[r(t) + δK(v̂(t))]ᵀ p̂2(t) + q̂2(t)
[
θ(t) + σ(t)−1v̂(t)

]ᵀ}
dt+ q̂ᵀ2(t)dW (t),

where (p̂2, q̂2) are defined as

p̂2(t) ,
φ(t)

Y (ŷ,v̂)(t)
and q̂2(t) , p̂2(t)

[
θ(t) + σ(t)−1v̂(t)

]ᵀ
+

ϕᵀ(t)

Y (ŷ,v̂)(t)
.

Hence, we conclude that (p̂2, q̂2) solves the BSDE (4.19).
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Next, we prove the necessary and sufficient conditions of optimality of the

dual problem.

Theorem 4.3.8. (Necessary condition for optimality of the dual problem) Let

(ŷ, v̂) ∈ (0,∞)×D be the optimal control for the dual problem with corresponding

state process Y (ŷ,v̂) satisfying the SDE (4.7). Then there exists a triple process

(Y (ŷ,v̂), p̂2, q̂2) that solves the FBSDE

dY (ŷ,v̂)(t) = −Y (ŷ,v̂)(t) {[r(t) + δK(v̂(t))]dt+ [θ(t) + σ−1(t)v̂(t)]ᵀdW (t)} ,

Y (ŷ,v̂)(0) = ŷ,

dp2(t) = {[r(t) + δK(v(t))]ᵀ p2(t) + qᵀ2(t) [θ(t) + σ−1(t)v(t)]} dt+ qᵀ2(t)dW (t),

p2(T ) = −Ũ ′(Y (y,v)(T )).

(4.20)

and satisfies the following conditions
p̂2(0) = x0,

p̂2(t)−1 [σᵀ(t)]−1 q̂2(t) ∈ K,

p̂2(t)δK(v̂(t)) + q̂′2(t)σ−1(t)v̂(t) = 0, for ∀t ∈ [0, T ] P− a.s.

(4.21)

Proof. Let (ŷ, v̂) be an optimal control of the dual problem and Y (ŷ,v̂) be the

corresponding state process. Define function h(ξ) , x0ξŷ + E
[
Ũ
(
ξY (ŷ,v̂)(T )

)]
, and infξ∈(0,∞) h(ξ) = h(1). Then following the argument in [43, Lemma 11.7,

page 725] by the convexity of Ũ , the dominated convergence theorem and Lemma

4.3.7, we conclude that h(·) is continuously differentiable at ξ = 1 and the

derivative ∂h(1) = x0ŷ + E
[
Y (ŷ,v̂)(T )Ũ ′

(
Y (ŷ,v̂)(T )

)]
holds. Hence, we conclude

that

p̂2(0) = −1

ŷ
E
[
Y (ŷ,v̂)(T )Ũ ′

(
Y (ŷ,v̂)(T )

)]
= x0. (4.22)

Let (ŷ, ṽ) be an admissible control and η , ṽ − v̂. Similar to the argument in

[23, page 781-782], let the stopping time τn , T ∧ inf{t ∈ [0, T ];
∫ t

0
‖δK(η(s))‖2 +

‖θᵀ(s)σ−1(s)η(s)‖2 + ‖v̂ᵀ(s)[σ−1(s)]ᵀσ−1(s)η(s)‖2 + ‖φ(s)η(s)‖2ds ≥ n or
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∣∣∣ ∫ t0 ηᵀ(s)[σ−1(s)]ᵀdW (s)
∣∣∣ ≥ 0}. Let ηn(t) , η(t)1t≤τn . Define function φ̃n(ε) ,

Ũ
(
Y (ŷ,v̂+εηn)(T )

)
= Ũ

{
exp

[
ln
(
Y (ŷ,v̂+εηn)(T )

)]}
. According to Assumption 4.3.1,

g(z) , Ũ(ez) is a convex function that is non-increasing. Moreover, since

δK is convex, f(ε) , ln
(
Y (ŷ,v̂+εηn)(T )

)
is a concave function of ε. Hence

φ̃n(ε) = g(f(ε)) is a convex function. Consequently, Φ̃n(ε) , φ̃n(ε)−φ̃n(0)
ε

is an

increasing function. To this end we define H̃ηn
ε (t) and H̃ηn(t) as

H̃ηn
ε (t) ,

∫ t

0

δK(v̂(s) + εηn(s))− δK(v̂(s)) + εθᵀ(s)σ−1(s)ηn(s)

+ εv̂ᵀ(s)[σ−1(s)]ᵀσ−1(s)ηn(s) +
1

2
ε2ηᵀn(s)[σ−1(s)]ᵀσ−1(s)ηn(s)ds

+

∫ t

0

εηᵀn(s)[σ−1(s)]ᵀdW (s),

H̃ηn(t) ,
∫ t

0

δK(ηn(s)) + θᵀ(s)σ−1(s)ηn(s) + v̂ᵀ(s)[σ−1(s)]ᵀσ−1(s)ηn(s)ds

+

∫ t

0

ηᵀn(s)[σ−1(s)]ᵀdW (s).

Let ε ∈ (0, 1), we have

Φ̃n(ε) =
Ũ
(
Y (ŷ,v̂+εηn)(T )

)
− Ũ

(
Y (ŷ,v̂)(T )

)
ε

=
Ũ
(
Y (ŷ,v̂+εηn)(T )

)
− Ũ

(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂+εηn)(T )− Y (ŷ,v̂)(T )

Y (ŷ,v̂)(T )

ε

[
Y (ŷ,v̂+εηn)(T )

Y (ŷ,v̂)(T )
− 1

]
=
Ũ
(
Y (ŷ,v̂+εηn)(T )

)
− Ũ

(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂+εηn)(T )− Y (ŷ,v̂)(T )

Y (ŷ,v̂)(T )

ε

[
exp

(
−H̃ηn

ε (T )
)
− 1
]

≤
Ũ
(
Y (ŷ,v̂+εηn)(T )

)
− Ũ

(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂+εηn)(T )− Y (ŷ,v̂)(T )

Y (ŷ,v̂)(T )

ε{
−1 + exp

[
−ε
∫ T

0

(
δK(ηn(t)) + θᵀ(t)σ−1(t)ηn(t) + v̂ᵀ(t)[σ−1(t)]ᵀσ−1(t)ηn(t)

+
1

2
εηᵀn(t)[σ−1(t)]ᵀσ−1(t)ηn(t)

)
dt− ε

∫ T

0

ηᵀn(t)[σ−1(t)]ᵀdW (t)

]}
.

Hence, taking lim sup on both sides, we have

lim sup
ε→0

Φ̃n(ε) ≤ −Ũ ′
(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂)(T )H̃ηn(T )
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with

E

[∣∣∣∣Ũ ′ (Y (ŷ,v̂)(T )
)
Y (ŷ,v̂)(T )H̃ηn(T )

∣∣∣∣] ≤ E

[(
Ũ ′
(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂)(T )

)2
] 1

2

E
[
H̃ηn(T )2

] 1
2

<∞.

Moreover, notice that as ε ∈ (0, 1) approaches zero, the sequence(
Ũ(Y (ŷ,v̂+εηn)(T ))−Ũ(Y (ŷ,v̂)(T ))

ε

)
ε∈(0,1)

is bounded from above by |Φ̃n(1)| and E
[
|Φ̃n(1)|

]
<

∞. Consequently by the reverse fatou’s lemma, we have

0 ≤ lim sup
ε→0

E
[
Φ̃n(ε)

]
≤ E

[
lim sup
ε→0

Φ̃n(ε)

]
≤ E

[
−Ũ ′

(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂)(T )H̃ηn(T )

]
.

To this end, let (φ, ϕ) be defined as in Lemma 4.3.7 and (p̂2, q̂2) be the adjoint

process corresponding to (ŷ, v̂). Apply Ito’s lemma to φ(t)H̃η
n(t), we obtain

dφ(t)H̃ηn(t)

=− ϕᵀ(t)H̃ηn(t)dW (t) + φ(t)
(
δK(ηn(t)) + θᵀ(t)σ−1(t)ηn(t) + v̂(t)[σ−1(t)]ᵀσ−1(t)ηn(t)

)
dt

+ φ(t)ηᵀn(t)[σ−1(t)]ᵀdW (t) + ηᵀn(t)[σ−1(t)]ᵀϕ(t)dt

=Y ŷ,v̂(t)
[
δK(ηn(t))p̂2(t) + q̂2(t)σ−1(t)ηn(t))

]
dt+

[
φ(t)ηᵀn(t)[σ−1(t)]ᵀ − ϕᵀ(t)H̃ηn(t)

]
dW (t)

Following similar approach as in the proof of necessary condition for the primal

problem, it can be shown that
∫ t

0

[
φ(s)ηᵀn(s)[σ−1(s)]ᵀ − ϕᵀ(s)H̃ηn(s)

]
dW (s) is a

true martingale. Taking expectation of the above equation, we obtain

E

[∫ τn

0

Y (ŷ,v̂)(t)
[
δK(η(t))p̂2(t) + q̂2(t)σ−1(t)η(t))

]
dt

]
≥ 0. (4.23)

To this end, note that p̂2(t) = φ(t)

Y (ŷ,v̂)(t)
> 0, define the eventB , {(ω, t) : p̂2(t)−1σ(t)−1q̂2(t) 6∈ K}.

According to [47, Lemma 5.4.2 on page 207], there exists some RN valued pro-

gressively measurable process η such that ‖η(t)‖ ≤ 1 and ‖δK(η(t))‖ ≤ 1 a.e.

and

δK(η(t)) + p̂2(t)−1q̂ᵀ2(t)σ(t)−1 < 0 a.e. on B,

δK(η(t)) + p̂2(t)−1q̂ᵀ2(t)σ(t)−1 = 0 a.e. on Bc.
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Let ṽ , v̂+η. We can easily verify that ṽ is progressively measurable and square

integrable. Hence, we obtain that

E

{∫ τn

0

Y (ŷ,v̂)(t)
[
p̂2(t) (δK(η(t))) + q̂ᵀ2(t)σ(t)−1η(t)

]
dt

}
< 0,

contradicting (4.23). Hence, by the P strict positivity of Y (ỹ,ṽ)(t)p̂2(t), we con-

clude that p̂2(t)−1σ(t)−1q̂2(t) ∈ K a.e. (this argument is essentially identical to

the analysis in the proof of Proposition 4.17 in [55]). Take ṽ = 2v̂, and we have

E

{∫ τn

0

Y (ỹ,ṽ)(t)
[
p̂2(t) (δK(v̂(t))) + q̂ᵀ2(t)σ(t)−1v̂(t)

]
dt

}
≥ 0. (4.24)

Lastly, to prove the third condition, simply take ṽ = 0 and by the same analysis,

we obtain

E

{∫ τn

0

Y (ỹ,ṽ)(t)
[
p̂2(t) (δK(v̂(t))) + q̂ᵀ2(t)σ(t)−1v̂(t)

]
dt

}
≤ 0.

On the other hand, by the definition of δK , we have δK(v̂(t))+p̂2(t)−1q̂ᵀ2(t)σ−1(t)v̂(t) ≥

0 a.e. Combining with the P strict positivity of Y (ỹ,ṽ)(t)p̂2(t) gives the last con-

dition.

Theorem 4.3.9. (Sufficient conditions for optimality of the dual problem) Let

(ŷ, v̂) ∈ (0,∞)×D. Then (ŷ, v̂) is optimal for the dual problem if (Y (ŷ,v̂), p̂2, q̂2)

solves the FBSDE

dY (ŷ,v̂)(t) = −Y (ŷ,v̂)(t) {[r(t) + δK(v̂(t))]dt+ [θ(t) + σ−1(t)v̂(t)]ᵀdW (t), }

Y (ŷ,v̂)(0) = ŷ,

dp2(t) = {[r(t) + δK(v(t))]ᵀ p2(t) + qᵀ2(t) [θ(t) + σ−1(t)v(t)]} dt+ qᵀ2(t)dW (t),

p2(T ) = −Ũ ′(Y (y,v)(T )).

(4.25)

and satisfies the following conditions
p̂2(0) = x0,

p̂2(t)−1 [σᵀ(t)]−1 q̂2(t) ∈ K,

p̂2(t)δK(v̂(t)) + q̂ᵀ2(t)σ−1(t)v̂(t) = 0, for ∀t ∈ [0, T ] P− a.s.

(4.26)
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Proof. Let (ŷ, v̂) be an admissible control such that
(
Y (ŷ,v̂), p̂2, q̂2

)
solves the

FBSDE (4.25) and satisfies conditions (4.26). Let the pair (ỹ, ṽ) ∈ (0,∞) ×

D be a given admissible control such that Y (ŷ,v̂) solves the SDE (4.7) and

E
[
Ũ(Y (ỹ,ṽ)(T ))2

]
< ∞. By Lemma 4.3.7, we claim that there exists adjoint

process (p̃2, q̃2) that solves the BSDE with control (ỹ, ṽ). Applying Ito’s for-

mula, we have

(
Y (ŷ,v̂)(t)− Y (ỹ,ṽ)(t)

)
p̂2(t)

=p̂2(0)y +

∫ t

0

{
Y (ỹ,ṽ)(s) [r(s) + δK(ṽ(s))]ᵀ − Y (ŷ,v̂)(s) [r(s) + δK(v̂(s))]ᵀ

}
p̂2(s)ds

+

∫ t

0

{
Y (ỹ,ṽ)(s)[θ(s) + σ−1(s)ṽ(s)]ᵀ − Y (ŷ,v̂)(s)[θ(s) + σ−1(s)v̂(s)]ᵀ

}
p̂2(s)dW (s)

+

∫ t

0

(
Y (ŷ,v̂)(s)− Y (ỹ,ṽ)(s)

) {
[r(s) + δK(ṽ(s))]ᵀ p̂2(s) + q̂ᵀ2(s)

[
θ(s) + σ−1(s)v̂(s)

]}
ds

+

∫ t

0

(
Y (ŷ,v̂)(s)− Y (ỹ,ṽ)(s)

)
q̂ᵀ2(s)dW (s)

+

∫ t

0

{
Y (ỹ,ṽ)(s)[θ(s) + σ−1(s)ṽ(s)]ᵀ − Y (ŷ,v̂)(s)[θ(s) + σ−1(s)v̂(s)]ᵀ

}
q̂2(s)ds

=p̂2(0)y +

∫ t

0

Y (ỹ,ṽ)(s)p̂2(s)
[
δK(ṽ(s))− δK(v̂(s)) + q̂ᵀ2(s)σ−1(s) (ṽ(s)− v̂(s))

]
ds

+

∫ t

0

{
Y (ỹ,ṽ)(s)[θ(s) + σ−1(s)ṽ(s)]ᵀ − Y (ŷ,v̂)(s)[θ(s) + σ−1(s)v̂(s)]ᵀ

}
p̂2(s)dW (s)

+

∫ t

0

(
Y (ŷ,v̂)(s)− Y (ỹ,ṽ)(s)

)
q̂ᵀ2(s)dW (s).

By (4.26) and taking expectation, we have

E
[(
Y (ŷ,v̂)(T )− Y (ỹ,ṽ)(T )

)
p̂2(T )

]
≥yp̂2(0).

Consequently, by convexity of Ũ we obtain

x0ỹ + E
[
Ũ(Y (ỹ,ṽ)(T ))

]
− x0ŷ − E

[
Ũ(Y (ŷ,v̂)(T ))

]
≥ y(x0 − p̂2(0)) = 0.

Hence, we conclude that (ŷ, v̂) is indeed an optimal control of the dual problem.
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We can now state the dynamic relations of the primal portfolio and wealth

processes of the primal problem and the adjoint processes of the dual problem

and vice versa.

Theorem 4.3.10. (From dual problem to primal problem) Suppose that (ŷ, v̂)

is optimal for the dual problem. Let
(
Y (ŷ,v̂), p̂2, q̂2

)
be the associated process that

solves the FBSDE (4.20) and satisfies condition (4.21). Define

π̂(t) ,
[σᵀ(t)]−1 q̂2(t)

p̂2(t)
, t ∈ [0, T ]. (4.27)

Then π̂ is the optimal control for the primal problem with initial wealth x0. The

optimal wealth process and associated adjoint process are given by
X π̂(t) = p̂2(t),

p̂1(t) = −Y (ŷ,v̂)(t),

q̂1(t) = Y (ŷ,v̂)(t)[σ−1(t)v̂(t) + θ(t)].

(4.28)

Proof. Suppose that (ŷ, v̂) ∈ (0.∞) × D is optimal for the dual problem. By

Theorem 4.3.8, the process
(
Y (ŷ,v̂), p̂2, q̂2

)
solves the dual FBSDE (4.20) and

satisfies condition (4.21). Construct π̂ and (X π̂, p̂1, q̂1) as in (4.27) and (4.28),

respectively. Substituting back into the (4.17), we conclude that (X π̂, p̂1, q̂1)

solves the FBSDE for the primal problem. Moreover, by (4.21) it can be easily

shown that π̂ ∈ A and (4.18) holds. By condition (4.21), it can be easily shown

that π ∈ A. Moreover, we have

X π̂(t)σ(t) [p̂1(t)θ(t) + q̂1(t)]

= p̂2(t)σ(t)
{
−Y (ŷ,v̂)(t)θ(t) + Y (ŷ,v̂)(t)

[
σ−1(t)v̂(t) + θ(t)

]}
= Y (ŷ,v̂)(t)p̂2(t)v̂(t).

Combining with the third statement of (4.21) and the almost surely positivity of

Y (ŷ,v̂)p̂2, we claim that condition (4.18) holds. Consequently, by Theorem 4.3.9

we conclude that π̂ is indeed an optimal control to the primal problem.
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Theorem 4.3.11. (From primal problem to dual problem) Suppose that π̂ ∈ A

is optimal for the primal problem with initial wealth x0. Let (X π̂, p̂1, q̂1) be the

associated process that satisfies the FBSDE (4.11) and conditions (4.12). Define
ŷ , −p̂1(0),

v̂(t) , −σ(t)

[
q̂1(t)

p̂1(t)
+ θ(t)

]
, for ∀t ∈ [0, T ].

(4.29)

Then (ŷ, v̂) is an optimal control for the dual problem. The optimal dual state

process and associated adjoint process are given by
Y (ŷ,v̂)(t) = −p̂1(t),

p̂2(t) = X π̂(t),

q̂2(t) = σᵀ(t)π̂(t)X π̂(t).

(4.30)

Proof. Suppose that π̂ ∈ A is an optimal control for the primal problem. By

Theorem 4.3.4, the process (X π̂, p̂1, q̂1) solves that FBSDE (4.11) and satisfies

conditions (4.12). Define (ŷ, v̂) and (Y (ŷ,v̂), p̂2, q̂2) as in (4.29) and (4.30), respec-

tively. Substituting them back into (4.25), we obtain that (Y (ŷ,v̂), p̂2, q̂2) solves

the FBSDE for the dual problem. Moreover, by the construction in (4.29) and

(4.30), we have p̂2(0) = x0 and [σᵀ(t)]−1q̂2(t) = π̂(t)X π̂(t)−1 ∈ K. Last but not

least, substituting v̂ into (4.26), it is trivial to prove that the third statement

in (4.26) holds. Hence, by Theorem 4.3.9, we conclude that (ŷ, v̂) is indeed an

optimal control to the dual problem.

4.4 Applications

In this section, we shall use the results introduced in previous sections to address

several classical constrained utility maximization problems.
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4.4.1 Constrained Power Utility Maximization

In this subsection, we assume U is a power utility function defined by U(x) ,

1
β
xβ, x ∈ (0,∞), where β ∈ (0, 1) is a constant. In addition, we assume that

K ⊆ RN is a closed convex cone. In this case, the dual problem can be written

as

Minimize x0y + E
[
Ũ
(
Y (y,v)(T )

)]
over (y, v) ∈ (0,∞)×D, where Ũ(y) = 1−β

β
y

β
β−1 , y ∈ (0,∞). We solve the above

problem in two steps: first fix y and find the optimal control v̂(y); second find

the optimal ŷ. We can then construct the optimal solution explicitly.

Step 1: Consider the associated HJB equation: vt(s, y)− r(s)yvy(s, y) + 1
2

infv∈K̃ ‖σ−1(s)v + θ(s)‖2y2vyy(s, y) = 0

v(T, y) = 1−β
β
y

β
β−1 ,

(4.31)

for each (s, y) ∈ [t, T ] × R. The infimum term in (4.31) can be written

explicitly as v̂(s) = σ(s)proj[−θ(s)|σ−1(s)K̃]. Then the HJB equation

(4.31) becomes vt(s, y)− r(s)yvy(s, y) + 1
2
y2θ2

v(s)vyy(s, y) = 0

v(T, y) = 1−β
β
y

β
β−1 ,

where θv̂(s) = θ(s) + σ−1(s)v̂(s).

According to the Feymann-Kac formula, we have

v(t, y) = E

[
1− β
β

Y
β
β−1 (T )

]
=

1− β
β

y
β
β−1 exp

{∫ T

t

[
1

2

β

(β − 1)2
θ2
v(s)−

β

β − 1
r(s)

]
ds

}
,

where the stochastic process Y follows the geometric Brownian motion

dY (t) = −Y (t)[r(t)dt+ θv(t)dW (t)], Y (0) = y.

In particular, we have v(0, y) = y
β
β−1 exp

{∫ T
0

[
1
2

β
(β−1)2

θ2
v̂(s)−

β
β−1

r(s)
]
ds
}
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Step 2: Solving the following static optimization problem

inf
y∈R

x0y + y
β
β−1 exp

{∫ T

0

[
1

2

β

(β − 1)2
θ2
v̂(s)−

β

β − 1
r(s)

]
ds

}
,

we obtain

ŷ = xβ−1
0 exp

{
(1− β)

∫ T

0

[
β

2(β − 1)2
θ2
v(s)−

β

β − 1
r(s)

]
ds

}
. (4.32)

Consequently, solving the adjoint BSDE, we have

p̂2(t) = x0 exp

∫ t

0

[
r(s) +

(1− 2β)

2(1− β)2
θv̂(s)

2

]
ds+

1

1− β

∫ t

0

θv̂(s)dW (s), (4.33)

q̂2(t) =
θv̂(t)

1− β
p̂2(t). (4.34)

To this end, applying Theorem 4.3.10, we can construct the optimal solution to

the primal problem using the optimal solutions of the dual problem and hence

arrive at the following closed form solutions:
π̂(t) = [σ(t)ᵀ]−1 θv̂(t)

1− β
,

X π̂(t) = x0 exp

{∫ t

0

[
r(s) +

(1− 2β)

2(1− β)2
θv̂(s)

2

]
ds+

1

1− β

∫ t

0

θv̂(s)dW (s)

}
.

4.4.2 Constrained Log Utility Maximization with Ran-

dom Coefficients

In this section, we assume that U is a log utility function defined by U(x) = log x

for x > 0. The dual function of U is defined as Ũ(y) , −(1 + log y), y ≥ 0.

Assume that K ⊆ RN is a closed convex set and r, b, σ are uniformly bounded

{Ft} progressively measurable processes on Ω× [0, T ].

Step 1: We fix y and attempt to solve for the optimal control v̂(y). Note that

the dynamic programming technique is not appropriate in this case due to

the non Markovian nature of the problem. However, following the approach
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in [23, Section 11, p.790] the problem can be solved explicitly due to the

special property of the logarithmic function.

Let v ∈ D be any given admissible control and the objective function

becomes

x0y + E
[
Ũ
(
Y (y,v)(T )

)]
= x0y − 1− log y − E

[∫ T

0

r(t) + δK(v(t)) +
1

2
‖θ(t) + σ(t)v(t)‖2dt

]
.

Consequently, the dual optimization boils down to the following problem

of pointwise minimization of a convex function δK(v) + 1
2
‖θ(t) + σ(t)v‖2

over v ∈ K̃ for ∀t ∈ [0, T ]. Applying classical measurable selection theorem

(see [76] and [77]), we conclude that the process defined by

v̂(t) , arg min
v∈K̃

[
δK(v) +

1

2
‖θ(t) + σ(t)−1v‖2

]
(4.35)

is {Ft} progressively measurable and therefore is the optimal control given

y.

Step 2: Solve the following static optimization problem

inf
y∈R

x0y − 1− log y − E
[∫ T

0

r(t) + δK(v̂(t)) +
1

2
‖θ(t) + σ(t)v(t)‖2dt

]
.

We obtain ŷ = 1
x0

. Hence, the optimal state process for the dual problem

is the exponential process satisfying (4.7).

Consequently, solving the adjoint BSDE (4.19), we have

p̂2(t)Y (ŷ,v̂)(t) = E

[
−Y (ŷ,v̂)(T )Ũ

(
Y (ŷ,v̂)(T )

) ∣∣∣∣Ft] = 1. (4.36)

Hence, we have p̂2(t) = Y (ŷ,v̂)(T )−1. Applying Ito’s formula on p̂2, we have

q̂2(t) = Y (ŷ,v̂)(t)−1[θ(t) + σ(t)−1v̂(t)] for ∀t ∈ [0, T ], a.e.
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Finally, according to Theorem 4.3.10, we construct the optimal control to the

primal problem explicitly form the optimal solution of the dual problem as

π̂(t) = [σ(t)σᵀ(t)]−1 [v̂(t) + b(t)− r(t)1] for ∀t ∈ [0, T ], a.e. (4.37)

Remark 4.4.1. In the case where K is a closed convex cone, it is trivial to

see that δK(v̂(t)) = 0 for ∀t ∈ [0, T ]. Then the pointwise minimization problem

(4.35) becomes an even simpler constrained quadratic minimization problem

v̂(t) , arg min
v∈K̃

‖θ(t) + σ(t)−1v‖2, ∀t ∈ [0, T ].

Furthermore, in the case where K = RN and v̂ = 0, the optimal control (4.37)

reduces to π̂(t) = [σ(t)σᵀ(t)]−1 [b(t)− r(t)1] for ∀t ∈ [0, T ], and we recover the

unconstrained log utility maximization problem discussed in [45].

Remark 4.4.2. From the above two examples, we contrast our method to the

approach in [23, 43, 47], which rely on the introduction of a family of auxiliary

unconstrained problems formulated in auxiliary markets parametrized by money

market and stock mean return rates [23, see Section 8]. The existence of a

solution to the original problem is then equivalent to finding the fictitious market

that provides the correct optimal solution to the primal problem. On the other

hand, we explicitly write our the dual problem to the original constrained problem

only relying on elementary convex analysis results and characterize its solution

in terms of FBSDEs. The dynamic relationship between the primal and dual

FBSDEs then allows us to explicitly construct optimal solution to the primal

problem from that to the dual problem.

4.4.3 Constrained Non-HARA Utility Maximization

In this subsection, we assume U is a Non HARA utility function defined by

U(x) = 1
3
H(x)−3 +H(x)−1 +xH(x) for x > 0, where H(x) =

(
2

−1+
√

1+4x

) 1
2
. The
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dual function of U is defined as Ũ , supx>0[U(x)−xy] = 1
3
y−3 +y−1, y ∈ [0,∞).

Assume that K ⊆ RN is a closed convex cone and r, b, σ are constants. Hence,

the dual problem becomes

Minimize x0y + E

[
1

3

(
Y (y,v)(T )

)−3
+
(
Y (y,v)(T )

)−1
]

over (y, x) ∈ (0,∞)×D.

We solve the above problem in two steps: first, fix y and find the optimal control

ṽ(y); second, find the optimal ŷ. We can then construct the optimal solution

explicitly.

Step 1: Consider the associated HJB equation:
vt(s, y)− ryvy(s, y) + 1

2
infv∈K̃ ‖σ−1v + θ‖2y2vyy(s, y) = 0,

where (s, y) ∈ (0, T )× [0,∞),

v(T, y) = 1
3
y−3 + y−1,

(4.38)

for each (s, y) ∈ [t, T ]× [0,∞). Let v̂ be the minimizer of infv∈K̃ |θ+σ−1v|2

and θ̂ , θ + σ−1v̂. To this end, define w(τ, y) , v(s, y) with τ = T − s.

Consequently, w solves the following PDE:
wt(τ, y) + rywy(τ, y)− 1

2
θ̂2y2wyy(τ, y) = 0, where (τ, y) ∈ (0, T )× (0,∞),

w(0, y) = 1
3
y−3 + y−1,

(4.39)

Next, we follow the approach in [7], we solve the above PDE. Let α =

1
2

+ r

θ̂2
, a = 1√

2
θ̂, β = −a2α2, and ŵ(s, z) = e−az+βsw(t, ez) , then ŵ

solves the heat equation ŵt − a2ŵzz = 0 and has the initial condition

ŵ(0, z) = e−az
(
e−3z

3
+ e−z

)
. Using Possion’s formula to find w(s, z) and

v(s, y), we have

v(s, y) =
1

3
y−3e3r(T−s)+6θ̂2(T−s) +

1

y
er(T−s)+θ̂

2(T−s).

117



Step 2: Considering the following static optimization problem:

inf
y∈(0,∞)

x0y +
1

3
y−3e3rT+6θ̂2T +

1

y
erT+θ̂2T . (4.40)

Solving (4.40), we have

−ŷ−4e3rT+6θ̂2T − ŷ−2erT+θ̂2T + x0 = 0. (4.41)

Hence, we have ŷ = 1√
2x0

[
e(r+θ̂2)T +

√
e2(r+θ̂2)T + 4x0e3(r+2θ̂2)T

] 1
2
, and the

optimal state process for the dual problem is given by

Ŷ (t) =
1√
2x0

[
e(r+θ̂2)T +

√
e2(r+θ̂2)T + 4x0e3(r+2θ̂2)T

] 1
2

e(r− θ̂
2

2
)t+θ̂W (t).

(4.42)

Consequently, solving the adjoint BSDE, we have

p̂2(t)Ŷ (t) = E
[
Ŷ (T )−3 + Ŷ (T )−1|Ft

]
= ŷ−3e−3(r− θ̂

2

2
)T e−3θ̂W (t)e

9
2
θ̂2(T−t) + ŷ−1e−(r− θ̂

2

2
)T e−θ̂W (t)e

1
2
θ̂2(T−t)

Substituting (4.42) back into the above equation and rearranging, we have

p̂2(t) = ŷ−4e−3(r+2θ̂2)T e−rt−4θ̂2t−4θ̂W (t) + ŷ−1e−rT e−rt−2θ̂W (t) (4.43)

Applying Ito’s formula, we have

dp̂2(t) =
[
−rp̂2(t) + 4a1θ̂

2S1(t) + 2a2θ̂
2S2(t)

]
dt−

(
4a1θ̂S1(t) + 2a2θ̂S2(t)

)
dW (t),

where a1 = ŷ−4e−3(r+θ̂2)T , a2 = ŷ−1e−rT , S1(t) = e−rt−4θ̂2t−4θ̂W (t) and S2(t) =

e−rt−2θ̂W (t) for t ∈ [0, T ]. Consequently, we have

q̂2(t) = −4a1θ̂S1(t)− 2a2θ̂S2(t), t ∈ [0, T ]. (4.44)

Finally, according to Theorem 4.3.10, we can construction the optimal solution

of the primal problem explicitly from optimal solution to the dual problem as π̂(t) = [σᵀ]−1q̂2(t)p̂−1
2 (t),

X π̂(t) = −p̂2(t) = ŷ−4e−3(r+θ̂2)T e−rt−4θ̂2t−4θ̂W (t) + ŷ−1e−rT e−rt−2θ̂W (t).
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Remark 4.4.3. Suppose that after attaining ŷ and v, we try to recover the opti-

mal solution to the primal problem directly. By the duality relationship between

the primal and dual value functions [7, see Theorem 2.6], we have

u(t, x) = v(t, ŷ(x)) + vy(t, ŷ(x))ŷ(x) =
2

3

(
ŷ(x)−1e(r+θ̂2)t + 2xŷ(x)

)
.

Hence, to get (π̂, X π̂), we would need to solve the following optimization problem

on the Hamiltonian function:

π̂(t) = arg min
π∈K

[
(r(t) + π′σ(t)θ(t))ux(t, x) +

1

2
tr (σσᵀuxx(t, x))

]
.

and substituting the above back to the SDE (4.3), which appears to be highly

complicated equation to solve. However, in the approach we proposed, the optimal

adjoint processes of the dual problem can be written out explicitly as conditional

expectations of the dual state process. Consequently, the optimal solution to the

primal problem can be constructed explicitly thanks to the dynamic relationship

as stated in Theorem 4.3.10.

4.5 Conclusion

In this chapter, we study constrained utility maximization problem following

the convex duality approach. After formulating the primal and dual problems,

we construct the necessary and sufficient conditions for both the primal and

dual problems in terms of FBSDEs plus additional conditions. Such formulation

then allows us to establish an explicit connection between primal and dual op-

timal solutions in a dynamic fashion. Finally we solve three constrained utility

maximization problems using the dynamic convex duality approach we proposed

above.
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Chapter 5

Conclusions and Future Research

5.1 Conclusion

In this thesis, we study the theoretical aspect of stochastic optimal control theory

and its applications in continuous-time portfolio optimization problems.

In the first part of the thesis, we focus on the stochastic maxim principle. and

proved a weak version of the necessary and sufficient stochastic maximum prin-

ciple in a regime-switching diffusion model. Instead of insisting on the maximum

condition of the Hamiltonian, we show that the optimal control is a stationary

point of the Hamiltonian function. This statement allows us to remove the re-

quirement of the second order differentiability of the functions in the control

variable. Under certain concavity conditions on the Hamiltonian, the necessary

condition becomes sufficient. The absence of the second order adjoint equation

considerably simplifies the SMP.

In the second part of the thesis, we turned our focus to portfolio optimiza-

tion problems. We first look at a continuous-time constrained quadratic risk

minimization problem with random market coefficients. Under the convex du-

ality framework, we derive the necessary and sufficient optimality conditions

for primal and dual problems in terms of FBSDEs plus additional conditions.
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These results allows us to establish an explicit connection between primal and

dual problems in terms of their associated forward backward systems. Following

this approach, we solve both the unconstrained and cone-constrained quadratic

risk minimization problems. We recover the solutions to the extended SREs in-

troduced in the literature from the optimal solutions to the dual problem and

find the closed-form solutions to the extended SREs when the coefficients are

deterministic.

Finally, we turned our attention to constrained utility maximization prob-

lems. With the tools from convex optimization and stochastic analysis, we con-

struct the necessary and sufficient conditions for both the primal and dual prob-

lems in terms of FBSDEs and establish an explicit connection between them.

Moreover, using the dynamic convex duality approach we proposed above, we

solve three constrained utility maximization problems.

In the rest part of this chapter, we propose two interesting topics for potential

future research.

5.2 Numerical methods for stochastic optimiza-

tion

5.2.1 Introduction

Explicit solutions to stochastic control problems are rare in real world applica-

tions, especially when it comes to problems in quantitative finance where one

faces the problem of portfolio constrains, transaction costs, partial information,

etc. This has led to an important area of research on numerical methods for

stochastic optimization. One approach relies on solving directly solving the HJB

equation satisfied by the value function using finite difference or finite elements

methods. For recent results under this direction, please refer to Barles-Jakobsen
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[2] and Krylov [50] and references therein. Alternatively, a probabilistic ap-

proach has been introduced by [40]. The essential idea was to approximate

the original stochastic control problem by Markov chains on a lattice satisfying

local consistency condition. The algorithm was then developed by applying dy-

namic programming principle to a approximation. However, both of the above

approaches are limited to low dimensional problems. Finding an efficient numer-

ical scheme for high dimensional stochastic control problems remains an open

problem.

5.2.2 An FBSDE approach

In the first part of the thesis, we study the stochastic maximum principle, which

seeks to establish the connection between stochastic optimal control problems

and backward stochastic differential equations coupled with static optimality

conditions on the Hamiltonian. Suppose that the controlled state process is

given by  dX(t) = b(t,X(t), π(t))dt+ σ(t,X(t), π(t))dW (t)

X(0) = x

where the coefficients b, σ are Ft measurable and Lipschitz in x and π. We seek

to maximize the gain functional defined by

J(π) = E

[∫ T

0

f(t,X(t), π(t))dt+ g(X(T ))

]
,

where f and g are Ft and FT measurable, respectively. Define the Hamiltonian

function H : Ω× [0, T ]× Rn ×K × Rn × Rn×m → R as

H(t, x, π, p, q) , b(t, x, π)p+ tr(σᵀ(t, x, π)q) + f(t, x, π).

The sufficient stochastic maximum principle states that

122



Theorem 5.2.1. (Theorem 6.4.6 of [69]) Assume that g is concave in x. Let

(π̂, X̂) be an admissible pair and (p̂, q̂) satisfies the BSDE dp̂(t) = −Hx(t, X̂(t), π̂(t), p̂(t), q̂(t))dt+ q̂(t)dW (t)

p̂(T ) = gx(X̂(T )),

such that

H(t, X̂(t), π̂(t), p̂(t), q̂(t)) = max
π∈K
H(t, X̂(t), π, p̂(t), q̂(t)) 0 ≤ t ≤ T a.s.

and

(x, π)→ H(t, x, π, p̂(t), q̂(t)) is a concave function

for all t ∈ [0, T ]. Then π̂ is an optimal control.

Suppose that conditions of Theorem 5.2.1 are satisfied and π̂(t) = φ(X̂(t), p̂(t), q̂(t)).

Then the decoupled FBSDEs can be written as the following FBSDEs:

dX̂(t) = b̃(t, X̂(t), p̂(t), q̂(t))dt+ σ̃(t, X̂(t), p̂(t), q̂(t))dW (t)

X(0) = x

dp̂(t) = −H̃x(t, X̂(t), p̂(t), q̂(t))dt+ q̂(t)dW (t)

p̂(T ) = gx(X̂(T )),

where 
b̃(t, X̂(t), p̂(t), q̂(t)) = b(t, X̂(t), φ(X̂(t), p̂(t), q̂(t))),

σ̃(t, X̂(t), p̂(t), q̂(t)) = σ(t, X̂(t), φ(X̂(t), p̂(t), q̂(t))),

H̃(t, X̂(t), p̂(t), q̂(t)) = H(t, X̂(t), φ(X̂(t), p̂(t), q̂(t)), p̂(t), q̂(t)).

It is trivial to see that the above FBSDE is coupled since the backward compo-

nent (p̂, q̂) also appears in the forward equation as a consequence of the almost

surely optimality condition on the Hamiltonian. Hence, numerically solving the

above coupled FBSDE system gives a solution to the corresponding stochastic

control problem.
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There have been many advances in numerical methods for coupled FBSDEs.

One approach is based on the so-called four step scheme initiated in Protter-

Ma-Yong [44], which has led recent developments in Milstein-Tretyakov [65] and

Delarue-Menozzi [24]. Such methods rely on the relation to quasi-linear parabolic

PDEs and provide good convergence results for low dimensional problems. On

the other hand, recent paper of Bender-Zhang [4] propose a probabilistic ap-

proach to tackle FBSDEs directly for high dimensional problems.

5.3 Portfolio optimization under regime-switching

model

5.3.1 Introduction

In the second and third chapters of the thesis,we study constrained portfolio

optimizations under standard Brownian motion set-up. Motivated by more re-

alistic models that better reflect random market environment, regime-switching

models were introduced by Hamilton [35] to model stock returns under differ-

ent economic states. Regime-switching models allow for capturing uncertainty

coming from two sources:

(i) a standard Brownian motion that models small scale microeconomic fluc-

tuations that affects asset prices,

(ii) a finite state continuous Markov chain independent of the Brownian motion

that captures the long-term structural macroeconomic changes that affects

long-term outlooks on asset prices.

An example is a two state Markov chain where one state represents bull market

with positive outlook and another state represents bear market with generally
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negative outlooks on future asset prices. Regime-switching models a more accu-

rate representation of financial markets. However, such models are intrinsically

incomplete due to the additional source of uncertainty given by the Markov

chain.

5.3.2 Potfolio optimization with regime-switching

Some works have been done on extending the traditional portfolio optimization

problems under Brownian motion set-up to regime-switching models. In particu-

lar Zhou-Yin [95] applied stochastic LQ control to the problem of mean-variance

portfolio selection and Sotomayor-Cadenillas [78] followed dynamic program-

ming approach to tackle expected utility maximization problem. However, it is

worth noting that both works focused on unconstrained problems and relied on

the market parameters being Markov modulated (i.e. at each time the market

parameters are completely determined by the state of the Markov chain). Solv-

ing constrained portfolio optimization problem with random parameters under

regime-switching model remains an open and interesting future research area.
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Appendix A

Proof of Theorem 2.5.15

Proof. Consider the function Φ on S2([0, T ])×L2(W, [0, T ])×L2(Q, [0, T ]) map-

ping (Y, Z, S) ∈ S2([0, T ])×L2(W, [0, T ])×L2(Q, [0, T ]) to
(
Ŷ , Ẑ, Ŝ

)
= Φ(Y, Z, S)

defined by

Ŷ (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Z(s)dW (s)−
∫ T

t

S(s) • dQ(s).

Consider the square-integrable martingale

M(t) = E

[
ξ +

∫ T

0

f(s, Y (s), Z(s))ds

∣∣∣∣Ft] .
According to Theorem 2.5.13, there exists unique

(
Ẑ, Ŝ

)
∈ L2(W, [0, T ]) ×

L2(Q, [0, T ]) such that

M(t) = M(0) +

∫ t

0

Ẑ(s)dW (s) +

∫ t

0

Ŝ(s) • dQ(s).

We then define the process Ŷ (t) by

Ŷ (t) = E

[
ξ +

∫ T

t

f(s, Y (s), Z(s))ds

∣∣∣∣Ft]
= M(t)−

∫ t

0

f(s, α(s), Y (s), Z(s))ds

= M(0) +

∫ t

0

Ẑ(s)dW (s) +

∫ t

0

Ŝ(s) • dQ(s)−
∫ t

0

f(s, Y (s), Z(s))ds

= ξ +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Ẑ(s)dW (s)−
∫ T

t

Ŝ(s) • dQ(s).
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By Doob’s L2 inequality, we have

E

[
sup

0≤t≤T

∣∣∣∣∫ T

t

Ẑ(s)dW (s)

∣∣∣∣] ≤ 4E

[∫ T

0

|Ẑ(s)|2ds
]
<∞,

E

[
sup

0≤t≤T

∣∣∣∣∫ T

t

Ŝ(s) • dQ(s)

∣∣∣∣] ≤ 4E

[
n∑
l=1

d∑
i,j=1

∫ T

0

|Ŝ(l)
ij (s)|2d[Qij](s)

]
<∞.

Under the assumptions on (ξ, f), we conclude that Ŷ ∈ S2([0, T ]). Hence Φ is

a well defined function from S2([0, T ])× L2(W, [0, T ])× L2(Q, [0, T ]) into itself.

Next, we show that (Ŷ , Ẑ, Ŝ) is a solution to the regime switching BSDE (2.39)

if and only if it is a fixed point of Φ.

Let (U, V,Γ), (U ′, V ′,Γ′) ∈ S2([0, T ]) × L2(W, [0, T ]) × L2(Q, [0, T ]). Apply

function Φ and obtain (Y, Z, S) = Φ(U, V,Γ), (Y ′, Z ′, S ′) = Φ(U ′, V ′,Γ′). Set

(Ū , V̄ , Γ̄) = (U − U ′, V − V ′,Γ − Γ′), (Ȳ , Z̄, S̄) = (Y − Y ′, Z − Z ′, S − S ′) and

f̄(t) = f(t, U(t), V (t)) − f(t, U ′(t), V ′(t)). Take β > 0 to be chosen later and

apply Ito’s formula to eβs|Ȳ |2 on [0, T ],

|Ȳ (0)|2 = −
∫ T

0

eβt
(
β|Ȳ (t)|2 − 2Ȳ (t)ᵀf̄(t)

)
dt−

∫ T

0

eβt|Z̄(t)|2dt

−
∫ T

0

eβt
n∑
l=1

d∑
i,j=1

|S̄(l)
ij |2d [Qij] (t)− 2

∫ T

0

eβtȲ (t)ᵀZ̄(t)dW (t)

−2

∫ T

0

eβt
n∑
l=1

d∑
i,j=1

Ȳ (l)(t)S̄
(l)
ij (t)dQij(t).

(A.1)

Observe that, according to Young’s inequality

E

[(∫ T

0

e2βt|Ȳ (t)|2|Z̄(t)|2dt
) 1

2

]
≤ eβT

2
E

[
sup

0≤t≤T
|Ȳ (t)|2 +

∫ T

0

|Z̄(t)|dt
]
<∞,

E

[(∫ T

0

e2βt|Ȳ (l)(t)|2|S̄(l)
ij (t)|2d [Qij] (t)

) 1
2

]

≤ eβT

2
E

[
sup

0≤t≤T
|Ȳ (l)(t)|2 +

∫ T

0

|S̄(l)
ij (t)|2d [Qij] (t)

]
<∞.

Hence
∫ t

0
eβsȲ (s)ᵀZ̄(s)dW (s) and

∫ t
0
eβs
∑n

l=1

∑d
i,j=1 Ȳ

(l)(s)S̄
(l)
ij (s)dQij(s) are true

martingales by the Burkholder-Davis-Gundy inequality. Taking expectation in

127



(A.1), we get

E|Ȳ (0)|2 + E

{∫ T

0

eβt
[ (
β|Ȳ (t)|2 + |Z̄(t)|2

)
dt+

n∑
l=1

d∑
i,j=1

|S̄(l)
ij (t)|2d [Qij] (t)

]}
= 2E

[∫ T

0

eβtȲ (t)ᵀf̄(t)dt

]
≤ 2CfE

[∫ T

0

eβt|Ȳ (t)|
(
|Ū(t)|+ |V̄ (t)|

)
dt

]
≤ 4C2

fE

[ ∫ T

0

eβt|Ȳ (t)|2dt
]

+
1

2
E

[ ∫ T

0

eβt
(
|Ū(t)|2 + |V̄ (t)|2

)
dt

]
.

(A.2)

Take β = 1 + 4C2
f and substitute into (A.2), we have

E

[ ∫ T

0

eβt
(
|Ȳ (t)|2 + |Z̄(t)|2

)
dt+

∫ T

0

eβt
n∑
l=1

d∑
i,j=1

|S̄(l)
ij (t)|2d[Qij](t)

]

≤ 1

2
E

[ ∫ T

0

eβt
(
|Ū(t)|2 + |V̄ (t)|2

)
dt

]
≤ 1

2
E

[ ∫ T

0

eβt
(
|Ū(t)|2 + |V̄ (t)|2

)
dt

]
+

1

2
E

[ ∫ T

0

eβt
n∑
l=1

d∑
i,j=1

|Γ̄(l)
ij (t)|2d[Qij](t)

]
.

Notice that L2(W, [0, T ]) and L2(Q, [0, T ]) are Hilbert spaces and therefore the

space S2([0, T ])× L2(W, [0, T ])× L2(Q, [0, T ]) endowed with the norm

‖(Y, Z, S)‖β =

{
E

[ ∫ T

0

eβt
(
|Ȳ (t)|2 + |Z̄(t)|2

)
dt+

∫ T

0

eβt
n∑
l=1

d∑
i,j=1

|S̄(l)
ij (t)|2d[Qij](t)

]} 1
2

is a Banach space. We conclude that Φ admits a unique fixed point which is the

solution to the BSDE (2.39).
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