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Abstract

In this thesis, we investigate the zero-delay transmission of source samples over three

di↵erent types of communication channel models. First, we consider the zero-delay

transmission of a Gaussian source sample over an additive white Gaussian noise (AWGN)

channel in the presence of an additive white Gaussian (AWG) interference, which is

fully known by the transmitter. We propose three parameterized linear and non-linear

transmission schemes for this scenario, and compare the corresponding mean square

error (MSE) performances with that of a numerically optimized encoder, obtained using

the necessary optimality conditions. Next, we consider the zero-delay transmission of a

Gaussian source sample over an AWGN channel with a one-bit analog-to-digital (ADC)

front end. We study this problem under two di↵erent performance criteria, namely the

MSE distortion and the distortion outage probability (DOP), and obtain the optimal

encoder and the decoder for both criteria. As generalizations of this scenario, we consider

the performance with a K-level ADC front end as well as with multiple one-bit ADC

front ends. We derive necessary conditions for the optimal encoder and decoder, which

are then used to obtain numerically optimized encoder and decoder mappings. Finally,

we consider the transmission of a Gaussian source sample over an AWGN channel with

a one-bit ADC front end in the presence of correlated side information at the receiver.

Again, we derive the necessary optimality conditions, and using these conditions obtain

numerically optimized encoder and decoder mappings. We also consider the scenario

in which the side information is available also at the encoder, and obtain the optimal

encoder and decoder mappings. The performance of the latter scenario serves as a lower

bound on the performance of the case in which the side information is available only at

the decoder.
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Chapter 1

Introduction

1.1 Overview

Communication technology is an essential part of our modern lives. One of the chal-

lenges in designing communication systems is to enable reliable and e�cient transmission

of information bearing signals, such as an image, audio, text or a video, over a noisy

communication medium. Many practical applications require the transmission of a con-

tinuous amplitude source over a noisy channel, to be reconstructed at the destination

with some performance criteria. For example, transmission of multimedia signals over

cellular networks, wireless transmission of sensor measurements to a fusion center, or

transmission of received signals at remote radioheads to the baseband processing unit

in a cloud radio access network (CRAN).

In almost all communication systems we have today, data compression and transmission

over the channels are handled separately. This provides modularity for the practical sys-

tem design. Moreover, it is motivated by Shannon’s source-channel separation theorem,

which states that, in a point-to-point scenario, there is no loss of optimality if the source

is first compressed, independently of the channel statistics, and then, the compressed

bits are transmitted over the channel with a capacity achieving channel code [2].

During the last decades, significant amount of research have been dedicated to improve

the performance of source compression and data transmission over a noisy channel. The

tremendous progress in both research directions have enabled today’s wireless networks

that can deliver high data rate content reliably to a large number of users. However,

1
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in certain emerging applications, it is impossible to achieve the desired level of reliabil-

ity and energy e�ciency under complexity constraints, due to device limitations, and

latency constraints, imposed by the underlying applications. It is known that in those

scenarios jointly optimizing the source and channel coding may improve the end-to-end

performance. This has led to a growing research interest in JSCC in recent years.

While Shannon’s separation theorem proves the optimality of separate design of su�-

ciently long and unbounded-complexity source and channel codes, many emerging ap-

plications today require transmission of measured parameters under extreme latency

constraints. For example, state measurements in a smart grid are to be transmitted as

fast as possible to the control centre, which then has to estimate the system state and

interfere in the case of a black out. Similarly, in a body sensor network the transmission

of vital signals to the control centre has to be extremely fast as delays may lead to

significant health problems. In these examples, it is not possible for the transmitter to

wait to collect a large number of source samples in order to apply vector quantization,

or to exploit capacity-achieving channel codes with e�ciently large blocklengths. In this

thesis, we consider the other extreme of “zero-delay” transmission, that is, each source

sample is transmitted over a single use of the channel

A well-known approach to zero-delay transmission is linear encoding and decoding. Both

the complexity of encoding/ decoding, and the delay can be significantly reduced by

linearly mapping the source samples to channel inputs (linear transmission). Despite its

simplicity, linear transmission achieves the MMSE distortion in a point-to-point setting

when a Gaussian source is transmitted over a static AWGN channel and the source and

the channel are with equal bandwidth; that is, when an average of one source sample is

to be transmitted over one channel use [3]. However, linear transmission is in general

not capable of exploiting additional degrees-of-freedom available in the system, and its

optimality breaks down in many other setups.

The optimality of linear transmission is very sensitive to the matching between the

source/ channel distributions, input cost constraint, the distortion measure and the

source and channel bandwidths [4]. In the point-to-point setting, linear transmission

is an alternative for optimal SSCC, and its main advantages are simplicity and zero-

delay. Surprisingly, it has been shown that linear transmission achieves the optimal

performance in various other scenarios, such as Gaussian MAC with correlated Gaussian
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sources [5, 6], or broadcasting a common source to multiple receivers over Gaussian

channels. Specifically, for the latter scenario linear transmission is the only known

optimal transmission scheme. Moreover, in some other scenarios, such as transmission

with bandwidth mismatch [7], or broadcasting with correlated side information [8], linear

transmission is shown to improve the performance when combined with digital coding

schemes in the form of HDA transmission.

In general, the optimal zero-delay scheme is not necessarily linear. Indeed, in many other

scenarios, there is no explicit way to derive such analog mappings, nor is the optimal

performance known. In [1] and [9], Shannon and Kotelnikov utilized space-filling curves

for transmission with bandwidth compression. Later, this approach was extended to the

transmission of a Gaussian source over an AWGN channel with bandwidth compression

and expansion in the work by Fuldseth and Ramstad [10], Chung [11], Vaishampayan and

Costa [12], Ramstad [13] and Hekland et.al. [14]. For numerically optimizing the analog

mappings two approaches is usually utilized. In the first one, the analog mapping has a

structure which is defined by some parameters. The goal of the optimization is to find

the optimum values of the parameter set of the structured mapping. It is noticed that in

this approach, the performance is limited to the parameters considered for that specific

structure. In the second approach, the design of the analog scheme is based on PCCQVQ.

In this approach, a discrete form of the problem is tackled utilizing tools developed for

vector quantization [15], [16]. Recently, in [17] a novel approach for finding optimal

analog mappings has been studied. The main di↵erence between the approach used in

[17] and PCCQVQ based approaches is that in [17] the authors derive the necessary

conditions of optimality in the original analog domain without any discretization. This

in turn provides a theoretic analysis of the problem. Besides, a completely di↵erent

numerical method, which iteratively imposes the optimality conditions of the original

problem, is used to obtain NOE mapping functions.

1.2 Background

The two major results in information theory are Shannon’s source coding theorem, which

characterizes the ultimate limit of compressing a source sequence; and Shannon’s channel

coding theorem, which characterizes the maximum rate of reliable communication over
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Figure 1.1: Block diagram of a generic point-to-point communication system.

noisy channels. By using appropriate encoding and decoding techniques for both source

and channel coding we can approach these limits arbitrarily closely.

Although the information theoretic performance characterization of many communica-

tion scenarios (specially multiuser settings) remain open, there are some special cases in

which the ultimate bounds are well established, e.g., the point-to-point communications

and lossy compression of a single source. These information theoretic results are built

upon unlimited delay and complexity assumptions. Therefore, although the fundamen-

tal performance bounds for these special cases have been established, and there exists

certain practical coding techniques with high delay and complexity that can approach

these bounds, there is still a significant amount of work to do regarding the practical

implementations under certain complexity and delay constraints to achieve the optimal

performance. On the other hand, the optimal performance under complexity and delay

constraints is unknown other than some special scenarios and in the high SNR regime

[18], [19].

The block diagram of a generic point-to-point communication system is shown in Figure

1.1. It consists of 1) realizations of a random source V that need to be transmitted to the

destination, 2) an encoder, which transforms the source sequence into the channel input,

3) a noisy channel over which the encoded symbols are transmitted, and 4) a decoder that

reconstructs the original source sequence from the received noisy signals in either lossless

or lossy fashion. In general this setup is a JSCC problem in which the encoder structure

and channel input depend on the source and channel statistics. Shannon showed that

for the point-to-point setup, by carrying out source encoding/ decoding and channel

encoding/ decoding separately, we can reach the theoretical optimal bound. As a result

of Shannon’s separation theorem the transmitter and the receiver can be decomposed

into two separate components (see Figure 1.2):

• Source encoder: compresses the source sequence into bits,

• Channel encoder: operates on the compressed bit sequence, and exploits channel

coding techniques to protect these bits from channel errors over the noisy channel,
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Figure 1.2: Block diagram of the point-to-point communication system with separate
source and channel encoders and with additive noise.

• Channel decoder: operates on the received signal from the channel output and

extracts the message index,

• Source decoder: based on the channel decoded message index, reconstructs

(decompresses) the transmitted source sequence.

Throughout this thesis, we will consider a special case of the general model in Figure 1.1

in which the source sequence consists of independent samples of a Gaussian distribution,

and the channel is stationary memoryless with AWGN. In the following, we present

Shannon’s source coding, channel coding, and source-channel separation theorems.

Shannon’s source coding theorem [20]: When compressing a source sequence V m,

the goal is to represent the source sequence with the lowest possible rate, such that the

average distortion 1/m
Pm

i=1 E[d(Vi, V̂i)], d(v, v̂) : R2 ! R of the recovered sequence V̂ m

at the receiver is below a predefined value D̄. Shannon characterized the minimum rate

required to achieve an average distortion of D̄, called rate-distortion function R(D̄) as

R(D̄) , min
p(v̂|v):E[d(V,V̂ )]D̄

I(V ; V̂ ). (1.1)

Dual form of (1.1) can also be considered called the distortion rate function D̄(R), which

is the minimum average achievable distortion D̄ for a source compression rate of R; and

it is defined as below

D(R) , min
p(v̂|v):I(V ;V̂ )R

E[d(V ; V̂ )]. (1.2)

For an iid Gaussian source, we have D̄(R) = �2
v2

�2R, where �2
v is the source variance

and R is in bits per source sample.

Shannon’s channel coding theorem: Assume that we want to transmit a message

index M (uniformly distributed over the set M) over a DM noisy channel with channel

input X, channel output Y and conditional probability p(y|x). Channel encoder maps

each message M 2 M to a channel input vector Xn and the channel decoder finds an
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estimate M̂ of the transmitted message based on receiving Y n. The performance metric

is given as the probability of decoding error Pe = P (M 6= M̂). Shannon formulated

the channel coding problem as finding the maximum communication rate C , logM/n,

called the channel capacity, such that Pe can be made arbitrarily small while letting the

block length be su�ciently large [21]. He characterized the capacity C as the maximum

mutual information between the channel inputX and the channel output Y over possible

input distributions:

C , max
p(x)

I(X;Y ). (1.3)

Although some numerical algorithms are proposed in [22] to numerically evaluate (1.3),

in general it is hard to find closed form expressions for channel capacity. For the special

case of an AWGN channel under an APC of P , i.e., 1/n
Pn

i=1 E
⇥

|Xi|2
⇤

 P , the capacity

is shown to be [2]:

C(P ) =
1

2
log

✓

1 +
P

�2
n

◆

, (1.4)

where �2
n is the channel noise variance, and C is in bits per channel use.

Shannon’s source-channel separation theorem: Consider the point-to-point com-

munication system in Figure 1.2, and let C be the capacity of the DM channel and R(D)

be the rate distortion function of the DM source. Shannon showed that the necessary

and su�cient condition for communicating the DM source over the DM channel with

predefined distortion level D̄, is R(D̄)  C.

This theorem states that as long as this inequality holds, a source can be transmitted over

the channel optimally with SSCC. This is the main theoretical motivation behind the fact

that the communication systems today are designed based on SSCC. It is worth noting

that this statement holds when the code length is of infinite length, which introduces

infinite delay and complexity. However, infinite delay and complexity in practice is

impossible, and enforce the designers to use suboptimal finite length/ complexity codes.

Optimal Performance Theoretically Attainable: OPTA is obtained from eval-

uating the rate distortion function at channel capacity. By expanding the inequality

R(D)  C for a Gaussian source and an AWGN channel, OPTA in the Gaussian band-

width matching (m = n) setting can be found to be

DOPTA =
�2
v

1 + P
�2
n

. (1.5)
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In addition to infinite delay and complexity, separate coding over Gaussian channels is

also not robust against variations in the channel conditions. In many applications the

exact value of the channel SNR is not known at the transmitter. Although systems

using digital transmission can take advantages of advanced quantization, compression

and error control algorithms, since their structure is dependent on the target SNR,

their performance does not improve with increased SNR (leveling-o↵ e↵ect) and breaks

down completely when the true SNR is lower than the target SNR (threshold e↵ect).

Threshold e↵ect becomes even more drastic when these systems operate close to their

optimal performance limits.

Joint Source Channel Coding: For the reasons mentioned in the previous section,

JSCC can be an appropriate alternative to SSCC to transmit analog sources, such as

video, image, audio, over noisy channels. It has been proven in [3] that for transmitting

an iid Gaussian source over an AWGN channel, in the case of bandwidth matching,

OPTA is attainable by a direct mapping of the source symbols to the channel inputs.

That is, no coding is required, and OPTA is achieved by low complexity and delay free

transmission.

Another motivation to study JSCC is their robustness against varying conditions of the

channel compared to digital systems. To mention a few of the studies on JSCC, in [7]

using nearly robust HDA coding techniques for transmission of a Gaussian source over a

broadcast channel, the authors show that the optimal performance in terms of Shannon

limit can be approached and the threshold e↵ect can be mitigated. In [23], HDA coding

techniques are used to derive lower bounds on the distortion exponent for fading MIMO

channels when the channel state is available at the receiver. In [24], it is shown that

linear transmission is optimal when both the channel and the side information are time

varying. In [25] using HDA codes and optimal power allocation, it is shown that in the

case of bandwidth mismatching, the interference (known at the transmitter) over the

channel can be cancelled at the receiver. In the following some known JSCC schemes

are described.

1.2.1 Optimal linear encoding/ decoding

In general there is no guarantee that OPTA can be achieved by linear encoding/ de-

coding. Assume we want to send m samples of a source V through n channel uses.
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The transmitter uses a matrix T 2 Rn⇥m to encode vm and produces the channel input

signal xn. After the transmission over the AWGN channel, at the decoder, the received

vector yn is decoded by the use of a matrix R 2 Rm⇥n, and v̂n is produced as the source

estimation. We would like to minimize the MSE distortion

D̄ =
1

m

m
X

i=1

E
h

(Vi � V̂i)
2
i

, (1.6)

where

xn = Tvm, v̂m = Ryn, (1.7)

and yn = xn +wn, where wn is an n-dimensional AWGN vector with covariance matrix

�2
nIn⇥n. It is shown in [26] that for the bandwidth compression case(m > n) the optimal

matrices are in the form of

T =

p
P

�v
In⇥m, R =

�v
p
P

P + �2
n

Im⇥n, (1.8)

where In⇥m is a matrix with Ii,i = 1, i = 1, ..., n and zero otherwise. For the case of

bandwidth expansion (m < n), we have

T =

r

n

m

p
P

�v
In⇥m, R =

r

m

n

�v
p
P

P + �2
n

Im⇥n. (1.9)

In [26], it is shown that the performance of linear encoding/ decoding is very close to

OPTA for low channel SNR. However, at high SNR, it is far from the OPTA (except

bandwidth matching scenario in which BPAM is optimal). To get closer to OPTA we

have to investigate nonlinear systems.

1.2.2 Hybrid Digital Analog Systems

Digital systems su↵er from two drawbacks known as threshold e↵ect and leveling-o↵

e↵ect. The threshold e↵ect means that once the channel SNR is less than the SNR at

which the digital system has been designed, the performance of the system degrades

drastically. On the other hand, the leveling-o↵ e↵ect refers to the fact that due to the

finite precision of the quantizers in the system, once the channel SNR is higher than the

designed SNR, the performance of the system does not improve and it remains constant.

Since linear transmission does not su↵er from these two e↵ects, it can be combined with
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digital coding techniques to improve the performance of the system in case there is SNR

mismatch.

Recently, some nonlinear HDA systems have been proposed in the literature. In [27]

transmission of a uniform source sample by two channel uses (bandwidth expansion) of

an AWGN channel has been studied under the MSE distortion criterion. The encoder

quantizes the source sample and transmits the quantization index and the quantization

error. The quantizer is optimized with respect to the MSE distortion criterion. It is

shown that utilizing a uniform quantizer is nearly optimal for a uniformly distributes

source. In [28] the authors propose a scheme which is composed of two parts: digital and

analog. In the digital part, the source is quantized with a low delay source optimized

vector quantizer (SOVQ) and later the quantization indices are encoded via a high

delay channel encoder. In the analog part, the error of the quantization is mapped via a

nonlinear analog mapping and scaled. The output of the analog part and the digital part

are superimposed and transmitted over an AWGN channel. Employing this structure,

it is shown that under both bandwidth compression and expansion, robust and graceful

performance can be achieved for a wide range of channel SNR. In [29] the authors study

the transmission of two correlated Gaussian memoryless sources over a Gaussian Multiple

Access Channel (GMAC). They propose two zero-delay JSCC schemes. The first scheme

quantized the sources, such that, one of the source quantization indices are nested in

the other source quantization indices. The quantized value of each source output is

scaled to an acceptable power level and transmitted over the channel. In the second

scheme, one of the sources is mapped using a nonlinear mapping and the second source

is quantized. The output of the encoders are added (superimposed) over the channel.

It is shown that the proposed schemes are robust against channel variations and have a

constant gap with the performance upper bound in the high SNR regime. In [30] zero-

delay JSCC transmission of a Gaussian source over an AWGN channel in the presence

of a correlated Gaussian side information at the receiver is studied. It is noted that

when block coding is allowed, the corresponding source coding problem of this scenario

is known as Wyner-Ziv problem [31]. In [30], authors employ a HDA coding scheme

based on superimposing the scaled quantization of the source and linear mapping of the

quantization error. Having shown the robustness of the scheme for bandwidth matching

scenario, it is shown that application of this scheme in the bandwidth expansion scenario

performs better than the well known space-filling spiral mapping [1, 9].
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1.2.3 Power Constrained Channel Quantized Vector Quantization (PC-

CQVQ)

In [10, 15] the authors propose an algorithm in order to minimize the MSE distortion

D̄ =
1

m

m
X

i=1

E
h

|Vi � V̂i|2
i

, (1.10)

subject to an average power constraint given as

P =
1

n

n
X

i=1

E
⇥

|Xi|2
⇤

 P, (1.11)

where Xi is the channel input at time index i. Using Lagrangian method, authors in

[10, 15], consider the unconstraint optimization problem

min
f,g

D̄ + �P, (1.12)

where f, g are the encoder and decoder mappings, respectively, and � � 0 is the La-

grangian multiplier. From optimization theory [32, 33], it is well known that the optimal

solution to the problem (1.12), in general satisfies the necessary condition of optimality

for the constrained optimization problem

minimize
f,g

D̄

subject to P  P.

(1.13)

To solve the problem (1.12), the authors in [10, 15] utilize a vector quantizer followed by

a mapping from an m-dimensional source space to an n-dimensional channel space. They

consider the channel space as a finite signal set composed of K centroids in the codebook

C = {ci}K�1
i=0 . The source space is partitioned into K partitions as P = {⌦i}K�1

i=0 . The

vector quantizer maps the source samples to indices. Later each index is mapped to a

channel symbol. On the receiver side, the decoder recovers the source based on nearest

neighbour detection. The optimization of this algorithm is based on the generalized

Lloyd algorithm [34].
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Figure 1.3: Shannon’s original example of a 1 : 2 mapping [1].

1.2.4 Shannon-Kotelnikov Mapping

Unlike quantizing the source in digital systems, Shannon-Kotelnikov mapping [1, 9] is an

approach where the source is directly (source encoder and channel encoder are merged

together) mapped into the channel. In this approach, the source is represented using

a point in the source space Rm, and similarly the channel is represented by a point in

the channel space Rn. The main idea is to use the geometrical interpretation of the

communication problem. This geometrical approach first introduced by Shannon in [1],

and later in [9] Kotelnikov extended the tools for the bandwidth expansion problem

by using a similar signal mapping approach. Shannon-Kotelnikov mappings are used

either for bandwidth expansion or bandwidth compression. The former uses the redun-

dant dimension for error control and the latter represents a lossy compression. For the

case of the bandwidth matching, it is well known that linear mapping is optimal for a

memoryless source and a Gaussian channel [3].

As an example of 1 : 2 bandwidth expansion mapping, Shannon proposed the curve

shown in Figure 1.3. In this mapping, the one dimensional source is given by the line

space V (e.g., the length along the curve), which is mapped to a two dimensional channel

input (X1, X2). This approach performs better than the one that we send the source
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sample twice over the channel (repetition coding). By interchanging the source and

the channel, Shannon also suggested that the same mapping can be used for bandwidth

reduction (every source vector (V1;V2) is projected onto the nearest point on the mapping

curve, which will be represented using a one dimensional channel space, e.g., the distance

from some reference origin to the projected point on the curve).

One important question regarding Shannon-Kotelnikov mappings is that what is the

optimal geometrical structure of such mapping? One possible answer is to look at the

discrete mappings obtained from PCCQVQ and connecting the adjacent points of the

codebook. As another answer, in [13], it is shown that a good mapping should satisfy

some certain requirements: 1) The mapping curve should cover well the entire source

space to reduce overload distortion; 2) source symbols with high probability should be

mapped to low power channel symbols so that the transmission power is minimized; 3)

points in the channel space that are close to each other should be mapped to source

symbols that are also close in the source space in order to minimize the distortion when

errors occur. Furthermore, when choosing a mapping, all channel representations should

have low correlation so that no redundant information is transmitted on di↵erent channel

symbols.

1.2.5 Optimality Conditions for Analog Mappings

In [17], a new approach has been studied to dealing with the source-channel coding prob-

lems. The authors in [17] study the functional properties of the MSE distortion under

average power constraint for the zero-delay source-channel coding problem, and the prob-

lem of obtaining vector transformations that optimally map between the m-dimensional

source and n-dimensional channel space. They study the functional properties of the

point-to-point problem. In particular, it is shown that the MSE distortion for the zero-

delay source-channel coding problem is a concave functional of the source density, given

a fixed noise density, and of the noise density given a fixed source. It is also shown

that the MSE distortion is a convex functional of the channel input density. This result

guarantees that there is a unique encoding mapping function that minimizes the MSE

distortion. Using gradient-descent based optimization algorithms such as noisy channel
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relaxation (NCR) [35–37], a design algorithm has been proposed, which iteratively im-

poses the optimality conditions to obtain NOE mappings. This approach has also been

utilized in [38? , 39] for finding the NOE mapping functions.

An interesting result in [17], regarding the zero-delay source-channel coding problem

(point-to-point with infinite resolution front end) is related to the linearity conditions of

optimal mappings in terms of the source and channel densities and the channel power

constraint. It is shown that given a Gaussian source, optimal mapping are linear in the

high SNR regime regardless of the channel density. Likewise, for a Gaussian channel,

optimal mappings are linear in the low SNR regime regardless of the source density.

1.3 Thesis Overview and Summary of the Main Contribu-

tions

In this thesis, we focus on zero-delay source-channel coding techniques under three

di↵erent scenarios. This work is motivated by many recently emerging applications such

as wireless sensor networks (WSN) or Internet-of-Things (IoT), where there are many

problems which must be dealt with. For instance, since the real time communication in

such applications matters, it is not possible to utilize very long block coding techniques.

On the other hand, due to the increasing number of simultaneous users, interference is

another problem in providing qualified data at the end user. In addition to these issues,

in almost all of the contemporary applications the signals are being digitized before

being processed. Therefore, investigating the performance of di↵erent scenarios under

these circumstances are of interest. In the following, we review the topics and the main

contributions presented in the next chapters.

In Chapter 2, we consider zero-delay transmission of a Gaussian source over an AWGN

channel in the presence of an independent AWG interference signal. We study the

minimization of the MSE distortion under an average power constraint assuming that the

interference signal is known at the transmitter. Optimality of simple linear transmission

does not hold in this setting due to the presence of the known interference signal. We

propose various non-linear transmission schemes. The nonlinear schemes utilize a scalar

quantizer to produce the channel input. Based on the numerical observations, it is seen

that, in contrast to typical uniform quantization of Gaussian sources, a non-uniform
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quantizer, whose quantization intervals become smaller as we go further from zero,

improves the performance. Given that the optimal decoder is the MMSE estimator, we

derive a necessary condition for the optimality of the encoder. Using the optimality

condition, we obtain NOE mappings with the help of gradient-descent based algorithm

used in [17, 39]. Based on the numerical results, it is shown that one of the schemes

with non-uniform quantization performs closer (compared to the other schemes) to the

numerically optimized encoder while requiring significantly lower complexity.

In Chapter 3, motivated by practical constraints arising in sensor networks and Internet-

of-Things applications, we consider the zero-delay transmission of a Gaussian measure-

ment over a vector Gaussian noise channel with a low-resolution ADC front end. We

study the optimization of the encoder and the decoder under both the MSE distortion

and the DOP criteria with an average power constraint on the channel input. The mo-

tivation for considering the DOP criterion, is that, since the MSE distortion criterion is

not a good performance metric for applications involving transmission of image or speech

[2, Chapter 10], the DOP criterion could be a reasonable metric compared to the MSE

distortion criterion. We derive the optimal solutions for the case of a one-bit ADC front

end for both criteria. In particular we show that, the optimal encoder mapping tends

to a linear encoder only in the low SNR regime. Instead, antipodal digital transmission

is optimal in the high SNR regime. For the DOP criterion, we show that the optimal

encoder mapping is piecewise constant and can take only two opposite values when it is

non-zero. For both the MSE distortion and the DOP criteria, we derive necessary opti-

mality conditions for a K-level ADC front end and for multiple one-bit ADC front ends.

We later use these conditions to derive and evaluate numerically optimized solutions. To

gain insights into optimal encoding and decoding functions, extensive simulations have

been carried out.

In Chapter 4, we study the zero-delay transmission of a Gaussian source over an AWGN

channel with a one-bit ADC front end in the presence of correlated side information at

the receiver. We focus on the design of the optimal encoder and the decoder under the

two performance criteria as in Chapter 3, namely, the MSE distortion and the DOP

under an average power constraint on the channel input. For both the MSE distortion

and the DOP, we derive the conditions of optimality for the encoder and the decoder.

For the MSE distortion we observe that the NOE is periodic, and its period increases

with the correlation between the source and the receiver side information. For the DOP,
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we observe that the NOE mappings are bounded and fluctuating between positive and

negative values.

Finally in Chapter 5, we provide the conclusions from our research presented in this

thesis, and discuss about the potential research directions that can be considered in the

future.



Chapter 2

Zero-Delay Source-Channel

Coding in the Presence of

Interference Known at the

Encoder

2.1 Overview

Zero-delay transmission of a Gaussian source over an AWGN channel is considered in the

presence of an additive Gaussian interference signal. The MSE distortion is minimized

under an average power constraint assuming that the interference signal is known at the

transmitter. Optimality of simple linear transmission does not hold in this setting due to

the presence of the known interference signal. While the optimal encoder-decoder pair

remains an open problem, various non-linear transmission schemes are proposed in this

chapter. In particular, ICO and 1DL strategies, using both uniform and non-uniform

quantization of the interference signal, are studied. It is shown that, in contrast to typical

scalar quantization of Gaussian sources, a non-uniform quantizer, whose quantization

intervals become smaller as we go further from zero, improves the performance. Given

that the optimal decoder is the MMSE estimator, a necessary condition for the optimality

of the encoder is derived, and the NOE satisfying this condition is obtained. Based on the

numerical results, it is shown that 1DL with non-uniform quantization performs closer

16
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(compared to the other schemes) to the numerically optimized encoder while requiring

significantly lower complexity.

2.2 Introduction

While the spectral e�ciency of communication systems has improved significantly within

the last decade, latency remains as the bottleneck for many applications. In many emerg-

ing applications, such as those involving cyber-physical systems (CPS) or wireless sensor

networks (WSN), real-time interaction among distributed autonomous agents is crucial.

A communication link is called real-time when the communication time is lower than the

time constants of the application. Such applications impose significantly lower round-

trip latency requirements compared to what is achievable today. For example, in many

applications involving CPSs, local system measurements are reported by sensor nodes

via noisy links to other network agents. The need to have near real-time monitoring

and control of the underlying physical system imposes strict delay constraints on the

communication links. In such a scenario, utilizing long block codes for source compres-

sion or channel coding is not viable due to the stringent delay constraint. Similarly,

when tactile control of an object and hearing/ seeing its reaction through a wireless

connection is desired, a reaction latency on the order of milliseconds will be imposed on

the communication link [40]. For example, for a typical 1 m/s speed of a finger on a

touch screen, the reaction time for the screen is expected to be approximately 1ms in

order to achieve an unnoticeable displacement of 1mm between the object to be moved

and the finger [41].

We consider zero-delay transmission of system parameters over wireless channels, that

is, a single source sample needs to be transmitted over a single use of the channel.

It is well-known that zero-delay linear encoding (uncoded transmission) of a Gaussian

source over an AWGN channel does not result in any performance loss in terms of the

end-to-end MSE distortion [3]. However, this is not the case if there is bandwidth

mismatch between the source and channel [9, 14, 42], if there is correlated source side

information at the receiver [43], or if there is a peak power constraint at the transmitter

[44]. Characterization of the optimal transmission strategy is challenging in general, and

remains an open problem in most cases.
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In this chapter we consider zero-delay transmission of a Gaussian source over an AWGN

channel in the presence of an AWG interference signal causally known at the transmitter.

This is known as the dirty-tape channel. Known interference at the transmitter can

be used to model communication systems which use superposition coding to transmit

multiple data streams simultaneously [23, 25, 45, 46]. For the superposed data streams,

the codewords corresponding to lower layers act as known interference. The capacity of

the dirty-tape channel was first studied by Shannon [47], who characterized the capacity

using the so-called Shannon strategies. The channel model when the interference is

known non-causally at the transmitter is known as the dirty-paper channel. The capacity

of the dirty-paper channel was characterized by Gelfand and Pinsker in [48], and it was

later shown in [49] that, in the Gaussian setting, the capacity of the dirty-paper channel

is equal to the one without interference.

Despite Shannon’s single-letter characterization, there is no closed-form capacity expres-

sion for the dirty-tape channel even in the Gaussian setting. Willems in [50] proposed

the ICO strategy for the Gaussian dirty-tape channel. The basic idea of this scheme is

cancelling the interference by giving a structure to it. Willems showed that, it is possible

to partially cancel the interference at the receiver by quantizing it at the encoder, and

by proper power allocation between the interference quantization error and the channel

input signal, which is uniformly distributed over the quantization region. More recently,

Erez et al. [51] proposed inflated lattice strategies for the Gaussian dirty-tape channel in

[50]. They show that the rate loss of their coding scheme with respect to no interference,

which is shown to be zero in the case of dirty-paper channel [49], is not more than 0.254

bits per channel use in the asymptotic high SNR regime. On the other hand, it is shown

in [52] that the ICO scheme of Willems performs better than the inflated lattice based

coding scheme in the low SNR regime. In [53], optimal mappings based on an iterative

algorithm are proposed. Based on the numerical results in [53], it is shown that the

numerically obtained encoder performs well compared to the scheme proposed in [51].

All of the above mentioned work study the channel coding problem whereas we are

interested in zero-delay JSCC over the dirty-tape channel. Note that Shannon’s source-

channel separation theorem [2] does not apply to zero-delay JSCC problems; and hence,

we can not directly use the above channel coding results to evaluate the MSE perfor-

mance. A generalization of this problem is studied in [39], which further allows correla-

tion between the source and the interference signals, and bandwidth mismatch between
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the source and the channel. While [39] focuses on deriving a numerically optimized en-

coder and decoder pair, our goal here is to develop low-complexity joint source-channel

transmission techniques motivated by the channel coding strategies proposed in [50]

and [51]. The problem we consider is intrinsically connected to problems in stochastic

control where the controllers must operate at zero delay. A control problem, similar to

the zero-delay source channel coding problem here, is the Witsenhausen’s well known

counterexample [54] (see e.g. [55] for a comprehensive review) where a similar functional

optimization problem is studied and it is shown that nonlinear controllers can outperform

linear ones in decentralized control settings even under Gaussianity and MSE assump-

tions. Expanding upon our previous work in [56], we consider ICO and 1DL schemes

combined with nonlinear companders. While characterizing the optimal performance is

elusive for this problem, we present numerical results comparing the performance of the

proposed strategies, and provide some heuristics to improve them. In particular, we pro-

pose a counter-intuitive non-uniform quantization scheme in conjunction with the ICO

and 1DL schemes, which increases the average quantization error, and hence, the power

used for interference concentration, but leads to a lower MSE since the transmitter can

then use a compander with a larger dynamical range for the more likely interference

states.

Similarly to [39], we also characterize the necessary condition for the optimality of an

encoder mapping, and obtain a NOE using steepest descent to search for an encoder that

satisfies the derived necessary condition. While the MSE achieved by NOE outperforms

the other proposed schemes, it is demanding computationally. It is shown that non-

uniform quantization in conjunction with 1DL performs closer (compared to the other

schemes) to the NOE, while the number of parameters to be optimized for the 1DL

scheme (with non-uniform quantizer) is significantly less than NOE; and hence, it has

significantly less computational complexity. We also note that, although we considered

Gaussian distributed interference, the results obtained in this chapter can be easily

extended to any distribution of the interference.

The rest of the chapter is organized as follows: In Section 2.3 we introduce the system

model. In Section 2.4 zero-delay transmission schemes under average power constraint

are introduced. In Section 2.5, we characterize the necessary condition for the optimal

encoder, and introduce NOE. In Section 2.6, we compare all the proposed transmission

schemes numerically.
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Figure 2.1: Zero-delay transmission of a Gaussian source over an AWGN channel in
the presence of AWG interference known at the transmitter.

2.3 system model

We consider the transmission of a Gaussian source over an AWGN channel in the pres-

ence of an AWG interference signal, which is known at the transmitter. The setup is

illustrated in Figure 2.1. Without loss of generality, we assume, that the memoryless

Gaussian source sample, V , has zero mean and unit variance, i.e., V ⇠ N (0, 1). The

interference signal is independent of the source, and also follows a Gaussian distribution,

S ⇠ N (0,�2
s). The discrete memoryless channel output Y , is given by Y = X + S +W ,

where X is the channel input, S is the known Gaussian interference signal, and W is

the additive Gaussian noise, W ⇠ N (0,�2
n), independent of the source and interference

signals.

We denote the zero-delay encoding function as X = h(V, S), where h(·, ·) is assumed

to be Borel measurable, square integrable function. An average power constraint is

imposed on the channel input:

E
⇥

X2
⇤

 P, (2.1)

where the expectation is over all realizations of the source and interference signal. We

are interested in transmitting the source samples, V , over the channel under the MSE

distortion criterion. We denote the MMSE estimation function at the receiver by V̂ =

g(Y ) , E[V |Y ]. Our goal is to characterize the minimum MSE E
h

|V � V̂ |2
i

, for given

P , �2
s and �2

n values.

We note that, in our setting, due to the zero-delay constraint, causal and non-causal

knowledge of the interference are equivalent. In other words, non-causal knowledge of

the interference is useless, and the transmitter only uses the knowledge of the current

value of the interference.
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We define the functions below, which will be used throughout the chapter.

I0(m1,m2, a, b) ,
p
m1e

� m

2
2

4m1

p
⇡

b
Z

a

e�m1u2+m2udu

= Q

✓

m2 � 2bm1p
2m1

◆

�Q

✓

m2 � 2am1p
2m1

◆

, (2.2)

I1(m1,m2, a, b) ,
b
Z

a

ue�m1u2+m2udu

=
1

2m1

⇣

e�m1a2+m2a � e�m1b2+m2b
⌘

+

p
⇡m2e

m

2
2

4m1

2m1
p
m1

· I0(m1,m2, a, b), (2.3)

I2(m1,m2, a, b) ,
b
Z

a

u2e�m1u2+m2udu

=
m2

4m2
1

⇣

e�m1a2+m2a � e�m1b2+m2b
⌘

+
1

2m1

⇣

ae�m1a2+m2a � be�m1b2+m2b
⌘

(2.4)

+

p
⇡e

m

2
2

4m1

2m1
p
m1

·
✓

1 +
m2

2

2m1

◆

· I0(m1,m2, a, b), (2.5)

where Q(·) is the complementary cumulative function defined as Q(t) =
1
R

t

1p
2⇡
e�

u

2

2 du.

Since we deal with definite integrals throughout the chapter, we will avoid writing the

boundaries of the integrals explicitly when they are from �1 to 1. Also, if no limits are

specified, the summations are over all integers Z. We also define the rectangle function

R(t) as

R(t) =

8

<

:

1 �1
2  t  1

2 ,

0 otherwise.
(2.6)

2.4 Parameterized zero-delay transmission schemes

In this section we introduce five di↵erent transmission schemes for the setup introduced

in Section 2.3 with increasing complexity. Later on, in Section 2.6, we will compare and

comment on the performances of these schemes.
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2.4.1 Interference Cancellation

The simplest way to communicate in the presence of a known interference signal is to

cancel the interference. In the ICA scheme, the transmitted signal X is a simple linear

combination of the source realization V and the interference S. The transmitter decides

how much of the interference will be cancelled depending on the system parameters. We

have

X = aV + bS, (2.7)

where a and b are the coe�cients to be determined. The channel input has to satisfy

E
⇥

X2
⇤

= a2 + b2�2
s  P. (2.8)

With MMSE estimation at the receiver, the achievable average distortion is found as

DICA =
1

1 + P�b2�2
s

(b+1)2�2
s

+�2
n

. (2.9)

The optimal b value that minimizes (2.9) is given by

b⇤ = �
P + �2

s + �2
n �

p

(P � �2
s)

2 + �2
n + 2�2

n(P + �2
s)

2�2
s

. (2.10)

The optimal value for a can be obtained from (2.8) and (2.10). The ICA scheme con-

sumes part of the transmission power for interference cancellation; and thus, is expected

to perform poorly especially in the low power regime, when the interference power is

relatively high compared to the input power.

Remark 2.4.1. We note that in the high SINR regime (P � �2
s) the average achievable

distortion is DICA = 1/
⇣

1 + P��2
s

�2
n

⌘

. That is because, by rewriting b⇤ we have

b⇤ = �
P + �2

s + �2
n �

r

P 2
⇣

1� 2�2
s

P + 2�2
n

P + �4
s

+�2
n

+2�2
n

�2
s

P 2

⌘

2�2
s

(a)
' �

P + �2
s + �2

n � P
⇣

1� �2
s

P + �2
n

P

⌘

2�2
s

= �1, (2.11)
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Figure 2.2: Source clipping and mapping at the transmitter.

where (a) is due to the approximation
p
1� x ' 1� x/2 for small x. This is as though

the signal X = aV � S, (a = P � �2
s) is transmitted over the channel.

The analysis of the performance of the ICA scheme is relegated to Section 2.6. Next we

will introduce alternative non-linear transmission strategies.

2.4.2 Interference Concentration

This scheme is motivated by Willems’ ICO scheme for channel coding [50]. We combine

the interference concentration idea with JSCC of a Gaussian signal under a PPC [44].

The interference signal S is concentrated to one of the pre-determined discrete points

on the real line; that is, the interference is quantized, and the corresponding quantiza-

tion noise is cancelled, rather than cancelling the whole interference. Only the signal

corresponding to the quantization index of the interference is received at the receiver.

The transmitter superposes a companded version of the source signal such that it is

compressed into one quantization interval of the quantizer.

The signal transmitted over the channel is given by

X = T (V )� (S mod �), (2.12)

where (S mod �) 2
⇥

��
2 ,

�
2

�

corresponds to the quantization error, and is defined as

S mod � , S �Q(S), (2.13)
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. Dots are interference concentration points and dashed
lines are the decision thresholds for interference concentration at the transmitter.

where Q(S) is the nearest neighbour quantizer defined as below

Q(S) , � ·
�

S

�
+

1

2

⌫

. (2.14)

The source is clipped and mapped as in Figure 2.2 to the interval [�/2,/2] as below

T (v) =

8

>

>

>

<

>

>

>

:


2 v � �

v

2 ,


�

v

v ��
v

2  v < �
v

2 ,

�
2 v < ��

v

2 ,

(2.15)

where  = � � 2d. Notice that  + � is the variation range of the channel input X

(since T (v) and (S mod �) are varying in the intervals [�/2,/2], and [��/2,�/2]),

respectively. Parameter d can be considered as a guard interval between the source

mappings into di↵erent intervals. Parameters d,  and � are illustrated in Figure 2.3.

It can be seen from (2.12) that, in the ICO scheme, s is concentrated to one of the

quantization indices in {i� : i 2 Z}, which corresponds to a uniform quantizer with

quantization interval size of �. Power consumed by the transmitter for interference

concentration is equivalent to the average quantization noise variance for the interference

signal. While the power allocated to interference concentration, �2
Smod�, depends only

on the value of �, the power of the compander component, �2
T , depends on  and �v

parameters. �2
T and �2

Smod� are to be chosen such that the channel power constraint is

satisfied. We have

E
⇥

X2
⇤

= �2
T + �2

Smod�  P, (2.16)
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where the expectation is taken over the pdf of the channel input fX(x) = fT (t) ?

fSmod�(t), where ? denotes the convolution operation, and we have

fT (t) =
1p
2⇡↵

e�
t

2

2↵2 R

✓

t



◆

+Q

✓

�v

2

◆

·
⇣

�
⇣

t� 

2

⌘

+ �
⇣

t+


2

⌘⌘

, (2.17)

fSmod�(t) =
X

i

1p
2⇡�s

e
�
⇣

i�+tp
2�

s

⌘2

·R
✓

t

�

◆

. (2.18)

Therefore, for �2
T and �2

Smod� we have

�2
T = 2

2

4

1

�2
v

+Q

✓

�v

2

◆✓

1

2
� 2

�2
v

◆

� e�
�2
v

8

�v

p
2⇡

3

5 , (2.19)

�2
Smod� =

1p
2⇡�s

X

i

e
� (i�)2

2�2
s I2

✓

1

2�2
s

,� i�

�2
s

,��
2
,
�

2

◆

. (2.20)

Since solving (2.16) for equality with respect to d, � and �v is cumbersome, we resort

to numerical techniques to find the � and �v parameters that satisfy the average power

constraint. The received signal is given by

Y = X + S +W

= T (V )� (S mod �) + S +W

= T (V ) +Q(S) +W. (2.21)

MMSE estimation is directly applied on the received signal to reconstruct the transmit-

ted source sample:

g(y) =

RR

vfV (v)fS(s)fY |V,S(y|v, s)dvds
RR

fV (v)fS(s)fY |V,S(y|v, s)dvds

=

P

i
p(qi)

R

vfV (v)fW (y � T (v)� qi)dv

P

i
p(qi)

R

fV (v)fW (y � T (v)� qi)dv

=

P

i
p(qi) ·

 

Fy,q
i

, 

�
v

+ e�
�2

v

8p
2⇡

·
�

fW
�

y � 
2 � qi

�

� fW
�

y + 
2 � qi

��

!

P

i
p(qi) ·

⇣

Gy,q
i

, 

�
v

+Q(�v

2 ) ·
�

fW
�

y � 
2 � qi

�

+ fW
�

y + 
2 � qi

��

⌘ , (2.22)
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where qi , i ·�, i 2 Z, are the points to which the interference is concentrated when we

have s 2 !i, !i =
⇥

qi � �
2 , qi +

�
2

�

, and we have

p(qi) =

Z

!
i

fS(s)ds = I0
✓

�2
s

2
, qi,�

�

2�2
s

,
�

2�2
s

◆

(2.23)
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Finally, the corresponding average distortion is evaluated as below

D
(a)
= 1� E[V V̂ ]

= 1�
X

i

p(qi)

Z Z

vg(T (v) + qi + w)fW (w)fV (v)dwdv

= 1�
X

i

p(qi) ·
✓

e�
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v

8 ·
Z

⇣

g
⇣

2
+ w + qi
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+ w + qi
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fW (w)dw

�
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�
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v
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Z

vfV (v)g

✓



�v
v + w + qi

◆

fW (w)dwdv

!

, (2.26)

where (a) is due to the MMSE estimation.

Remark 2.4.2. In this remark, we consider a suboptimal decoding algorithm and study

its complexity with respect to the optimal MMSE estimation. For the ICO scheme

(as well as the other non-linear encoding schemes introduced later in this chapter) it

is also possible to use an alternative suboptimal decoding scheme called MAP-MMSE.

In MAP-MMSE, we first decode the interference concentration index q̂i using MAP

decoding at the receiver, and then cancel the decoded interference from the received

signal y = T (v) + qi + w. Finally MMSE estimation is applied on the remaining signal

y = T (v) + qi � q̂i + w to estimate the source sample.

For MAP decoding of the transmitted interference concentrated index qi, the term Z =

T (V ) +W is assumed as noise with pdf fZ . We define ari, ali as the decision threshold

distances out of which the incorrect decoding for qi is occurred. We have

p(qi)fZ(ari) = p(qi+1)fZ(�� ari),

p(qi�1)fZ(�� ali) = p(qi)fZ(�ali), (2.27)
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The final distortion can be written as

Dmap =
X

i

Di
map(S 2 !i)p(qi)

=
X

i

X

j

p(qi)D
ij
map(qi + Z 2 ⇣j)p(qi + Z 2 ⇣j), (2.29)

where ⇣i = [qi � ali , qi + ari) is the MAP decoder decision region for declaring qi as

output and p (qi + Z 2 ⇣j) and Dij
map(qi + Z 2 ⇣j) are obtained as

p (qi + Z 2 ⇣j) =

q
j

+a
rj

�q
i

Z

q
j

�a
lj

�q
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fZ(z)dz, (2.30)
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vfV (v)gmap (↵v + w + qi � qj) fW (w)dwdv, (2.31)

where

gmap(ynew) = E[V |ynew] =
R

vfYnew|V (ynew|v)dv
R

fYnew|V (ynew|v)dv
, (2.32)

where ynew = T (v) + w + qi � q̂j . By expanding fYnew|V (ynew|v), we have

fYnew|V (ynew|v) =
X

i

p(qi)fYnew|V,Q(ynew|v, qi)

=
X

i

X

j

p(qi)fW (ynew|v, qi, q̂ = qj)p(q̂ = qj |v, qi)
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X
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X
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p(qi)fW (ynew|v, qi, q̂ = qj) ·
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fW (w)p(q̂ = qj |v, qi, w)dw

=
1p
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·
X

i

X
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p(qi)

· e�
(ynew�v�q
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n ·

a
rj

�T (v)�q
i

Z

a
lj

�T (v)�q
i

fW (w)dw. (2.33)

This algorithm, in addition to being suboptimal, is also computationally more demand-

ing due to the increased computational complexity in the MMSE stage (2.32). Even

considering ML decoder instead of MAP decoder does not improve the computation time

significantly. This is because of the dependence of the noise with the signal produced by

MAP decoder namely ynew, which increases the complexity of computing fYnew|V (ynew|v)

in (2.33). Hence, we restrict our numerical analysis to MMSE estimation as it provides

the optimal performance in a shorter time.

Remark 2.4.3. In this remark we note that ICO scheme is very similar to what is known

as THP [57, 58] studied in the context of the ISI channel. In THP, the massage is dis-

crete (replicas of M-PAM constellation points on the real line), and what is transmitted

over the channel is the error of the interference with respect to the nearest intended

constellation point, whereas in ICO the intended massage is continuous and what is

transmitted over the channel is the error of the massage with respect to the quantized

version of the interference. Indeed, ICO can be interpreted as the JSCC version of THP

scheme.

2.4.3 Comparison of ICA and ICO in the Asymptotic Zero-Noise Regime

In order to illustrate the benefits of ICO over ICA we consider the asymptotic zero-

noise regime, i.e., we assume that �2
n ! 0. For ICA, one can see that, if P � �2

s then

the interference can be completely removed using part of the available power, and zero

distortion is achieved in the limit as the noise disappears. On the other hand, when

P < �2
s , the best achievable distortion is (�2

s � P )/�2
s (this can be easily verified from

(2.10) and (2.9)); that is, there is always residual distortion in the estimation even if

there is no noise in the system.
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On the other hand, one can show that in the asymptotic zero-noise regime, independent

of the input power constraint, zero distortion can be achieved by the ICO scheme. In

the absence of noise, since the received signal is always within the quantization region

of the interference signal, the quantization index can always be detected correctly. Once

the quantization index is known, the e↵ect of interference can be completely removed.

With MMSE estimation applied on the received noiseless signal T (V ) + Q(S), the re-

constructed source samples can be written as below

g (T (v) +Q(S)) =

8

>

>

>

>

<

>

>

>

>

:

e�
�2
v

8p
2⇡

v � �
v

2 ,

v ��
v

2  v < �
v

2 ,

� e�
�2

v

8p
2⇡

v < ��
v

2 .

(2.34)

The remaining distortion is only due to the companding of the source samples to squeeze

them into the quantization region. By letting �v go to infinity we can reconstruct the

source perfectly, and zero distortion can be achieved asymptotically. Note that, letting

�v ! 1 also means that the average input power depends only on � in the limit.

These arguments show that the ICO scheme can provide significant improvements com-

pared to ICA, particularly when the interference is strong and the noise in the system

is low. In the following, we provide other techniques based on the idea of providing a

structure to the interference. We will observe that these techniques will further improve

the performance of the ICO scheme.

2.4.4 One Dimensional Lattice

The idea of using a lattice structure for communication in the presence of known inter-

ference has been considered in [51] for the channel coding problem. Here we consider

using a similar lattice structure for JSCC. The channel input for the 1DL scheme is

given by

X = (T (V )� S) mod �, (2.35)

where T (·) is as defined in (2.15). In the 1DL scheme, the term T (v)� s is concentrated

to one of the quantization points in {i ·�}1i=�1.
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In order to satisfy the average power constraint, we need to characterize the pdf of X,

which can be obtained as follows:

fX(x) =

8

>

<

>

:

P

i
fT⇤S(i�+ x) ��

2  x < �
2 ,

0 otherwise,
(2.36)

where fT⇤S(u) is defined as
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. (2.37)

Notice that in 1DL, the channel input X is limited to [��/2,�/2). The quantization

step size, �, must be chosen such that the channel input power constraint is satisfied. We

recall here that due to the fact that finding a closed form expression for channel power

constraint with respect to � and �v is cumbersome, we resort to numerical calculations

to evaluate the value of � that satisfies the power constraint.

The received signal can be written as

Y = X + S +W

= (T (V )� S) mod �+ S +W

= � [T (V )� S � (T (V )� S) mod �] + T (V ) +W

= T (V )�Q(T (V )� S) +W. (2.38)

The numerical results for the 1DL scheme are presented in Section 2.6. Here we just

state that the 1DL scheme achieves lower MSE distortion compared to ICO, since 1DL

supports a larger � value for an equal power constraint. This is mainly due to the

bounded channel input which leads to a more e�cient use of the available power.

2.4.5 ICO with Non-Uniform Quantizer

Note that both the ICO and 1DL schemes give some shape to the interference, rather

than simply reducing its variance as in ICA. Both schemes use uniform quantization for
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this. In this section we consider using a non-uniform quantizer for the ICO scheme, and

di↵erent companders for the source sample depending on the interference signal.

In classical scalar quantization, non-uniform quantization is employed in order to reduce

the quantization noise for the more likely values of the underlying signal at the expense

of the less likely values. With such a quantizer, in our setting, we would have smaller

intervals around zero, and the interval size would increase as we go further away from the

origin. Note that, this would reduce the transmission power allocated for interference

concentration, since it achieves a lower quantization noise variance. However, this would

also mean that we have to compress the source signal even further when the interference

realization is close to zero. We observe that the final distortion benefits more from

increasing�; that is, having quantization points with larger separation. Hence, we apply

the opposite of classical non-uniform scalar quantization, and use a lower resolution

quantization for more likely values of the interference, and decrease the quantization

interval size as we go further away from zero.

As before, the interference signal is concentrated to the middle point of the quantization

interval into which it falls. Since the length of the quantization interval depends on

the realization of the interference, a di↵erent compander function will be used for each

interval. We denote by QN (·) the non-uniform quantizer with decision intervals !i

defined as

!0 ,
⇢

s : ��0

2
 s <

�0

2

�

, i = 0,

!i , {s : Bi  s < Bi +�i} , i = 1, 2, ...,

!i , {s : �Bi ��i  s < �Bi} , i = �1,�2, ..., (2.39)

and quantizations indices qNi corresponds to the middle point of each interval. We have

qNi = sgn(i) ·
✓

Bi +
�i

2

◆

, (2.40)

where sgn(·) is the sign function1, and

Bi ,

8

>

>

<

>

>

:

|i| ·�0/2, if i = {1, 0,�1},

�0
2 +

|i|�1
P

j=1
�j , otherwise.

(2.41)

1
We have sgn(x) = 1 if x > 0, �1 if x < 0, and 0 if x = 0.
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We define the function f̄S(s) as follows

f̄S(s) ,
1

fS(s)a
, (2.42)

where fS(s) is the pdf of the interference S, and a � 0 is a parameter to be optimized.

The length of the i-th quantization interval, �i, is chosen such that

2

Z

s2!0

f̄S(s)ds =

Z

s2!
i

f̄S(s)ds, i = 1, 2, . . . (2.43)

For Gaussian interference and a � 0 it can be shown that

|i| > |j| ) �i  �j ,

|i| = |j| ) �i = �j . (2.44)

At the transmitter, if S falls into the quantization interval !i, we have QN (S) = qNi .

Therefore, source V is transformed as follows

T (v, qNi ) ,

8

>

>

>

<

>

>

>

:

�
i

2 v � �
v

2 ,

�
i

�
v

v ��
v

2  v < �
v

2 ,

��
i

2 v < ��
v

2 ,

(2.45)

where we have defined T (v, qNi ) to denote the companding function, in order to highlight

its dependence on the realization of the interference quantization qNi . The transmitted

signal is generated as below

X = T (V,QN (S))� (S mod �N ), (2.46)

where (S mod �N ) denotes the quantization noise for the non-uniform scalar quantizer

with QN (·).

To satisfy the average power constraint we follow the same approach as in Section 2.4.2.

For brevity we define U , (S mod �N ). We have

E[X2] =
X

i

p
�

qNi
�

·
Z �

i

��
i

x2fX|QN

�

x|QN (S) = qNi
�

dx
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=
X

i

p
�

qNi
�

·
⇣

�2
T(V,qN

i

) + �2
U |QN (S)=qN

i

⌘

,

=
X

i

p
�

qNi
�

· �2
T(V,qN

i

) + �2
U , (2.47)

where

p
�

qNi
�

= I0
✓

�2
s

2
, qNi ,� �i

2�2
s

,
�i

2�2
s

◆

(2.48)

�2
T(V,qN

i

) = �
2
i

2

4

1

�2
v

+Q

✓

�v

2

◆✓

1

2
� 2

�2
v

◆

� e�
�2
v

8

�v

p
2⇡

3

5 . (2.49)

To evaluate �2
U in (2.47), we need the distribution of U for the non-uniform quantizer.

Since max
i

{�i} = �0, we have U 2 [��0,�0). The cdf of U can be written as

FU (u) =
X

i

FU |QN

�

u|QN (S) = qNi
�

p
�

qNi
�

, (2.50)

where FU |QN

�

u|QN = qNi
�

for di↵erent i’s can be expanded as below

FU |QN

�

u|QN (S) = qNi
�

=
1

p
�

qNi
�

Z qN
i

+u

qN
i

��
i

2

fS(s)ds, ��i

2
 u <

�i

2
. (2.51)

By di↵erentiating (2.50) with respect to u, and recalling that qN�i = �qNi and p
⇣

qN�j

⌘

=

p
⇣

qNj

⌘

, we obtain

fU (u) =
fS(u)

p(qN0 )

+
1
X

i=1

fS(�qNi + u) ·R
⇣

2u+B
i

+B
i+1

2(B
i+1�B

i

)

⌘

+ fS(qNi + u) ·R
⇣

2u�B
i

�B
i+1

2(B
i+1�B

i

)

⌘

p(qNi )
, � �0

2
 u <

�0

2
.

(2.52)

Using conventional tools in probability theory, �2
U in (2.47) can be evaluated as

�2
U =

X

i

e
�(

q

N

i

)2

2�2
s

p
2⇡�s

I2
✓

1

2�2
s

,
qNi
�2
s

,��i

2
,
�i

2

◆

. (2.53)
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The received signal for the ICO-NU scheme is given by

Y = X + S +W

= T (V,QN (S))�
�

S mod �N
�

+ S +W

= T (V,QN (S)) +QN (S) +W. (2.54)

At the receiver we use MMSE estimation as introduced in Section 2.4.2. The source

reconstruction and final distortion is obtained as follows.

gN (y) =

P

i
p(qNi ) ·

 

F
y,qN

i

,
�

j

�
v

+ e�
�2
v

8p
2⇡

·
⇣

fW (y � �
i

2 � qNi )� fW (y + �
i

2 � qNi )
⌘

!

P

i
p(qNi ) ·

✓

G
y,qN

i

,
�
j

�
v

+Q(�v

2 ) ·
⇣

fW (y � �
i

2 � qNi ) + fW (y + �
i

2 � qNi )
⌘

◆ ,

(2.55)

D = 1�
X

i

p(qNi )

ZZ

vgN (T (v, qNi ) + qNi + w)fW (w)fV (v)dwdv. (2.56)

2.4.6 1DL with Non-Uniform Quantizer

In this section we consider the 1DL scheme combined with a non-uniform quantizer

similarly to the ICO scheme in Section 2.4.5. The transmitted signal is given as below

X1DL =
�

[T (V,QN (S))� S] mod �N
�

. (2.57)

To satisfy the average power constraint we follow the same approach as in Section 2.4.2.

We have

E
⇥

X2
⇤

=
X

i

p(qNi ) ·
Z

�
i

2

��
i

2

x2fX|QN

�

x|QN (S) = qNi
�

dx. (2.58)

where

fX|QN

�

x|QN (S) = qNi
�

=

f
qN
i

c (qNi + x) + f
qN
i

c (qNi + x� sgn(x)�i), ��i

2
 x <

�i

2
for all i, (2.59)
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where f
qN
i

c (u) = fT (V,qN
i

)(v) ⇤ fS|QN

�

s|QN (S) = qNi
�

, and we have

f
qN
i

c (u) =

8

>

>

>

>

<

>

>

>

>

:

↵iI0
⇣

�i,
u
�2
s

,��
i

2 , u+ �
i

2

⌘

+
Q(�

v

2 )e
� (u+�

i

/2)2

2�2
s

p(qN
i

)
p
2⇡�

s

��i  u < 0,

↵iI0
⇣

�i,
u
�2
s

, u� �
i

2 , �i

2

⌘

+
Q(�

v

2 )e
� (u��

i

/2)2

2�2
s

p(qN
i

)
p
2⇡�

s

0  u < �i,

(2.60)

where ↵i and �i are given as

↵i =
�ve

� �2
v

u

2

2(�2
v

�

2
s

+�2
i

)

p(qNi )
q

2⇡(�2
v�

2
s +�

2
i )
, (2.61)

�i =
�2

v�
2
s +�

2
i

2�2
s�

2
i

. (2.62)

The received signal for the 1DL-NU scheme is given by

Y = X + S +W

=
�

[T (V,QN (S))� S] mod �N
�

+ S +W

= T (V,QN (S))�QN (S) +W. (2.63)

At the receiver we use MMSE estimation as introduced in Section 2.4.2. To reconstruct

the source samples at the receiver we use (2.55) and (2.56).

Remark 2.4.4. The intuition behind choosing the function in 2.42 is the following. We

know that clipping the source sample injects a distortion at the encoder side. Therefore,

given an average power constraint, the larger the �v value, the smaller the distortion

introduced by clipping. Since the interference has a Gaussian distribution, we know that

realizations of the interference around the origin are more likely than those towards the

tails of the distribution. Note that the quantization noise variance of the quantization

scheme we use, corresponds to the power spent for concentrating the interference at

the transmitter. Therefore, Uniformly quantizing the interference S, is equivalent to

assigning the power budget uniformly across realizations of the interference, whereas,

assigning larger intervals around the origin distributes the power budget non-uniformly

among interference realizations, such that, more likely interference realizations are quan-

tized with larger quantization intervals; and hence, they require more power, but allow

smaller distortion due to clipping. The heuristic interference quantization scheme used
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here can be further improved by devising a numerical technique similar to the classical

Lloyd-Max algorithm [34]. We leave the optimization of the interference quantizer for

the ICO and 1DL schemes as a future work.

2.5 Necessary Condition for Optimality and NOE Design

As stated in the Introduction, the optimal zero or low-delay joint source-channel coding

scheme is an open problem in most communication scenarios, with few exceptions [3].

A common approach for these problems in the literature [17], [15] is to formulate the

optimal encoder mapping as an unconstrained optimization problem through the La-

grangian, then to apply calculus of variations techniques to obtain a necessary condition

for the optimal mapping, and finally numerically obtain an encoder mapping, typically

using an iterative steepest descent algorithm, that satisfies this necessary condition.

Due to lack of convexity, this solution does not guarantee global optimality, and the

final solution is highly sensitive to the initial mapping. Despite these drawbacks, with

carefully chosen initial mappings, and su�ciently high-grained quantization of the con-

tinuous source and channel alphabets, these NOEs achieve the best known performance

in most scenarios.

In this section, we will follow the same approach as in [17], [39]. We briefly include the

derivations for completeness, and then, we numerically obtain the encoder that satisfies

this condition. Numerical techniques have been previously used for joint source-channel

mappings in various scenarios in [15–17, 38]. By writing the Lagrangian cost function

for this system model we have

J(h, g) = E[(V � V̂ )2] + � · E[h(V, S)2]

= 1�
ZZ

✓

Z

vg(h(v, s) + w + s)fW (w)dw � �h(v, s)2
◆

fV (v)fS(s)dvds, (2.64)

where � is the Lagrangian multiplier, and h(V, S) is the encoder mapping function. By

writing Euler-Lagrange equations [32, Section 7.5] we have

rhJ(h, g) =

✓

2�h(s, v)�
Z

vǵ(h(v, s) + w + s)fW (w)dw

◆

· fV (v)fS(s), (2.65)
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where ǵ(·) is the derivative of g(·). From calculus of variations [32], it is well-known

that for the optimal encoder mapping, (2.65) must be zero. This yields the necessary

condition for optimality as below

h(v, s) =
v

2�

Z

ǵ(h(v, s) + w + s)fW (w)dw. (2.66)

The optimal decoder is the MMSE estimator, and the corresponding distortion is ob-

tained as below

D = 1�
ZZZ

vg(h(v, s) + s+ w)fS(s)fV (v)fW (w)dvdsdw. (2.67)

Remark 2.5.1. We note here that the uncoded transmission satisfies the necessary con-

dition in (2.66). Considering the transmitted signal as h(v, s) = av, where a =
p
P ,

the MMSE estimation can be simplified to g(y) = cy, where c = a
a2+�2

s

+�2
n

and y is the

received signal. Substituting h(·), g(·) in (2.66) we have

av =
cv

2�

Z

fW (w)dw ) � =
c

2a
. (2.68)

Substituting � = c
2a in (2.65) makes the gradient rhJ(h, g) zero. The final resulting

distortion in this case is D = 1/
⇣

1 + P
�2
s

+�2
n

⌘

. It is also noticed that for the ICA scheme,

since � = a
c +

bs
c is not a constant, that does not satisfy (2.66).

2.5.1 Numerically Optimized Encoder

Since the optimality condition for the encoder derived above does not have a closed

form expression, we use the iterative steepest decent algorithm to obtain the encoder

numerically. During the iterations the encoder is updated as below

hi+1(v, s) = hi(v, s)� µrh(h, g), (2.69)

where i is the iteration index, µ is the step size, and rh(h, g) is obtained as in (2.65). At

each iteration the initial cost (2.64) is decreasing. Iterations are performed untilrh(h, g)

reaches a predefined threshold value. In order to calculate the integrals in (2.65) at each

iteration we use discretization. It is worth mentioning that, since discretization injects
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Figure 2.4: Encoder mapping h(v,s) for NOE (�2
s

= 4, �2
n

= 1).

some residual error into the algorithm, it is essential to increase the accuracy in order

to make the residual distortion (due to discretization) negligible compared to the final

achievable distortion. Hence, the simulation takes considerably longer time to converge

at high SNR values.

In our simulations we start from the low power constraints. The algorithm is initiated

with a vector whose elements are the di↵erent values assigned to each discretized pair

of (v, s). For the lowest power constraint, the initial values are chosen close to zero to

make sure that they satisfy the average power constraint. The final solution obtained for

a low power constraint is used as the initial guess for the higher power constraint, and

so on. It should be remarked, that there is no guarantee that this iterative optimization

scheme converges to the global optimal solution. We have also tried to initiate the

NOE from the encoder mappings obtained for ICO and 1-DL schemes, as well as their

non-uniform quantized counterparts; but in all cases we obtained the exact same final

encoder mapping.

In Figure 2.4, the encoder structure for numerically optimized encoder with P = 4 dB is

shown. The plot shows, in a colour-coded fashion, the channel input value (here in range

[�40, 40]) corresponding to each discretized pair of source v and interference s values. To
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elaborate the details of Figure 2.4, the encoder mapping for di↵erent values of the source

and the interference outputs are shown in Figures 2.5 and 2.6, respectively. From Figures

2.4-2.6, we observe that, i) the source is clipped similarly to the parameterized nonlinear

schemes considered in Section 2.4 (see Figure 2.5 and Figure 2.2 for comparison); ii)

Depending on which interval the interference falls into, the transmitted signal resembles

a shifted version of a linear mapping (see Figure 2.6). This is similar to the transmission

of quantization noise in ICO and 1DL schemes.

2.6 Numerical results

We remark here that obtaining closed-form expressions for the optimal performance of

JSCC under strict delay constraints is extremely di�cult if not impossible. Instead, in

this section, we provide numerical results comparing the performances of the proposed

transmission schemes. We will also include the Shannon theoretic lower bound (SLB)

obtained by evaluating the rate-distortion function of the Gaussian source at the capacity

of the underlying channel when the interference is completely removed. Not surprisingly

this lower bound is quite loose in general.
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In Figures 2.7 and 2.8, performances of the proposed transmission schemes are illustrated

and compared with SLB for di↵erent SNR levels. For ICO-NU and 1DL-NU we optimize

(2.22) and (2.26) over � and �v as well as a. As it can be seen in Figures 2.7 and

2.8, non-uniform quantization improves the performance of both the ICO and 1DL

schemes. 1DL-NU outperforms all the other schemes proposed in Section 2.4 in both

the low and high SNR regimes. We expect that SLB is loose in general (especially in the

high interference regime), and identifying a tighter lower bound will be instrumental in

characterizing the performance limits in this problem. We see that, as expected, NOE

outperforms all other encoding schemes, but this is at the expense of a much longer

computation time. We also observe that the proposed low-complexity parameterized

encoding schemes perform close to NOE, particularly in the high SNR regime.

We also observe that, 1DL outperforms ICO, even though the performances of the

two schemes have relatively similar behaviour. Also, in the low interference regime ICA

outperforms both ICO and ICO-NU. In Figure 2.9, the size of optimal � versus di↵erent

channel power constraints for ICO is shown for di↵erent values of �v. It can be seen

from the figure that by increasing either P or �v, size of � grows non-linearly. This
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can be easily verified from (2.16), (2.19) and (2.20). Note that (2.20) tends to �2
s as

� increases. On the other hand, in (2.19) it can be shown that as � increases, �v

increases too (for a fixed value of �2
T ). For high values of � and �v (2.16) simplifies to

� = �v

p

P � �2
s . This linear relation is also observed in the figure. In Figure 2.10 the

size of the quantization interval � for both ICO and 1DL is plotted against the power

constraint. As it is seen in this figure, for all power constraint values, 1DL uses a larger�

than ICO for quantization, which explains the improved performance of 1DL compared

to ICO (larger � means that the source is mapped into a larger interval, and hence, can

be reconstructed with a smaller average distortion). A similar observation applies also

to the ICO-NU and 1DL-NU schemes, and the latter outperforms the former.

In Figure 2.11 the average distortion versus �v is plotted for ICO, and for di↵erent

input power constraints. We observe from the figure that the average distortion is a

convex function of �v. For high power constraints, distortion is almost constant beyond

a certain value for �v (the bottom curve in Figure 2.11). As it can be seen, the higher

the input power constraint (since �2
n = 1, increasing P is equivalent to increasing SNR)

the higher the optimal value for �v, which achieves the minimum average distortion.

In Figure 2.12 the average distortion with respect to normalized ( 
� = ��2d

� ) is plotted
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for both ICO and 1DL. It is observed that the average distortion has a minima with

regard to the noise gap, d. It is seen from the figure that there is space to improve

the achievable average distortion by optimizing over d. Since optimizing the achievable

distortion over d, �v, � is demanding, we have obtained the noise gap e↵ect d on the

final distortion only for P = 5 dB in Figure 2.12 (for the remainder of the simulations

we have assumed d = 0).



Chapter 3

Zero-Delay Source-Channel

Coding with a Low-Resolution

ADC Front End

3.1 Overview

Motivated by the practical constraints arising in sensor networks and Internet-of-Things

applications, the zero-delay transmission of a Gaussian measurement over a vector addi-

tive white Gaussian noise channel is studied with a low-resolution ADC front end. The

optimization of the encoder and the decoder is tackled under both the MSE distortion

and the DOP criteria, with an average power constraint on the channel input. Optimal

encoder and decoder mappings are identified for the case of a one-bit ADC front end

for both criteria. For the MSE distortion, the optimal encoder mapping is shown to be

non-linear in general, and it tends to a linear encoder, in the low SNR regime, and to an

antipodal digital encoder in the high SNR regime. This is in contrary to the optimality

of linear encoding at all SNR values in the presence of a full precision front end. For

the DOP criterion, it is shown that the optimal encoder mapping is piecewise constant,

and can take only two opposite values when it is non-zero. For both the MSE distortion

and the DOP criteria, necessary optimality conditions are derived for a K-level ADC

front end and for multiple one-bit ADC front ends. These conditions then are used to

45
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obtain numerically optimized solutions. Extensive numerical results are provided to gain

insights into the optimal encoding and decoding functions.

3.2 Introduction

Power consumed by ADCs grows exponentially with the number of bits, and linearly

with the sampling rate [59], [60]. This limits the resolution of the ADCs when the

available power is limited, for example for sensor nodes or mobile devices that operate

on limited battery power. As an extreme case, one-bit ADCs are of particular interest

due to their low hardware complexity, since they can be realized using a simple threshold

comparator, and without the need for automatic gain control [61], [62].

Motivated by these considerations the impact of a one-bit ADC front end on the perfor-

mance of a communication system has been studied in the literature for various models.

In [63], it is shown that antipodal signalling, or BPSK, is capacity achieving for a

real-valued AWGN channel with a one-bit ADC front end, whereas, for the complex

counterpart, QPSK is optimal. While, these results hold under the assumption that the

one-bit ADC is symmetric (that it, a zero-threshold comparator), in [64] it is shown that,

in the low SNR regime, a symmetric quantizer is not optimal, and the optimal perfor-

mance is achieved by flash signalling [65, Def. 2] together with an optimized asymmetric

quantizer. In [66], it is shown that, for a point-to-point Rayleigh fading channel with

a one-bit ADC front end, under the assumption of perfect CSI at the receiver, QPSK

is capacity achieving. When the CSI is not available at the receiver, it is shown in [67]

that, QPSK is optimal above an SNR threshold that depends on the coherence time of

the channel, while, for lower SNRs, on-o↵ QPSK achieves the capacity. For the point-

to-point MIMO scenarios with a one-bit ADC front end at each receive antenna, the

capacity is unknown. In [68], it is shown that, with perfect CSI at the receiver, QPSK is

optimal at very low SNRs. In [69], upper and lower bounds on the capacity with perfect

receiver CSI are presented.

While the reviewed works focus on reliable transmission of digital information over long

blocks, in many applications, such as the Internet of Things, cyber-physical systems, and

wireless sensor networks, the low-delay transfer of analog measurements is crucial. Mo-

tivated by this observation, this work considers the zero-delay transmission of an analog
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Gaussian source over a vector AWGN channel followed by a low-resolution ADC front

end. With an infinite resolution front end and equal bandwidth of a Gaussian source and

an AWGN channel [3], it is well known that under an average power constraint and MSE

distortion measure, linear transmission and MMSE estimation are, respectively, the op-

timal encoder and decoder. Instead, the optimal encoder and decoder are unknown in

the finite resolution scenario studied here.

For the general case of bandwidth mismatch between the source and the channel, there

is no explicit method to obtain the optimal encoding and decoding functions, except for

the special case of the matched source-channel pairs [4], [3]. Various solutions have been

proposed for specific source-channel pairs. Notable examples are the space-filling curves,

originally proposed by Shannon [1] and Kotelnikov [9], and later extended in [10–14] for

the delay-limited transmission of a Gaussian source over an AWGN channel. In [10, 15]

and [16], design of an optimal encoder is studied based on PCCOVQ, where a discretized

version of the problem is tackled using tools developed for vector quantization. In [17],

the authors studied optimal vector transformations from the m-dimensional source space

to the k-dimensional channel under a given transmission power constraint and for the

MSE distortion criterion. Having obtained the necessary conditions of optimality for the

encoder and the decoder, [17] shows that, in point-to-point zero-delay transmission, i.e.,

each source sample transmitted over a single use of the channel, the optimal solution is

unique.

In this chapter, we study the optimization of encoding and decoding functions for the

transmission of a Gaussian source sample over the single use of a vector AWGN channel

with a low-resolution ADC front end. We tackle the optimization problem of the encoder

and the decoder under two di↵erent criteria; namely the MSE distortion, and the DOP

with an average power constraint on the channel input. We derive the optimal solutions

for the case of a one-bit ADC front end for both criteria. For the MSE distortion, we

show that the optimal encoder mapping tends to a linear encoder, which is optimal

with a full-precision front end, only in the low SNR regime. For the DOP criterion,

we derive the optimal encoder mapping, showing that it is piecewise constant and can

take only two opposite values when it is non-zero. For both the MSE distortion and the

DOP criteria, we study necessary optimality conditions for a K-level ADC front end and

for multiple one-bit ADC front ends. These conditions are used to obtain numerically

optimized solutions.
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Figure 3.1: System model for the transmission of a single Gaussian source sample
over a quantized vector AWGN channel with N ADC front ends.

The rest of the chapter is organized as follows. In Section 3.3, we introduce the system

model. In Section 3.4, we consider the design of the optimal transceiver under the MSE

distortion criterion when the receiver has a single observation of the source. In Section

3.5, we study the same design problem under the DOP criterion. In Section 3.6, we

study a more general case in which the receiver makes multiple one-bit observations

under both the MSE distortion and the DOP criteria. In Section 3.7, numerical results

are provided.

Notations: Throughout the chapter, R denotes the set of real numbers; uppercase and

lowercase letters denote random variables and realizations, respectively. We use bNj to

denote the bit-wise representation of the number 2N � j, j = 1, . . . , 2N with length N .

E[·] and Pr(·) denote the expectation and probability operators, respectively. Let f
0
(x) =

df(x)
dx , f

00
(x) = d2f(x)

dx2 denote the first and second order derivatives of the continuously

di↵erentiable function f with respect to the argument. The standard normal distribution

is denoted by N (0, 1), with distribution function �(·), and the CCDF by Q(·), which is

given by

Q(z) =
1p
2⇡

1
Z

z

e�
t

2

2 dt.

Unless stated otherwise, boundaries of the integrals are from �1 to 1.
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3.3 System Model

We consider the system model in Figure 3.1, in which a single sample of a Gaussian

source V ⇠ N (0,�2
v) is transmitted over a single use of a quantized vector AWGN

channel. The encoded signal is given as X = f(V ), where f : R ! R is a mapping from

the source sample to the channel input, with average transmission power P = E[f(V )2].

The receiver makes N noisy measurements of the encoded signal, which are digitized by

means of a low-resolution ADC front end. Mathematically, each noisy received signal is

modelled as

Zi = f(V ) +Wi, i = 1, ..., N, (3.1)

where the noise Wi ⇠ N (0,�2
w

i

), i = 1, ..., N , is independent over index i. Each received

signal Zi is quantized with a scalar K-level ADC producing quantized level

Yi = Q(Zi), i = 1, . . . , N. (3.2)

The scalar K-level ADC is characterized by fixed quantization intervals and correspond-

ing quantized level, namely

Q(z) = y(j), for z 2
⇥

z(j�1), z(j)
�

, j = 1, . . . ,K, (3.3)

where z(j�1) and z(j) are the lower and upper bounds of the interval corresponding to

the quantized signal y(j), respectively, for j = 1, . . . ,K, and we have z(0) = �1 and

z(K) = 1. Note that the ADCs employed to quantize di↵erent channel outputs all have

the same structure, that is, the quantization intervals and reconstruction levels.

For most of the chapter we will consider a symmetric one-bit ADC, with threshold

z(1) = 0 and reconstruction levels y(1) = 1 and y(2) = 0:

Q(z) =

8

<

:

0 z � 0,

1 z < 0.
(3.4)

We define the SNR as

� =
NP
N
P

i=1
�2
w

i

. (3.5)
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Based on the quantized signals (Y1, ..., YN ) , Y N , the decoder produces an estimate V̂

of V using the decoding function g : {y(1), . . . , y(K)}N ! R, i.e., V̂ = g(Y N ).

Two performance criteria are considered, namely, the MSE distortion defined as

D̄ = E
h

(V � V̂ )2
i

, (3.6)

and the DOP defined as

✏(D) = Pr
⇣

(V � V̂ )2 � D
⌘

. (3.7)

In both cases, we aim at studying the optimal encoder mapping function f , along with

the corresponding optimal estimator g at the decoder, such that, D̄ and ✏(D) are min-

imized subject to the average power constraint. More specifically, as it is common in

related works (see, e.g., [17]), we consider the unconstrained minimization

minimize
f,g

L(f, g,�), (3.8)

where

L(f, g,�) =

8

<

:

D̄ + �E[f(V )2] for the MSE criterion,

✏(D) + �E[f(V )2] for the DOP criterion,
(3.9)

with � � 0 being a Lagrange multiplier that defines the relative weight given to the

average transmission power E[f(V )2] as compared to the distortion criterion.

3.4 Single Observation: MSE Distortion

In this section, we study the design of the encoder and the decoder under the MSE cri-

terion by focusing on the case of a single observation (N = 1). For the one-bit ADC in

(3.4), we obtain the optimal encoder and decoder in Section 3.4.1. Furthermore, we con-

sider the conventional linear transmission and digital modulation schemes for reference

in Section 3.4.2 and Section 3.4.3, respectively. Finally, we consider the extensions to a

K-level front end, and obtain a necessary condition on the optimal mapping in Section

3.4.4. For brevity, throughout this section, we drop the subscript i = 1 identifying the

observation index.
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3.4.1 Optimal Encoder and Decoder for a One-Bit Front End

To elaborate on the optimal encoder and decoder for the one-bit ADC in (3.4), without

loss of generality, we write the receiver mapping function as

g(Y ) = V̂ =

8

<

:

v̂(1) Y = 0,

v̂(2) if Y = 1,
(3.10)

which is defined by the pair of parameters (v̂(1), v̂(2)). In (3.10), since, for any encoder

mapping f , the MMSE estimator is optimal under the MSE criterion, and hence also for

problem (3.8), we have v̂(1) = E[V |Y = 0] and v̂(2) = E[V |Y = 1]. The next proposition

provides the optimal encoder mapping function.

Proposition 3.4.1. The optimal mapping f for problem (3.8) under the MSE criterion is

unique up to a sign, is an odd function of v, and is defined by the implicit equation

f(v)e
f(v)2

2�2
w =

vp
2⇡�w�

. (3.11)

Proof : See Appendix B.

Illustrations of the optimal mappings satisfying (3.11) will be given in Section 3.7. Here,

we observe that, by expanding the Taylor series of the exponential function in (3.11),

it can be easily verified that, in the low SNR regime, that is, as �2
w ! 1, the optimal

mapping satisfies the condition f(v) _ v, that is, it approaches a linear mapping.

Furthermore, given that the optimal mapping function f(v) is odd, we can write

v̂(1) = E[V |Y = 0] =

1
�
v

R

v�
⇣

v
�
v

⌘

Pr(Y = 0|V = v)dv

Pr(Y = 0)
(3.12a)

=
�2

�v

Z

v�

✓

v

�v

◆

Q

✓

f(v)

�w

◆

dv (3.12b)

=
2

�v
� 4

�v

1
Z

0

v�

✓

v

�v

◆

Q

✓

f(v)

�w

◆

dv, (3.12c)

and hence the average distortion can be simplified as

D̄ = �2
v � E[V V̂ ] (3.13a)

= �2
v �

1

2

⇣

v̂(1)E[V |V̂ = v̂(1)] + v̂(2)E[V |V̂ = v̂(2)]
⌘

(3.13b)
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= �2
v � v̂2(1), (3.13c)

where (3.13a) is due to the orthogonality property of MMSE estimation; (3.13b) follows

from the fact that the optimal encoder is odd; and (3.13c) is due to the chain of equalities

E[V |V̂ = v̂(1)] = E[V |Y = 0] = v̂(1) = �v̂(2) = �E[V |V̂ = v̂(2)].

3.4.2 Linear Transmission for One-Bit Front End

Here we consider the performance of linear transmission in the presence of a one-bit

ADC front end. The encoder mapping for linear transmission is given by

f(v) =

s

P

�2
v

v. (3.14)

As seen in Section 3.4.1, linear transmission is optimal in the low-SNR asymptotic. In the

following we elaborate on its performance for any given channel SNR �. The MSE distor-

tion achieved by linear transmission, D̄l, can be found by substituting (3.14) in (3.13c).

Since the resulting expression is not in closed form, we derive analytical upper and lower

bounds that can be useful to obtain additional insights. Using the lower bound in [70] for

the Q function, namely Q(x) � �e�
kx

2

2 , where � = e(⇡(k�1)+2)�1

2k

q

1
⇡ (k � 1)(⇡(k � 1) + 2)

for any k � 1, the distortion of linear transmission can be lower bounded as

D̄l � �2
v

 

1� 2

⇡

✓

1� 2�

1 + k · �

◆2
!

. (3.15)

On the other hand, using the inequality Q(x)  1
4(e

�x2
+ e�

x

2

2 ) in [71] we have the

upper bound as

D̄l  �2
v

✓

1� 1

2⇡

✓

�(3 + 8�)

(� + 1)(2� + 1)

◆◆

. (3.16)

Using these bounds we observe that, in the asymptotic limit of low SNR, i.e., as � ! 0,

we have the average distortion D̄l = �2
v , while, in the high SNR asymptotic, i.e., as

� ! 1, we obtain D̄l = �2
v(1 � 2/⇡). Both distortions can be argued to be opti-

mal asymptotically. In fact, for zero SNR, the MMSE estimate even with an infinite-

resolution front end is given by V̂ = 0, which yields D̄ = �2
v . Instead, for infinite SNR,
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the best mapping is given by the optimal binary quantizer, which yields D̄ = �2
v(1�2/⇡)

(see, e.g., [2, Section 10.1]).

3.4.3 Digital Transmission for One-bit Front End

Here we consider a conventional digital transmission scheme, which is based on quan-

tizing and mapping the source to a discrete constellation for transmission over the

channel. Accordingly, the source is quantized to one of the M levels, each charac-

terized by the interval [v(l�1), v(l)), l = 1, ...,M , where v(M) = 1, v(0) = �1, and

v(l) � v(l�1) for all l = 1, ...,M . Each interval [v(l�1), v(l)) is mapped to the corre-

sponding channel input X = x(l). We take the constellation of possible transmission

points to be {X = A(2l � 1 � M), l = 1, ...,M}, for some parameter A � 0, such

that, the average power constraint is satisfied. Note that, when M is even, this cor-

responds to the M -PAM modulation, while if M is odd, the constellation includes the

zero-power signal, i.e., x(M+1
2 ) = 0. The average transmission power can be written as

E[X2] =
PM

l=1 x
2
(l) · Pr(X = x(l)), where Pr(X = x(l)) =

1
�
v

R v(l)
v(l�1)

� (v/�v) dv.

The average achievable distortion for M levels of symmetric digital transmission, i.e.,

v(l) = �v(M�l), can be easily obtained as

D̄d,M = �2
v �

0

B

@

2

�v

M
X

l=1

Q

✓

(2l � 1�M)
p
�

S

◆

v(l)
Z

v(l�1)

v�

✓

v

�v

◆

dv

1

C

A

2

, (3.17)

where S2 =
PM

l=1(2l � 1�M)2Pr(x(l)).

As a special case, when M = 2, setting the quantization threshold as v(1) = 0, we obtain

BPSK transmission. The resulting achievable distortion can be computed from (3.17)

as

D̄d,2 = �2
v

✓

1� 2

⇡
(1� 2Q (

p
�))2

◆

. (3.18)

We observe that, as for linear transmission, when � ! 1, we have D̄d,2 = �2
v(1� 2/⇡),

and when � ! 0, we have D̄d,2 = �2
v . Also, from (3.18), one can check that the

slope of the average distortion for BPSK transmission as � ! 0 is �4�2
v/⇡

2, which

is smaller than the slope for linear transmission that can be obtained from (3.13c) as
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�2�2
v/⇡. This shows that in the low SNR regime linear transmission is preferable to

BPSK transmission.

As another example, for M = 3, we set the quantization thresholds as v(1) = �c and

v(2) = c, so that [�c, c] is the interval of source values for which the transmission symbol

is x(2) = 0. The MSE distortion can be computed by solving the following optimization

problem with line search:

D̄d,3 = min
c�0

�2
v

0

@1� 2e
� c

2

�

2
v

⇡
·

0

@1� 2Q

0

@

s

�

2Q
⇣

c
�
v

⌘

1

A

1

A

21

A . (3.19)

3.4.4 K-Level Front End

In this section, we consider the system model in Figure 3.1 with a single observation,

i.e., N = 1, but with a K-level ADC front end as in (3.3). As in the case of single

one-bit observation, without loss of generality, we write the receiver mapping function

as

g(Y ) = V̂ = v̂(j), if Y = y(j), (3.20)

for j = 1, . . . ,K. In the next proposition, we obtain a necessary optimality condition

for the encoding and decoding functions f and g.

Proposition 3.4.2. The optimal encoder and decoder mappings f and g for the K-level

ADC front end in (3.3) satisfy the necessary conditions

f(v) =
1

2
p
2⇡�w�

K
X

j=1

0

@e
�(

z(j�1)�f(v))2

2�2
w � e

�(
z(j)�f(v))2

2�2
w

1

A v̂(j)
�

2v � v̂(j)
�

, (3.21)

and (3.20) with

v̂(j) =

R

v�
⇣

v
�
v

⌘⇣

Q
⇣

z(j�1)�f(v)

�
w

⌘

�Q
⇣

z(j)�f(v)

�
w

⌘⌘

dv

R

�
⇣

v
�
v

⌘⇣

Q
⇣

z(j�1)�f(v)

�
w

⌘

�Q
⇣

z(j)�f(v)

�
w

⌘⌘

dv
, j = 1, ...,K. (3.22)

Furthermore, the gradient of the Lagrangian function L(f, g,�) over f for g in (3.20) is

given as

rL = 2�f(v)� 1p
2⇡�w

K
X

j=1

0

@e
�(

z(j�1)�f(v))2

2�2
w � e

�(
z(j)�f(v))2

2�2
w

1

A v̂(j)
�

2v � v̂(j)
�

. (3.23)
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Proof : See Appendix C.

We note that the gradient in (3.23), along with (3.22), will be used in Section 3.7 to

obtain numerically optimized encoders and decoders.

3.5 Single Observation: Distortion Outage Probability

In this section, we study the optimal encoder and decoder under the DOP criterion

defined in (3.7) for the case of a single observation (N = 1). We first study the case of

a one-bit front end in Section 3.5.1, and then we extend the results to a K-level front

end in Section 3.5.2.

3.5.1 Optimal Encoder and Decoder for a One-Bit Front End

With no loss of generality, the decoder is given as in (3.10) for some reconstruction points

(v̂(1), v̂(2)). To proceed, we first focus on the optimization of the encoder mapping f for

a given decoder in (3.10). We then tackle the problem of minimizing the DOP over the

reconstruction points (v̂(1), v̂(2)).

To elaborate, we define the intervals

Ij , {v : (v � v̂(j))
2 < D}, (3.24)

for j = 1, 2, which are depicted in Figure 3.2. Each interval Ij , corresponds to the set

of source values that are within the allowed distortion D of the reconstruction point

v̂(j). The following claims hold: (i) For all source outputs v in the set (I1 [ I2)C = {v :

minj=1,2(v � v̂(j))
2 > D}, outage occurs (superscript C denotes the complement set).

We refer to this event as source outage. (ii) For all source values in the interval I1 \ I2,

either of the reconstruction points yield a distortion no more than the target value D.

Therefore, regardless of which of the two reconstruction levels, v̂(1) and v̂(2)), is selected

by the receiver, no outage occurs. From observations (i) and (ii), it easily follows that,

for all source values v inside the intervals (I1 [ I2)C and (I1 \ I2), the optimal mapping

is f(v) = 0, since, for both intervals, the occurrence of an outage event is independent

of the transmitted signal.
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Figure 3.2: Illustration of the intervals I1, I2 and (I1\I2) that characterize the optimal
encoder for the DOP criterion, for two di↵erent cases depending on the (v̂(1), v̂(2))

values.

From the discussion above, we only need to specify the optimal mapping for the intervals

I1\I2 and I2\I1. This should be done by accounting not only for the source outage event

mentioned above, but also for the channel outage events. In particular, the distortion

outage probability ✏(D) can be written as

✏(D) = Pr
�

V 2 (I1 [ I2)
C
�

+ Pr
⇣

V 2 (I1 \ I2), V̂ = v̂(2)

⌘

+ Pr
⇣

V 2 (I2 \ I1), V̂ = v̂(1)

⌘

, (3.25)

where the first term accounts for the source outage event, while the second and third

terms are the probabilities of outage due to channel transmission errors. For instance,

the second term is the probability that the decoder selects V̂ = v̂(2) while V is in the

interval I1 \ I2 (see Figure 3.2). The next proposition characterizes the optimal encoder

mapping.

Proposition 3.5.1. Given a target distortion D, and arbitrary reconstruction points v̂(1)

and v̂(2), the optimal mapping f for the problem (3.8) is given by

f(v) =

8

>

>

>

<

>

>

>

:

0 v 2 (I1 [ I2)C [ (I1 \ I2),

�u v 2 (I2\I1),

u v 2 (I1\I2),

(3.26)
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where u is the unique solution of

ue
u

2

2�2
w =

1

2
p
2⇡�w�

. (3.27)

Proof : See Appendix D.

We note here that, for given � � 0, the optimal u is independent of the values of v̂(1)

and v̂(2). Examples of optimal encoders will be provided in Section 3.7. In the next

proposition, we turn to the optimization of the reconstruction levels (v̂(1), v̂(2)).

Proposition 3.5.2. The optimal reconstruction points (v̂(1), v̂(2)), are given by

v̂(1) =
p
D � a⇤, (3.28a)

v̂(2) = �v̂(1), (3.28b)

where a⇤ is obtained from

a⇤ = arg min

a 2 [0,
p
D]

2Q

 

2
p
D � a

�v

!

+ 2

✓

Q

✓

u

�w

◆

+ �u2
◆

·
 

Q

✓

a

�v

◆

�Q

 

2
p
D � a

�v

!!

, (3.29)

where u is obtained by solving (3.27).

Proof : See Appendix E.

To summarize, the optimal encoder and decoder are obtained as follows. First, given

the Lagrange multiplier � � 0, the value of u is obtained by solving (3.27). Then

the decoder’s reconstruction points (v̂(1), v̂(2)) are computed from (3.28)-(3.29). Finally,

Finally, the optimal encoder mapping is given by (3.26). The next remark elaborates on

the optimal encoder and decoder in two asymptotic SNR regimes.

Remark 3.5.1. If � is large, i.e., in the low-SNR regime, from (3.27) we have u ⇡ 0. Also

from (3.27) it can be verified that �u2 = e
� u

2

�

2
w

8⇡�2
w

�
⇡ 0. Hence, from (3.29) we obtain

a⇤ ⇡ arg min

a 2 [0,
p
D]

Q

✓

a

�v

◆

+Q

 

2
p
D � a

�v

!

, (3.30)
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yielding v̂(1) = v̂(2) = 0, that is, I1 = I2 and ✏(D) = 2Q
⇣p

D
�
v

⌘

. On the other hand, for

small values of �, corresponding to the high-SNR regime, u becomes large. Also, from

(3.27) we have � = 1
�

✓

2
p
2⇡�wue

u

2

2�2
w

◆

. Hence, we have �u2 = u/

✓

2
p
2⇡�we

u

2

2�2
w

◆

⇡ 0,

and

a⇤ ⇡ arg min

a 2 [0,
p
D]

2Q

 

2
p
D � a

�v

!

, (3.31)

which yields distinct intervals I1 and I2 with v̂(1) = �v̂(2) =
p
D, and ✏(D) = 2Q

⇣

2
p
D

�
v

⌘

.

3.5.2 K-Level Front End

Here we turn to the case of K-level front end under the DOP criterion. With no loss of

optimality, the decoder is given as in (3.20) for some reconstruction levels {v̂(1), . . . , v̂(K)}

to be optimized. For a subset V ⇢ {v̂(1), ..., v̂(K)}, let IV be the set of source outputs v

for which the quadratic distance between v and the reconstruction points in set V is less

than D, while the quadratic distance with respect to the reconstruction points in VC is

larger than D. This set is obtained as

IV =
\

v̂(j)2V
Ij \

[

v̂(j)2VC

Ij , |V| = 1, ...,K, (3.32)

where Ij is defined as

Ij ,
�

v : |v � v̂(j)|2 < D
 

. (3.33)

We also define the set I; corresponding to V = ; as

I; ,

0

@

[

V:|V| 6=0

IV

1

A

C

, (3.34)

that is, the set of values v 2 R that do not have a reconstruction value v̂(j) within a

distance
p
D. Note that the sets

�

IV : V ⇢ {v̂(1), ..., v̂(K)}
 

, is a partition of the whole

real line.

As for the single one-bit front end (3.25), the DOP depends on both source and channel

outage events. Note that the source outage occurs if V 2 I;, whereas the channel outage
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occurs when V /2 I;, with no outage occurring when V 2 I{v̂(1),...,v̂(K)}. In the following

proposition, we present necessary optimality conditions for the encoder and decoder

mappings.

Proposition 3.5.3. For a K-level ADC front end, the optimal encoder and decoder map-

pings f and g satisfy the necessary conditions

f(v) = 1
2�G(f, v), (3.35)

where G(f, v) is defined as

G(f, v) ,
8

>

>

>

<

>

>

>

:

0 v 2 IV : |V| = 0,K,

1p
2⇡�

w

P

j: v̂(j)2V

0

@e
�(

z(j�1)�f(v))2

�

2
w � e

�(
z(j)�f(v))2

�

2
w

1

A v 2 IV : |V| = 1, . . . ,K � 1,

(3.36)

and (3.20) with

v̂(j) = argmax
t

t+
p
D

Z

t�
p
D

�

✓

v

�v

◆✓

Q

✓

z(j�1) � f(v)

�w

◆

�Q

✓

z(j) � f(v)

�w

◆◆

dv. (3.37)

Furthermore, the gradient of the Lagrangian function L(f, g,�) over f for g in (3.20) is

given as

rL = 2�f(v)� 1

2
G(f, v). (3.38)

Proof : See Appendix F.

As for Proposition 3.4.2, in Section 3.7, we will use (3.37) and (3.38) to obtain numeri-

cally optimized encoders and decoders, that satisfy the necessary optimality conditions.

3.6 Multiple Observations

In this section, we study the more general case in which the receiver has N > 1 noisy

one-bit quantized observations, Y N , of the transmitted source sample. For both the
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MSE distortion and the DOP criteria, without loss of generality, we write the receiver

mapping function as

g(Y N ) = V̂ = v̂(j), if Y N = bNj , (3.39)

where bNj is the N -length binary representation of the number 2N � j for j = 1, . . . , 2N .

Note that there are 2N reconstruction levels v̂(j), each of them corresponding to a dif-

ferent configuration of the received signal Y N 2 {0, 1}N . We will denote by bNj (k) the

k-th element of the vector bNj .

3.6.1 MSE Criterion

Recalling that the optimal decoding function under the MSE criterion is the MMSE

estimator, the optimal decoder satisfies v̂(j) = E[V |Y N = bNj ]. In the next proposition,

we provide necessary conditions for the optimal encoder and decoder mappings along

with an expression for the gradient of the Lagrangian in (3.9) over the encoder mapping

f .

Proposition 3.6.1. Given a front end with N one-bit ADCs, the optimal encoder and

decoder mappings f and g satisfy the necessary conditions

f(v) =
1

2�

2N
X

j=1

⇥ (N, f(v), j) v̂(j)
�

2v � v̂(j)
�

, (3.40)

and (3.39) with

v̂(j) ,

R

v�
⇣

v
�
v

⌘ N
Q

i=1
Q

✓

(�1)
b

N

j

(i)+1
f(v)

�
w

i

◆

dv

R

�
⇣

v
�
v

⌘ N
Q

i=1
Q

✓

(�1)
b

N

j

(i)+1
f(v)

�
w

i

◆

dv

, (3.41)

where ⇥ (N, f(v), j) is defined as

⇥ (N, f(v), j) ,
N
X

k=1

0

B

@

(�1)b
N

j

(k)e
� f(v)2

2�2
w

k

p
2⇡�w

k

N
Y

l=1,l 6=k

Q

 

(�1)b
N

j

(l)+1f(v)

�w
l

!

1

C

A

. (3.42)
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Furthermore, the gradient of the Lagrangian function L(f, g,�) over f for g in (3.39) is

given as

rL = 2�f(v)�
2N
X

j=1

v̂(j)⇥ (N, f(v), j)
�

2v � v̂(j)
�

. (3.43)

Proof : See Appendix G.

3.6.2 DOP Criterion

In this subsection, we consider the DOP criterion. The analysis follows the same steps

as in Section 3.5.2. In particular, we define the di↵erent intervals IV , where V is a subset

of {v̂(1), . . . , v̂(2N )} as in (3.32). Based on this definition, in the next proposition, we

derive necessary optimality conditions for the encoder and decoder mappings.

Proposition 3.6.2. Given a front end with N one-bit ADCs, the optimal encoder and

decoder mappings f and g satisfy the necessary conditions

f(v) =
1

2�
G̃(f, v), (3.44)

where G̃(f, v) is defined as

G̃(f, v) ,
8
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>

>

<

>

>

>

>
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0 v 2 IV : |V| = 0, 2N ,

P
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i=1
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(i)e
� f(v)2
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w
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N
Q
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◆
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v 2 IV : |V| = 1, . . . , 2N � 1,

(3.45)

and (3.39) with

v̂(j) = argmax
t

t+
p
D

Z

t�
p
D

�

✓

v

�v

◆ N
Y

i=1

Q

 

(�1)b
N

j

(i)+1f(v)

�w
i

!

dv, j = 1, . . . , 2N . (3.46)
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Furthermore, the gradient of the Lagrangian function L(f, g,�) over f for g in (3.39) is

given as

rL = 2�f(v)� 1

2
G̃(f, v). (3.47)

Proof : See Appendix H.

Remark 3.6.1. From the optimal decoder in (3.46) and (3.41), it can be easily verified

that with equal noise variances for the N observations, i.e., �2
w

i

= �2
w for i = 1, ..., N , the

reconstruction points v̂(j) corresponding to those vectors bNj that have the same number

of ones are equal. As a consequence, there are only N +1 e�cient reconstruction points

instead of 2N .

3.7 Numerical Results

In this section, we provide some illustrations of the results derived above by means

of numerical examples. We consider the MSE distortion and the DOP in separate

subsections. Throughout this section, we set �2
v = �2

w = 1, so that the SNR in (3.5) is

proportional to the power constraint P .

3.7.1 MSE Criterion

We start by considering the MSE distortion in a single measurement system (N =

1) with a one-bit ADC front end (K = 2). Figure 3.3 shows the optimal mapping

functions obtained from Proposition 3.4.1 for di↵erent values of P . The value of the

Lagrange multiplier � in (3.11) is obtained by means of bisection so as to satisfy the

power constraint E[f(V )2] = P . We can observe from Figure 3.3 that, as discussed in

Section 3.4.1, for low SNR, the optimal mapping function tends to linear transmission,

while, for high SNR, the mapping mapping function tends to resemble a step function,

which corresponds to a digital transmission with M = 2.

To further elaborate on the case N = 1 and K = 2, in Figure 3.4, the MSE distortion of

the optimal, linear and digital transmission schemes are plotted versus the SNR �. For

clarity of illustration, we plot the complementary MSE distortion 1� D̄, where we note
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Figure 3.3: Optimal encoder mappings for the MSE distortion criterion under di↵er-
ent power constraints P (dB) (�2

w

= �2
v

= 1).

that D̄ = �2
v = 1 is achievable by setting V̂ = 0 irrespective of the received signal. The

figure confirms that, linear transmission approaches optimality at low SNR, whereas,

for high SNR, digital schemes outperform linear transmission. Also, it is seen that, for

digital transmission, increasing the number of constellation points generally improves

the performance, although, in the high SNR regime, binary transmission is su�cient to

achieve the optimal performance.

We now investigate other scenarios with a K-level ADC (N = 1, K > 2) studied in

Section 3.4.4, and multiple one-bit ADCs (N > 1, K = 2) studied in Section 3.6.1.

For these cases, for which Proposition 3.4.2 and Proposition 3.6.1 provide respective

necessary optimality conditions, we resort to a gradient-descent approach, as in, e.g.,

[17]. The gradient-descent algorithm updates the current iterate f (i)(v) as

f (i+1)(v) = f (i)(v)� µrL, (3.48)

where i is the iteration index and µ > 0 is the step size. rL is the derivative of the

Lagrangian (3.8) with respect to the mapping function f at f (i), which can be found

in (3.23) and (3.43) for K-level ADC and multiple one-bit ADCs, respectively. The
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Figure 3.4: Complement of the MSE 1 � D̄ (dB), versus the SNR � (dB) for the
optimal encoder obtained in Proposition 3.4.1 as well as for the linear and digital

schemes studied in Sections 3.4.1, 3.4.2 and 3.4.3 (�2
w

= �2
v

= 1).

algorithm is initialized with an arbitrary mapping, here we use linear mapping specified

in (3.14). It is noted that the algorithm is not guaranteed to converge to a global optimal

solution. We refer to mappings obtained from (3.48) as numerically optimized encoder

(NOE) mappings.

In Figure 3.5, obtained NOE mappings are illustrated for a K=4 level and a K=8 level

ADC front end, respectively, under the MSE distortion criterion. The decision thresholds

forK=4 andK=8 are chosen as [1,�d, 0, d,1] and as [�1,�3d,�2d,�d, 0, d, 2d, 3d,1],

respectively, where the parameter d is optimized by means of a line search. From the

results obtained in Figure 3.5, it is noticed that, in the low SNR regime, the NOE

mappings for both K = 4 and K = 8 approach linear transmission as discussed in

Section 3.4.1. Instead, as the SNR � increases, the NOE encoding functions resemble

piecewise-constant digital mappings.

We now compare two front-end architectures, both of which receive B output bits per

received sample. The first architecture uses all bits to quantize a single observation,

i.e., N = 1 and K = 2B, while the second one receives B one-bit measurements, i.e.,

N = B, K = 2. In Figure 3.6, the achievable MSE distortion is shown for the two
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Figure 3.5: NOE mappings for di↵erent power constraints (dB) and under the MSE
distortion criterion (�2

w

= �2
v

= 1): (a) K = 4; (b) K = 8. The curves are labelled by
the pair (P, d), where P is the average power constraint (dB) and d is the quantization

step size of the ADC front end.
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ADC architectures with B-bit outputs (�2

v

= 1). Variance of the AWGN in all scenarios
and for all observations is one (�

w

= 1)

architectures for B = 1, 2, 3, along with the Shannon lower bound [3, Equation 21] as

the optimal performance regarding N = 1 and K = 1. It is seen that, for the same

number of bits per sample, B, as the SNR � increases, the 2B-level ADC architecture

outperforms the receiver with B one-bit ADCs, whereas, the opposite is true for low

SNR. This shows that, for high SNR, it is more beneficial to invest additional output

bits in improving the ADC resolution. In contrast, for low SNR, it is preferable to

increase the number of observations in order to improve the e↵ective SNR by collecting

independent measurements of the transmitted signal.

3.7.2 DOP Criterion

Here, we turn to the optimal mapping and performance under the DOP criterion. We

start by considering the case of a one-bit ADC front end with a single observation,

i.e., N = 1, K = 2. The optimal mapping along with the corresponding optimal

reconstruction points (v̂(1), v̂(2)) for three di↵erent values of the power constraint P are

shown in Figure 3.7, as obtained in Propositions 3.5.1 and 3.5.2. It is seen that, as the

SNR decreases, the optimal reconstruction points, v̂(1) and v̂(2), tend to zero, while, for
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high SNR, they tend to v̂(1) = �v̂(2) =
p
D, as per Remark 3.5.1. This observation can

be explained as follows: for low SNR, the DOP is generally dominated by the probability

of channel outage, i.e., by the last two terms in (3.25), which are zero for v̂(1) = v̂(2) = 0.

In contrast, for high SNR, the optimal solution aims at minimizing the probability of

source outage events, i.e., the first term in (3.25), which requires v̂(1) = �v̂(2) =
p
D.

Continuing the analysis of the N = 1, K = 2 case, in Figure 3.8, the complement of the

DOP, 1 � ✏(D), is plotted with respect to the SNR for di↵erent values of D. As SNR

decreases, based on the discussion above and Remark 3.5.1, DOP tends to the first term

in (3.25) when v̂(1) = v̂(2) = 0, which can be computed as Q(
p
D/�v). Furthermore, as

the SNR increases, DOP tends to the first term in (3.25) but with v̂(1) = �v̂(2) =
p
D,

resulting in ✏(D) = Q(2
p
D/�v), indicated by the dashed lines in Figure 3.8.

In order to derive NOE mapping functions under the DOP criterion for K > 2 or N > 1,

we apply the following iterative gradient-descent based algorithm based on the results

obtained in Propositions 3.5.3 and 3.6.2:

1. Initialize the set of reconstruction points {v̂(j)}, j = 1, . . . , 2B;

2. Find the NOE mapping corresponding to the decoder (3.20) and (3.39) for K-level

ADC and multiple one-bit ADCs, respectively, with {v̂(j)}, j = 1, . . . , 2B, selected

at step 1 using the gradient-descent algorithm (3.48), with rL defined as in (3.38)

for K > 2, and as in (3.47) for N > 1;

3. Find the optimal reconstruction points corresponding to the obtained NOE map-

ping using (3.37) for K > 2, and (3.46) for N > 1;

4. If convergence is not obtained, go back to step 2.

For low SNR, based on the results in Section 3.5.1 (see also Figure 3.7) the reconstruction

points are close to zero; and hence, we can initialize the algorithm with all-zero values

when � is very large. Therefore, we first set a large value for � and consider all-zero

vector as the initial mapping. Then, we consider successively smaller values of �, i.e.,

increase the SNR. We use the reconstruction points obtained for the previous value of

the Lagrange multiplier � to initialize the algorithm for the current value of �.

In Figure 3.9, the complement of the DOP, 1� ✏(D), is shown for two architectures with

B = 2 output bits, namely one observation with 4-level ADC (N = 1, K = 4), and two
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observations with one-bit ADCs (N = 2, K = 2), as well as for the architecture with a

one-bit ADC (N = 1, K = 2), for a target distortion of D = 0.09. In accordance with

the discussion above, all architectures have the same performance for low SNR, namely

✏(D) = 2Q(
p
D/�v) = 2Q(

p
0.09). Furthermore, in a manner similar to the discussion

on Figure 3.6 for the MSE criterion, in the low SNR regime, it is beneficial to increase

the number of observations, whereas at high SNR, it is preferable to increase the ADC

resolution. In this regard, we note that, in the high SNR the optimal K = 4 levels are

selected to minimize the probability of source outage, that is, the probability Pr(V 2

I;), yielding the reconstruction points V̂ = {�3
p
D,�

p
D,

p
D, 3

p
D} and a DOP of

2Q(4
p
D/�v) = 2Q(1.2) = 0.2301. Instead, for N = 2 and K = 1, the three e↵ective

reconstruction points (see Remark 3.6.1) at high SNR tend to V̂ = {�2
p
D, 0, 2

p
D}

and the minimum DOP is lower bounded by Q(3
p
D/�v) = 2Q(.9) = 0.3681.



Chapter 4

Zero-Delay Source-Coding with a

One-Bit ADC Front End and Side

Information at the Receiver

4.1 Overview

Zero-delay transmission of a Gaussian source over an AWGN channel with a one-bit ADC

front end is considered in the presence of a correlated side information at the receiver.

The design of the optimal encoder and the decoder is studied for two performance

criteria, namely, the MSE distortion and the DOP, under an average power constraint on

the channel input. For both the MSE distortion and the DOP, conditions of optimality

for the encoder and the decoder are derived, and it is observed that the presence of

receiver side information has a significant impact on the structure of the optimal encoder

mapping. For the MSE distortion it is observed that the NOE is periodic, and its period

increases with the correlation between the source and the receiver side information. For

the DOP, it is observed that the NOE mappings are bounded and fluctuating between

positive and negative values. The fluctuation of the encoder mapping is damped and

approaches zero with the increasing magnitude of the source values.

70
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4.2 Introduction

A key component of the front end of any digital receiver is the ADC that is typi-

cally connected to each receiving antenna. The energy consumption of an ADC (in

Joules/sample) increases exponentially with its resolution (in bits/sample) [60]. This

leads to a growing concern regarding the energy consumption of digital receivers, either

due to the increasing number of receiving antennas, e.g., for massive MIMO transceivers

[72], or due to the limited availability of energy, e.g., in energy harvesting terminals

[73]. Energy-e�cient operation of digital receivers may hence impose constraints on the

resolution of the ADCs that can be employed for each receiving antenna.

Motivated by communication among energy- and complexity-limited sensor nodes, we

study zero-delay transmission of analog sensor measurements to a receiving sensor equipped

with a 1-bit ADC front end. In keeping with the scenario of a network of sensors, we

further assume that the receiving sensor nodes has its own correlated measurement of

the transmitted source sample. Focusing on the MSE distortion and DOP criteria, our

goal is to gain insights into the structure and the performance of optimal encoder and

decoder functions when the source sample and the side information are jointly Gaussian.

This work contributes to a line of research that endeavors to understand the impact of

front end ADC limitations on the performance limits of communication systems. The

capacity analysis of a real discrete-time AWGN channel with a K-level ADC front end

is studied in [63], proving the su�ciency of K + 1 constellation points at the encoder.

Furthermore, it is shown in [63] that BPSK modulation achieves the capacity when

the receiver front end is limited to a 1-bit ADC. In [64], the authors show that, in the

low SNR regime, the symmetric threshold 1-bit ADC is suboptimal, while asymmetric

threshold quantizers and asymmetric signalling constellations are needed to obtain the

optimal performance. Generalization of the analysis from single-antenna AWGN chan-

nels to MIMO fading systems are put forth in [68], and, more recently, to massive MIMO

systems in [72] and [74]. In [75] some of the authors of this work considered the set-up

analysed here, but in the absence of correlated side information at the receiver. It is

noted that the zero-delay constraint prevents the application of the mentioned channel

capacity results to this set-up, and that, as it will be seen, the presence of correlated

side information at the receiver significantly modifies the optimal design problem.



Chapter 4. Zero-Delay Source-Coding with a One-Bit ADC Front End and Side
Information at the Receiver 72

In this work, we derive necessary optimality conditions of an encoder mapping for two

performance criteria, namely, the MSE distortion and the DOP. For the MSE criterion,

we observe that, similarly to the case with an infinite resolution front end studied in

[17, 38, 43], the optimal encoder mapping is periodic. Furthermore, the period of this

function depends on the correlation coe�cient between the source and the side infor-

mation, and is independent of the input power constraint, or equivalently the channel

SNR. Motivated by the structure of NOE mappings, we also propose two simple pa-

rameterized mappings, which, although being suboptimal, approach the performance of

NOE mappings in low and high SNR regimes. For the DOP criterion, we observe that

the NOE mappings are fluctuating between positive and negative values. Additionally,

the NOE mappings for the DOP are damped as the source magnitude increases, and

they become zero when the absolute value of the source output is greater than some

threshold value.

The rest of the chapter is organized as follows. In Section 4.3, the system model is

explained. Considering the MSE criterion in Section 4.4, we study the optimal design

of the encoder and the decoder in Section 4.4.1. In Sections 4.4.2 and 4.4.3, we propose

two parameterized encoding schemes. In Section 4.4.4, we consider the scenario in which

the side information is also available at the encoder. We obtain the optimal performance

for this scenario, which can be considered as a lower bound on the performance of the

original problem with decoder-only side information studied in this chapter. In Section

4.4.5, we study the asymptotic performance of the problem when the block length of the

transmission tends to infinity. Focusing on the DOP criterion in Section 4.5, we first

consider the optimal design of the encoder and decoder in Section 4.5.1. Next in Section

4.5.2, as for the MSE counterpart, we consider the case in which the side information is

also available at the encoder. We obtain the optimal performance for this scenario, which

accordingly can be considered as a lower bound for the performance of the decoder-only

side information problem. In Section 4.6, numerical results are provided.

Notations: Throughout the chapter, upper case and lowercase letters denote random

variables and realizations, respectively. The standard normal distribution is denoted by

N (0, 1), and its pdf by �(·). Operators E[·] and Pr(·) stand for the expectation and

probability, respectively. Q(·) denotes the CCDF of the standard normal distribution,



Chapter 4. Zero-Delay Source-Coding with a One-Bit ADC Front End and Side
Information at the Receiver 73

Figure 4.1: System model for the zero-delay transmission of a Gaussian source over
an AWGN channel with a one-bit AD front end and correlated side information at the

receiver.

defined as

Q(z) , 1p
2⇡

1
Z

z

e�
x

2

2 dx. (4.1)

The boundaries of integrals are from �1 to 1 unless otherwise stated. We denote the

pdf of a standard bivariate normal distribution with correlation r as

� (v, u) =
1

2⇡
p
1� r2

e
� 1

2(1�r

2)
(v2+u2�2rvu)

, (4.2)

and the conditional distribution for these variables as

� (v|u) = 1
p

2⇡(1� r2)
e
� (v�ru)2

2(1�r

2) . (4.3)

4.3 System Model

We consider the system model in Figure 4.1, in which a single source sample V ⇠

N (0,�2
v) is transmitted over a single use of a channel characterized by AWGN followed

by a one-bit ADC front end. The receiver has access to side information U ⇠ N (0,�2
u),

which is correlated with the source V . The correlation matrix of the source and the side

information is given by

⇤ =

2

4

�2
v r�v�u

r�v�u �2
u

3

5 . (4.4)

Accordingly, the encoded signal is given as X = f(V ), where f : R ! R is a mapping

that is constrained to satisfy an average power constraint E[f(V )2]  P . At the receiver,
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the received noisy signal is modelled as

Z = f(V ) +W, (4.5)

where W ⇠ N (0,�2
w) is independent of the source and side information. The noisy

signal Z is quantized with a one-bit ADC producing the received signal as

Y = Q(Z) =

8

<

:

0 Z � 0,

1 Z < 0.
(4.6)

We define the signal-to-noise ratio (SNR) as � = P
�2
w

. Based on Y and U , the decoder

produces an estimate V̂ of V using a decoding function g : {0, 1}⇥R ! R, i.e., V̂Y (U) =

g(Y, U).

Two performance criteria are considered in this chapter, namely, the MSE distortion

defined as

D̄ = E
h

(V � V̂ )2
i

, (4.7)

and the DOP defined as

✏(D) = Pr
⇣

(V � V̂ )2 � D
⌘

. (4.8)

In both cases, we aim at studying the optimal mapping function f , along with the

corresponding optimal estimator g at the receiver, such that, D̄ and ✏(D) are minimized

subject to the average power constraint. More specifically, as it is common in related

works (see, e.g., [17]), we consider the unconstrained minimization

minimize
f,g

L(f, g,�), (4.9)

where

L(f, g,�) =

8

<

:

D̄ + �E[f(V )2] for the MSE criterion,

✏(D) + �E[f(V )2] for the DOP criterion,
(4.10)

with � � 0 being a Lagrange multiplier that defines the relative weight given to the

average transmission power E[f(V )2] as compared to the distortion criterion.



Chapter 4. Zero-Delay Source-Coding with a One-Bit ADC Front End and Side
Information at the Receiver 75

4.4 The MSE distortion criterion

In this section, we study the performance of the system model in Figure 4.1 under

the MSE distortion criterion. In the following, we first consider the optimal design of

the encoder and the decoder, and obtain a necessary condition for the optimality of

the encoder. For reference we also study two parameterized encoding schemes, namely

PLT and PBT. Then, as a lower bound, we consider the optimal design when the side

information is available at both the encoder and the decoder. We also consider the

Shannon lower bound as the optimal performance of the system in the asymptotically

long block length.

4.4.1 Optimal Encoder and Decoder Design

The design goal is to minimize the Lagrangian in (4.9) for the MSE distortion criterion.

Note that, for any encoding function, the optimal decoder is always the MMSE estimator;

therefore, we focus on the design of the encoder mapping f . With an MMSE estimator

at the receiver, the optimal reconstruction function for any encoder mapping is given by

v̂y(u) = g(y, u) = E[V |Y = y, U = u] (4.11a)

=

R

v�
⇣

v
�
v

�

�

u
�
u

⌘

Q
⇣

(�1)y+1f(v)
�
w

⌘

dv

R

�
⇣

v
�
v

�

�

u
�
u

⌘

Q
⇣

(�1)y+1f(v)
�
w

⌘

dv
. (4.11b)

The following proposition provides a necessary condition for the optimal encoder map-

ping.

Proposition 4.4.1. The optimal encoder mapping f for problem (4.9) under the MSE

distortion criterion must satisfy the implicit equation

2
p
2⇡�w�u�f(v)e

f(v)2

2�2
w = 2vA(v)�B(v), (4.12)

where � � 0 and is given. The functions A(v) and B(v) are defined as

A(v) ,
Z

�

✓

u

�u

�

�

�

v

�v

◆

(g(0, u)� g(1, u)) du, (4.13a)
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B(v) ,
Z

�

✓

u

�u

�

�

�

v

�v

◆

�

g(0, u)2 � g(1, u)2
�

du, (4.13b)

and g(y, u), y = 0, 1, is the optimal MMSE estimation defined in (4.11). Furthermore,

the gradient of the Lagrangian function L(f, g,�) over f , for g given as in (4.11), is given

by

rL = 2�f(v)� e
� f(v)2

2�2
w

p
2⇡�w�u

(2vA(v)�B(v)). (4.14)

Proof : See Appendix I.

Remark 4.4.1. To elaborate further on the necessary condition obtained in (4.12), we

consider two extreme values of the correlation coe�cient r.

• independent side information(r = 0): When the correlation coe�cient is zero, the

necessary condition (4.12) reduces to

2
p
2⇡�w�f(v)e

f(v)2

2�2
w = 2v (v̂0 � v̂1)�

�

v̂20 � v̂21
�

, (4.15)

where v̂y, for y = 1, 0, can be obtained from (4.11) as

v̂y , E[V |Y = y] =

R

v�
⇣

v
�
v

⌘

Q
⇣

(�1)y+1f(v)
�
w

⌘

dv

R

�
⇣

v
�
v

⌘

Q
⇣

(�1)y+1f(v)
�
w

⌘

dv
. (4.16)

In the absence of side information at the receiver, it is shown in [75] that the

optimal mapping is an odd function. Therefore, with no loss of optimality, it can

be easily verified that v̂0 = �v̂1. Hence, the condition in (4.15) can be further

simplified as

f(v)e
f(v)2

2�2
w =

2vv̂0p
2⇡�w�

, (4.17)

which is the result obtained in [75].

• Perfect side information (r = 1): In this case, we have � (u/�u|v/�v) = �
u

�
v

�(u �

v), where �(·) is the Dirac delta function. Therefore, it can be easily verified

from (4.12) that the optimal mapping is f(v) = 0, as expected. Note that, the
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result is valid also for the negative correlation, i.e., r = �1. In this case we have

� (u/�u|v/�v) = ��
u

�
v

�(u� v).

Remark 4.4.2. Due to the symmetry of the zero-threshold ADC at the receiver and the

noise distribution and motivated by the optimality of an odd function in the absence of

receiver side information [75], we conjecture that the optimal encoder in the presence

of correlated side information is also an odd function of v. While this argument is

strengthened by our numerical observations (see Section 4.6), we leave the proof of the

validity of this conjecture as an open problem for future work. Here, we show that an

odd function can indeed satisfy the necessary condition in (4.12). Assuming that the

optimal mapping is odd, i.e., f(�v) = �f(v), it is shown that A(v) and B(v) are even

and odd functions of v, respectively (see Appendix J). Therefore we can write

2
p
2⇡�w�u�f(�v)e

f(�v)2

2�2
w = �2vA(�v)�B(�v) (4.18a)

= �2vA(v) +B(v) (4.18b)

= �2
p
2⇡�w�u�f(v)e

f(v)2

2�2
w , (4.18c)

concluding that an odd mapping can satisfy the necessary condition. Also, following

similar steps as in Appendix J, it can also be shown that for an odd encoder mapping

we have g(1,�u) = �g(0, u).

In Section 4.6, we will present NOE mappings obtained by using a gradient descent

approach. We observe that, due to the correlated receiver side information, the resulting

encoder mappings are periodic, with a period that depends on the correlation coe�cient

r. Motivated by this observation, and results for the case with an infinite-resolution front

end in [17], we propose two simple parameterized encoder mappings. Their performance

will be compared with that of the NOE mapping in Section 4.6.

4.4.2 Periodic Linear Transmission

The first proposed encoder mapping is a periodic linear function with period 2�, and

slope ↵ within each period. The encoder function is defined as

fPLT(v) = ↵(�1)

j

v

�

+ 1
2

k

·
✓

�

�

v

�
+

1

2

⌫

� v

◆

, (4.19)
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Figure 4.2: Illustration of the PLT encoder mapping for ↵ = 2, � = 2.5.

where bxc is the largest integer less than or equal to x. In Figure 4.2, an illustration of

this mapping for ↵ = 2, � = 2.5 is shown. To satisfy the average power constraint we

have

E[f(V )2] = ↵2
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A  P. (4.20)

The parameters ↵ and � are optimized under a given average power constraint P in

order to minimize the MSE distortion.

4.4.3 Periodic BPSK Transmission

The second proposed encoder mapping, unlike PLT, adopts digital modulation with two

levels, namely, � and ��, with a period of �. The mapping is defined as

fPBT(v) = �

✓

1 + 2Q(v) ·mod

✓�

2v

�

⌫◆

2

◆

, (4.21)
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Figure 4.3: Illustration of the PBT encoder mapping for � = 0.2, � = 3.

where mod(·)2 is the argument in modulo 2. In Figure 4.3, an illustration of this mapping

for � = 0.2, and � = 2.5 is shown. Due to the average power constraint, we set � =
p
P ,

and parameter � is optimized to minimize the MSE.

4.4.4 Side Information Available at Both the Encoder and Decoder

In this section, we consider the scenario in which both the encoder and the decoder have

access to the side information U . In this case, without loss of optimality, the encoder

can encode the error

T = V � �v
�u

rU, (4.22)

where the random variable �vrU/�u is the MMSE estimate of V given U , which can be

computed at both the encoder and the decoder. Since the random variable T , which is

distributed as N (0,�2
t ), with �2

t = �2
v(1 � r2), is independent of the side information

U , the encoder can directly encode the error T via a mapping function f̃(t) of the error

T by neglecting the presence of the side information U at the receiver. Therefore, the

problem reduces to the one studied in [75].
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Figure 4.4: Illustration of the optimal encoder mapping when there is no side infor-
mation at the receiver (�2

t

= �2
w

= 1). The application of this mapping to the residual
error (4.22) is optimal if the side information U is also known at the encoder.

In [75, Proposition. I], it is shown that the optimal zero-delay encoder mapping in the

absence of side information is obtained from the implicit equation

f̃(t)e
f̃(t)2

2�2
w =

tp
2⇡�w�

, (4.23)

where � � 0 is chosen such that the power constraint is satisfied. Examples of the

optimal mapping are shown in Figure 4.4. It is observed that, in the high SNR regime,

the optimal mapping tends to digital 2-level antipodal signalling, whereas, in the low

SNR regime it tends to linear mapping.

In Section 4.6, we will use the resulting optimal performance in the presence of side

information at both the encoder and decoder as a lower bound on the performance of

the set-up under study in which the side information is available solely at the receiver.

Remark 4.4.3. In Section 4.6, it will be seen that the application of a gradient de-

scent based optimization procedure yields periodic NOE mappings, whose periods are

dependent on the correlation coe�cient r. The periodic behaviour of the NOE map-

pings can be explained with reference to the optimal solution discussed above, for the

scenario in which U is also known at the encoder. In fact, in that case, a mapping
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f(v) = f̃(v � �vru/�u) is optimal, where f̃(·) is shown in Figure 4.4. Therefore, the

optimal mapping is centred on the MMSE estimate �vru/�u. When the latter is not

available at the encoder, the NOE consists of periodic replicas of a basic mapping that

behaves in a manner similar to ˜f(·) in Figure 4.4. As further discussed in Section 4.6, the

period increases as the variance of the MMSE estimate of V given U , namely �2
v(1�r2),

decreases.

4.4.5 Shannon Lower Bound

A lower bound on the MSE distortion can be obtained by relaxing the zero-delay con-

straint, and using the Shannon source-channel separation theorem. In [63], it is shown

that the capacity of the AWGN channel with a 1-bit ADC in (4.6) is given by

C = 1� h
⇣

Q
⇣p

SNR
⌘⌘

, (4.24)

where h(·) is the binary entropy function defined as h(p) , �p log2 p�(1�p) log2 (1� p).

Furthermore, the rate-distortion function of a Gaussian source with correlated Gaussian

side information at the receiver is given by the Wyner-Ziv rate-distortion function [31]

R(D̄) =
1

2



log2
�2
v(1� r2)

D̄

�+

, (4.25)

where [x]+ = max(0, x). Combining (4.24) and (4.25) a lower bound on the MSE

distortion D̄ is obtained as

D̄lower = (1� r2)�2
v2

�2(1�h(Q(
p
SNR))). (4.26)

4.5 The DOP Criterion

In this section, we consider the performance of the system in Figure 4.1 in terms of the

DOP. In the following, we first study the necessary optimality conditions of the encoder

and the decoder when the side information is solely available at the decoder. Next, as

a lower bound, we study the DOP when the side information is available at both the

encoder and the decoder.
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4.5.1 Optimal Encoder and Decoder Design

In this section, we derive the necessary conditions for an optimal encoder and decoder

pair by considering the Lagrangian function in (4.10) under the DOP criterion. In the

following, we first obtain the necessary optimality condition of an encoder mapping

function f for a given decoder g. Then, we obtain the optimal decoder g for a given

encoder mapping f .

• Optimal encoder: Here we consider the optimal design of the encoder mapping f .

To elaborate, for a given side information realization u, we define the intervals

Iy(u) =
�

v : (v � g(y, u))2 < D
 

, y = 0, 1, (4.27)

where g(·, ·) is the decoder reconstruction function, which is assumed to be fixed

and given. Note that, for a given side information realization u, the decoder out-

put is two separate points (depending on the output of the one-bit ADC). There-

fore, for di↵erent side information realizations u, we have di↵erent reconstruction

points, i.e., g(0, u) and g(1, u), and accordingly, di↵erent intervals I0(u) and I1(u)

corresponding to g(0, u) and g(1, u), respectively.

Given u, each interval I0(u) and I1(u) in (4.27), corresponds to the set of source

values that are within the allowed distortion target D of the reconstruction points

g(0, u) and g(1, u), respectively. Hence, the following claims hold: (i) For all

source outputs v in the set (I0(u) [ I1(u))C = {v : miny=0,1(v � g(y, u))2 � D},

outage occurs (superscript C denotes the complement set). We refer to this event

as source outage. (ii) For all source values in the interval I0(u) \ I1(u), either

of the reconstruction points yield a distortion no more than the target value D.

Therefore, regardless of which output (g0(u), g1(u)) is selected by the receiver, no

outage occurs.

With these observations in mind, the next proposition characterizes the optimal

encoder mapping for a given decoder g.

Proposition 4.5.1. Given a target distortion D, and a decoder with reconstruction

function g(Y, U), the optimal mapping f(·) for the problem (4.10) under the DOP
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criterion satisfies

f(v) =
e
� f(v)2

2�2
w

2�
p
2⇡

�

Pr
�

U 2 S0\1(v)
�

� Pr
�

U 2 S1\0(v)
��

. (4.28)

where S0\1(v) and S1\0(v) are defined as

S0\1(v) , {u : b0r(u) � v and b0l(u)  v},

S1\0(v) , {u : b1r(u) � v and b1l(u)  v}, (4.29)

and b1r(u), b1l(u), b0r(u) and b0l(u) are defined as below

b0r(u) ,

8

<

:

g(0, u) +
p
D g(0, u) � g(1, u),

min
n

g(1, u)�
p
D, g(0, u) +

p
D
o

g(0, u) < g(1, u),
(4.30a)

b0l(u) ,

8

<

:

max
n

g(1, u) +
p
D, g(0, u)�

p
D
o

g(0, u) � g(1, u),

g(0, u)�
p
D g(0, u) < g(1, u),

(4.30b)

b1r(u) ,

8

<

:

min
n

g(1, u) +
p
D, g(0, u)�

p
D
o

g(0, u) � g(1, u),

g(1, u) +
p
D g(0, u) < g(1, u),

(4.30c)

b1l(u) ,

8

<

:

g(1, u)�
p
D g(0, u) � g(1, u),

max
n

g(1, u)�
p
D, g(0, u) +

p
D
o

g(0, u) < g(1, u).
(4.30d)

Furthermore, the gradient of the Lagrangian function L(f, g,�) over f , for a given

g, is found as

rL = 2�f(v)� e
� f(v)2

2�2
w

p
2⇡

�

Pr
�

U 2 S0\1(v)
�

� Pr
�

U 2 S1\0(v)
��

. (4.31)

Proof : See Appendix K.

• Optimal decoder: Assuming that the encoder mapping f is given, we aim to min-

imize the Lagrangian function in (4.10) for the DOP criterion over the decoding

function g. The next proposition characterizes the optimal decoder mapping for a

given encoder f .
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Proposition 4.5.2. Given a target distortion D and an encoder mapping f , the optimal

decoder g(·, ·) for the problem (4.10) under the DOP criterion is obtained as

g(y, u) 2 arg max

v̂

v̂+
p
D

Z

v̂�
p
D

�

✓

v

�v

�

�

�

u

�u

◆

Q

✓

(�1)y+1f(v)

�w

◆

dv. (4.32)

Proof : See Appendix L.

Remark 4.5.1. In the following, as for the MSE distortion criterion, we consider two

asymptotic values for the correlation between the source and the side information.

• Independent side information(r = 0): We note that when r = 0, the decoder out-

puts are two separate points, namely g(0, u) = v̂0 and g(1, u) = v̂1, depending only

on the one-bit ADC output. Therefore, it can be verified from (4.30) that b1r(u),

b1l(u), b0r(u) and b0l(u) are also independent of u. With no loss of generality,

assuming v̂0 � v̂1, we have1

b1l = v̂1 �
p
D,

b1r = min{v̂1 +
p
D, v̂0 �

p
D},

b0l = max{v̂1 +
p
D, v̂0 �

p
D},

b0r = v̂0 +
p
D. (4.33)

Hence, from (4.29) it can be verified that

S0\1(v) =

8

<

:

R b0l  v  b0r,

; otherwise,
(4.34a)

S1\0(v) =

8

<

:

R b1l  v  b1r,

; otherwise.
(4.34b)

Substituting in (4.28), we obtain

2�
p
2⇡f(v)e

f(v)2

2�2
w =

8

>

>

>

<

>

>

>

:

1 b0l  v  b0r,

�1 b1l  v  b1r,

0 otherwise,

(4.35)

1
Due to the independence of the intervals from u, we drop the argument u
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which is the result obtained for the optimal mapping when there is no side infor-

mation at the receiver [75].

• Perfect side information (r = 1): When the receiver has access to a perfect side

information, i.e., r = 1, from (4.32), the optimal decoder is obtained as follows

g(y, u) 2 arg max

v̂

v̂+
p
D

Z

v̂�
p
D

�

✓

v � �vu

�u

◆

Q

✓

(�1)y+1f(v)

�w

◆

dv (4.36a)

= arg max

v̂

Q

0

@

(�1)y+1f
⇣

�
v

u
�
u

⌘

�w

1

A

v̂+
p
D

Z

v̂�
p
D

�

✓

v � �vu

�u

◆

dv (4.36b)

=

⇢

v̂ : v̂ 2
✓

�vu

�u
�
p
D,

�vu

�u
+
p
D

◆�

(4.36c)

we can choose the decoder to be g(Y, U) = g(U) = �
v

U
�
u

. Therefore, we have

b0r(u) =
�v
�u

u+
p
D, (4.37a)

b0l(u) =
�v
�u

u+
p
D, (4.37b)

b1r(u) =
�v
�u

u�
p
D, (4.37c)

b1l(u) =
�v
�u

u�
p
D. (4.37d)

It can be easily verified that

Pr
�

u 2 S0\1(v)
�

= Pr
�

u 2 S1\0(v)
�

= 0. (4.38)

Hence, from (4.28), we get

f(v) = 0.

This result is quite intuitive: when r = 1 the source can be recovered directly

from the side information by linear scaling, and hence, no transmission is needed.

Note that, as for the MSE distortion criterion, when the correlation is negative,

i.e., r = �1, it can be easily checked that the decoder is g(Y, U) = g(U) = ��
v

U
�
u

.

Remark 4.5.2. In the low SNR regime, from (4.32), we have g(y, u) ' r�
v

�
u

u, y = 0, 1.

Therefore, in the low SNR regime, the DOP at the receiver can be approximated as (see
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Appendix M)

✏(D) = 2Q

 p
D

�v
p
1� r2

!

. (4.39)

4.5.2 Side Information Available at Both the Encoder and the Decoder

Now, we consider the case in which the side information U is also available to the

encoder. Based on the available side information, both the encoder and the decoder can

reconstruct the source under the DOP criterion as �vru/�u. We have

argmin
v̂

Pr(|V � v̂|2 � D|U = u) (4.40)

= argmax
v̂

v̂+
p
D

Z

v̂�
p
D

�

✓

v

�v

�

�

�

u

�u

◆

dv (4.41)

=
�v
�u

ru. (4.42)

At the transmitter, similarly to the MSE distortion criterion, the encoder uses the op-

timal mapping for the scenario without side information to transmit the error signal

T = V � r�v
�u

U. (4.43)

In [75], it is shown that the optimal encoder mapping has the following structure

f̃(t) =

8

>

>

>

<

>

>

>

:

0 t 2 (I0 [ I1)C [ (I0 \ I1),

�⌧ t 2 (I1\I0),

⌧ t 2 (I0\I1),

(4.44)

where for � � 0, the value of ⌧ is the unique solution of

⌧e
⌧

2

2�2
w =

1

2
p
2⇡�w�

. (4.45)

The intervals I0 and I1 are defined as

Iy = {t : (t� t̂y)
2  D}, (4.46)
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where t̂y, y = 0, 1, are the optimal reconstruction points given by

t̂0 =
p
D � a⇤, (4.47a)

t̂1 = �v̂0, (4.47b)

where a⇤ is obtained from

a⇤ = arg min

a 2 [0,
p
D]

2Q

 

2
p
D � a

�v

!

+ 2

✓

Q

✓

⌧

�w

◆

+ �⌧2
◆

·
 

Q

✓

a

�v

◆

�Q

 

2
p
D � a

�v

!!

.

(4.48)

Note that � � 0 is chosen so that for a given pair of reconstruction points (t̂1, t̂0) the

power constraint is satisfied.

In the following proposition we obtain the optimal decoder for this scenario.

Proposition 4.5.3. Given a target distortion D, and an encoder mapping f̃ in (4.44), the

optimal decoder g(·, ·) for the problem (4.10) under the DOP criterion is obtained as

g(y, u) =
r�v
�u

u+ t̂y, y = 0, 1, (4.49)

where t̂y is the optimal reconstruction points corresponding to the source of variance

(1� r2)�2
v defined as in (4.47). The DOP is obtained as

✏(D) = 2Q

 

2
p
D � ap

1� r2�v

!

+ 2Q

✓

t

�w

◆

 

Q

✓

ap
1� r2�v

◆

�Q

 

2
p
D � ap

1� r2�v

!!

,

where t is the solution of the equation te
t

2

2�2
w = 1

2
p
2⇡�

w

�
.

Proof : See Appendix N.

In Section 4.6, we will use the resulting DOP in the presence of side information at both

encoder and decoder as a lower bound on the performance of the original decoder-only

side information set-up under study.
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Figure 4.5: MSE encoder mappings f(v) with di↵erent average power values and
r = 0.85, (�

v

= �
w

= 1). Increasing the power constraint P has no impact on the
period of the NOE mapping.

4.6 Numerical Results

In this section, we present numerical results with the aim of assessing the performance

of the encoder/ decoder pairs proposed in the previous sections. In order to derive the

NOE mappings we apply a gradient descent-based algorithm. The algorithm performs

a gradient descent search in the opposite direction of the derivative of the Lagrangian

(4.10) with respect to the encoder mapping f(·). The update is done as

fi+1(v) = fi(v)� µrfL, (4.50)

where i is the iteration index, rfL is defined in (4.14) and (4.31) for the MSE distortion

and DOP criterion, respectively. µ > 0 is the step size. The algorithm is initialized

with an arbitrary mapping, e.g., linear mapping. It is noted that the algorithm is not

guaranteed to converge to a global optimal solution. We also remark that di↵erent power

constraints are imposed by means of a linear search over the Lagrange multiplier �. In

the following, we first discuss the numerical results for the MSE distortion criterion,

followed by the numerical results for the DOP criterion.
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Figure 4.6: NOEmappings that satisfy the necessary optimality condition for di↵erent
correlation coe�cients r and an average power constraint of P = 5 (�2

v

= �2
w

= 1).

In Figure 4.5, NOE mappings for the MSE distortion criterion are plotted for di↵erent

average power constraints, for a correlation coe�cient of r = 0.85. We note the periodic

structure of the mapping, which is due to the available side information at the receiver

as discussed in Remark 4.4.3. In contrast, the optimal mapping obtained in [75] when

r = 0 is a monotonically increasing function (see Figure 4.4). We also observe that the

average power constraint does not a↵ect the period of the mapping. In Figure 4.6, NOE

mappings for an average power of P = 5 are plotted for di↵erent correlation coe�cients.

We see that the period of the mapping indeed depends on r: the higher the correlation

coe�cient r the smaller the period of the mapping.

In Figure 4.7, we plot the complementary MSE distortion (1� D̄) versus SNR for NOE,

as well as for the PLT and PBT schemes, for the correlation coe�cient of r = 0.6. The

SLB and the MSE distortion achieved when both the encoder and the decoder have

access to the side information U , which is referred to as the encoder side information

lower bound (ESLB), are also included for comparison. We observe that the performance

of PBT is close to that of NOE at high SNR values. On the other hand, for low SNRs,

PLT outperforms PBT and approaches the NOE performance. The results are aligned

with the shapes of the NOE mappings illustrated in Figure 4.5. We observe that the
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Figure 4.7: Complementary MSE distortion vs. SNR for r = 0.6 (�2
v

= �2
w

= 1).

NOE resembles PLT whereas it approaches the shape of PBT as SNR increases (see

Section 4.4.4).

In Figure 4.8, the complementary MSE distortion (1�D̄) is plotted versus the correlation

coe�cient r for a fixed average power constraint of P = 5. We observe that, for this

SNR value, PBT performs very close to NOE for a wide range of r values. However,

as r approaches 1, PLT outperforms PBT, and approaches the performance of NOE.

This can be explained based on the observation in Figure 4.5 that, as average power

constraint decreases, the NOE mappings resembles the PLT mapping.

We observe from the comparison of the SLB and ESLB bounds in both Figure 4.7 and

Figure 4.8, that the zero-delay constraint entails a significant loss with respect to the

case in which block processing is allowed. Also observed from Figure 4.8 is that the

ESLB is tight only for low and high correlation regime, and in general there is a loss in

the MSE distortion by not having the side information at the encoder. We note that

this is not the case for the SLB, and the same MSE distortion performance is achieved

when the side information is available, or not, at the encoder. This is because of the no

rate-loss property of the Gaussian source in Wyner-Ziv compression [31].
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Figure 4.8: Complementary MSE distortion versus correlation coe�cient r under the
average power constraint P = 5 (�2

v
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= 1).

Considering the DOP criterion, in Figure 4.9, NOE mappings for di↵erent power con-

straints and for three di↵erent correlation coe�cients are shown. For the lower correla-

tion coe�cient r = 0.1 (the NOE mappings on the top of Figure 4.9) the NOE mappings

resemble the optimal mappings in the absence of receiver side information obtained in

[75]. As the correlation between the source and the side information increases, the do-

main of the mapping on which it is non-zero expands. This can be explained as follows.

With a higher correlation coe�cient r, receiver’s information on the range of the source

output becomes more accurate. This allows the encoder to allocate its power budget over

a larger set of source output values, as the distortion target can be reached for a larger

set of source values. It is also observed that unlike the encoder mappings for the MSE

distortion criterion, here, NOE mappings become almost zero when the absolute value

of the source output is greater than some positive value. We give an example to explain

this behaviour. Assume a source with unit variance �2
v = 1, that outputs v = 10. Also

assume that the distortion target at the receiver is D = 0.09. Based on the side informa-

tion (we assume unit variance �2
u = 1 with correlation coe�cient r = 0.5) at the receiver,

we can estimate the source to be V̂ = rU . Roughly speaking, to be able to utilize the

side information at the receiver we need to have |v� rU |2 < D, i.e., |10� 0.5U |2 < 0.09.
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= 1). The power constraint P of the mappings increases in the
direction of the arrow.

This results in Pr(19.4 < u < 20.6) ' 0. Although joint decoding based on the channel

output and the side information can improve this probability, it would be far less than

what is needed to increase the probability to a reasonable value. Therefore, the optimal

mapping does not allocate much power to very large source outputs.

In Figure 4.10, we plot the complementary DOP, 1�✏(D), versus SNR for NOE mappings

and for correlation coe�cients r = 0, 0.6, 0.8. In addition to that, the DOP when both

the encoder and the decoder have access to the side information U , which is referred to

as encoder side information lower bound (ESLB), is also included for comparison. We

observe that in the low SNR regime the DOP is close to the ESLB. This is because in
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the low SNR regime the channel output is not reliable and the decoding is done almost

based on the side information. We also observe that the DOP saturated as the SNR

increases. In the high SNR regime there is practically no channel outage and the overall

DOP is dominated by the source outage probability, which is independent of the SNR.



Chapter 5

Conclusions and Future Work

In this thesis, we addressed the communication limits under the zero-delay constraint.

We focused on the point-to-point transmission with the MSE distortion and the DOP

criteria under the average power constraint on the channel input. In the following, we

conclude the results of the previous chapters respectively and discuss about the future

possible directions as continuation of this research.

In chapter two, we have studied the problem of zero-delay transmission of a Gaussian

source over an AWGN channel in the presence of known interference at the transmitter.

Due to the zero-delay constraint and the memoryless nature of the source samples and

the interference signals over time, causal and non-causal availability of the interference

information are equivalent in this setting. We have proposed one linear and five non-

linear zero-delay JSCC schemes. The linear scheme is based on interference cancellation,

whereas the non-linear schemes shape the interference and convert it into structured

interference, and use companding for the transmission of the source samples.

We have shown that the proposed non-linear coding schemes can achieve zero-distortion

in the limit of zero noise, whereas this is not possible through the linear ICA scheme

when the interference is strong. We have also introduced the novel idea of non-uniform

interference quantization for this problem, and have shown that the corresponding 1DL-

NU scheme achieves the best performance among the proposed parametric transmission

techniques.

We have also studied the necessary condition for optimality, and obtained a NOE using

this optimality condition. While NOE outperforms other proposed encoders, it has a

94
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significantly higher computational complexity compared to the parameterized schemes.

Based on the numerical results it is shown that 1DL-NU performs closer (among the

proposed parameterized schemes) to NOE. We have also observed that the structure

of the encoder mapping of the proposed parameterized transmission schemes, resemble

that of the encoder mapping obtained numerically in the NOE scheme. Based on our

numerical performance results and the latter observation, we argue that the proposed

low-complexity parameterized transmission schemes can be instrumental in practical

systems to achieve reasonably good performance with limited computational resources.

In chapter three, we considered the zero-delay transmission of a single sample of a

Gaussian source over a quantized vector AWGN channel. We first studied a system

with a one-bit ADC front end at the receiver for two performance criteria, namely

the MSE distortion, and the DOP. For the MSE distortion, we have shown that the

optimal encoder mapping is odd, and that, in the low SNR regime, linear transmission

approaches the optimal performance, whereas digital transmission becomes optimal in

the high SNR regime. For the DOP criterion, we have obtained the optimal structure

of the encoder and the decoder, demonstrating that the optimal encoder function is

symmetric and piecewise constant. For both the MSE distortion and the DOP, we

also derived necessary optimality conditions of the encoder and decoder mappings for a

K-level ADC front end and for multiple one-bit ADC observations.

Among open problems that are left for future research, we mention here the joint op-

timization of encoding and decoding functions as well as of the quantizers, possibly

dithered, used by the ADC front ends. Another interesting problem relates to the im-

plementation of zero-delay joint source-channel coding over fading channels with finite-

resolution ADSs.

In chapter four, we have studied the problem of zero-delay transmission of a Gaussian

source over an AWGN channel followed by a 1-bit ADC front end, in the presence of cor-

related side information at the receiver. We studied the problem with two performance

criteria, namely, the MSE distortion and the DOP under an average power constraint on

the channel input. For both the MSE distortion and the DOP, we derived a necessary

condition for the optimality of an encoder and a decoder function, and then, based on

this condition, and using gradient descent algorithm, we obtained a numerically opti-

mized encoder mappings. For the MSE distortion we observed that encoder mapping is
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periodic, with a period that depends on the correlation coe�cient of the side informa-

tion. This motivated us to propose two new periodic parameterized encoding schemes,

referred to as PLT and PBT. We have shown through numerical simulations that, PLT

and PBT perform close to the NOE in the low and high SNR regimes, respectively. For

the DOP we observed that the numerically optimized encoder mapping is fluctuating

between positive and negative values, and that the encoder mapping for the DOP is

bounded, that is, the mapping is damped until it gets zero as we get further from the

origin. For both the MSE distortion and the DOP, we considered the scenario where the

encoder also has access to the side information. We obtained the optimal performance

for this scenario, which is used as a lower bound for the case where there is no side at

the transmitter.



Appendix A

Preliminaries: Calculus of

Variations

In the proofs of the propositions reported above, we leverage the standard method

in variational calculus to obtain necessary optimality conditions [32, Section 7]. The

following lemma presents the key result that will be used throughout the following

appendices. For the sake of brevity, we drop the arguments of functions and functionals

where no confusion can arise. We also use the notation F f to denote the partial derivative

of a functional F with respect to a function f .

Lemma A.0.1. Let Gi, i = 1, . . . , n, be continuous functionals of (f , f
0
, u) and have

continuous partial derivatives with respect to (f , f
0
). Also, let F be a continuous

functional of (f , f
0
, r1, . . . , rn, u), where ri is a functional of Gi given as

ri =

t2
Z

t1

Gi(f(t), f
0
(t), t)dt, i = 1, . . . , n. (A.1)

Let F has continuous partial derivatives with respect to (f, f
0
, r1, . . . , rn). Consider the

following minimization problem

minimize
f

L(f) ,
t2
Z

t1

F (f(t), f
0
(t), r1, . . . , rn, t)dt. (A.2)

97
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Define the functional derivative rL as

rL ,F f (f(u), f
0
(u), r1, . . . , rn, u)�

d

du
F f

0
(f(u), f

0
(u), r1, . . . , rn, u)

+
n
X

i=1

✓

Gf
i (f(u), f

0
(u), u)� d

du
Gf

0

i (f(u), f
0
(u), u)

◆

·
Z

F r
i(f(t), f

0
(t), r1, . . . , rn, t)dt, (A.3)

where F f , F f
0
, F r

i are derivatives of the functional F with respect to f, f
0
, ri, respec-

tively. Similarly, Gf
i , G

f
0

i are derivatives of the functional Gi with respect to f, f
0
,

respectively. A necessary condition for a function f to be a solution of the problem

(A.2) is

rL = 0, 8u 2 [t1, t2]. (A.4)

Proof : Following the conventional approach in the calculus of variations, we perturb the

function f(t) by an arbitrary function ⌘(t), which vanishes on the boundary points t1

and t2 [32]. Let �fL , dL(f+↵⌘)
d↵

�

�

�

↵=0
be the Gateaux derivative of the functional L with

respect to the parameter ↵. We have

�fL =
d

d↵

t2
Z

t1

F (f + ↵⌘, f
0
+ ↵⌘

0
, r↵1 , . . . , r

↵
n , t)dt

�

�

�

�

�

↵=0

, (A.5)

where r↵i is defined as

r↵i =

t2
Z

t1

Gi(f + ↵⌘, f
0
+ ↵⌘

0
, u)du, i = 1, . . . , n. (A.6)

Therefore, the Gateaux derivative �fL can be written as

�fL =

t2
Z

t1

h

⌘F f (f, f
0
, r1, . . . , rn, t) + ⌘

0
F f

0
(f, f

0
, r1, . . . , rn, t)

i

dt

+

t2
Z

t1

n
X

i=1

dr↵i
d↵

�

�

�

�

�

↵=0

· F r
i(f, f

0
, r1, . . . , rn, t)dt (A.7)

=

t2
Z

t1

⌘



F f (f, f
0
, r1, . . . , rn, t)�

d

dt
F f

0
(f, f

0
, r1, . . . , rn, t)

�

dt
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+ F f
0
(f, f

0
, r1, . . . , rn, t)⌘(t)

�

�

�

�

�

t2

t1
| {z }

=0

+

t2
Z

t1

n
X

i=1

dr↵i
d↵

�

�

�

�

�

↵=0

· F r
i(f, f

0
, r1, . . . , rn, t)dt, (A.8)

where (A.8) is due to integration by parts, and the fact that ⌘(t) vanishes at t1 and t2

by construction. We compute

dr↵i
d↵

�

�

�

�

�

↵=0

=
d

d↵

t2
Z

t1

Gi(f + ↵⌘, f
0
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0
, u)du

�

�

�

�

�
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(A.9)

=

t2
Z

t1



⌘Gf
i (f, f

0
, u) + ⌘

0
Gf

0

i (f, f
0
, u)

�

du (A.10)

=

t2
Z

t1

⌘



Gf
i (f, f
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, u)� d
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i (f, f
0
, u)⌘(u)

�

�

�

�

�

t2

t1

(A.11)

=

t2
Z

t1

⌘



Gf
i (f, f

0
, u)� d

du
Gf

0

i (f, f
0
, u)

�

du, i = 1, . . . , n. (A.12)

By plugging (A.12) into (A.8) we finally have

�fL =

t2
Z

t1

⌘(u)



F f (f, f
0
, r1, . . . , rn, u)�

d

du
F f

0
(f, f

0
, r1, . . . , rn, u)

�

du

+
n
X

i=1

2

4

t2
Z

t1

F r
i(f, f

0
, r1, . . . , rn, t)dt

·
t2
Z

t1

⌘(u)

✓

Gf
i (f, f

0
, u)� d

du
Gf

0

i (f, f
0
, u)

◆

du

3

5 (A.13)

=

t2
Z

t1

⌘(u)

"

F f (f, f
0
, r1, . . . , rn, u)�

d

du
F f

0
(f, f

0
, r1, . . . , rn, u)

+
n
X

i=1

✓✓

Gf
i (f, f

0
, u)� d

du
Gf

0

i (f, f
0
, u)

◆

·
t2
Z

t1

F r
i(f, f

0
, r1, . . . , rn, t)dt

1

A

#

du. (A.14)

Since ⌘(u) is an arbitrary function and the term multiplying ⌘(u) is continuous, it must

be zero everywhere on the interval [t1, t2]. Thus, the optimal solution must satisfy the
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following equality

F f (f, f
0
, r1, . . . , rn, u)�

d

du
F f

0
(f, f

0
, r1, . . . , rn, u)

+
n
X

i=1

 

✓

Gf
i (f, f

0
, u)� d

du
Gf

0

i (f, f
0
, u)

◆

·
t2
Z

t1

F r
i(f, f

0
, r1, . . . , rn, t)dt

!

= 0 , 8u 2 [t1, t2], (A.15)

which yields (A.4). ⌅

Remark A.0.1. When the functional F is independent of ri, i = 1, ..., n, then F r
i(f, f

0
, u) =

0, and therefore, we obtain the well known Euler-Lagrange equation

F f (f, f
0
, u)� d

du
F f

0
(f, f

0
, u).

Remark A.0.2. As a special case of Lemma (A.0.1), it will be useful in Appendices B,

C and G to consider the minimization of the functional

L(f) =
1

�v

t2
Z

t1

�

✓

t

�v

◆

F̃ (f(t), r1, . . . , rn, t)dt, (A.16)

where we recall that �(·) is the Gaussian probability density function with mean zero

and variance one, and ri, i = 1, . . . , n, are of the form given by

ri =
1

�v

t2
Z

t1

�

✓

t

�v

◆

G̃i(f(t), t)dt, i = 1, . . . , n. (A.17)

From Lemma A.0.1, setting

F =
1

�v
�

✓

t

�v

◆

F̃ (f(t), r1, . . . , rn, t), (A.18)

Gi =
1

�v
�

✓

t

�v

◆

G̃i(f(t), t), i = 1, ..., n, (A.19)

the solution for this problem needs to satisfy rL = 0, where the functional derivative

rL is found as

rL ,F̃ f (f(u), r1, . . . , rn, u)
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+
n
X

i=1

✓

G̃f
i (f(u), u)

Z

F̃ r
i(f(t), r1, . . . , rn, t)dt

◆

, u 2 [t1, t2], (A.20)

with G̃i, i = 1, . . . , n, and F̃ being continuous functionals of (f , t) and (f, r1, . . . , rn, t),

respectively, and having continuous partial derivatives with respect to f , and (f , r1, . . . , rn),

respectively.

Instead, in Appendices B, D, F and H we will consider the minimization of the functional

L(f) =
1

�v

t2
Z

t1

�

✓

t

�v

◆

F̃ (t, f(t)) dt. (A.21)

From Remark A.0.1, setting

F (f, t) =
1

�v
�

✓

t

�v

◆

F̃ (f(t), t), (A.22)

the solution for the minimization of the problem (A.21) needs to satisfy

rL , F̃ f (u, f(u)) = 0, u 2 [t1, t2], (A.23)

where F̃ has continuous partial derivatives with respect to f .

⌅

In the proofs of the Propositions 4.4.1 and 4.5.1, we leverage the standard method in

variational calculus [32, Section 7] to obtain necessary optimality conditions. The next

theorem summarizes the key result that will be needed.

Theorem A.0.2. Let F , G0 and Gi, i = 1, . . . , n, be continuous functionals of (f,H, t),

(f, r1, . . . , rn, u, t) and (f, t, u), respectively, where H and ri, i = 1, . . . , n, are given by

H(t) =

t2
Z

t1

G0(f(t), r1(u), . . . , rn(u), u, t)du, (A.24)

ri(u) =

t2
Z

t1

Gi(f(v), v, u)dv, i = 1, . . . , n. (A.25)
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Also, let F , G0 and Gi, i = 1, . . . , n, have continuous partial derivatives with respect to

(f,H), (f, r1, . . . , rn) and f , respectively. Consider the following minimization problem

minimize
f

L(f) ,
t2
Z

t1

F (f(t), H(t), t)dt. (A.26)

Define rL as

rL , F f (f(t), H(t), t) + FH(f(t), H(t), t)

t2
Z

t1

Gf
0(f(t), r1(u), . . . , rn(u), u, t)du

+

t2
Z

t1

t2
Z

t1

FH(f(v), H(v), v)
n
X

i=1

Gf
i (f(t), t, u)G

r
i

0 (f(v), r1(u), . . . , rn(u), u, v)dvdu,

(A.27)

where F fand FH denote the partial derivatives of the functional F with respect to f

and H, respectively; and Gf
0 and Gr

i

0 denote the partial derivatives of the functional G0

with respect to f and ri, respectively. Similarly, Gf
i denotes the partial derivative of the

functional Gi with respect to f . A necessary condition for a function f to be a solution

to the minimization problem in (A.26) is

rL = 0. (A.28)

Proof : Following the conventional approach in the calculus of variations, we perturb the

function f(t) by an arbitrary function ⌘(t) that vanishes on the boundary points t1 and

t2 [32]. Let �fL , dL(f+↵⌘)
d↵

�

�

�

↵=0
be the resulting Gateaux derivative of the functional L

with respect to the parameter ↵. We have

�fL =
d

d↵

t2
Z

t1

F (f(t) + ↵⌘(t), H↵(t), t)dt

�

�

�

�

�

↵=0

, (A.29)

where H↵(t) is defined as

H↵(t) ,
t2
Z

t1

G0(f(t) + ↵⌘(t), r↵1 (u), . . . , r
↵
n(u), u, t)du, (A.30)
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and r↵i (u), i = 1, . . . , n, are defined as

r↵i (u) ,
t2
Z

t1

Gi(f(v) + ↵⌘(v), v, u)dv, i = 1, . . . , n. (A.31)

Evaluating the derivative in (A.29), we have

�fL =

t2
Z

t1



⌘(t)F f (f(t), H(t), t) +
dH↵(t)

d↵
FH(f(t), H(t), t)

�

dt, (A.32)

where dH↵(t)
d↵ is the Gateaux derivative of the functional H(t), which is computed as

dH↵(t)

d↵
=

d

d↵

t2
Z

t1

G0(f(t) + ↵⌘(t), r↵1 (u), . . . , r
↵
n(u), u, t)du

�

�

�

↵=0
(A.33)

=

t2
Z

t1

⇣

⌘(t)Gf
0(f(t), r1(u), . . . , rn(u), u, t)

+
n
X

i=1

dr↵i (u)

d↵
Gr

i

0 (f(t), r1(u), . . . , rn(u), u, t)

!

du, (A.34)

where

dr↵i (u)

d↵
, d

d↵

t2
Z

t1

Gi(f(v) + ↵⌘(v), v, u)dv

�

�

�

�

�

↵=0

(A.35)

=

t2
Z

t1

⌘(v)Gf
i (f(v), v, u)dv. (A.36)

By plugging (A.36) into (A.34), we can write

dH↵(t)

d↵
=

t2
Z

t1

⌘(t)Gf
0(f(t), r1(u), . . . , rn(u), u, t)du,

+

t2
Z

t1

t2
Z

t1

n
X

i=1

⌘(v)Gf
i (f(v), v, u)G

r
i

0 (f(t), r1(u), . . . , rn(u), u, t)dvdu. (A.37)
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By substituting (A.37) into (A.32) we have

�fL =

t2
Z

t1

⌘(t)F f (f(t), H(t), t)dt

+

t2
Z

t1

FH(f(t), H(t), t)

0

@

t2
Z

t1

⌘(t)Gf
0(f(t), r1(u), . . . , rn(u), u, t)du

+

t2
Z

t1

t2
Z

t1

n
X

i=1

⌘(v)Gf
i (f(v), v, u)G

r
i

0 (f(t), r1(u), . . . , rn(u), u, t)dvdu

1

A dt (A.38)

=

t2
Z

t1

⌘(t)

0

@F f (f(t), H(t), t) + FH(f(t), H(t), t)

t2
Z

t1

Gf
0(f(t), r1(u), . . . , rn(u), u, t)du

1

A dt

+

t2
Z

t1

t2
Z

t1

t2
Z

t1

⌘(v)FH(f(t), H(t), t)
n
X

i=1

Gf
i (f(v), v, u)G

r
i

0 (f(t), r1(u), . . . , rn(u), u, t)dvdudt

(A.39)

=

t2
Z

t1

⌘(t)

0

@F f (f(t), H(t), t) + FH(f(t), H(t), t)

t2
Z

t1

Gf
0(f(t), r1(u), . . . , rn(u), u, t)du

1

A dt

+

t2
Z

t1

t2
Z

t1

t2
Z

t1

⌘(t)FH(f(v), H(v), v)
n
X

i=1

Gf
i (f(t), t, u)G

r
i

0 (f(v), r1(u), . . . , rn(u), u, v)dvdudt

(A.40)

=

t2
Z

t1

⌘(t)

0

@F f (f(t), H(t), t) + FH(f(t), H(t), t)

t2
Z

t1

Gf
0(f(t), r1(u), . . . , rn(u), u, t)du

+

t2
Z

t1

t2
Z

t1

FH(f(v), H(v), v)
n
X

i=1

Gf
i (f(t), t, u)G

r
i

0 (f(v), r1(u), . . . , rn(u), u, v)dvdu

1

A dt.

(A.41)

Since ⌘(t) in (A.41) is an arbitrary function, the necessary condition for f to be a solution

is that the term inside the round brackets in (A.41) is zero. This concludes the proof.

⌅
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Proof of Proposition 3.4.1

As discussed in Section 3.4, the MMSE estimator g(·) = E[V |·] is optimal for any encoder

mapping f . Due to the orthogonality principle of the MMSE estimation, we can write

D̄ = �2
v � E[V V̂ ]. Rewriting the Lagrangian in (3.9) for the MSE distortion criterion,

and dropping the constants that are independent of f , we have

L(f, g,�) = �E[V V̂ ] + �E[f(V )2]. (B.1)

In the following, we prove the proposition by means of three key lemmas. In the first,

using (A.20), we obtain a necessary condition for the optimal encoder mapping. Then,

using this necessary condition, we show that the Lagrangian function in (B.1) takes its

minimum value when f is odd. Finally, tackling the optimization problem in (3.8) over

odd functions, and using (A.23), we obtain the result of Proposition 3.4.1.

Lemma B.0.1. The optimal mapping function f for the problem (3.8), has to satisfy

f(v)e
f(v)2

2�2
w = af (v + bf ), (B.2)

where af and bf are defined as

af , �r1p
2⇡�w�r2(1� r2)

, (B.3a)

bf , �(1� 2r2)r1
2r2(1� r2)

, (B.3b)
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with r1 and r2 defined as

r1 ,
1

�v

Z

v�

✓

v

�v

◆

Q

✓

f(v)

�w

◆

dv, (B.4a)

r2 ,
1

�v

Z

�

✓

v

�v

◆

Q

✓

f(v)

�w

◆

dv. (B.4b)

Proof : Expanding the objective function L(f, g,�) in (B.1), we have

L(f, g,�) = �EV

h

V EV̂ |V [V̂ |V ]� �f(V )2
i

(B.5a)

=
1

�v

Z

�

✓

v

�v

◆✓

vQ

✓

f(v)

�w

◆

�

v̂(2) � v̂(1)
�

+ �f(v)2
◆

dv (B.5b)

=
1

�v

Z

�

✓

v

�v

◆✓

vQ

✓

f(v)

�w

◆✓

r1
r2(1� r2)

◆

+ �f(v)2
◆

dv, (B.5c)

where v̂(1) =
r1

r2�1 and v̂(2) =
r1
r2
. We observe that (B.5c) can be stated in the form in

(A.16) by setting

F̃ = vQ

✓

f(v)

�w

◆

·
✓

r1
r2(1� r2)

◆

+ �f(v)2, (B.6a)

G̃1 = vQ

✓

f(v)

�w

◆

, (B.6b)

G̃2 = Q

✓

f(v)

�w

◆

. (B.6c)

Therefore, from (A.20) we have the necessary condition

rL =
vr1e

� f(v)2

2�2
w

p
2⇡�wr2(1� r2)

+ 2�f(v) +
vr1e

� f(v)2

2�2
w

p
2⇡�wr2(1� r2)

� (1� 2r2)r21
(r2(1� r2))2

e
� f(v)2

2�2
w

p
2⇡�w

=
2r1e

� f(v)2

2�2
w

p
2⇡�wr2(1� r2)

✓

v � (1� 2r2)r1
2r2(1� r2)

◆

+ 2�f(v) = 0. (B.7)

By solving (B.7) with respect to f(v), we obtain (B.2), which concludes the proof.

Based on (B.2), we restrict the minimization of the objective function over encoder

mappings fa,b(v) that satisfy

fa,b(v)e
f

a,b

(v)2

2�2
w =

1

a
(v � b), (B.8)
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Figure B.1: The function f
o

(v) in (B.9) and the function f
a,b

(v) in (B.8) with a =
4, b = 10 .

for some parameters a and b. Defining the function fo(·) as the unique solution of

fo(v)e
f

o

(v)2

2 = v, (B.9)

it will be convenient to write

fa,b(v) = �wfo

✓

v � b

a�w

◆

. (B.10)

This shows that any function fa,b(v) can be seen as a scaled and shifted version of the

function that satisfies (B.9). The function fo(v) is plotted in Figure B.1, along with an

example of the function fa,b(v) for a = 4, b = 10. It can be easily verified that fo(v) is

odd, that is, fo(�v) = �fo(v). Furthermore, functions of the form fa,0(v), that is, with

b = 0, are odd as well.

In the following lemma, we show that the Lagrangian functional in (B.1) takes its min-

imum value only over functions of the form fa,b(v) where b = 0 for any a, which shows

that the optimal function fa,b(v) is odd as summarized in Corollary B.0.3.



Appendix B. 108

Lemma B.0.2. The optimal solution of the problem

minimize
b

L(fa,b, g,�), (B.11)

is achieved for b = 0 for any fixed a.

Proof : We prove the lemma assuming that a, b � 0. This is without loss of generality

given the relationship L(fa,b, g,�) = L(fa,�b, g,�) = L(f�a,b, g,�) = L(f�a,�b, g,�). In

the following, we show that decreasing the value of b � 0, reduces the average power

of the mapping function, i.e., E[fa,b(V )2], and increases E[V V̂ ]. Therefore, the function

L(fa,b, g,�) becomes smaller by decreasing the value of b � 0.

1) E[fa,b(V )2] is a strictly increasing function of b: By writing the average power of the

function fa,b(v) we have

E[fa,b(V )2] =
1

�v

Z

�

✓

v

�v

◆

fa,b(v)
2dv (B.12)

=
�w
�v

Z

�

✓

v

�v

◆

fo

✓

v � b

a�w

◆2

dv (B.13)

=
a�2

w

�v

Z

�

✓

a�wv + b

�v

◆

fo (v)
2 dv. (B.14)

Di↵erentiating E[fa,b(V )2] with respect to b, we have

�
dE[fa,b(V )2]

db
=

a�2
w

�3
v

Z

(a�wv + b)�

✓

a�wv + b

�v

◆

fo (v)
2 dv

 a�2
w

�3
v

Z

(a�wv + b)�

✓

a�wv + b

�v

◆

 (v)dv, (B.15)

where  (v) is defined as

 (v) ,

8

<

:

fo(v)2 v  � b
a�

w

fo

⇣

v + 2b
a�

w

⌘2
v > � b

a�
w

. (B.16)

It is easy to see that the function on the right hand side of (B.15) is an odd function

shifted to the left by b
a�

w

; therefore, the integral is zero, completing the proof. Note

that (B.15) holds with equality only when b = 0.
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Figure B.2: Plot of the function g̃(b) in (B.19).

2) E[V V̂ ] is a decreasing function of b: We first consider the noiseless scenario, i.e.,

W = 0. In the noiseless scenario, for the reconstruction points we have

V̂ =

8

<

:

E[V |v � b] Y = 0

E[V |v < b] Y = 1
(B.17)

=

8

>

>

>

<

>

>

>

:

�
v

e�
b

2
2

p
2⇡Q

⇣

b

�

v

⌘ Y = 0,

��
v

e�
b

2
2

p
2⇡

⇣

1�Q
⇣

b

�

v

⌘⌘ Y = 1.

(B.18)

Therefore, E[V V̂ ] can be written as

E[V V̂ ] = Pr(V � b)v̂(1)E[V |V̂ = v̂(1)] + Pr(V < b)v̂(2)E[V |V̂ = v̂(2)] (B.19)

=
�2
ve

�b2

2⇡Q
⇣

b
�
v

⌘⇣

1�Q
⇣

b
�
v

⌘⌘ , g̃(b). (B.20)

It can be verified that the function g̃(b) is even, and that it takes its maximum at b = 0

as seen in Figure B.2.
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Now, considering the noisy received signal, we expand E[V V̂ ] as

E[V V̂ ] =
1

�w

Z

�

✓

w

�w

◆

E[V V̂ |W = �w]dw, (B.21)

where

E[V V̂ |W = �w] = E[V |Y = y(1),W = �w]2Pr(Y = y(1)|W = �w)

+ E[V |Y = y(2),W = �w]2Pr(Y = y(2)|W = �w) (B.22)

=
�ve

�(f�1
a,b

(w))2

2⇡Q

✓

f�1
a,b

(w)

�
v

◆ +
�ve

�(f�1
a,b

(w))2

2⇡

✓

1�Q

✓

f�1
a,b

(w)

�
v

◆◆ (B.23)

= g̃
⇣

f�1
a,b (w)

⌘

. (B.24)

Notice that the inverse of the function fa,b(v) exists because it is one-to-one and is

defined on the whole real line. Therefore,

E[V V̂ ] =
1

�w

Z

�

✓

w

�w

◆

g̃
⇣

f�1
a,b (w)

⌘

dw. (B.25)

We want to show that

Z

e�
w

2

2 g̃
⇣

f�1
a,b (w)

⌘

dw 
Z

e�
w

2

2 g̃
⇣

f�1
a,0 (w)

⌘

dw. (B.26)

Using the change of variables w = fa,0(v) and the equality f�1
a,b (w) = b + f�1

a,0 (w),

inequality (B.26) can be written as

Z

e�
f

2
a,0(v)

2 g̃(b+ v)f
0
a,0(v)dv 

Z

e�
f

2
a,0(v)

2 g̃(v)f
0
a,0(v)dv. (B.27)

Inequality (B.27) is equivalent to

� b

2
Z

�1

e�
f

2
a,0(v)

2 (g̃(b+ v)� g̃(v)) f
0
a,0(v)dv 

1
Z

� b

2

e�
f

2
a,0(v)

2 (g̃(v)� g̃(b+ v)) f
0
a,0(v)dv.

(B.28)
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Using the transformation �b� v = t for the left hand side of (B.28), we have

1
Z

� b

2

e�
f

2
a,0(�b�t)

2 (g̃(�t)� g̃(�b� t)) f
0
a,0(�t� b)dt =

1
Z

� b

2

e�
f

2
a,0(b+t)

2 (g̃(t)� g̃(b+ t)) f
0
a,0(t+ b)dt,

(B.29)

where the second equality is due to the fact that functions g̃, f2
a,0, f

0
a,0 are even. There-

fore, (B.28) is equivalent to

1
Z

� b

2



e�
f

2
a,0(b+t)

2 f
0
a,0(t+ b)� e�

f

2
a,0(t)

2 f
0
a,0(t)

�

[g̃(t)� g̃(b+ t)] dt  0. (B.30)

The inequality in (B.30) concludes the proof and follows from the following facts:

• g̃(t) � g̃(t+ b) > 0 for t � � b
2 , and hence, the second bracket is nonnegative;

• e�
f

2
a,0(t)

2 � e�
f

2
a,0(b+t)

2 , due to the fact that fa,0(·) is nondecreasing;

• f
0
a,0(t) � f

0
a,0(t+ b) > 0 for t > � b

2 .

Corollary B.0.3. The optimal mapping for problem (3.9) under the MSE criterion is

odd.

Proof : By Lemma B.0.1, the optimal mapping can be written in the form fa,b(v) without

loss of optimality. By Lemma B.0.2, we conclude that the optimal mapping is in the

form fa,0(v); and hence, it is odd.

Lemma B.0.4. A necessary condition for an optimal solution to problem (3.8) is

rL =
�2vp
2⇡�w

e
� f(v)2

2�2
w + 2�f(v) = 0. (B.31)

Proof : Since the optimal mapping is odd by Corollary B.0.3, it can be easily verified

that v̂(1) = �v̂(2). Furthermore, without loss of optimality we can assume v̂(1) � 0.

Therefore, using (3.13c) problem (3.8) can be restated as

minimize
f

� v̂(1) + �E[f(V )2], (B.32)
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where v̂(1) is obtained as in (3.12c). Expanding (B.32), we can write

minimize
f

�1

�v

1
Z

�1

�

✓

v

�v

◆✓

2vQ

✓

f(v)

�w

◆

� �f(v)2
◆

dv. (B.33)

Since (B.33) is of the form (A.21) with

F̃ = �2vQ

✓

f(v)

�w

◆

+ �f(v)2, (B.34)

we have the necessary condition in (B.31) using (A.23). This concludes the proof.

⌅
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Proof of Proposition 3.4.2

Expanding the objective function L(f, g,�) as in (B.5a) we have

L(f, g,�) =
�1

�w

Z

�

✓

v

�v

◆✓

v

Z

g (Q (f(v) + w))�

✓

w

�w

◆

dw � �f(v)2
◆

dv (C.1a)

=
�1

�v

Z

�

✓

v

�v

◆

0

@v

K
X

j=1

v̂(j)

✓

Q

✓

z(j�1) � f(v)

�w

◆

�Q

✓

z(j) � f(v)

�w

◆◆

� �f(v)2

1

A dv,

(C.1b)

where we recall that v̂(j) is the MMSE estimation of the source when the received signal

is Y = y(j), i.e., Y = f(V ) +W 2 [z(j�1), z(j)). We have v̂(j) =
r1j
r2j

with

r1j =
1

�v

Z

v�

✓

v

�v

◆✓

Q

✓

z(j�1) � f(v)

�w

◆

�Q

✓

z(j) � f(v)

�w

◆◆

dv, j = 1, ...,K,

(C.2a)

r2j =
1

�v

Z

�

✓

v

�v

◆✓

Q

✓

z(j�1) � f(v)

�w

◆

�Q

✓

z(j) � f(v)

�w

◆◆

dv, j = 1, ...,K. (C.2b)

Since (C.1b) is of the form (A.16) with

F̃ = �v
K
X

j=1

r1j
r2j

✓

Q

✓

z(j�1) � f(v)

�w

◆

�Q

✓

z(j) � f(v)

�w

◆◆

+ �f(v)2, (C.3)

G̃1j = v

✓

Q

✓

z(j�1) � f(v)

�w

◆

�Q

✓

z(j) � f(v)

�w

◆◆

, j = 1, ...,K, (C.4)

G̃2j =

✓

Q

✓

z(j�1) � f(v)

�w

◆

�Q

✓

z(j) � f(v)

�w

◆◆

, j = 1, ...,K. (C.5)
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By writing the necessary condition in (A.20), we have

rL = � vp
2⇡�w

K
X

j=1

r1j
r2j

0

@e
�(

z(j�1)�f(v))2

2�2
w � e

�(
z(j)�f(v))2

2�2
w

1

A+ 2�f(v)

� vp
2⇡�w

K
X

j=1

r1j
r2j

0

@e
�(

z(j�1)�f(v))2

2�2
w � e

�(
z(j)�f(v))2

2�2
w

1

A

+
1p
2⇡�w

K
X

j=1

r21j
r22j

0

@e
�(

z(j�1)�f(v))2

2�2
w � e

�(
z(j)�f(v))2

2�2
w

1

A = 0. (C.6)

Solving for f , we have

f(v) =
1

2
p
2⇡�w�

K
X

j=1

0

@e
�(

z(j�1)�f(v))2

2�2
w � e

�(
z(j)�f(v))2

2�2
w

1

A v̂(j)
�

2v � v̂(j)
�

. (C.7)

⌅
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Proof of Proposition 3.5.1

We start by expanding the Lagrangian function (3.9) for the DOP criterion as

L(f, g,�) = ✏(D) + �E[f(V )2] (D.1a)

= Pr
�

V 2 (I1 [ I2)
C
�

+ Pr
⇣

V 2 (I1 \ I2), V̂ = v̂(2)

⌘

+ Pr
⇣

V 2 (I2 \ I1), V̂ = v̂(1)

⌘

(D.1b)

+
�

�v

Z

�

✓

v

�v

◆

f(v)2dv, (D.1c)

where we have used the decomposition in (3.25). The probabilities in (D.1b) can be

written as

Pr
�

V 2 (I1 [ I2)
C
�

=
1

�v

Z

v2(I1[I2)C

�

✓

v

�v

◆

dv, (D.2a)

Pr
⇣

V 2 (I1 \ I2), V̂ = v̂(2)

⌘

=
1

�v

Z

v2I1\I2

�

✓

v

�v

◆

Q

✓

f(v)

�w

◆

dv, (D.2b)

Pr
⇣

V 2 (I2 \ I1), V̂ = v̂(1)

⌘

=
1

�v

Z

v2I2\I1

�

✓

v

�v

◆

Q

✓

�f(v)

�w

◆

dv. (D.2c)

Since the intervals on which the integrals in (D.2) are taken do not overlap and span

the real line, the Lagrangian in (D.1) can be written in the form of (A.21) with F̃ (v, f)
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defined as

F̃ (v, f) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 + �f(v)2 v 2 (I1 [ I2)C ,

Q
⇣

f(v)
�
w

⌘

+ �f(v)2 v 2 (I1 \ I2),

Q
⇣

�f(v)
�
w

⌘

+ �f(v)2 v 2 (I2 \ I1),

�f(v)2 v 2 (I1 \ I2).

(D.3)

Using the optimality condition in (A.23), we have the necessary condition F̃ f = 0 with

F̃ f (v, f) =

8

>

>

>

>

<

>

>

>

>

:

2�f(v) v 2 (I1 [ I2)C [ (I1 \ I2),

�1p
2⇡�

v

�
w

�
⇣

v
�
v

⌘

e
�f(v)2

2�2
w + 2�f(v) v 2 (I1 \ I2),

1p
2⇡�

v

�
w

�
⇣

v
�
v

⌘

e
�f(v)2

2�2
w + 2�f(v) v 2 (I2 \ I1).

(D.4)

⌅
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Proof of Proposition 3.5.2

Given �, and obtaining the value of u from (3.27), we aim to minimize the objective func-

tion in (3.9) for the DOP with respect to the reconstruction points v̂(1) and v̂(2). Since

by Proposition 3.5.1 the non-zero optimal values of f(v) are opposite of one opposite of

one another over I2 \ I1 and I1 \ I2, we can rewrite (3.9) for the DOP as follows

L(f, g,�) =
1

�v

0

B

@

Z

(I1[I2)C

�

✓

v

�v

◆

dv +Q

✓

u

�w

◆

0

B

@

Z

I2\I1

�

✓

v

�v

◆

dv +

Z

I1\I2

�

✓

v

�v

◆

dv

1

C

A

+�

0

B

@

Z

I2\I1

�

✓

v

�v

◆

u2dv +

Z

I1\I2

�

✓

v

�v

◆

u2dv

1

C

A

1

C

A

, (E.1)

where u is the solution of ue
u

2

2�2
w = 1

2�
w

p
2⇡�

. From (E.1), it can be verified that (3.9) for

the DOP is minimized if I1 and I2 lie around the origin, and are symmetric. Define the

positive parameter 0  a 
p
D such that I2 = [�2

p
D + a, a] and I1 = [�a, 2

p
D � a],

and I1 \ I2 = [�a, a]. Therefore, (E.1) can be rewritten as

L(f, g,�) = 2Q

 

2
p
D � a

�v

!

+ 2

✓

Q

✓

u

�w

◆

+ �u2
◆

 

Q

✓

a

�v

◆

�Q

 

2
p
D � a

�v

!!

.

(E.2)

Optimizing (E.2) over a completes the proof of Proposition 3.5.2.

⌅
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Proof of Proposition 3.5.3

Necessary optimality condition of an encoder mapping f for a given set of reconstruction

points {v̂(1), . . . , v̂(K)}: We start by expanding ✏(D) with respect to the di↵erent intervals

defined in (3.32). We have

✏(D) = 1� Pr
⇣

(V � V̂ )2 < D
⌘

(F.1a)

= 1�
X

V:V⇢{v̂(1),...,v̂(K)}
Pr

⇣

(V � V̂ )2 < D|V 2 IV

⌘

Pr (V 2 IV) (F.1b)

= 1� Pr
⇣

(V � V̂ )2 < D|V 2 I;

⌘

Pr (V 2 I;)

� Pr
⇣

(V � V̂ )2 < D|V 2 I{v̂(1),...,v̂(K)}
⌘

Pr
⇣

V 2 I{v̂(1),...,v̂(K)}
⌘

�
X

V:V⇢{v̂(1),...,v̂(K)}
|V|=1,...,K�1

Pr
⇣

(V � V̂ )2 < D|V 2 IV

⌘

Pr (V 2 IV) (F.1c)

= 1� Pr
⇣

V 2 I{v̂(1),...,v̂(K)}
⌘

�
X

V:V⇢{v̂(1),...,v̂(K)}
|V|=1,...,K�1

Pr
⇣

(V � V̂ )2 < D|V 2 IV

⌘

Pr (V 2 IV) (F.1d)

= 1� Pr
⇣

V 2 I{v̂(1),...,v̂(K)}
⌘

�
X

V:V⇢{v̂(1),...,v̂(K)}
|V|=1,...,K�1

1

�v

Z

v2IV

�

✓

v

�v

◆

Pr (W + f(v) 2 ⇣V) dv (F.1e)

= 1� Pr
⇣

V 2 I{v̂(1),...,v̂(K)}
⌘
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� 1

�v

X

V:V⇢{v̂(1),...,v̂(K)}
|V|=1,...,K�1

Z

v2IV

�

✓

v

�v

◆

X

j:v̂(j)2V

✓

Q

✓

z(j�1) � f(v)

�w

◆

�Q

✓

z(j) � f(v)

�w

◆◆

dv,

(F.1f)

where ⇣V , S

j:v̂(j)2V
⇥

z(j�1), z(j)
�

. Note that the di↵erent sets in (F.1f) partition the

real line, that is, they are disjoint and their union is the real line. Substituting (F.1f)

in (3.14), the Lagrangian L(f, g,�) can be written in the form of (A.21) with F̃ (v, f)

defined as

F̃ (v, f) ,

8

>

>

>

>

<

>

>

>

>

:

1 + �f(v)2 v 2 I;,

�f(v)2 v 2 I{v̂(1),...,v̂(K)},

1�
P

j:v̂(j)2V

⇣

Q
⇣

z(j�1)�f(v)

�
w

⌘

�Q
⇣

z(j)�f(v)

�
w

⌘⌘

+ �f(v)2 v 2 IV , |V| = 1, . . . ,K � 1.

(F.2)

Writing the necessary condition in (A.23) and setting to zero leads to (3.36).

Optimal decoder function g for a given encoder mapping f : For a given encoder mapping

f , the optimal decoder can be obtained as

v̂(j) = argmin
t

Pr((V � t)2 � D|Y = y(j)) (F.3a)

⌘ argmax
t

Pr
�

(V � t)2 < D,Y = y(j)
�

(F.3b)

= argmax
t

t+
p
D

Z

t�
p
D

z(j)�f(v)
Z

z(j�1)�f(v)

�

✓

v

�v

◆

�

✓

w

�w

◆

dwdv (F.3c)

= argmax
t

t+
p
D

Z

t�
p
D

�

✓

v

�v

◆✓

Q

✓

z(j�1) � f(v)

�w

◆

�Q

✓

z(j) � f(v)

�w

◆◆

dv. (F.3d)
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Proof of Proposition 3.6.1

Define yi , Q(f(v) + wi), wN , [w1, ..., wN ]T , yN , [y1, ..., yN ]T . Expanding L(f, g,�)

in (3.9) for the MSE we have

L(f, g,�) =
�1

��v

Z

v

Z

wN

vg
�

yN
�

�

✓

v

�v

◆ N
Y

i=1

�

✓

wi

�w
i

◆

dwNdv + �
1

�v

Z

�

✓

v

�v

◆

f(v)2dv

(G.1a)

=
�1

��v

Z

�

✓

v

�v

◆

0

@v

Z

wN

g
�

yN
�

N
Y

i=1

�

✓

wi

�w
i

◆

dwN � �f(v)2

1

A dv (G.1b)

=
�1

��v

Z

�

✓

v

�v

◆

0

@v
2N
X

j=1

v̂(j)Pr
⇣

V̂ = v̂(j)|V = v
⌘

� �f(v)2

1

A dv, (G.1c)

where v̂(j) = E[V |Y N = bNj ] = E[V |Y1 = bNj (1), . . . , YN = bNj (N)] and � =
N
Q

i=1

1
�
w

i

. We

can compute

Pr
⇣

V̂ = v̂(j)|V = v
⌘

=
N
Y

i=1

Pr
�

Q(f(v) +Wi) = bNj (i)
�

(G.2a)

=
N
Y

i=1

Q

 

(�1)b
N

j

(i)+1f(v)

�w
i

!

, j = 1, ..., 2N . (G.2b)

Substituting (G.2b) in (G.1c), we have

L(f, g,�) =
�1

�v

Z

�

✓

v

�v

◆

0

@v

2N
X

j=1

v̂(j)

N
Y

i=1

Q

 

(�1)b
N

j

(i)+1f(v)

�w
i

!

� �f(v)2

1

A dv, (G.3)
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where for v̂(j) we have

v̂(j) =

1
�
v

R

v�
⇣

v
�
v

⌘ N
Q

i=1
Q

✓

(�1)
b

N

j

(i)+1
f(v)

�
w

i

◆

dv

1
�
v

R

�
⇣

v
�
v

⌘ N
Q

i=1
Q

✓

(�1)
b

N

j

(i)+1
f(v)

�
w

i

◆

dv

, r1
j

r2
j

, j = 1, . . . , 2N . (G.4)

Since (G.3) is of the form (A.16) with

F̃ = �v

2N
X

j=1

v̂(j)

N
Y

i=1

Q

 

(�1)b
N

j

(i)+1f(v)

�w
i

!

+ �f(v)2, (G.5)

G̃1
j

= vQ

 

(�1)b
N

j

(i)+1f(v)

�w
i

!

, j = 1, . . . , 2N , (G.6)

G̃2
j

= Q

 

(�1)b
N

j

(i)+1f(v)

�w
i

!

, j = 1, . . . , 2N . (G.7)

Writing down the optimality condition in (A.20), we have

rL =� v
2N
X

j=1

r1
j

r2
j

⇥ (N, f(v), j) + 2�f(v)

�
2N
X

j=1

v ·⇥ (N, f(v), j)

r2
j

· r1
j

+
2N
X

j=1

r1
j

·⇥ (N, f(v), j)

r22
j

· r1
j

(G.8a)

=�
2N
X

j=1

r1
j

r2
j

⇥ (N, f(v), j)

✓

2v �
r1

j

r2
j

◆

+ 2�f(v) (G.8b)

=�
2N
X

j=1

⇥ (N, f(v), j) v̂(j)
�

2v � v̂(j)
�

+ 2�f(v) = 0, (G.8c)

where

⇥ (N, f(v), j) =
N
X

k=1

0

B

@

(�1)b
N

j

(k)e
� f(v)2

2�2
w

k

p
2⇡�w

k

N
Y

l=1,l 6=k

Q

 

(�1)b
N

j

(l)+1f(v)

�w
l

!

1

C

A

. (G.9)

Therefore, the optimal mapping must be in the form given by (3.43).
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Proof of Proposition 3.6.2

Necessary optimality condition of an encoder mapping f for a given set of reconstruction

points
�

v̂(1), . . . , v̂(K)

 

: We expand ✏(D)

✏(D) = 1� Pr
⇣

(V � V̂ )2 < D
⌘

(H.1a)

= 1� 1

��v

ZZ

v,wN :|v�g(yN )|2<D

�

✓

v

�v

◆ N
Y

i=1

�

✓

wi

�w
i

◆

dwNdv (H.1b)

= 1� 1

��v

X

V:V⇢
n

v̂(1),...,v̂(2N )

o

Z

v2IV

Z

wN :g(yN )2V

�

✓

v

�v

◆ N
Y

i=1

�

✓

wi

�w
i

◆

dwNdv

(H.1c)

= 1� 1

�v

X

V:V⇢
n

v̂(1),...,v̂(2N )

o

Z

v2IV

�

✓

v

�v

◆

X

j:v̂(j)2V

 

N
Y

i=1

Q

 

(�1)b
N

j

(i)+1f(v)

�w
i

!!

dv

(H.1d)

= 1� 1

�v

Z

v2I⇢
v̂(1),...,v̂(2N )

�

�

✓

v

�v

◆

dv

� 1

�v

X

V:V⇢
n

v̂(1),...,v̂(2N )

o

|V|=1,...,2N�1

Z

v2IV

�

✓

v

�v

◆

X

j:v̂(j)2V

 

N
Y

i=1

Q

 

(�1)b
N

j

(i)+1f(v)

�w
i

!!

dv,

(H.1e)

where � =
N
Q

i=1
�w

i

. Substituting (H.1e) in (3.9), the Lagrangian L(f, g,�) can be written

in the form of (A.21) with F̃ (v, f) defined as
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F̃ (v, f) ,

8

>

>

>

>

>

<

>

>

>

>

>

:

1 + �f(v)2 v 2 I;,

�f(v)2 v 2 In
v̂(1),...,v̂(2N )

o,

1�
P

j:v̂(j)2V

✓

N
Q

i=1
Q

✓

(�1)
b

N

j

(i)+1
f(v)

�
w

i

◆◆

+ �f(v)2 v 2 IV : |V| = 1, . . . , 2N � 1.

(H.2)

Writing the necessary condition in (A.23) and setting to zero yields the result in (3.45).

Optimal decoder function g for a given encoder mapping f : Assume that the encoder

mapping function is given. Following a similar approach to the derivation of the optimal

decoder for a K-level ADC front end, the optimal decoder at the receiver is obtained as

v̂(j) = argmax
t

t+
p
D

Z

t�
p
D

�

✓

v

�v

◆

Pr(Y1 = bNj (1), . . . , YN = bNj (N))dv (H.3a)

= argmax
t

t+
p
D

Z

t�
p
D

�

✓

v

�v

◆ N
Y

i=1

Q

 

(�1)b
N

j

(i)+1f(v)

�w
i

!

dv. (H.3b)

⌅
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Proof of Proposition 4.4.1

Due to the orthogonality principle of the MMSE estimation, it can be easily verified that

D̄ = �2
v � E[V V̂ ]. Rewriting the Lagrangian L(f, g,�) for the MSE distortion criterion

and dropping constants that are independent of f , we have

minimize
f

� E[V V̂ ] + �E[f(V )2]. (I.1)

By expanding the objective function in (I.1), it can be written as

�1

�w�v�u

Z Z Z

vg(y, u)�

✓

v

�v
,
u

�u

◆

�

✓

w

�w

◆

dwdudv

+
�

�v

Z

�

✓

v

�v

◆

f(v)2dv (I.2)

=
�1

�v�u

Z Z

v

✓

g(1, u)Q

✓

f(v)

�w

◆

+ g(0, u)Q

✓

�f(v)

�w

◆◆

�

✓

v

�v
,
u

�u

◆

dudv

+
�

�v

Z

�

✓

v

�v

◆

f(v)2dv (I.3)

=
�1

�v

Z

✓

v

Z

1

�u
�

✓

v

�v
,
u

�u

◆✓

r1(u)

r2(u)
Q

✓

f(v)

�w

◆

+
r3(u)

r4(u)
Q

✓

�f(v)

�w

◆◆

du

+��

✓

v

�v

◆

f(v)2
◆

dv, (I.4)

where

r1(u) ,
Z

v�

✓

v

�v
,
u

�u

◆

Q

✓

f(v)

�w

◆

dv, (I.5a)

r2(u) ,
Z

�

✓

v

�v
,
u

�u

◆

Q

✓

f(v)

�w

◆

dv, (I.5b)
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r3(u) ,
Z

v�

✓

v

�v
,
u

�u

◆

Q

✓

�f(v)

�w

◆

dv, (I.5c)

r4(u) ,
Z

�

✓

v

�v
,
u

�u

◆

Q

✓

�f(v)

�w

◆

dv. (I.5d)

Note that (I.4) is in the form of (A.26) with F (f,H(v), v) and H(v) defined as

F (f,H(v), v) =
1

�v

✓

�vH(v) + ��

✓

v

�v

◆

f(v)2
◆

, (I.6a)

and H(v) =

Z

G0 (f(v), r1(u), . . . , r4(u), u, v) du, (I.6b)

where G0 (f(v), r1(u), . . . , r4(u), u, v) , Gi, i = 1, ..., 4 are given by

G0 (f(v), r1(u), . . . , r4(u), u, v) =
1

�u
�

✓

v

�v
,
u

�u

◆✓

r1(u)

r2(u)
Q

✓

f(v)

�w

◆

+
r3(u)

r4(u)
Q

✓

�f(v)

�w

◆◆

,

(I.7a)

G1 = v�

✓

v

�v
,
u

�u

◆

Q

✓

f(v)

�w

◆

, (I.7b)

G2 = �

✓

v

�v
,
u

�u

◆

Q

✓

f(v)

�w

◆

, (I.7c)

G3 = v�

✓

v

�v
,
u

�u

◆

Q

✓

�f(v)

�w

◆

, (I.7d)

G4 = �

✓

v

�v
,
u

�u

◆

Q

✓

�f(v)

�w

◆

. (I.7e)

Now we can apply the necessary condition in (A.27). To this end, we compute

F f (f(v), H(v), v) =
2�

�v
�

✓

v

�v

◆

f(v), (I.8a)

FH(f(v), H(v), v) =
�v

�v
, (I.8b)

Gf
0(f(v), r1(u), . . . , r4(u), u, v) =

e
� f(v)2

2�2
w

�w�u
p
2⇡
�

✓

v

�v
,
u

�u

◆✓

r3(u)

r4(u)
� r1(u)

r2(u)

◆

, (I.8c)

Gr1
0 (f(v), r1(u), . . . , r4(u), u, v) =

1

�ur2(u)
�

✓

v

�v
,
u

�u

◆

Q

✓

f(v)

�w

◆

, (I.8d)

Gr2
0 (f(v), r1(u), . . . , r4(u), u, v) =

�r1(u)

�ur2(u)2
�

✓

v

�v
,
u

�u

◆

Q

✓

f(v)

�w

◆

, (I.8e)

Gr3
0 (f(v), r1(u), . . . , r4(u), u, v) =

1

�ur4(u)
�

✓

v

�v
,
u

�u

◆

Q

✓

�f(v)

�w

◆

, (I.8f)

Gr4
0 (f(v), r1(u), . . . , r4(u), u, v) =

�r3(u)

�ur4(u)2
�

✓

v

�v
,
u

�u

◆

Q

✓

�f(v)

�w

◆

, (I.8g)

Gf
1(f(v), v, u) = v�

✓

v

�v
,
u

�u

◆

�e
� f(v)2

2�2
w

p
2⇡�w

, (I.8h)
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Gf
2(f(v), v, u) = �

✓

v

�v
,
u

�u

◆

�e
� f(v)2

2�2
w

p
2⇡�w

, (I.8i)

Gf
3(f(v), v, u) = v�

✓

v

�v
,
u

�u

◆

e
� f(v)2

2�2
w

p
2⇡�w

, (I.8j)

Gf
4(f(v), v, u) = �

✓

v

�v
,
u

�u

◆

e
� f(v)2

2�2
w

p
2⇡�w

. (I.8k)

Substituting (I.8) in (A.27), the necessary condition in (A.26) is obtained as

rL =
2�

�v
�

✓

v

�v

◆

f(v)� ve
� f(v)2

2�2
w

�v�w�u
p
2⇡

Z

�

✓

v

�v
,
u

�u

◆✓

r3(u)

r4(u)
� r1(u)

r2(u)

◆

du

�
Z Z

t

�v

0

B

@

v�

✓

v

�v
,
u

�u

◆

�e
� f(v)2

2�2
w

p
2⇡�w

· 1

�ur2(u)
�

✓

t

�v
,
u

�u

◆

Q

✓

f(t)

�w

◆

+ �

✓

v

�v
,
u

�u

◆

�e
� f(v)2

2�2
w

p
2⇡�w

· �r1(u)

�ur2(u)2
�

✓

t

�v
,
u

�u

◆

Q

✓

f(t)

�w

◆

+ v�

✓

v

�v
,
u

�u

◆

e
� f(v)2

2�2
w

p
2⇡�w

· 1

�ur4
�

✓

t

�v
,
u

�u

◆

Q

✓

�f(t)

�w

◆

+�

✓

v

�v
,
u

�u

◆

e
� f(v)2

2�2
w

p
2⇡�w

· �r3(u)

�ur4(u)2
�

✓

t

�v
,
u

�u

◆

Q

✓

�f(t)

�w

◆

1

C

A

dtdu = 0. (I.9)

Rewriting (I.9), we have

2
p
2⇡�w�u��

✓

v

�v

◆

f(v)e
f(v)2

2�2
w = v

Z

�

✓

v

�v
,
u

�u

◆✓

r3(u)

r4(u)
� r1(u)

r2(u)

◆

du

� v

Z Z

t�

✓

v

�v
,
u

�u

◆

· 1

r2(u)
�

✓

t

�v
,
u

�u

◆

Q

✓

f(t)

�w

◆

dtdu

+

Z Z

t�

✓

v

�v
,
u

�u

◆

· r1(u)

r2(u)2
�

✓

t

�v
,
u

�u

◆

Q

✓

f(t)

�w

◆

dtdu

+ v

Z Z

t�

✓

v

�v
,
u

�u

◆

· 1

r4(u)
�

✓

t

�v
,
u

�u

◆

Q

✓

�f(t)

�w

◆

dtdu

�
Z Z

t�

✓

v

�v
,
u

�u

◆

· r3(u)

r4(u)2
�

✓

t

�v
,
u

�u

◆

Q

✓

�f(t)

�w

◆

dtdu (I.10)

= v

Z

�

✓

v

�v
,
u

�u

◆✓

r3(u)

r4(u)
� r1(u)

r2(u)

◆

du� v

Z

�

✓

v

�v
,
u

�u

◆

· r1(u)
r2(u)

du

+

Z

�

✓

v

�v
,
u

�u

◆

· r1(u)
2

r2(u)2
du+ v

Z

�

✓

v

�v
,
u

�u

◆

· r3(u)
r4(u)

du�
Z

�

✓

v

�v
,
u

�u

◆

· r3(u)
2

r4(u)2
du.

(I.11)

Finally, by some elementary manipulations the result in (4.12) is obtained. ⌅
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Proof of Remark 4.4.2

For brevity we set that �2
v = �2

w = 1 in the following proof. The results are valid for any

values of �2
v and �2

w. We have

A(�v) =

Z

� (u|� v) (g(0, u)� g(1, u)) du (J.1a)

=

Z

� (u|� v)



R

t� (t|u)Q (�f(t)) dt
R

� (t|u)Q (�f(t)) dt
�
R

t� (t|u)Q (f(t)) dt
R

� (t|u)Q (f(t)) dt

�

du (J.1b)

=

Z

� (�u|� v)



�
R

t� (�t|� u)Q (f(t)) dt
R

� (�t|� u)Q (f(t)) dt
�

�
R

t� (�t|� u)Q (�f(t)) dt
R

� (�t|� u)Q (�f(t)) dt

�

du

(J.1c)

=

Z

� (u|v)


�
R

t� (t|u)Q (f(t)) dt
R

� (t|u)Q (f(t)) dt
+

R

t� (t|u)Q (�f(t)) dt
R

� (t|u)Q (�f(t)) dt

�

du (J.1d)

=

Z

� (u|v) (g(0, u)� g(1, u)) du (J.1e)

= A(v). (J.1f)

Similarly, we have

B(�v) =

Z

� (u|� v)
�

g(0, u)2 � g(1, u)2
�

du (J.2a)

=

Z

� (u|� v)

"

✓

R

t� (t|u)Q (�f(t)) dt
R

� (t|u)Q (�f(t)) dt

◆2

�
✓

R

t� (t|u)Q (f(t)) dt
R

� (t|u)Q (f(t)) dt

◆2
#

du

(J.2b)

=

Z

� (�u|� v)

"

✓

R

t� (�t|� u)Q (f(t)) dt
R

� (�t|� u)Q (f(t)) dt

◆2

�
✓

R

t� (�t|� u)Q (�f(t)) dt
R

� (�t|� u)Q (�f(t)) dt

◆2
#

du

(J.2c)
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=

Z

� (u|v)
"

✓

R

t� (t|u)Q (f(t)) dt
R

� (t|u)Q (f(t)) dt

◆2

�
✓

R

t� (t|u)Q (�f(t)) dt
R

� (t|u)Q (�f(t)) dt

◆2
#

du

(J.2d)

=

Z

� (u|v)
�

v̂21(u)� v̂20(u)
�

du (J.2e)

= �B(v). (J.2f)

⌅
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Proof of Proposition 4.5.1

Assume that a decoder function g(Y, U) is given. By expanding the Lagrangian function

L(f, g,�) for the DOP we have

L(f, g,�) = ✏(D) + �E[f(V )2] (K.1)

=
1

�u

Z

✏(D|U = u)�

✓

u

�u

◆

du+
1

�v

Z

�

✓

v

�v

◆

f(v)2dv. (K.2)

Expanding ✏(D|U = u) = Pr
⇣

|V � V̂ |2 � D|U = u
⌘

we have

✏(D|U = u) = Pr(V 2 I0(u) \ I1(u), Y = 1|U = u)

+ Pr(V 2 I1(u) \ I0(u), Y = 0|U = u)

+ Pr(V 2 (I0(u) [ I1(u))
C , |V̂ � V |2 � D|U = u)

+ Pr(V 2 (I0(u) \ I1(u)), |V̂ � V |2 � D|U = u) (K.3a)

=
1

�v

Z

v2I0(u)\I1(u)

�

✓

v

�v

�

�

�

u

�u

◆

Q

✓

f(v)

�w

◆

dv

+
1

�v

Z

v2I1(u)\I0(u)

�

✓

v

�v

�

�

�

u

�u

◆

Q

✓

�f(v)

�w

◆

dv

+
1

�v

Z

v2(I0(u)[I1(u))C

�

✓

v

�v

�

�

�

u

�u

◆

dv, (K.3b)
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where we used the fact that no outage occurs when V 2 I0(U) \ I1(U). Substituting

(K.3b) in (K.2), we can write the Lagrangian L(f, g,�) as

L(f, g,�) =
1

�v�u

Z

�

✓

u

�u

◆

Z

�

✓

v

�v

�

�

�

u

�u

◆

G (u, v, f(v)) dvdu+
1

�v

Z

�

✓

v

�v

◆

�f2(v)dv

(K.4)

=
1

�v

Z

�

✓

v

�v

◆

Z

1

�u
�

✓

u

�u

�

�

�

v

�v

◆

G (u, v, f(v)) du+ �f2(v)

�

dv, (K.5)

with G (u, v, f(v)) defined as

G (u, v, f(v)) ,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Q
⇣

f(v)
�
w

⌘

v 2 (I0(u) \ I1(u)),

Q
⇣

�f(v)
�
w

⌘

v 2 (I1(u) \ I0(u)),

1 v 2 (I0(u) [ I1(u))C ,

0 v 2 (I0(u) \ I1(u)).

(K.6)

Note that (K.5) is in the form of (A.26) with F (f,H(v), v) and H(v) given by

F (f,H(v), v) =
1

�v
�

✓

v

�v

◆

·
�

H(v) + �f2(v)
�

, (K.7a)

H(v) =

Z

G0 (f(v), u, v) du, (K.7b)

respectively, where G0 (f(v), u, v) is given by

G0 (f(v), u, v) =
1

�u
�

✓

u

�u

�

�

�

v

�v

◆

G (u, v, f(v)) . (K.8)

Applying the necessary condition in (A.27) for the optimal solution, for di↵erent terms

in (A.27) we have

F f (f(v), H(v), v) =
2�

�v
�

✓

v

�v

◆

f(v), (K.9a)

FH(f(v), H(v), v) =
1

�v
�

✓

v

�v

◆

, (K.9b)

Gf
0(f(v), u, v) =

1

�u
�

✓

u

�u

�

�

�

v

�v

◆

Gf (u, v, f(v)) , (K.9c)
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where Gf (u, v, f(v)) is obtained as

Gf (u, v, f(v)) =

8

>

>

>

>

<

>

>

>

>

:

�1p
2⇡
e
� f(v)2

2�2
w v 2 (I0(u) \ I1(u))

1p
2⇡
e
� f(v)2

2�2
w v 2 (I1(u) \ I0(u))

0 v 2 (I0(u) \ I1(u)) or v 2 (I0(u) [ I1(u))C

. (K.10)

Therefore, (A.27) can be written as

rL =
1

�v
�

✓

v

�v

◆✓

2�f(v) +
1

�u

Z

�

✓

u

�u

�

�

�

v

�v

◆

Gf (u, v, f(v)) du

◆

= 0. (K.11)

Note that the integration in (K.11) is over the side information u. In the following, we

aim at identifying the boundaries of u, such that, for a given source output v we have

Gf (u, v, f(v)) 6= 0. To do so, we characterize the intervals as

I0(u) \ I1(u) = (b0l(u), b0r(u)) ,

I1(u) \ I0(u) = (b1l(u), b1r(u)) . (K.12)

Note that for the other intervals in (K.10) we have Gf (u, v, f(v)) = 0. For a given side

information realization u, g(0, u) and g(1, u) are two points. Hence, depending on the

condition that g(0, u) is equal to, less than, or greater than g(1, u), we have di↵erent

situations for I0(u) and I1(u) in (K.10).

Case 1) g(0, u) = g(1, u): In this case the two intervals I0(u) and I1(u) overlap com-

pletely, and therefore, I0(u) \ I1(u) and I1(u) \ I0(u) are both empty sets.

Case 2) g(0, u) > g(1, u): In this case b0l(u), b0r(u), b1r(u) and b1l(u) are obtained as

b0r(u) = g(0, u) +
p
D,

b0l(u) = max
n

g(1, u) +
p
D, g(0, u)�

p
D
o

,

b1r(u) = min
n

g(1, u) +
p
D, g(0, u)�

p
D
o

,

b1l(u) = g(1, u)�
p
D. (K.13)

Case 3) g(0, u) < g(1, u): In this case b0l(u), b0r(u), b1r(u) and b1l(u) are obtained as

b0r(u) = min
n

g(0, u) +
p
D, g(1, u)�

p
D
o

,
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b0l(u) = g(0, u)�
p
D,

b1r(u) = g(1, u) +
p
D,

b1l(u) = max
n

g(1, u)�
p
D, g(0, u) +

p
D
o

. (K.14)

It can be easily verified that for a given source output v, the side information range

corresponding to Gf (u, v, f(v)) 6= 0 can be obtained as S0\1(v) [ S1\0(v) where S0\1(v)

and S1\0(v) are defined as

S0\1(v) , {u : b0r(u) � v � b0l(u)},

S1\0(v) , {u : b1r(u) � v � b1l(u)  v}. (K.15)

Finally, we can simplify (K.11) as

rL =
1

�v
�
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v

�v
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2
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u2S0\1(v)
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2�2
w �

✓

u

�u

�

�

�

v

�v

◆

du

+

Z

u2S1\0(v)
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2⇡�u

e
� f(v)2

2�2
w �

✓

u

�u

�

�

�

v

�v

◆

du+ 2�f(v)

3

7

5

(K.16)

=
1
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�
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v

�v

◆

2

6

4

�1p
2⇡�u

e
� f(v)2

2�2
w

Z

u2S0\1(v)

�

✓

u

�u

�

�

�

v
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du

+
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e
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2�2
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u2S1\0(v)

�
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�u
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�
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7

5

. (K.17)

Imposing (K.17) to be zero we have

f(v) =
e
� f(v)2

2�2
w

2�
p
2⇡

�

Pr
�

U 2 S0\1(v)
�

� Pr
�

U 2 S1\0(v)
��

. (K.18)
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Proof of Proposition 4.5.2

The optimal decoder functions, i.e., g(0, u) and g(1, u) can be obtained as

g(0, u) = arg min

v̂

Pr
�

|V � v̂|2 � D|U = u, Y = 0
�

(L.1)

= arg max

v̂

Pr
�

|V � v̂|2 < D|U = u, Y = 0
�

(L.2)

= arg max

v̂

1

�v�u

v̂+
p
D

Z

v̂�
p
D

pV |U,Y (t|u, Y = 0) dt (L.3)

= arg max

v̂

v̂+
p
D

Z

v̂�
p
D

�

✓

t

�v

�

�

�

u

�u

◆

Q

✓

�f(t)

�w

◆

dt. (L.4)

We note that, since the mapping f(v) is given, it could be possible that for some encoder

mapping f and side information realization u, more than one output is obtained in (L.4).

From the DOP point of view, there is no di↵erence in choosing either of these points.

Therefore, we have

g⇤(0, u) 2 arg max

v̂

v̂+
p
D

Z

v̂�
p
D

�

✓

t

�v
,
u

�u

◆

Q

✓

�f(t)

�w

◆

dt, (L.5)

and similarly for g(1, u), we have

g⇤(1, u) 2 arg max

v̂

v̂+
p
D

Z

v̂�
p
D

�

✓

t

�v
,
u

�u

◆

Q

✓

f(t)

�w

◆

dt. (L.6)
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Proof of Remark 4.5.2

In the low SNR regime the encoder mapping function can be approximated as an all

zero function. Hence, the DOP can be expanded as

✏(D) = 1� Pr(|V � V̂ |2 < D) (M.1a)

= 1� 1

�u
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Proof of Proposition 4.5.3

Assuming that the side information is available at both the encoder and the decoder,

the decoder can be obtained as

g(y, u) = arg min

v̂

Pr
�

|V � v̂|2 � D|Y = y, U = u
�
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Also, the DOP can be expanded as

✏(D) =
1
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where for di↵erent intervals we have

Iy(u) =

(
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[23] D. Gündüz and E. Erkip, “Joint source–channel codes for MIMO block-fading chan-

nels,” IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 116–134, Jan. 2008.

[24] I. E. Aguerri and D. Gunduz, “Joint source-channel coding with time-varying chan-

nel and side-information,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp. 736–753,

Feb. 2016.

[25] M. Varasteh and H. Behroozi, “Optimal HDA schemes for transmission of a gaussian

source over a gaussian channel with bandwidth compression in the presence of an

interference,” IEEE Trans. Signal Processing, vol. 60, no. 4, pp. 2081–2085, Apr.

2012.

[26] K.-H. Lee and D. Petersen, “Optimal linear coding for vector channels,” IEEE

Trans. Inf. Theory, vol. 24, no. 12, pp. 1283–1290, Dec. 1976.

[27] H. Coward and T. Ramstad, “Quantizer optimization in hybrid digital-analog trans-

mission of analog source signals,” in Proc. IEEE Int. Conf. on Acoustics, Speech,

and Signal Processing, vol. 5, 2000, pp. 2637–2640 vol.5.

[28] M. Skoglund, N. Phamdo, and F. Alajaji, “Hybrid digital-analog source-channel

coding for bandwidth compression/expansion,” IEEE Trans. Inf. Theory, vol. 52,

no. 8, pp. 3757–3763, Aug. 2006.

[29] P. A. Floor, A. N. Kim, N. Wernersson, T. A. Ramstad, M. Skoglund, and I. Bal-

asingham, “Zero-delay joint source-channel coding for a bivariate gaussian on a

gaussian mac,” IEEE Trans. Commun., vol. 60, no. 10, pp. 3091–3102, Oct. 2012.

[30] X. Chen and E. Tuncel, “Zero-delay joint source-channel coding using hybrid digital-

analog schemes in the wyner-ziv setting,” IEEE Trans. Commun., vol. 62, no. 2,

pp. 726–735, February 2014.

[31] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side

information at the decoder,” IEEE Trans. Inf. Theory, vol. 22, no. 1, pp. 1–10,

Jan. 1976.

[32] D. Luenberger, Optimization by Vector Space Methods. New York: John Wiley &

Sons, Inc, 1969.



Bibliography 140

[33] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1995.

[34] S. Lloyd, “Least squares quantization in pcm,” IEEE Trans. Info. Theory, vol. 28,

no. 2, pp. 129–137, Mar. 1982.

[35] P. Knagenhjelm, “A recursive design method for robust vector quantization,” 1992,

pp. 948–954.

[36] S. Gadkari and K. Rose, “Robust vector quantizer design by noisy channel relax-

ation,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1113–1116, Aug. 1999.

[37] ——, “Corrections to ”robust vector quantizer design by noisy channel relaxation”,”

IEEE Trans. Commun., vol. 48, no. 1, pp. 176–176, Jan. 2000.

[38] M. S. Mehmetoglu, E. Akyol, and K. Rose, “Optimization of zero-delay mappings

for distributed coding by deterministic annealing,” CoRR, vol. abs/1312.0685, 2013.

[39] A. A. Saleh, F. Alajaji, and W.-Y. Chan, “Low-latency source-channel coding for

fading channels with correlated interference,” IEEE Wireless Commun. Letters, pp.

137–140, Apr. 2014.

[40] G. Fettweis, “A 5G wireless communications vision,” Microwave J., Dec. 2012.

[41] G. Fettweis and S. Alamouti, “5G: Personal mobile internet beyond what cellular

did to telephony,” IEEE Commun. Magazine, vol. 52, no. 2, pp. 140–145, Feb. 2014.

[42] E. Akyol, K. Viswanatha, and K. Rose, “On conditions for linearity of optimal

estimation,” IEEE Trans. Inf. Theory, vol. 58, no. 6, pp. 3497–3508, Jun. 2012.

[43] X. Chen and E. Tuncel, “Zero-delay joint source-channel coding for the Gaussian

Wyner-Ziv problem,” in Proc. IEEE Int. Sym. Info. Theory, Saint Petersburg,

Russia, Jul. 2011.

[44] I. Aguerri, M. Varasteh, and D. Gunduz, “Zero-delay joint source-channel coding,”

in Proc. Iran Workshop Commun. and Inf. Theory (IWCIT), Tehran, Iran, May

2014.

[45] T. M. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp.

2–14, Jan. 1972.

[46] M. Varasteh and H. Behroozi, “Layered hybrid digital-analog coding with correlated

interference,” in Proc. IEEE Int. Conf. Commun (ICC), Jun. 2012, pp. 2565–2569.



Bibliography 141

[47] C. Shannon, “Channels with side information at the transmitter,” IBM Journal of

Research and Development, vol. 2, no. 4, pp. 289–293, Oct. 1958.

[48] S. I. Gelfand and M. S. Pinsker, “Coding for channel with random parameters,”

Probl. Contr. Inf. Theory, vol. 9, pp. 19–31, 1980.

[49] M. H. M. Costa, “Writing on dirty paper (corresp.),” IEEE Trans. Inf. Theory,

vol. 29, no. 3, pp. 439–441, May 1983.

[50] F. M. J. Willems, “Signaling for the Gaussian channel with side information at the

transmitter,” Sorrento, Italy, pp. 348–350, Jun. 2000.

[51] U. Erez, S. Shamai, and R. Zamir, “Capacity and lattice strategies for canceling

known interference,” IEEE Trans. Info. Theory,, vol. 51, no. 11, pp. 3820–3833,

Nov. 2005.

[52] R. Khosravi-Farsani, B. Akhbari, and M. Aref, “Achievable rate regions for dirty

tape channels and joint writing on dirty paper and dirty tape,” Dublin, Ireland,

Aug. 2010, pp. 1–5.

[53] M. Skoglund and E. Larsson, “Optimal modulation for known interference,” IEEE

Trans. Commun., vol. 56, no. 11, pp. 1892–1899, Nov. 2008.

[54] H. S. Witsenhausen, “A counterexample in stochastic optimum control,” SIAM

Journal on Control, vol. 6, no. 1, pp. 131–147, 1968.

[55] T. Basar, “Variations on the theme of the witsenhausen counterexample,” in IEEE

Conf. Decision and Control, Dec. 2008, pp. 1614–1619.

[56] M. Varasteh, D. Gunduz, and E. Tuncel, “Zero-delay joint source-channel coding

in the presence of interference known at the encoder,” IEEE Int. Conf. Commun.

(ICC), pp. 4400–4405, Jun. 2015.

[57] M. Tomlinson, “New automatic equaliser employing modulo arithmetic,” Electron-

ics Letters, vol. 7, no. 5, pp. 138–139, Mar. 1971.

[58] H. Harashima and H. Miyakawa, “Matched-transmission technique for channels

with intersymbol interference,” IEEE Trans. Commun., vol. 20, no. 4, pp. 774–780,

Aug. 1972.



Bibliography 142

[59] R. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on

Selected Areas in Commun., vol. 17, no. 4, pp. 539–550, Apr. 1999.

[60] B. Murmann, “ADC performance survey,” CoRR, vol. abs/1404.7736, 1997-2014.

[Online]. Available: http://web.stanford.edu/⇠murmann/adcsurvey.html

[61] S. H. Park, O. Simeone, O. Sahin, and S. S. Shitz, “Fronthaul compression for cloud

radio access networks: Signal processing advances inspired by network information

theory,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 69–79, Nov. 2014.

[62] I. D. O’Donnell and R. W. Brodersen, “An ultra-wideband transceiver architec-

ture for low power, low rate, wireless systems,” IEEE Trans. Vehicular Technology,

vol. 54, no. 5, pp. 1623–1631, Sep. 2005.

[63] J. Singh, O. Dabeer, and U. Madhow, “On the limits of communication with

low-precision analog-to-digital conversion at the receiver,” IEEE Trans. Commun.,

vol. 57, no. 12, pp. 3629–3639, Dec. 2009.

[64] T. Koch and A. Lapidoth, “At low snr, asymmetric quantizers are better,” IEEE

Trans. Inf. Theory, vol. 59, no. 9, pp. 5421–5445, Sep. 2013.

[65] S. Verdu, “Spectral e�ciency in the wideband regime,” IEEE Trans. Inf. Theory,

vol. 48, no. 6, pp. 1319–1343, Jun. 2002.

[66] S. Krone and G. Fettweis, “Fading channels with 1-bit output quantization: Op-

timal modulation, ergodic capacity and outage probability,” in Proc. IEEE Inf.

Theory Workshop (ITW), Aug. 2010, pp. 1–5.

[67] A. Mezghani and J. A. Nossek, “Analysis of rayleigh-fading channels with 1-bit

quantized output,” in Proc. IEEE Int. Sym. Inf. Theory, Toronto, Jul. 2008, pp.

260–264.

[68] A. Mezghani and J. Nossek, “On ultra-wideband MIMO systems with 1-bit quan-

tized outputs: Performance analysis and input optimization,” Nice, France, Jun.

2007, pp. 1286–1289.

[69] J. Mo and R. Heath, “Capacity analysis of one-bit quantized MIMO systems with

transmitter channel state information,” IEEE Trans. Signal Processing, vol. 63,

no. 20, pp. 5498–5512, Oct. 2015.



Bibliography 143

[70] F. D. Cote, I. N. Psaromiligkos, and W. J. Gross, “A Cherno↵-type lower bound

for the Gaussian Q-function,” vol. 1202.6483, 2012.

[71] M. Chiani, D. Dardari, and M. K. Simon, “New exponential bounds and approxi-

mations for the computation of error probability in fading channels,” IEEE Trans.

Wireless Commun., vol. 2, no. 4, pp. 840–845, Jul. 2003.

[72] C. Risi, D. Persson, and E. G. Larsson, “Massive MIMO with 1-bit ADC,” CoRR,

vol. abs/1404.7736, 2014.

[73] D. Gunduz, K. Stamatiou, N. Michelusi, and M. Zorzi, “Designing intelligent energy

harvesting communication systems,” IEEE Commun. magazine, vol. 52, pp. 210–

216, 2014.

[74] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer, “One-bit

massive MIMO: Channel estimation and high-order modulations,” CoRR, vol.

abs/1504.04540, 2015.

[75] M. Varasteh, O. Simeone, and D. Gündüz, “Joint source-channel coding with One-
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