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Abstract

This thesis is motivated by two associated obstacles we face for the solution and analysis of

master equation models of gene transcription. First, the master equation – a differential-

difference equation that describes the time evolution of the probability distribution of a

discrete Markov process – is difficult to solve and few approaches for solution are known,

particularly for non-stationary systems. Second, we lack a general framework for solving

master equations that promotes explicit comprehension of how extrinsic processes and

variation affect the system, and physical intuition for the solutions and their properties.

We address the second obstacle by deriving the exact solution of the master equa-

tion under general time-dependent assumptions for transcription and degradation rates.

With this analytical solution we obtain the general properties of a broad class of gene

transcription models, within which solutions and properties of specific models may be

placed and understood. Furthermore, there naturally emerges a decoupling of the dis-

crete component of the solution, common to all transcription models of this kind, and the

continuous, model-specific component that describes uncertainty of the parameters and

extrinsic variation. Thus we also address the first obstacle, since to solve a model within

this framework one needs only the probability density for the extrinsic component, which

may be non-stationary. We detail its physical interpretations, and methods to calculate

its probability density.

Specific models are then addressed. In particular we solve for classes of multistate

models, where the gene cycles stochastically between discrete states. We use the insights

gained from these approaches to deduce properties of several other models. Finally, we

introduce a quantitative characterisation of timescales for multistate models, to delineate

“fast” and “slow” switching regimes. We have thus demonstrated the power of the obtained

general solution for analytically predicting gene transcription in non-stationary conditions.
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Chapter 1

Introduction

As early as the 1920s geneticists predicted that genes could “play a fundamental role in
determining the nature of all cell substances, cell structures and cell activities” (Muller
1922; Pontecorvo 1968), via a “giant hereditary molecule” (Koltsov (1927), as cited in
Soyfer 2001). It is now known that genetic information is transferred to the biological
system via the reproduction (transcription) of a section of DNA (a gene) to produce
messenger RNA (mRNA) molecules; the mRNA molecules are then used as templates
for the synthesis of a protein, or small number of proteins (translation). This process of
information transfer is known as gene expression, and occurs in all known life forms to
control the structure, functions, decision processes, adaptability, and phenotypes of the
cell. Understanding gene expression and its regulation is thus an issue of fundamental
interest.

Despite gene expression being a control mechanism, its coordination is mired in mys-
tery. The process requires a complex sequence of biological steps and potentially involves
a very low number of biomolecules, leading to a distinct kind of heterogeneity at the
single cell level, beyond the standard randomness and variability widely present in bio-
chemical systems. Heterogeneity is observed ubiquitously, even in clonal cell populations
in a homogeneous environment (Elowitz and Leibler 2000; Elowitz et al. 2002; Ozbudak
et al. 2002; Blake et al. 2003; Raj et al. 2006; Zenklusen et al. 2008; Zenobi 2013; Bahar
Halpern et al. 2015), and across time in single cells (Rosenfeld et al. 2005; Golding et al.
2005; Cai et al. 2006; Stevense et al. 2010; Yunger et al. 2010; Suter et al. 2011; Harper
et al. 2011; Larson et al. 2013; Corrigan and Chubb 2014; Francesconi and Lehner 2014;
Singer et al. 2014). So much so, that gene expression is now routinely labelled as being
a “fundamentally stochastic process” (Elowitz et al. 2002; Raser and E. K. O’Shea 2005;
Kærn et al. 2005; Raj and Oudenaarden 2008; Raj and Oudenaarden 2009; Shahrezaei
and Swain 2008; Li and Xie 2011; Junker and Oudenaarden 2014). Since expression levels
have such important consequences for the proper functioning of the cell and the cell pop-
ulation as a whole, the challenge of understanding gene expression brings us towards the
realms of philosophy: how do cells operate with such randomness at their local level, yet
together they form a sentient being that can philosophise about how it can write about
philosophising? In that sense, the study of gene expression forms part of the “quantum
field theory” of biology1.

1In fact, Erwin Schrödinger himself addressed these questions in his book What is life? (Schrödinger
1948).
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Part I, Chapter 1 – Introduction

One can argue that, almost by definition, interesting philosophical questions have as
their essence innumerable facets, and are intractably nested in layers of other questions.
It is ‘turtles all the way down’, even in a grain of salt2. The questions of life, even from
a purely biological viewpoint, are a case in point; a real understanding of gene expression
and its regulation is hindered by the complexity of each cell, each network of intracellular
interactions and molecular species, and how each cell positions itself and its contributions
within a wider population of cells and their own fluctuating environment, to name but a
few of the turtles (Burger 1999; Tanaka et al. 2003; Rockman and Kruglyak 2006; Junker
and Oudenaarden 2014). We are only able to observe relatively few of the factors that
determine gene expression and regulation at any one time. The data we obtain can be
thought of as the output from a black box, that contains all the information and processes
that we have not observed (Lestas et al. 2010).

The rapid technological advances of this century are transforming molecular cell bi-
ology into a data-rich field. Mathematical models and analysis are now essential tools
for increasing the yield of information from experiments by extracting information from
the data and inferring properties hidden within the black box. However, the utility of
the current mathematical models commonly used in the field is reaching two bottlenecks.
First, we need to obtain exact, analytical solutions of models that match the
kind of data being produced. Since we are now able to capture single-molecule mRNA
counts that change stochastically over time, mathematical formulations and understand-
ing must be in terms of discrete probability distributions. We need to solve models that
give us full, time-dependent distributions of integer random variables, not just averages,
continuous approximations or stationary snapshots. Second, in order to keep up with the
extraordinary rate at which experiments are performed, we are in particular need of
mathematical models and their properties that are general enough to be appli-
cable to a wide range of investigations and datasets, while also being adaptable
to each experimental hypothesis.

With these requirements in mind, Part II of this thesis answers the first bottleneck by
presenting the exact solution and properties of a broad class of gene transcription models.
The mathematical framework this provides is general enough to include several of the most
well-used models as specific cases, and naturally accounts for non-stationary systems. In
so doing, we respond to the second bottleneck. In Part III some of the general results are
applied to the commonly-used class of multistate models. The use of a general framework,
rather than solving individual models one-by-one, gives us a contextual vantage point
from which we can gain physical intuition and predict several fruitful further directions.
Exact expressions are also derived for a quantitative characterisation of timescales, and
implications in the context of a broad class of relevant gene transcription models are
discussed. Finally, further directions to explore are discussed in Part IV.

The mathematical framework that will be considered here is not restricted in its scope
to modelling gene transcription; the results are directly applicable to several gene expres-

2See Carl Sagan’s short essay Can we know the universe? Reflections on a grain of salt (Sagan 1979).
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1.1. Brief review of approaches for the stochastic modelling of gene transcription

sion models for protein levels that use timescale arguments to omit transcription (Paulsson
2004; Hornos et al. 2005; Iyer-Biswas et al. 2009; Ge et al. 2015). Further afield, our frame-
work it is analogous to G/G/∞ systems in queueing theory (Brémaud 2001; Kendall 1953).
We will also draw upon several concepts and classical results from other fields, including
stochastic processes, engineering, and the analysis and geometry of differential equations.
However, the motivation to solve models of gene transcription has driven the direction of
this work, so the focus of the physical interpretations and applications will remain firmly
on mRNA molecules as the objects of interest. A comprehensive account of the fields of
research that form the context of this work will not be helpful here, since they are both
vast and advancing at pace. The following brief review sets out the biological background
and quantitative paradigms that constitute the motivational basis of this work, focusing
on the aspects of stochastic gene expression and master equation models of gene tran-
scription that will be most relevant in this thesis. For more general overviews and further
reading I recommend (Kærn et al. 2005; Raj and Oudenaarden 2008; Li and Xie 2011;
Satija and Shalek 2014; Levine et al. 2014) for the causes and consequences of stochastic
gene expression and heterogeneity, transcriptional machinery, and experimental strategies,
and (Wilkinson 2009; Coulon et al. 2013; Sanchez-Osorio et al. 2014) for some quantitative
approaches for modelling stochastic gene expression.

1.1 Brief review of approaches for the stochastic modelling of gene transcription

While this thesis has been motivated so far in the context of heterogeneous gene expression,
and the increasing volume and quality of experimental data, variation in gene expression
is not itself a new discovery. Indeed, by 1932 Haldane was already predicting differences
in the time of action of genes (Haldane 1932), although it took several decades for clear
experimental evidence to emerge (Schwartz 1962; Spudich and Koshland Jr 1976). The
measurements of gene products themselves were often limited to protein concentrations,
which could be described in detail by traditional rate equations – ODE formulations of
individual reactions and species (Smolen et al. 2000).

Observed fluctuations were, however, recognised as phenomena worthy of investiga-
tion. Differing attitudes for which level to view the fluctuations from led to the emer-
gence of two main approaches for modelling the stochasticity. The Langevin approach
maintained the viewpoint of chemical concentrations as the measurements of fundamental
interest. Drawing upon the central limit theorem, the fluctuations were assumed to be
Gaussian and theoretical results were based on applications of the fluctuation-dissipation
theorem (Nitzan et al. 1974; Keizer 1975; Keizer 1976; Keizer 1977; Grossmann 1976).
The second approach left the perspective of concentrations behind, in favour of the more
elementary viewpoint based on the collision theory of chemical reactions. Believing that
the state of a chemical reaction system should describe the number of molecules, not the
concentration, stochasticity emerged naturally from the idea that chemical reactions take
place when diffusing molecules collide with sufficient energy. The resulting differential-
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Part I, Chapter 1 – Introduction

difference equations for the probability distributions of the number of molecules of each
chemical species of interest became known as the chemical master equations, or simply,
master equations (Kramers 1940; Montroll and Shuler 1957; Bartholomay 1958; McQuarrie
1967; Gardiner and Chaturvedi 1977; Kampen 1992).

However, the use of stochastic modelling in molecular biology was slow to take hold.
This was partly due to a belief that for simple reactions, the probability distribution
of the number of molecules in the system exhibits only small fluctuations around the
mean (McQuarrie 1967), but also because the master equations could only be solved for a
handful of simple reactions (Kampen 1992; Gillespie 1977; Gardiner et al. 1976; Berg 1978).
Various methods were developed, including van Kampen’s system size expansion (Kampen
1976; Kampen 1992), generating function methods (Bartholomay 1958; McQuarrie 1967),
and Gardiner’s Poisson expansion (Gardiner and Chaturvedi 1977), but the methods could
not always be applied systematically and were not easy to use. In practice, Gillespie’s
exact stochastic simulation algorithm (Gillespie 1976; Gillespie 1977) was (and still is)
used instead, which does not give expressions for the distributions that can be analysed
mathematically.

For studies in gene expression, the lack of reliable single-cell data was an additional
major hindrance to motivating the use of master equation models. However, a shift in that
direction was sparked by the pioneering work of Ko and his co-workers in the early 1990s.
They obtained fluorescence intensity data for expression of the β-galactosidase gene in
single cells under different induction doses (Ko et al. 1990). The expression data displayed
clear bimodality, meaning that the distributions had clear peaks at two distinct levels of
expression. Since expression levels were not distributed around the mean value, traditional
ODE models would not be able to capture the characteristics of the data. The data also
confirmed a conclusion reached several decades before by Novick and Wiener (Novick
and Weiner 1957) that induction increased the proportion of cells with high expression
levels, rather than increasing the expression in each cell linearly. However, Ko went a step
further in 1991 by proposing a corresponding stochastic model where in each cell the gene
switches between an active (ON) state, and an inactive (OFF) state according to a time-
homogeneous Markov chain (Ko 1991). The implication was that gene expression levels
would change in single cells over time, since trancription would only occur during periods
when the gene is active. This picture, usually referred to as transcriptional bursting or
transcriptional pulsing, is now known to be a common characteristic of gene expression,
from bacteria to mammals (Blake et al. 2003; Raser and E. J. O’Shea 2004; Rosenfeld et al.
2005; Golding et al. 2005; Raj et al. 2006; Chubb et al. 2006; Shahrezaei and Swain 2008;
Stevense et al. 2010; Larson et al. 2013). Furthermore, since the master equation for Ko’s
ON-OFF model (also known as the random telegraph model) was solved exactly under
the assumption of ergodicity (Peccoud and Ycart 1995; Raj et al. 2006; Iyer-Biswas et al.
2009), it has become widely used to explain the variability observed in gene expression
data (Raj et al. 2006; Zenklusen et al. 2008; Suter et al. 2011; Larson et al. 2013).

As our experimental capabilities progress, the limitations of the two-state ON-OFF
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model and its solution are becoming increasingly evident. First, several studies have
shown that mechanisms for regulating transcription initiation can be highly complex and
combinatorial, and as such they are major sources of gene variability, including nucleosome
occupancy, TATA box strength, the number of transcription factor binding sites, and
their location on the promoter (Blake et al. 2006; Sánchez et al. 2008; Sánchez et al.
2013; Senecal et al. 2014; Jones et al. 2014; Francesconi and Lehner 2014; Lin et al.
2015). Some regulatory factors can induce different transcription rates, or interact with
each other in various ways, so that multi-state extensions of the two-state model are
appropriate (Sánchez and Kondev 2008; Coulon et al. 2013; Sánchez et al. 2013; Senecal
et al. 2014; Corrigan and Chubb 2014). Second, since the two-state model assumes that
the gene state switching events are modelled by a Markov chain with constant transition
rates, waiting times in each state are exponentially distributed. However, recent time-
lapse recordings of mammalian gene expression show peaked waiting time distributions
in the inactive state (Suter et al. 2011; Harper et al. 2011), suggesting that at least two
inactive states or non-Markovian dynamics at the promoter are necessary to capture the
observed refractory periods. Third, feedback motifs are known to be a common feature of
gene regulatory networks (Shen-Orr et al. 2002; Ji et al. 2013; Kueh et al. 2013), which
are not accounted for in the two-state model. Fourth, the model possesses a stationary
solution, so is unable to describe the observations of time-varying distributions that are
due to, for example, circadian genes (Bieler et al. 2014; Lück et al. 2014; Suter et al.
2011), the cell cycle (Spellman et al. 1998; Sigal et al. 2006; Singer et al. 2014), external
signalling (Larson et al. 2013; Corrigan and Chubb 2014; Olson et al. 2014), or coupling
between cells (Feillet et al. 2014; Kuramoto 1975).

Unfortunately, exact solutions of the master equation for models of these observations
are rare, and are usually stationary solutions obtained via a probability generating func-
tion (Hornos et al. 2005; Zhang et al. 2012; Huang et al. 2014). Instead, quantitative
modelling and analysis of the stochasticity observed in gene expression data must still
be done via the methods known in the 1970s (McQuarrie 1967; Kampen 1992; Gardiner
1985), moment-based measures of noise (Swain et al. 2002; Thattai and Oudenaarden
2001), spectral methods (Walczak et al. 2009), approximations of the master equation
under various assumptions including timescale separations (Shahrezaei and Swain 2008;
Thomas et al. 2012), numerical solutions (Munsky and Khammash 2006), or stochastic
simulations of the time evolution of the cell population (Gillespie 1976; Gillespie 1977).
A general framework for gene transcription models that is applicable to non-stationary
systems is lacking. To fill this gap is precisely the aim of this thesis.

1.2 Outline of the thesis

The following chapter covers some preliminary material on the biological processes and
data that motivate the models we consider, and a simplified derivation of the master equa-
tion itself for chemical reactions that are relevant to gene transcription and degradation
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of gene products.
Part II gives results within the general framework that we consider, namely models of

mRNA transcription and degradation with time-varying rates and cell-to-cell correlations.
Chapter 3 lays down this general theoretical framework, and I show that the solution of the
master equation in this general setting always takes the form of a Poisson mixture distri-
bution. The random variable described by the mixing density is completely characterised
by the transcription and degradation rates of the model. In effect, the general solution
decouples the discrete Poisson contribution of the solution that is common to all gene
transcription models, from the model-specific extrinsic component that is encapsulated
entirely in the mixing density. Obtaining the solution of any gene transcription model is
thus reduced to the task of calculating the model-specific mixing density; Chapter 4 gives
some intuition for the physical interpretation of the extrinsic component, and the advan-
tages conferred to us by decomposing the solution in this way. In particular, the extrinsic
random variable is continuous and naturally encompasses time-dependent correlations be-
tween cells, and there are several classical methods for obtaining its probability density.
In Chapter 5 the ensemble and temporal moments and measures of noise are discussed as
straightforward corollaries of the full Poisson mixture solution.

Part III focuses on the implications of the general results from Part II on the multistate
promoter models that are found ubiquitously in the analysis of gene expression data.
Chapter 6 derives the solution of the cyclic promoter progression model in two different
ways, each giving us different tools for analysis and understanding of the behaviour of the
solution. Chapter 7 capitalises on the extra structural knowledge of model solutions that
we obtain by determining the mixing density to infer which other models can be solved
and the forms of their solutions. In Chapter 8 an exact quantitative characterisation of the
timescales implied by ON-OFF model parameters is derived, and the validity of timescale
separation arguments is discussed in terms of recent time-lapse experimental data from
the literature.

Finally, Chapter 9 in Part IV discusses the connections of our framework to Pois-
son expansions of feedback models, the potential gains from extending the framework to
feedback models, and proposes some initial approaches for pursuing them.
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Chapter 2

Preliminaries

The purpose of this chapter is to provide only the necessary background material and and
context for what follows in the rest of the thesis. We first give a basic introduction to the
processes involved in gene expression and transcriptional regulation, based on Alberts et
al. 2008, followed by an overview of the types of data that motivate our theoretical work.
The following section gives a short derivation of the master equation for the single-species
models that we will consider.

2.1 Biological background and context

2.1.1 Gene expression

Biology is a science of incredible diversity, based upon a set of common underlying princi-
ples. From the relatively simple, single-celled archaea to large, highly complex organisms,
common to all life forms1 is the cell as the fundamental unit of life. At the cellular level
too, there can be hundreds of different cell types that form a single species, yet the under-
lying principles of structure and function share a number of common traits. In particular,
for both prokaryotes (single-celled organisms without a nucleus, i.e. archaea and bacteria)
and eukaryotes (organisms whose cells have a nucleus) the mechanisms for storing and
using hereditary information that influences form and function of all organisms are sur-
prisingly similar; the information is stored in coded form as a sequence using four letters,
within the now famous deoxyribonucleic acid (DNA) molecules.

In the traditional view, the information is divided into units, called genes, each of which
encodes a defined protein component. However, several more recent findings require the
concept of a gene to be revised. For example, alternative splicing allows a single section
of DNA to code for multiple proteins, and some genes code for functional products that
are not used to synthesize proteins. Since there is no widely accepted consensus on the
definition of a gene, for the modelling in this thesis it will be adequate to think of it as a
particular locus of a DNA molecule, that is copied to make the products we are interested
in.

Although DNA encodes all the necessary information to replicate an organism, the
information needs to be expressed in order to produce the gene products that are required
by the cell. Different cells need different gene products in varying amounts, at different
times, and according to its environment, so the cell expresses the information from the

1The classification of viruses as non-cellular life forms is still a controversial issue (Forterre 2010).
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relevant genes when required, in a process known as gene expression. There are several
steps involved, but gene expression can be broadly split into two processes: transcription,
followed by translation.

In transcription, the gene is copied, or transcribed, into a ribonucleic acid (RNA)
molecule. The resulting RNA molecule is therefore sometimes referred to as a transcript.
Since the gene can be used repeatedly for transcription, the transcript is a disposable
copy of the information stored in the DNA. The RNA molecules that serve as messengers
of this information to guide protein synthesis are known as messenger RNA (mRNA)
molecules, and are the type that we model in this thesis. Molecular complexes called
ribosomes translate the mRNA molecules into proteins, in a process known as translation.
Depending on its stability, each mRNA molecule can be used to synthesize many protein
molecules before being degraded.

We will be concerned with modelling transcription. Since translation does not expend
mRNA molecules, in general we will not need to consider translation in a direct manner.

2.1.2 Transcriptional regulation

Every cell needs to be able to control the type and amount of proteins and other gene
products, in order to interact with and respond to internal signals, to other cells, and to
their environment in general. In a multicellular organism, each DNA molecule has the
same sequence and therefore the cell type depends on which genes are expressed, and
which aren’t. Regulation of gene expression is thus essential for the proper and efficient
functioning of any cell.

The main control point for gene regulation is at the start of the gene expression process,
where the gene can be turned ‘on’ or ‘off’ (see Fig. 2.1 E,F). The strategies and mechanisms
used for activating or inhibiting transcription initiation are numerous, and are generally
different for prokaryotic and eukaryotic cells. To limit our scope, we will focus on the
general mechanisms that motivate our work and are necessary to understand it.

For both prokaryotes and eukaryotes, transcription is initiated when an RNA poly-
merase molecule binds to the promoter, a specialised sequence on the DNA strand that is
usually located just upstream of the starting point for transcription. Regulatory proteins
called transcription factors (TFs) bind to the DNA at specific loci in order to influence the
action of the RNA polymerase. In bacteria, genes are ‘on’ by default, so repressor proteins
are their main tools for the regulation of gene expression (Jacob and Monod 1961). The
repressor binds to the DNA close to the promoter site, thus blocking the RNA polymerase
from binding and initiating transcription. When the repressor unbinds from its position
on the DNA strand, for example due to a conformational change caused by the binding of
another regulatory molecule, the gene is available for transcription once more (Jacob and
Monod 1962).

Transcriptional regulation is a far more complex process in eukaryotic cells, being a
combination of the structural effects of the DNA, and more sophisticated interactions of
TFs. For eukaryotes, TFs usually activate transcription, and their action is said to be
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‘combinatorial’ (Remenyi et al. 2004; Lin et al. 2015): regulation requires interactions
between several proteins; RNA polymerase is often not able to bind to the promoter with-
out this recruitment by TFs (Struhl 1999). Thus, eukaryotic genes are generally ‘off’ by
default. The recruitment of TFs can be influenced by several factors, including the ex-
istence of a conserved gene sequence called a TATA box, silencer elements for repressor
molecules, and chromatin structure. Chromatin is the complex formed by the DNA with
proteins, which causes the DNA strands to be highly condensed and wrapped around pro-
teins called histones. For TFs to bind to the DNA at the correct positions, the chromatin
structure must be unwound into an ‘open’ domain. Thus even in the presence of several
transcription factors, the genes in a closed chromatin domain remain inactive.

Figure 2.1: Time-lapse microscopy using the MS2-GFP detection system. (A-D) Fluo-
rescence microscopy images of human U2-OS cells at different time points. Transcription
sites are visible as fluorescent spots. Scale bar = 4 µm. (E, F) Fluorescence of single cells
as a function of time with highlighted ON and OFF intervals of transcription. Reprinted
from eLife, 2, Larson et al., Direct observation of frequency modulated transcription in
single cells using light activation, e100750 (2013) under the Creative Commons CC0 public
domain dedication.

2.1.3 Experimental capabilities and data
To help understand gene expression and its regulation, we would ideally like to observe
all the relevant molecules and their interactions, in single cells over time. We are still far
from this ideal scenario which, given the complexities of gene regulation, may well always
remain science fiction. Nevertheless, our experimental capabilities are advancing at an
astonishing rate, especially at the mRNA level. Where only a little over a decade ago
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single-cell observations of mRNA molecules in living cells were unheard of, we are now
able to reliably observe and quantify single molecules in single cells over time.

With this pace of progress in mind, the gene transcription models considered in this
thesis are formulated mathematically in order to obtain probability distributions for the
mRNA copy number in single cells over time. Since the main motivation of these models
is to have the quantitative tools necessary to analyse the single-molecule, time-lapse data
that are emerging, we mention here the main single-mRNA detection approaches that
form the context for the examples we use in the main body of the text.

Population snapshot methods

Figure 2.2: Single-molecule population snapshot measurements of mRNA molecules in
mouse liver cells, obtained using smFISH. Top: Red dots are single mRNA molecules,
blue areas are stained nuclei, and green is staining of the cell membrane. PP, periportal
zone. PC, pericentral zone. Scale bar is 30 mm. Below left: Dual-colour labelling of
transcription sites reveal active transcription sites, indicated by the arrowhead. Below
right: Distribution of the number of mRNA molecules per cell (bars), and theoretical
probability density functions (lines) from two different mathematical models. Reprinted
from Molecular Cell, 58, K. Bahar Halpern et al., Bursty gene expression in the intact
mammalian liver, 147-156, Copyright 2015, with permission from Elsevier.

Population snapshot approaches tell us the number (or relative number) of mRNA
molecules in single cells of a population, at a single time point. The data is usually
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represented in the form of bar graphs or histograms (see Fig. 2.2 for an example).
Single-molecule fluorescence in situ hybridization (smFISH) allows one to count mRNA

molecules in single cells and view their localisation (Femino et al. 1998; Raj and Oude-
naarden 2008; Little et al. 2013; Lyubimova et al. 2013). Samples are fixed and then
hybridised using a set of fluorescently labelled oligonucleotides. Although this method
provides only a single-time picture of the expression levels, the resolution of the molecules
is unparalleled, even with dual-colour labelling (Bahar Halpern et al. 2015).

Single-cell quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and
digital single-cell RT-PCR are highly sensitive methods for counting mRNA molecules in
hundreds of single cells. The method yields absolute numbers, rather than arbitrary
fluorescence units, but does not give us any spatial information (Bengtsson et al. 2005;
Warren et al. 2006; Ståhlberg et al. 2012).

Time-lapse methods

Time-lapse methods rely on engineering cells so that the transcripts of interest fluoresce,
usually using fluorescent ‘tagging’ proteins. Previously, resolution at the mRNA level was
low, so we would infer the number of molecules present in a single cell by the fluorescence
intensity. However, methods have improved drastically in the past few years, so we are
now able to track single molecules (Fig 2.1 A-D), as well as obtain time-lapse traces that
indicate the expression levels of single cells over time (Fig 2.1 E-F, for example). As such,
we are starting to overcome some of the usual limitations associated with fluorescence
measurements, i.e., background fluorescence, low resolution, and inferring molecule num-
bers from arbitrary fluorescence units. However, the confounding effects of the fluorescent
tags must still be kept in mind.

The MS2-GFP mRNA detection system is the predominant procedure for the direct
observation of single mRNA molecules in living cells, over time (Bertrand et al. 1998;
Golding and Cox 2004; Golding et al. 2005; Muramoto et al. 2012; Larson et al. 2013;
Coulon et al. 2014; Corrigan and Chubb 2014). The gene is engineered to encode for a
number of RNA hairpins, and an MS2-coat protein is tagged with a fluorescent protein,
usually GFP, that binds with high affinity to the RNA loops (Bertrand et al. 1998; Golding
and Cox 2004). When the MS2-GFP fusion binds to the mRNA, the molecules fluoresce
and can be followed over time using time-lapse microscopy (see Fig. 2.1). Two-colour
single-mRNA imaging is also emerging (Coulon et al. 2014). The main disadvantage
for this method is that degradation of the reporter molecules is strongly inhibited, the
experiments are constrained to timescales of only a few hours, and relatively few cells can
be imaged (Golding et al. 2005).

High-throughput single-molecule assays have been developed recently, although the
method has so far been constrained to in vitro studies (Chong et al. 2014). The method
allows us to monitor the process of transcription itself, so that we can view transcription
initiation time points, and measure how long it takes to produce each transcript. A final
approach worth mentioning, pioneered by the Naef lab, is to measure the fluorescence
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of short-lived proteins (Suter et al. 2011; Molina et al. 2013). The protein dynamics
mimic those of the mRNA molecules because of the short half-lives. The cells can then be
tracked over days instead of hours, and the data is not skewed by the slow degradation of
the reporter molecules.

2.2 Master equations for gene transcription

In Chapter 1 we laid down the motivations for modelling gene expression with master
equations, and developing a framework for solving them. The purpose of this section
is to outline the arguments used to derive the master equation, and to acknowledge the
underlying assumptions that are made, so that in later chapters we can start from this basis
and immediately write down the master equation for a given model of gene transcription.

2.2.1 Derivation of the master equation

We are interested in modelling Nt, the number of mRNA molecules in a single cell over
time. It is understood that Nt refers only to mRNA molecules that were transcribed at a
specific gene that we are interested in. Since the number of transcripts of any particular
kind in a single cell can be very low2, we do not permit Nt to be approximated by a
continuous variable. In other words, Nt takes only non-negative integer values.

As mentioned in Chapter 1, and illustrated by the experimental data in Figs 2.1 and 2.2,
Nt changes stochastically in time. To accommodate our discrete, stochastic state variable
Nt mathematically, we need to describe its value by P (n, t) ..= Pr(Nt = n), the probability
that Nt has the value n ∈ N at time t.

Starting from the collision theory of chemical kinetics, that chemical reactions occur
when two molecules collide with sufficient energy, we can derive an equation for the time
evolution of P (n, t) in a well-stirred system at thermal equilibrium (Gillespie 1992a).
Equations of this kind are known generally as Kolmogorov forward equations, but when
the random variable is discrete, as we have here, they are more often known as chemical
master equations, or simply master equations.

It is now known that the cell is a densely crowded, compartmentalised system, so that
molecules can not freely diffuse within it. Nevertheless, the master equation as derived
using arguments based on conventional chemical reaction rates has proved incredibly useful
for characterising and explaining stochasticity in gene expression (McQuarrie 1967). With
this caveat in mind, we briefly outline these arguments to derive master equations for
models of transcription for a single gene. Extensions for systems with more than one
chemical species follow in a similar manner; see any of the references Gardiner 1985;
Kampen 1992; Gillespie 1992b for derivations with more generality.

Let o(dt) denote terms such that limdt→0 o(dt)/dt = 0, and let n→ m denote the event
of a transition from state n to state m. We make the following assumptions:

2Average mRNA copy numbers usually range from less than one to a few hundred (Milo and Phillips
2015); the median in mammalian cells has been reported as being only 17 (Schwanhäusser et al. 2011).
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i. The probability of a transition n→ n+ 1 in the infinitesimal time interval (t, t+ dt)
is a(n, t)dt+ o(dt), where a(n, t) ∈ R≥0.

ii. The probability of a transition n→ n− 1 in the infinitesimal time interval (t, t+ dt)
is b(n, t)dt+ o(dt), where b(n, t) ∈ R≥0.

iii. The probability of a transition n → n ± j, j > 1, in the time interval (t, t + dt) is
o(dt).

Notice that under these assumptions, the system has the Markov property: the transition
probabilities depend only on the current state of the system.

Now P (n, t+ dt) is given by the sum of:

i. the probability that the system is in state n at time t, and remains there until t+ dt,

ii. the probability that the system is in state n− 1 at time t, and transitions to state n
by t+ dt

iii. the probability that the system is in state n+ 1 at time t, and transitions to state n
by t+ dt, and

iv. the probability that the system is in state n ± j, j > 1 at time t, and transitions to
state n by t+ dt.

Using the multiplication law of probability, i.e. Pr(A and B) = Pr(A) × Pr(B given A),
we have

P (n, t+ dt) = P (n, t)× [1− Pr{n→ n± j, j ≥ 1, in (t, t+ dt)}]

+ Pr{n− 1→ n in (t, t+ dt)}

+ Pr{n+ 1→ n in (t, t+ dt)}

+ Pr{n± j → n, j ≥ 1, in (t, t+ dt)}

= P (n, t)[1− a(n, t)dt− b(n, t)dt− o(dt)]

+ P (n− 1, t)[a(n, t)dt+ o(dt)]

+ P (n+ 1, t)[b(n, t)dt+ o(dt)] + o(dt).

Moving the P (n, t) term from the right hand side of the equation to the left, dividing by
dt, and taking the limit dt→ 0, we obtain the master equation

dP (n, t)
dt

= −[a(n, t) + b(n, t)]P (n, t) + a(n− 1, t)P (n− 1, t) + b(n+ 1, t)P (n+ 1, t).

Suppose the state transition n → n + 1 can only happen via a transcription event, and
the state transition n → n − 1 can only happen via a degradation event. Suppose also
that mRNA molecules do not directly influence the processes of transcription at their
gene, and degradation. Then transcription is a zero-order chemical reaction: we have
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a(n, t) = α(t). On the other hand, degradation is a first-order chemical reaction: for each
mRNA molecule, the probability that it degrades in (t, t+dt) is β(t)dt+o(dt), β(t) ∈ R≥0,
so with n mRNA molecules present in a system, the probability of a transition n→ n− 1
in (t, t+ dt) is β(t)ndt+ o(dt), i.e. b(n, t) = β(t)n. We are then left with

dP (n, t)
dt

= −[α(t) + β(t)n]P (n, t) + α(t)P (n− 1, t) + β(t)(n+ 1)P (n+ 1, t).

Example 2.2–1 walks through the steps of solving a simple master equation model of
gene transcription, using the probability generating function method that we will use in
the next chapter.

Example 2.2–1 — Gene transcription model with constant rates

The most simple gene transcription model assumes a constant transcription rate and
linear degradation, i.e. a(n, t) = α and b(n, t) = βn, where α, β > 0 are constants.
The master equation for this model is therefore

dP (n, t)
dt

= −[α+ βn]P (n, t) + αP (n− 1, t) + β(n+ 1)P (n+ 1, t). (2.1)

The usual approach for obtaining P (n, t) is to use the probability generating function,
namely,

G(z, t) ..=
∞∑
n=0

znP (n, t),

to transform the master equation (2.1) into a partial differential equation (Bartholomay
1958; Kampen 1992; Gardiner 1985). It is fairly straightforward to check that:

∑
zn
P (n, t)
dt

= ∂G

∂t∑
nznP (n, t) = z

∑ ∂

∂z
znP (n, t) = z

∂G

∂z∑
znP (n− 1, t) = z

∑
zn−1P (n− 1, t) = zG

∑
(n+ 1)znP (n+ 1, t) = ∂G

∂z
.

so if we multiply Eq. (2.1) through by zn and sum over all n, we can use the identities
above to find that G satisfies

∂G

∂t
= α(z − 1)G− β(z − 1)∂G

∂z
.

We can solve this equation for G using the method of characteristics with initial con-
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dition P (0, 0) = 1, P (n, 0) = 0 for n > 0, to find

G(z, t) = e
α
β

[1−e−βt](z−1)
. (2.2)

Recall that, by definition, P (n, t) is the coefficient of zn in G(z, t) so by expanding
Eq. (2.2) we obtain

P (n, t) = 1
n!

(
α

β

[
1− e−βt

])n
e
α
β

[1−e−βt]
,

i.e.
Nt ∼ Poi

(
α

β

[
1− e−βt

])
.
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Part II: Exact solution of the master equation

Introduction

Fundamentally speaking, expression of a single gene can be measured in terms of the
number of mRNA molecules present that were transcribed at the gene in question. Since
mRNA copy number increases only via transcription events and decreases via degradation
events, in a coarse-grained sense gene transcription models simply describe the processes
of transcription and degradation. Specificity and complexity of any particular model are
defined by the assumptions and levels of detail used to describe those processes for the
context in which the model will be used.

In this part we work within the following simple framework: we consider the processes
of transcription and degradation in a very general sense, and infer the resulting probability
distribution of the mRNA copy number over time, with several corollaries. The constraints
on the mathematical or statistical descriptions of transcription and degradation are weak,
so the results are applicable to most types of transcription models considered in the field.
In particular, time-dependence due to correlated expression between cells in the population
can be naturally accounted for here, a property that is often lacking in gene transcription
models as stationarity is so often assumed. The chapters in Part III will apply the general
results given here to more specific descriptions of transcription and degradation.

In Chapter 3, we describe the theoretical framework and derive the main result that
will underpin the rest of the thesis: that the probability mass function of the mRNA copy
number is always a Poisson mixture. In Chapter 4 we give some physical intuition for the
mixture distribution, place it into the context of existing approaches for solving models of
gene transcription, and collect together results from several dissociated fields that can help
obtain it. Chapter 5 contains corollaries of the result in Chapter 3 to do with moments
and measures of noise.
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Chapter 3

Derivation of the solution

This chapter consists of the foundations that will underpin the rest of this work. We
describe the general, theoretical framework and model, and derive the main result that will
be used throughout the thesis. Despite its central importance, the mathematics required
here are fairly basic elements of probability theory and stochastic processes. However,
it is the tool that has allowed us to understand what is already known about most gene
transcription models, as specific cases of this result. This understanding has also guided
us towards all the new results that will be discussed in the rest of the thesis, as it allows
us to decouple the “Poisson” contribution that is common to all gene transcription models
of the kind we consider, from the model-specific contribution.

3.1 Theoretical framework

We are interested in the expression in time of a specific gene, measured by the number of
mRNA molecules present in each cell of a population that were transcribed at that gene.
We assume that the mRNA copy number changes only via transcription and degradation
events, both of which occur according to the principles of stochastic chemical kinetics
described in Chapter 2. We will refer to models of this broad category as transcription-
degradation models.

Our measure for gene expression, the mRNA copy number, is a stochastic process in
continuous time t which we will denote by

N ≡ {Nt}t≥0 ≡ {t 7→ ηω(t) : ω ∈ ΩN }.

{Nt}t≥0 is a set of random variables Nt, one for each time t, and {t 7→ ηω(t) : ω ∈ ΩN } is
the set of all possible sample paths for the mRNA copy number in a single cell. We will
denote the probability mass function for Nt by

P (n, t) ≡ Pr(Nt = n), n ∈ N.

If N is a stationary process so that the law of Nt is independent of t, we will simply write
P (n) ≡ Pr(Nt = n).

In order to account for the variability in the transcription and degradation reaction
rates, both in time and between cells, we allow them to be described by the stochastic
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processes

M≡ {Mt}t≥0 ≡ {t 7→ µω(t) : ω ∈ ΩM} and

L ≡ {Lt}t≥0 ≡ {t 7→ λω(t) : ω ∈ ΩL} ,

respectively. The notation here is the same as that for N : Mt and Lt are random variables,
t 7→ µω(t) and t 7→ λω(t) are sample paths of the transcription and degradation rates,
respectively, and ΩM and ΩL are the sample spaces. For continuous random variables
such as Mt and Lt, we will denote the cumulative density function (cdf) and probability
density function (pdf) according to usual conventions with a capital F and lower-case f ,
respectively. For example FMt(m, t) and fMt(m, t) are the cdf and pdf of Mt at time t.
We will sometimes refer to the transcription and degradation rates collectively as cellular
drives, or simply drives.

We do not specify any functional form for the cellular drives here, except to require that
t 7→ µω(t) and t 7→ λω(t) do not depend on the number of mRNAmolecules already present.
Thus these sample paths may be thought of as example functions of time that describe
the transcription and degradation rates in response to changing cellular architecture and
environmental conditions in an example cell. Note that by allowing the drives to be
described by stochastic processes in this way, we have the freedom to explicitly specify
how correlated we would like them to be1. In general, we will mention correlation between
sample paths in a broad manner, rather than in precise, quantitative terms. Therefore, to
avoid confusion with statistical measures of correlation and dependence, we will refer to
cells or cellular drives as having a “degree of synchrony”. A population will be perfectly
synchronous if the sample paths of the drives for every cell in the population is identical,
or equivalently, if Mt and Lt have zero variance. For example, if the transcription rate
is a deterministic sinusoidal function t 7→ g(t) and is perfectly synchronous for all cells,
we would have fMt(m, t) = δ(g(t) −m) ∀ t ≥ 0, where δ is the Dirac delta function. If,
however, cellular variability means that the transcription rate will be slightly out of phase
between cells, we can impose that fMt be a more dispersed density: the wider the density,
the more asynchronous the drive is. This control is discussed in Chapter 4 with several
examples.

Note also that this framework generalises models that account for each step of tran-
scription or degradation individually: the only gene expression model without a time-
dependent drive is the standard first-order model with constant transcription and degra-
dation rates µ and λ, and stationary solution Nt ∼ Poi(µ/λ)∀ t (see Example 3.2–1). All
other models implicitly or explicitly have drives that are not constant.

Ultimately, we would like to obtain the probability distribution of Nt for all t, within
this context of time-varying and/or stochastic parameters. The following section derives
an expression for P (n, t) in the general case, which will be used in Chapters 4 and 5 to

1In fact, by defining M and L by the random variables Mt and Lt for each t, we can specify any
statistical characteristics of the population that we choose.
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derive properties of transcription-degradation models, and then throughout the rest of the
thesis to solve and analyse several specific gene transcription models.

3.2 The exact Poisson mixture solution

We first consider a population whose cellular drives are perfectly synchronous, and use
the information we gain to derive the probability distribution P (n, t) for the general case.

Perfectly synchronous case: no cell-to-cell variation in cellular drives

Consider first a population of cells with perfectly synchronous transcription and degrada-
tion rate functions Msync = {µ(t)}t≥0 and Lsync = {λ(t)}t≥0. In other words, every cell
in the population has transcription rate t 7→ µ(t) and degradation rate t 7→ λ(t), so Mt

and Lt have zero variance ∀ t ≥ 0. We thus have an immigration-death process that can
be summarized by the following reaction diagram:

∅ µ(t)−−→ mRNA λ(t)−−→ ∅. (3.1)

Note that this is not a birth-death process because the mRNA do not reproduce; so the
transcription rate µ(t) has units t−1. In contrast, degradation is a first-order reaction, so
the unit for the degradation rate is t−1n−1.

Denote the probability mass function for the mRNA copy number Nt for this special
case with synchronous drives by

Psync(n, t) ..= Pr (Nt = n|Msync,Lsync) .

The master equation for Psync(n, t) is then given by:

d

dt
Psync(n, t) = µ(t)Psync(n− 1, t) + (n+ 1)λ(t)Psync(n+ 1, t)

− [µ(t) + nλ(t)]Psync(n, t). (3.2)

Using the definition of the probability generating function

G(z, t) ..=
∞∑
n=0

znPsync(n, t),

we can transform the master equation (3.2) into

∂G

∂t
= (z − 1)µ(t)G− (z − 1)λ(t)∂G

∂z
. (3.3)

We will solve this equation using the method of characteristics, assuming for now that
there are initially n0 mRNA molecules in each cell. Introduce the characteristic equations

dt

ds
= 1, dz

ds
= (z − 1)λ(t), dG

ds
= (z − 1)µ(t)G,
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where s is a parametrisation of the characteristic curve, and without loss of generality we
can let t(0) = 0. Solving this system, we have

t = s,

z − 1 = [z(0)− 1] e
∫ s

0 λ(σ) dσ , and

G(s) = G(0) e[z(0)−1]
∫ s

0 µ(τ)e
∫ τ

0
λ(σ) dσ

dτ .

Noticing that the initial condition P (n0, 0) = 1 implies that G(0) = G(z(0), t(0)) = z(0)n0 ,
and eliminating the parameter s, we obtain the solution:

G(z, t|n0) =
[
(z − 1)e−

∫ t
0 λ(τ) dτ + 1

]n0

ex(t)(z−1) (3.4)

=.. GN ic
t

(z, t)GNs
t
(z, t),

where
x(t) ..=

∫ t

0
µ(τ)e−

∫ t
τ
λ(τ ′) dτ ′ dτ. (3.5)

We will refer to x as the extrinsic parameter.

Notice that G(z, t|n0) (Eq. (3.4)) is the product of two probability generating functions:
GN ic

t
(z, t) is the probability generating function for a binomial random variable N ic

t , with

n0 trials and success probability e−
∫ t

0 λ(τ) dτ , and GNs
t
(z, t) is the probability generating

function for a Poisson random variable N s
t , with parameter x(t). So for this special case

where all cells have perfectly synchronous drives, we deduce (Feller 1968) that

Nt = N ic
t +N s

t ; (3.6)

N ic
t ∼ Bin

(
n0, e

−
∫ t

0 λ(τ)dτ
)
, (3.7)

N s
t ∼ Poi (x(t)) . (3.8)

The physical interpretation of this breakdown is that N ic
t describes the mRNA transcripts

that were initially present in the cell and still remain at time t, and N s
t describes the

number present in the cell that were transcribed since t = 0.

N ic
t and N s

t are independent, so it is easy to read off the first two moments:

E (Nt|Msync,Lsync, n0) = E
(
N ic
t

)
+ E (N s

t )

= n0 e
−
∫ t

0 λ(τ)dτ + x(t),

Var(Nt|Msync,Lsync, n0) = Var(N ic
t ) + Var(N s

t )

= n0e
−
∫ t

0 λ(τ) dτ
(

1− e−
∫ t

0 λ(τ) dτ
)

+ x(t).

We can go further and write down the explicit expression for Psync(n, t|n0), either by
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3.2. The exact Poisson mixture solution

computing the coefficient of zn in G(z, t), or by using Eqs (3.6)-(3.8) to write

Psync(n, t|n0) = Pr(N ic
t +N s

t = n|n0)

=
n∑
k=0

Pr(N ic
t = k|n0) Pr(N s

t = n− k)

=
n∑
k=0

(
n0
k

)
e−k

∫ t
0 λ(τ)dτ

(
1− e−

∫ t
0 λ(τ)dτ

)n0−k x(t)n−k
(n− k)! e

−x(t) .

If the initial condition n0 is not known, or if the state of each cell at t = 0 is not identical,
it can be more appropriate to let the initial state be described by a random variable N0.
In this case, the law of total probability gives us

Psync(n, t) =
∑
n0

Psync(n, t|n0) Pr(N0 = n0) . (3.9)

Notice that the contribution from N ic
t decreases exponentially for any sensible degra-

dation functions λ, as the transcripts that were present at t = 0 are expected to degrade,
and the population is expected to be composed only of mRNA molecules that were tran-
scribed since t = 0. Hence in this case where all cells are initialised in the same state,
the distribution Psync(n, t|n0) displays a transient period until the contribution from N ic

t

is negligible. However, Nt = N ic
t + N s

t does not necessarily display transient behaviour
until the contribution from N ic

t is negligible. Let us first fix ideas using a model with a
stationary solution, and then discuss the general case.

Example 3.2–1 — Time-dependent contributions from N ic
t and N s

t can bal-
ance each other

Consider the gene transcription model with constant transcription and degradation
rates µ and λ. Then, when there are initially n0 mRNA transcripts, Eqs (3.6)-(3.8)
give us

N ic
t ∼ Bin

(
n0, e

−λt
)
,

N s
t ∼ Poi

(
µ

λ

[
1− e−λt

])
.

As t→∞ the distribution ofNt will tend towards Poi(µ/λ), the stationary distribution
of the population. We will show that if the system starts at stationarity, Nt = N ic

t +N s
t

will be independent of time ∀ t ≥ 0.
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Part II, Chapter 3 – Derivation of the solution

Suppose that the population starts at stationarity, i.e.

Pr(N0 = n0) =
(
µ

λ

)n0 e−µ/λ

n0! .

We wish to find Psync(n, t) given this initial distribution. We still have

N s
t ∼ Poi

(
µ

λ

[
1− e−λt

])
,

so we just need to determine the contribution to Nt from N ic
t . In this case, we have

Pr(N ic
t = k) =

∞∑
n0=k

Pr(N ic
t = k|N0 = n0) Pr(N0 = n0)

=
∞∑

n0=k

(
n0
k

)(
e−λt

)k (
1− e−λt

)n0−k
(
µ

λ

)n0 e−µ/λ

n0!

=
(
e−λt

)k
e−µ/λ

∞∑
r=0

(
µ

λ

)r+k (1− e−λt
)r

k! r!

=
(
µ

λ

)k (e−λt)k e−µ/λ
k!

∞∑
r=0

(
µ

λ

)r (1− e−λt
)r

r!

=
(
µ

λ
e−λt

)k e−µ/λ
k! e

µ
λ

(1−e−λt)

=
(
µ

λ
e−λt

)k e−µλ e−λt
k! .

In other words N ic
t ∼ Poi

(
µ
λ e
−λt
)
, which cancels the time dependent contribution

from N s
t ∼ Poi

(
µ
λ

[
1− e−λt

])
. Therefore ∀ t ≥ 0,

Nt ∼ Poi
(
µ

λ

)
.

The example shows that N ic
t and N s

t will combine to reproduce a stationary distribution
at all times t > 0, when the system starts at stationarity. Thus we do not have a transient
period where the initial distribution converges to the equilibrium of the system.

The same is true if the system is not stationary: suppose we let the system start at
t = −∞, with any initial condition. For t > 0, the system will be independent of the initial
condition and will be described by N s

t . Let us denote the state of the system for t > 0 by
the attracting distribution P∗. Although Pr(N s

t = n) = P∗(n, t) ∀ n ∈ N, ∀ t > 0, we wish
to distinguish P∗ from Ps because we only have equality of the two distributions when the
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3.2. The exact Poisson mixture solution

system starts at t = −∞. P∗ can be thought of as an inherent property of the system,
analogous to the the stable point of a dynamical system that moves in time (sometimes
called a chronotaxic system (Suprunenko et al. 2013)).

Now, if we let Pr(N0 = n0) = P∗(n0, 0) ∀ n0 in Eq. (3.9), the contributions from
N ic
t and N s

t balance each other as they did in Example 3.2–1, and we have Psync(n, t) =
P∗(n, t) ∀ n, ∀ t > 0. Thus we only observe an initial transient period if the initial
distribution starts away from its attracting distribution at t = 0. In all other cases,
the following mathematical formulations are equivalent: i) assume that the system was
initialised at t = −∞ and consider only N s

t , or ii) use the initial distribution P∗(n, 0) ∀ n
at t = 0, and consider N ic

t +N s
t .

We wish to focus on the time dependence of P (n, t) induced through non-stationarity
of the parameters, and/or synchronous behaviour of the cells within the population. So,
unless otherwise stated, we will assume that the system was initialised at t = −∞ and
that the distribution of N s

t is the attracting distribution P∗(n, t) ∀ t > 0. A discussion
of the transient period due to initial conditions can be found in Section 5.2. We will
therefore neglect the contribution from N ic

t , and use Nt ∼ Poi(x(t)) when the drives for
the population are perfectly synchronous, i.e.

Psync(n, t) = x(t)n
n! e−x(t), x(t) ..=

∫ t

0
µ(τ)e−

∫ t
τ
λ(τ ′) dτ ′ dτ. (3.10)

General case: cell-to-cell variation in cellular drives

Let us return to the general case where several sample paths are possible, implying that the
transcription and degradation rates within the population have some degree of asynchrony:
M ≡ {t 7→ µω(t)}ω∈ΩM and L ≡ {t 7→ λω(t)}ω∈ΩL , so that Mt and Lt have non-zero
variance for at least some t ≥ 0. The results above for the special case of synchronous
drives show that the relevant stochastic process to consider is in fact X , where

X ≡ {Xt}t≥0 ≡ {t 7→ xω(t) : ω ∈ ΩX }

=
{
t 7→

∫ t

0
µω′(τ)e−

∫ t
τ
λω′′ (τ ′) dτ ′ dτ : ω′ ∈ ΩM, ω′′ ∈ ΩL

}
.

Notice that for all sensible cellular drives (for example, positive and finite), X is a contin-
uous stochastic process. The properties of X are discussed in more detail in the following
chapter.

Now, Eq. (3.10) tells us that the conditional distribution of Nt given Xt = ξ is

P (n, t|Xt = ξ) = ξn

n! e
−ξ,

hence to find the probability distribution for Nt we can simply take the expectation over
the distribution for Xt. This brings us to our central result:
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Part II, Chapter 3 – Derivation of the solution

Denote the sets of all possible sample paths for the transcription and degradation
rates by

{t 7→ µω(t) : ω ∈ ΩM} and {t 7→ λω(t) : ω ∈ ΩL},

respectively. Let X ≡ {Xt}t≥0 be the stochastic process defined by the collection
of sample paths

{t 7→ xω(t) : ω ∈ ΩX } ..=
{
t 7→

∫ t

0
µω′(τ)e−

∫ t
τ
λω′′ (τ ′) dτ ′ dτ : ω′ ∈ ΩM, ω′′ ∈ ΩL

}
.

Then the probability mass function for the random variable Nt is given by the
Poisson mixture (or compound) distribution

P (n, t) =
∫
ξn

n! e
−ξ fXt(ξ, t) dξ, (3.11)

∀ t ≥ 0 if the system starts at its attracting distribution at t = 0. Otherwise, the
probability mass function converges to Eq. (3.11). fXt is the probability density
function of the random variable Xt, which we will refer to as the mixing density.

Poisson mixture result

Equation (3.11) will be used throughout this thesis, and will be referred to as the
Poisson mixture result. Note that when the drives are perfectly synchronous andXt = x(t),
the mixture distribution is a Dirac delta function, fXt(ξ, t) = δ(x(t) − ξ), so Eq. (3.11)
reduces to Eq. (3.10).

3.3 Discussion

For a very broad class of gene transcription models, the Poisson mixture result explicitly
indicates two separate sources of variability in gene expression, and how they combine
in the distribution of Nt. First, variation due to the Poisson processes of transcription
and degradation, that is common to every model of the form shown in the reaction dia-
gram (3.1). Second, variation or uncertainty of a certain combination of the transcription
and degradation rates that we defined, which is model-dependent. In this sense, Eq. (3.11)
extends the concept of separable ‘intrinsic’ and ‘extrinsic’ components of gene expression
noise pioneered by Swain et al. 2002, to the full distribution. In fact, using the laws of
total expectation and total variance (Weiss 2005), we recover the additive property of the
noise η2:

E (Nt) = EXt
[
ENt|Xt(Nt|Xt)

]
= E (Xt) ,

Var(Nt) = E [Var(Nt|Xt)] + Var [E (Nt|Xt)] = E (Xt) + Var(Xt),
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3.3. Discussion

so
η2 = Var(Nt)

E (Nt)2 = 1
E (Nt)

+ Var(Xt)
E (Xt)

= η2
int + η2

ext.

Note that the Poisson mixture result as an extension of the concepts of intrinsic and
extrinsic noise emerged naturally from our initial assumptions, as did the relevant param-
eter combination Xt to describe the extrinsic noise explicitly. We can use the Poisson
mixture result to simplify analysis and explain properties of models in the same way as
intrinsic and extrinsic noise components have (Elowitz et al. 2002; Volfson et al. 2006;
Taniguchi et al. 2010). The problem of solving and analysing master equation models of
gene transcription is reduced to the problem of obtaining and studying only the variation
that is model-dependent, given by the mixing distribution fXt . This ability to discard the
“Poisson part” of the model until we need it confers to us significant simplifications and
advantages compared to working with the full distribution P (n, t), not least because Xt

is a continuous random variable. In Chapter 4 we collect together some tools and meth-
ods available to us for obtaining fXt analytically or numerically, and note how the cost
of stochastic simulations can be significantly reduced with the knowledge of Eq. (3.11).
Similarly, obtaining moments and expressions for the noise become simple corollaries of
the Poisson mixture result, as we will show in Chapter 5. Less obvious advantages become
clear in Part III, where studying fXt instead of P (n, t) gives us a far deeper understanding
of the models and their properties.

Let us begin.
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Chapter 4

On the mixture density fXt

We showed in Chapter 3 that for transcription-degradation models the distribution P (n, t)
for the number of mRNA molecules at time t is given by the mixture density

P (n, t) =
∫
ξn

n! e
−ξ fXt(ξ, t) dξ.

The challenge of obtaining P (n, t) is thus reduced to the task of obtaining the mixing
density fXt , which contains all the model-specific properties of the solution.

We start this chapter by giving some intuition for how sample paths of the stochastic
process X relate to sample paths for N , and how they relate to differential rate equations
used in ordinary differential equation (ODE) models of gene expression. We then collect
together more general results from several fields that can aid us to determine fXt .

4.1 Physical interpretations and intuition

Before we look at methods for obtaining fXt , let us first try to gain some intuition via
some simple examples that:

• For a particular cell with extrinsic parameter {xω(t)}t≥0, xω(t) is a priori the ex-
pected value of ηω(t), the sample path for the mRNA copy number for that cell at
time t;

• the more synchronous or correlated the drives are in the population, the less dispersed
the distribution fXt will be (and hence the less dispersed P (n, t) will be);

• given the mean value E (Nt) = x for a population at time t, the Poisson distribution
with parameter x is the least dispersed possible distribution for P (n, t).

4.1.1 Static cell-to-cell correlations

Let’s consider a gene with sinusoidal transcription rate. This type of behaviour has
been observed for genes linked to circadian or cell cycles (Lück and Westermark 2015;
Bieler et al. 2014), genes responding to cAMP signalling (Corrigan and Chubb 2014), and
externally-driven gene expression (Larson et al. 2013; Olson et al. 2014), for example. As
we did in Chapter 3, we’ll first consider the case where the transcription and degradation
rates are perfectly correlated for all cells, and then see how variability in the rates affects
the extrinsic parameters and the distribution P (n, t).
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Part II, Chapter 4 – On the mixture density fXt

Without extrinsic variation

Let us assume that the transcription rate is perfectly synchronous between all cells in the
population: every cell has transcription rate (Lück et al. 2014)

µ(t) ..= m[cos(θt) + 1]/2,

say. We can then easily calculate the extrinsic parameter x : t 7→ x(t) using its definition
(Eq. (3.5)), which in this hypothetical scenario is deterministic. With λ ≡ 1 we have:

x(t) ..=
∫ t

0
µ(τ)e−(t−τ) dτ.

Since Xt = x(t) ∀ t, the density of Xt is given by

fXt(ξ, t) = δ(ξ − x(t)),

where δ is the Dirac delta function (Fig. 4.1, left column).

Despite knowing the drives precisely, transcription and degradation are still stochastic
processes so each cell i in the population will have a different sample path ηi for the mRNA
copy number. We showed in Section 3.2 that in this special case with synchronous drives,
at all times t, Nt = {ηi(t)} is distributed according to a Poisson distribution with mean
x(t). In other words, if we took a snapshot of the population at time t and recorded the
distribution of the copy numbers, we would find that

P (n, t) = P (n, t|µ, λ) = xn(t)
n! e−x(t).

Exemplary sample paths of N with the resulting distribution P (n, t) = P (n, t|µ, λ) are
shown in Fig. 4.1, left column.

With extrinsic variation

Now suppose we extend the model to account for random cell-to-cell variation by assuming
that the transcription rates within the population are not completely synchronized. We
allow the phase Φ to be a random variable with some probability density that we may
choose, i.e.,

µi(t) = m[cos(θt+ φi) + 1]/2.

If we now pick a cell i at random from the population at time t, we do not know precisely
what the value of its extrinsic parameter xi(t) will be; it is an outcome from a random
variable Xt that has non-zero variance. The density fXt , which we derive in Example 4.2–
1, will depend on the density of Φ. In turn, the distribution of Nt will be given by the
Poisson mixture

P (n, t) =
∫ m

0

ξn

n! e
−ξfXt(ξ, t) dξ,
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Figure 4.1: The effects of synchrony on a toy model with sinusoidal transcription rate,
period T . Derivation of fXt is treated in Example 4.2–1. Left column: Synchronous drive,
all heterogeneity is due to the Poisson processes of transcription and degradation. The
graph for fXt for this synchronous case is a representation of a Dirac delta distribution
with mass at x(t) at time t. The snapshot distributions shown in the graph for P (n, t) are
Poisson with mean x(t). Middle and right columns: The phase is uniformly distributed
on an interval of range T/2 (middle), and T (right). Sample paths of the cellular drive
X (top row), corresponding distribution fXt (second row), sample paths of the number of
mRNA molecules N (third row), and the exact solution P (n, t) (bottom). Throughout we
have taken m = 20.

which will necessarily be wider than a Poisson distribution to account for our uncertainty
in the extrinsic parameter. In Fig. 4.1 we show some sample paths xi(t) and ηi(t) along
with fXt and P (n, t), when Φ is uniformly distributed on intervals of range T/2 and
T , where T is the period. It is clear to see how decreasing the degree of synchrony of
the cellular drives in the population increases the width of fXt and P (n, t). When the
drives are completely asynchronous, i.e. Φ ∼ Unif[−T/2, T/2], the model shows no time
dependence: we have P (n, t) = P (n) ∀ t.

4.1.2 Dynamic cell-to-cell correlations

To give a better idea of how µ, λ, and x are related, let’s consider an example with a discrete
transcription rate where the degree of synchrony (cell-to-cell correlation) fluctuates over
time. Suppose that for each cell i and at all times t we are able to keep track of the
mRNA copy number ηi(t) during the experiment. Assume also for the purposes of this
subsection that we are able to precisely control the transcription rate over time for single
cells, for example using light activation (Larson et al. 2013; Olson et al. 2014). For all
times t when the light is on (resp. off), the transcription rate for all cells under the light
source is µ(t) = m min−1 (resp. µ(t) = 0 min−1), say. At all times, the transcription rate
is λ(t) = 1 min−1 per mRNA molecule.
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Figure 4.2: Sample paths and probability distributions for a model with temporal control
of the transcription rate. (a, b) Immediate response of the transcription rate to the external
control mechanism (light sequence) in all cells. (a) Time series of the light sequence, the
transcription rate µ (blue) and the corresponding extrinsic parameter x (black) that apply
to every cell in the population. Hence fXt(ξ, t) = δ(ξ − x(t)) (representation omitted).
Sample paths for the number of mRNA transcripts N are shown by the coloured lines. (b)
Corresponding distribution P (n, t|µ, λ ≡ 1) over time, with x shown in black as a guide.
A cross-section of the figure at any time ti would show the probability mass function of
a Poisson distribution with mean x(ti). (c, d) Response times to changes in the external
control mechanism (light sequence) are exponentially distributed. (c) Sample paths of the
transcription rate (solid lines) and the corresponding extrinsic parameter (dashed lines).
Sample paths of N have been omitted to maintain clarity. Inset: The density fXti for
times ti indicated by the vertical dotted lines, to give an idea of its dynamic behaviour over
time. (d) Corresponding distribution P (n, t) over time, with sample paths of X shown as
a guide. Cross-sections are now Poisson mixture distributions. Throughout we have taken
m = 20.

Without extrinsic variation

Suppose that we have pre-programmed the light sequence so we have a population with
perfectly synchronous drives µ : t 7→ µ(t) ∈ {0,m} and λ : t 7→ 1 that we know precisely.
As always, each cell i in the population will have a different sample path ηi for the mRNA
copy number. The trajectories ηi : t 7→ ηi(t) “follow” the extrinsic parameter x : t 7→ x(t),
fluctuating around it. As before, the distribution of the ηi is a Poisson distribution with
mean x(t), since the mixing density is fXt(ξ, t) = δ(ξ−x(t)). This will always be the case
for a population with perfectly synchronous drives, but in this example it is particularly
clear to see when looking at sample paths (Fig. 4.2a). Notice also that although the
transcription rate µ is discrete, x is a continuous function of time.

With extrinsic variation

Now suppose that when the light is turned on or off, there is a stochastic delay before
the transcription rate responds; the switch is no longer synchronised. For each cell i, the
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sample path µi is slightly different, particularly in the period immediately following the
change in the light, and it follows that the same will be the case for the sample paths
xi. Now, if we pick a cell i at random from the population at time t, we do not know
precisely what the value of its extrinsic parameter xi(t) will be; it is an outcome from a
random variable Xt that now has non-zero variance. The density fXt will depend on the
density of the response times to the light switching, and will be time-dependent (see the
insets of Fig. 4.2c). In turn, the distribution of Nt will again be given by the Poisson
mixture, which will be more dispersed than a Poisson distribution. However, this time
the dispersion will fluctuate according to the dispersion of fXt (see Fig. 4.2c,d). fXt will
be most dynamic immediately after a change in the light sequence, since that is when the
distribution of the random variable Mt for the transcription rates will be evolving. Given
a long enough waiting time between changes of the light sequence, the sample paths xi
would become almost indistinguishable, with values approaching m when the light is on,
and zero when the light is off. As time increases without a switch in the light sequence,
fXt would tend towards a delta distribution with mass at m or zero, and hence P (n, t)
would tend towards a Poisson distribution with mean m or zero.

4.1.3 Relationship to ODE models of gene transcription

In chemical reaction kinetics it is common to approximate the number of molecules Nt by
a continuous variable, or equivalently, to work in terms of its concentration. Given the
reaction rates, we can then write down the differential rate law: an ordinary differential
equation that describes how the concentration varies in time. Here we will show how the
differential rate laws for gene transcription models of the form (3.1) are related to the
mixing density fXt .

Denote the concentration of mRNA molecules in our cell population at time t by x(t).
Suppose we know that the transcription rate is µ(t) and the degradation rate is λ(t).
Under the assumptions laid out at the beginning of Chapter 3, transcription is a zero
order reaction and degradation is a first order reaction. Hence the differential rate law is

dx

dt
= µ(t)− λ(t)x(t). (4.1)

Importantly, this is precisely the equation we obtain by differentiating our integral defini-
tion of x(t) (Eq. (3.5)).

Following the same reasoning as in Chapter 3 and the previous subsection, we can
extend the use of the differential rate equation further to account for cell-to-cell variability
or uncertainty in the reaction rates, or stochastic rates. Any sample paths t 7→ µω(t) and
t 7→ λω(t) satisfy the differential rate equation (4.1), in turn defining the sample path
t 7→ xω(t). For each t, the collection of all possible values {xω(t) : ω ∈ ΩX } defines our
random variable Xt, and the collection of all such ordinary differential equations can be
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represented formally by the random1 differential equation

dXt

dt
= Mt − LtXt. (4.2)

It is now clear that Xt is described by a linear first-order differential equation, where the
coefficients may be random. Equations of this form describe a large variety of systems in
many sciences, and as such there is a large body of classical results for determining the
probability density function fXt (Kampen 1992; Soong 1973; Pawula 1967; Denisov et al.
2009).

In fact, several recent papers (Raj et al. 2006; Paszek 2007; Smiley and Proulx 2010;
Lück et al. 2014; Liu et al. 2015) have reasoned that in the limit of large transcription
rates, a continuous approximation for Nt is justified and subsequently used Eq. (4.2) to
obtain fXt . However, in reality fXt is often qualitatively different to P (n, t) (Liu et al.
2015). Using the Poisson mixture result, we now know that they only needed to use their
“approximate solution” in the Poisson mixture expression to obtain the exact solution
P (n, t) for their models (see Example 4.1–1).

Example 4.1–1 — Random telegraph model, approximate solution (Raj et
al. 2006)

The random telegraph model has been widely used to model gene expression since it
was proposed by Ko in 1991 (Ko 1991). It is a simple two-state model that explains
two key experimental observations: that gene expression is heterogeneous both across
cells in a population, and over time in single cells, and that transcription occurs only
during short periods of activity. In the ‘active’ or ‘ON’ state, transcription events
occur according to a Poisson process with constant rate µ, and in the ‘inactive’ or
‘OFF’ state, transcription can not occur. Switching between the two states occurs
randomly, with constant rates kon and koff . Degradation of the mRNA molecules
occurs independent of the state. We will often refer to the random telegraph model or
use it in examples because it is widely used in the literature.

Although the exact generating function for the solution of the random telegraph
model had been published in 1995 by Peccoud and Ycart (Peccoud and Ycart 1995),
the expression for P (n) was not widely known until Raj’s seminal paper in 2006 (Raj
et al. 2006). The derivation of the full solution was not provided, but the authors
derived an approximate solution:

“An interesting parameter regime to investigate is that of µ being large
compared to the other rates in the system. In this case, one can then

1We use the term random differential equation rather than stochastic differential equation because the
latter are often associated with white noise, which will not usually be the case for us.
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4.2. Obtaining fXt using the differential equation for Xt

make the approximation that N is a continuous variable, X†. With this
approximation, the dynamics can be described by

dX

dt
= −λX + µr(t)

Here, r(t) ∈ {0, 1} is a random telegraph signal representing the active and
inactive states of the gene.”

They go on to derive the steady-state probability density function for this approxima-
tion, which is a scaled Beta distribution:

P (n) ≈ fX(x) =
(
µ

λ

)1− kon
λ
− koff

λ Γ
(
kon
λ + koff

λ

)
Γ
(
kon
λ

)
Γ
(
koff
λ

) x kon
λ
−1
(
µ

λ
− x

) koff
λ
−1

(4.3)

where kon and koff are the rates of switching on and off, resp.
However, this approximation is precisely the mixture distribution required to write

down the exact solution as a Poisson mixture. Therefore, using the Poisson mixture
result (3.11) the exact solution of the random telegraph model is:

P (n) =
∫ µ/λ

0

ξn

n! e
−ξ fX(ξ) dξ

=
(
µ

λ

)1− kon
λ
− koff

λ Γ
(
kon
λ + koff

λ

)
Γ
(
kon
λ

)
Γ
(
koff
λ

) ∫ µ/λ

0

ξn

n! e
−ξ ξ

kon
λ
−1
(
µ

λ
− ξ

) koff
λ
−1

dξ (4.4)

=
Γ
(
kon
λ + n

)
Γ
(
kon
λ

) Γ
(
kon
λ + koff

λ

)
Γ
(
kon
λ + koff

λ + n
) (µλ)n

n! F1 1

(
kon
λ

+ n,
kon
λ

+ koff
λ

+ n;−µ
λ

)
,

where F1 1 is the confluent hypergeometric function (Abramowitz and Stegun 1964).
The last line is the form of the exact solution that was stated in the supplementary
material of (Raj et al. 2006), but was not derived. It can be deduced from the Poisson
mixture form using a standard integral representation of the confluent hypergeometric
function (Abramowitz and Stegun 1964).
†Notation changed from the original text to be consistent with the notation used in this thesis.

Note that, unlike the approximation to a continuous variable, we do not need to make any
assumptions about the value of any parameters to obtain the exact solution.

4.2 Obtaining fXt using the differential equation for Xt

Obtaining the distribution of a random variable can be difficult if not impossible, and
usually requires one to solve an equation for the density function explicitly. However,
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Part II, Chapter 4 – On the mixture density fXt

since our random variable Xt satisfies the simple, first-order linear differential equation

dXt

dt
+ LtXt = Mt, (4.5)

we can sometimes obtain the density function fXt more directly. Here we give two ex-
amples: first, when the solution Xt of Eq. (4.5) is an invertible function of a random
variable which we know the distribution of, and second, when we do not require (or can
not otherwise obtain) an explicit expression for fXt and need to resort to cost-effective
simulations.

4.2.1 Obtaining fXt via a change of variables
If we solve the formal differential equation for Xt directly and find that it can be written
in the form

Xt = g(Φt),

where Φt is a random variable whose probability density we know, we can calculate fXt
using standard techniques for transformations of random variables. Suppose the transfor-
mation g is “nice enough” that the preimage g−1(x) = {φ : g(φ) = x} is countable for any
x in the range of Xt. We can then obtain the cumulative distribution function FXt or the
probability density function fXt from first principles. When g is injective, φ ..= g−1(x) is
unique and the procedure is fairly straightforward:

FXt(x, t) = Pr(Xt ≤ x)

= P (g(Φt) ≤ x)

= P (Φt ≤ g−1(x))

= FΦt(g−1(x), t)

= FΦt(φ, t),

and

fXt(x, t) = d

dx
FXt(x, t)

= fΦt(g−1(x), t)
∣∣∣∣∣dg−1(x)

dx

∣∣∣∣∣
= fΦt(φ, t)

∣∣∣∣ 1
g′(φ)

∣∣∣∣ .
When g is not injective, the same steps can be taken but extra care is required. The
clearest way to demonstrate is with an example.
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4.2. Obtaining fXt using the differential equation for Xt

Example 4.2–1 — Sinusoidal transcription rate with distributed phase

Consider the toy model discussed at the beginning of this chapter, where the tran-
scription rate in each cell is sinusoidal with a distributed phase Φ:

Mt
..= m[cos(θt+ Φ) + 1]/2,

and constant degradation rate λ ≡ 1.
Solving Eq. (4.5) and ignoring the effects of initial conditions for simplicity, we

obtain

Xt = m

2(1 + θ2)
[
1 + θ2 + cos(θt+ Φ) + θ sin(θt+ Φ)

]
= B +A sin(θt+ Φa),

where A ..= m/2
√

1 + θ2, B ..= m/2 and Φa
..= Φ + arctan(1/θ). Then,

FXt(x, t) ..= P (Xt ≤ x)

= P

(
sin(θt+ Φa) ≤

x−B
A

)
.

Now, the set of intervals{
[φ1, φ2] : ∀ ψ ∈ [φ1, φ2] , sin(θt+ ψ) ≤ x−B

A

}
is countable, so we may proceed. Suppose for example that Φa is uniformly distributed
on the interval [−r, r], with r ≤ π. It is then easy to show that

FXt(x, t) = s(t)
2r arcsin

(
x−B
A

)
+ {terms independent of x},

where s(t) ∈ {0, 1, 2} is the number of solutions of

sinϕ = x−B
A

, ϕ ∈ (θt− r, θt+ r).

Differentiating, we finally obtain

fXt(x, t) = s(t)
2r
√
A2 − (x−B)2

= s(t)
2r

([
m

2(1 + θ2)

]2
−
[
x− m

2

]2
)− 1

2

(see Fig. 4.1, second row). Clearly, as r tends to zero, i.e. the phase difference between
any two cells tends to zero, fXt(x, t) tends to the Dirac delta function centred at
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Part II, Chapter 4 – On the mixture density fXt

B + A sin(θ t). Substituting back into the Poisson mixture solution in this limit we
recover the Poisson solution for the case of a synchronous population, as expected (see
Fig. 4.1, left column):

P (n, t) = x(t)n e−x(t)

n!
= 1
n! [B +A sin(θ t)]n e−[B+A sin(θ t)]

4.2.2 Reduction of simulation costs
An explicit expression for P (n, t) is difficult to obtain for all but a handful of gene transcrip-
tion models. Even with the Poisson mixture result and the tools to obtain fXt analytically
that are presented in the rest of this chapter, one can not always obtain an exact, practical
expression for P (n, t).

Several approximation methods have been proposed to approximate P (n, t) (Kam-
pen 1992; Munsky and Khammash 2006; Thomas et al. 2012), but probably the most
straightforward, popular approach is to use a stochastic simulation algorithm to gener-
ate sample paths of the model in question (Gillespie 1976; Gillespie 1977; Cao et al.
2006). The distribution of the sample paths can then be used as an approximation for
the theoretical probability distribution P (n, t), with the approximation approaching the
theoretical one in the limit of infinite sample paths. Although this approach is simple, can
be applied to complex systems, and does not require any equations to be solved, it can
be extremely computationally expensive and can fail dramatically when time-dependent
rates are used (Voliotis et al. 2015).

However, the Poisson mixture result tells us that we need only obtain fXt , and then
perform the mixture. Simulating sample paths of X instead of N can drastically decrease
simulation costs, as we do not need to consider the stochastic processes of transcription or
degradation explicitly. We are then balancing the costs of simulating {ηω(t) : t ≥ 0} from
{xω(t) : t ≥ 0}, versus performing some numerical integration to obtain P (n, t) from fXt .

Example 4.2–2 — Stochastic simulations for the multistate “Ladder” model

Consider an extension of the random telegraph model where the gene may switch
between three different gene states in a ladder structure, as shown in Fig. 4.3 (Senecal
et al. 2014). The transcription rate is modelled by a continuous-time Markov chain
with state space {0, µ1, µ2}, µ1 < µ2, corresponding to the states {OFF,ON1,ON2},
respectively. The degradation rate λ is a constant and independent of gene state.

An exact solution for this model is not known†, but obtaining an approximation for
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4.3. Kramers-Moyal equation for fXt

fXt via stochastic simulations is extremely quick because X is a piecewise-deterministic
Markov process (Davis 1984). In other words, the behaviour of the sample paths xω is
governed by the random jumps between gene states at countable times ti, but in be-
tween those times the value of xω evolves deterministically according to the ODE (4.1)
(see Fig. 4.3 for an sample path of X ). Assuming that the cells are uncoupled, the
system is ergodic so we can simulate one sample path {xω(t)}t∈[0,T ] and compute a
time average (see Section 5.2), which will tend to the exact solution as T → ∞ if
simulated for example according to the Gillespie algorithm (Gillespie 1977). The sta-
tionary solution P (n) can then be obtained by performing the Poisson mixture with
the approximation for fX , via numerically integration.

Without knowledge of the Poisson mixture result and the differential rate equa-
tion (4.1) for the sample paths of X , we would need to use the Markov chain for the
gene state to simulate a sample path of N . In this case we need to obtain event times
for every transcription and degradation event, as well as the gene state switching times,
so in general the costs will be much higher than the method described above.

Time average

mRNA

mRNA

(a) (b) (c)

Figure 4.3: Approximating fX via stochastic simulations. (a) Three-state Ladder
model of gene transcription. The gene switches between an inactive state (OFF)
and two active states (ON1 and ON2), with transition rates indicated in the figure.
Transcription takes place according to a Poisson process with rate µ1 in ON1 and
µ2 > µ1 in ON2. Degradation of transcripts occurs stochastically with rate λ per
molecule per unit time. (b) Sample path of X , using biologically realistic parameter
values (Senecal et al. 2014). The gene state is indicated by pink (OFF), light green
(ON1), and dark green (ON2) shading. (c) The resulting stationary probability density
fX .

†However, in Chapter 7 we show that fXt satisfies Heun’s equation (Ronveaux 1995).

The cost reduction is particularly noteworthy when we do not have an ergodic2 system,
because millions of simulations are required to obtain enough data for a reliable probability
distribution of Nti at each time point ti.

4.3 Kramers-Moyal equation for fXt

Although X ≡ {Xt}t≥0 satisfies a simple linear equation, when both M ≡ {Mt}t≥0

and L ≡ {Lt}t≥0 are stochastic processes expressions can quickly become intractable.
2See Section 5.2 for a definition of ergodicity and the implications this has for obtaining solutions.
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See Soong 1973 for a readable introduction to the theory and results for these kinds of
differential equation. Fortunately, in terms of the transcription and degradation of mRNA
molecules it has been shown that most of the variability in N comes from the dynamics at
the promoter (Coulon et al. 2010; Suter et al. 2011; Carey et al. 2013; Sánchez and Golding
2013). Indeed, frequently the degradation probability is approximately constant (Raj et al.
2006; Harper et al. 2011; Suter et al. 2011) and in this case fXt can often be determined.

Taking L ≡ λ = constant, the differential equation for Xt (Eq. (4.2)) becomes an
ordinary differential equation with a random inhomogeneous part, which can be considered
as the output of a dynamical system governed by a simple first-order ordinary differential
equation with random drive Mt. Equations of this form have been studied since 1908
when Paul Langevin investigated Brownian motion, and are still of paramount importance
for applications in fields as wide as electrical engineering, neuroscience, civil engineering,
communication theory, economics and finance, and biology (Langevin 1908; Zon et al. 2004;
Fitzhugh 1983; Crandall and Zhu 1983; Rolski et al. 2009). As such, there is a large body
of results relating to ordinary differential equations with a random drive. Importantly,
the following classical results (Kramers 1940; Moyal 1949) provide us with a differential
equation for fXt , and some general properties. We demonstrate a brief derivation of the
differential equation for completeness.

Let fXt be the probability density function of the random variable Xt that satisfies

dXt

dt
+ λXt = Mt, (4.6)

where {Xt}t≥0 and {Mt}t≥0 are continuous-time processes, Xt can take a continuum of
values, and λ is a constant. Denoting the conditional density for Xt+∆t = x given that
Xt = x′ by fXt+∆t|Xt(x, t+ ∆t|x′, t), the Markov property gives us

fXt+∆t(x, t+ ∆t) =
∫ ∞
−∞

fXt+∆t|Xt(x, t+ ∆t | x′, t) fXt(x′, t) dx′. (4.7)

Now consider the conditional characteristic function φ of the random variable ∆Xt
..=

Xt+∆t −Xt given that Xt = x′:

φ(u, t+ ∆t|x′, t) = E
(
eiu∆X

∣∣∣x′, t)
=
∫ ∞
−∞

eiu∆x fXt+∆t|Xt(x, t+ ∆t|x′, t) dx,

where ∆x ..= x − x′. Perform the inverse Fourier transform and expand φ(u, t + ∆t|x′, t)
in a Taylor series around u = 0:

fXt+∆t(x, t+ ∆t|x′, t) = 1
2π

∫ ∞
−∞

e−iu∆x φ(u, t+ ∆t|x′, t) du

=
∞∑
n=0

an(x′, t)
2πn!

∫ ∞
−∞

(iu)n e−iu∆x du
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=
∞∑
n=0

(−1)n
n! an(x′, t) dn

dxn
δ(∆x), (4.8)

where
an(x′, t) ..= 1

in
∂nφ

∂un

∣∣∣∣
u=0

= E
(
[∆Xt]n|x′, t

)
.

Substituting Eq. (4.8) into Eq. (4.7) and performing the integration by parts, we obtain

fXt+∆t(x, t+ ∆t) =
∞∑
n=0

(−1)n
n!

∂n

∂xn
[an(x, t) fXt(x, t)]

= fXt(x, t) +
∞∑
n=1

(−1)n
n!

∂n

∂xn
[an(x, t) fXt(x, t)].

Finally, putting fXt(x, t) on the left hand side, dividing by ∆t and taking the limit ∆t→ 0
gives the Kramers-Moyal equation:

∂fXt(x, t)
∂t

=
∞∑
n=1

(−1)n
n!

∂n

∂xn
[αn(x, t)fXt(x, t)], (4.9)

where
αn(x, t) ..= lim

∆t→0

1
∆tE ([Xt+∆t −Xt]n | Xt = x) , n = 1, 2, . . . (4.10)

We will refer to the αn as the jump moments, although they are sometimes known as the
Kramers-Moyal moments, or derivate moments. Similarly, the Kramers-Moyal equation
is sometimes referred to as the kinetic equation associated with the stochastic process
X † (Soong 1973).

4.3.1 The Fokker-Planck equation can only be an approximation
The Kramers-Moyal equation (4.9) is, a priori, a partial differential equation of infinite
order. However, Pawula (Pawula 1967) showed that in fact it is either of infinite order, or
it is of order at most two:

If αn <∞ ∀ n and if αn = 0 for some even n, then

αn = 0 ∀ n ≥ 3. (4.11)

In the finite case, Eq. (4.9) becomes the well-known Fokker-Planck equation, sometimes
called the Kolmogorov forward equation:

∂fXt
∂t

= − ∂

∂x
(α1fXt) + 1

2
∂2

∂x2 (α2fXt) .

Clearly, when solving a gene transcription model one would rather be in the position
where fXt satisfies the Fokker-Planck equation, instead of the infinite order Kramers-
†Note that the Kramers-Moyal equation (4.9) is (in general) a partial differential equation of infinite

order, in one dimension. It is thus different from the multidimensional Fokker-Planck equation, which is a
second-order partial differential equation in several dimensions.
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Moyal equation. An interesting question, then, is to ask for what kind of process X
can we obtain the full statistical description by solving only the Fokker-Planck equation?
Physically, αn = 0 for n ≥ 3 implies that X can only change by a small amount in a small
time interval: E ([X(t+ ∆t)−X(t)]n) approaches zero faster than ∆t as ∆t→ 0. To our
knowledge, no one has yet been able to fully characterise all stochastic processes X that
satisfy this condition. However, a sufficient constraint is that X be a continuous Markov
process - for a proof see for example (Gillespie 1992b; Risken 1989).

Now, ifM has stationary, independent increments, X is a Markov process. However,
sinceM does not depend on X in our framework, the only example where X is a continuous
Markov process is the Ornstein-Uhlenbeck process, whereM is a white Gaussian process.
This assumption implies that there is a non-zero probability that X will become negative,
and hence it can not be part of a physical model of gene transcription. In other words,
no physical model of gene transcription will enjoy having a stochastic process X whose
statistical properties are fully described by the Fokker-Planck equation. Nevertheless, since
the Ornstein-Uhlenbeck process is the only example where the Fokker-Planck equation
would result in an exact solution, we include it to give an intuition as to how X fits in
with more well-known frameworks from the physics literature.

Example 4.3–1 — When X is a continuous Markov process

Suppose the degradation rate L ≡ λ is a constant, and the transcription rateM is a
constant µ with an added noise term, which is normally distributed. Then Xt satisfies
the Ornstein-Uhlenbeck equation

dXt = λ

(
µ

λ
−Xt

)
+ σdWt,

where σ > 0 is the standard deviation of the noise andWt denotes the Wiener process.
fXt then satisfies the Fokker-Planck equation

∂fXt
∂t

= −λ ∂

∂x

[(
µ

λ
− x

)
fXt

]
+ σ2

2
∂2fXt
∂x2 ,

with solution

fXt(x, t|X0 = x0) =
exp

{
−[x−µ

λ
−e−λt(x0−µλ )]2

σ2(1−e−2λt)/λ

}
√
πσ2(1− e−2λt)/λ

.

Hence
Xt ∼ N

(
µ

λ
+ e−λt

(
x0 −

µ

λ

)
,
σ2

2λ
(
1− e−2λt

))
.
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One might hope that a higher order truncation of the Kramers-Moyal equation would
yield a good approximate solution for fXt . Unfortunately, a naïve truncation is not a
legitimate procedure (Risken 1989; Kampen 1992; Plyukhin 2008) as it can prescribe
negative values for fXt and give a worse approximation than truncation at order two.
A system-size expansion as pioneered by van Kampen (Kampen 1992) can yield better
approximations (Grima et al. 2011).

4.4 Multistate Kramers-Moyal equation

The Kramers-Moyal equation (4.9) in theory provides a means for obtaining fXt . However,
as explained in the previous section this partial differential equation will always be of
infinite order for realistic models of gene transcription. In addition, the steady-state
Kramers-Moyal equations will be degenerate for certain choices of transcription processes,
including the important class of multistate promoter models (Pawula 1967), which we will
define and discuss in Part III. Fortunately, by extending our state space the Kramers-
Moyal equation can be extended to account for multistate models, giving a system of
differential equations.

In this section we present the multistate Kramers-Moyal equations, and apply them to
the random telegraph model to demonstrate how easily the known solution for this model
can be rederived using these results. We defer new results to Part III, where we describe
in detail how these systems of equations can be solved for more complex, as-yet unsolved
examples, and how they can help us deduce which models are solvable.

Consider a multistate model where the promoter transitions between a set of J discrete
states {sj}Jj=1, each with its own transcription rateMj and degradation rate Lj . We need
to consider the expanded state space {Xt, St}, where {St}t≥0 is a discrete random process
that describes the promoter state. Our desired probability density function fXt is then
given by

fXt(x, t) =
∑
j

fXt,St(x, sj , t),

with

∂

∂t
fXt,St(x, sj , t) =

∞∑
n=1

(−1)n
n!

∂n

∂xn
[αn(x, sj , t)fXt,St(x, sj , t)]

+
J∑
k=1

βk(x, sj , t)fXt,St(x, sk, t), (4.12)

where
αn(x, sj , t) = lim

∆t→0

1
∆tE ([Xt+∆t −Xt]n | Xt = x, St = sj) (4.13)

are the jump moments as before, and

βk(x, sj , t) = lim
∆t→0

1
∆t [Pr(St+∆t = sj | Xt = x, St = sk, t)− δjk] , (4.14)
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are the transition rates between states. δjk denotes the Kronecker δ-function (Pawula
1967; Pawula 1970). We will refer to these as the multistate Kramers-Moyal equations. Of
course if we only have one state, there are no transition probabilities and the multistate
Kramers-Moyal equations (4.12) reduce to the standard Kramers-Moyal equations (4.9)
from the previous section.

If the jump moments terminate and {St}t≥0 is Markovian, then so too is the joint
process {Xt, St}t≥0 so Equations (4.12) are of finite order. Any model with constant
transition rates, as is most common in the literature, is of this type. Furthermore, unless
the model uses white noise, α2j = 0 ∀ j = 1, . . . , J so the multistate Kramers-Moyal
equations reduce to:

∂

∂t
fXt,St(x, sj , t) = − ∂

∂x
[α1(x, sj , t)fXt,St(x, sj , t)] +

J∑
k=1

βjk(x, t)fXt,St(x, sk, t)

= − ∂

∂x
[(µj(t)− λjx)fXt,St(x, sj , t)] +

J∑
k=1

βjk(x, t)fXt,St(x, sk, t),

for j = 1, . . . , J .
The most simple, well-known multistate promoter model is the random telegraph

model, which has two promoter states and constant parameters. As mentioned in Ex-
ample 4.1–1, fXt for the random telegraph model was obtained as an approximation to
the full solution in the supplementary material of Raj et al. 2006. They did this by briefly
justifying and solving the multistate Kramers-Moyal equations for this particular model,
seemingly without being aware of Pawula’s more general results. In the following example
we will show how to use the definitions of the jump moments (4.13) to write down these
same equations to solve, but for the most general form of the random telegraph model. For
completeness, we then solve the simultaneous equations by substitution as shown in (Raj
et al. 2006), although a more general method that dispenses of the need for substitution
by hand is presented in Chapter 6.

Example 4.4–1 — Random telegraph model with leaky transcription and
state-dependent degradation rates

Consider a 2-state model where the gene state transitions stochastically between an
active state son and an inactive state soff . Transcription occurs at rate µon in son, and
inefficiently at rate µoff < µon in soff . Although degradation is usually assumed to
occur independently of promoter state, it does not complicate the derivations here if
we allow the degradation rates λon and λoff in states son and soff , resp., to be distinct.
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To simplify notation we will write

fXt(x, t) = fon(x, t) + foff(x, t), where

fon(x, t) ..= fXt,St(x, son, t), and

foff(x, t) ..= fXt,St(x, soff , t).

In order to write down the multistate Kramers-Moyal equations for fon and foff we
need to determine the jump moments αn for n ∈ N, and the transition rates β. The
latter are simply the transition rates given in the model description:

βoff,on = lim
∆t→0

1
∆t [Pr(St+∆t = soff | Xt = x, St = son)− δoff,on]

= koff

βon,on = lim
∆t→0

1
∆t [Pr(St+∆t = son | Xt = x, St = son)− δon,on]

= −koff

and similarly, βon,off = kon and βoff,off = −kon.
To determine the jump moments, first notice that in the derivation of the Kramers-

Moyal equation (4.9) the jump moments αn appear from the Taylor expansion of the
conditional characteristic function, so we can write:

αn(x, t) = 1
in

lim
∆t→0

1
∆t

∂nφ

∂un

∣∣∣∣
u=0

(4.15)

For the multistate Kramers-Moyal equations the notation is slightly different, to ac-
count for the expanded state space: we will need the jump moments αn,on and αn,off .
They will satisfy this same equation above, Eq. (4.15), but the conditional character-
istic function φ will be conditional on the state St as well as on Xt.

To find this conditional characteristic function φ, write Eq. (4.6) in difference form:

lim
∆t→0

Xt+∆t −Xt

∆t = Mt − LtXt,

i.e.
∆Xt = Mt∆t− LtXt∆t+ o(∆t),

where o(∆t) denotes terms that tend to zero faster than ∆t as ∆t → 0. Remember
that in this random telegraph model the transcription rate and the degradation rate
jump between two discrete values: Mt ∈ {µon, µoff} and Lt ∈ {λon, λoff}. Then we
have:

φ(u, t+ ∆t
∣∣Xt = x, St = son) = E

(
eiu∆Xt

∣∣∣Xt = x, St = son
)

= E
(
eiu[Mt∆t−LtXt∆t+o(∆t)]

∣∣∣Xt = x, St = son
)

65



Part II, Chapter 4 – On the mixture density fXt

= eiu[µon∆t−λonx∆t+o(∆t)],

and similarly

φ(u, t+ ∆t
∣∣Xt = x, St = soff) = eiu[µoff∆t−λoffx∆t+o(∆t)].

Using the definition of the jump moment, Eq. (4.15), we find:

α1,on(x, t) = 1
i

lim
∆t→0

1
∆t

∂

∂u

{
eiu[µon∆t−λonx∆t+o(∆t)]

} ∣∣∣
u=0

= µon − λonx, and similarly

α1,off(x, t) = µoff − λoffx;

α2,on(x, t) = 1
i2

lim
∆t→0

1
∆t

∂2

∂u2

{
eiu[µon∆t−λonx∆t+o(∆t)]

} ∣∣∣
u=0

= 0, and similarly

α2,off(x, t) = 0.

Since the second jump moments are zero, we can immediately deduce using Eq. (4.11)
that αn,on = 0 and αn,off = 0 ∀ n ≥ 2. Note that since the expanded state space
{Xt, St}t≥0 is Markovian, finite multistate Kramers-Moyal equations were expected
anyway.

Putting this all together into the multistate Kramers-Moyal equations (4.12), and
setting the time derivatives equal to zero so that we obtain the steady-state solution,
we finally obtain

d

dx
[(µon − λonx)fon] = −kofffon + konfoff

d

dx
[(µoff − λoffx)foff ] = kofffon − konfoff

These simultaneous ordinary differential equations can be solved straightforwardly by
substitution, as shown in more detail in (Raj et al. 2006) for example. The final
solution is then

fXt(x, t) = C(µon − λonx)
koff
λon
−1(λoffx− µoff)

kon
λoff
−1[(µon − µoff)− (λon − λoff)x] ∀ t,

where the constant of integration C can be determined with the integral condition
∫ max{µon/λon, µoff/λoff}

min{µon/λon, µoff/λoff}
fX(x) dx = 1.

When λon = λoff = λ, we obtain the usual solution for the leaky random telegraph
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model (Smiley and Proulx 2010):

fXt(x, t) = λ(µon − λx)
koff
λ
−1(λx− µoff)

kon
λ
−1

(µ1 − µ0)
kon+koff

λ
−1B

(
kon
λ ,

koff
λ

) ,

where B is the beta function.

4.5 Equation for fXt using Fourier transforms

The differential equation (4.2) for {Xt}t≥0 can be thought of as a description of the time
evolution of a dynamical system that interacts with a randomly fluctuating environment.
As such, in the field of statistical physics this equation would be called a Langevin equation
(with a non-Gaussian noise termMt). Obtaining the probability density fXt of the solution
of a Langevin equation is often a primary concern to statistical physicists, so we are able
to draw on some of the results derived in that field to help us determine fXt .

For brevity, here we mention only one fairly recent result derived in Denisov et al.
2008; Denisov et al. 2009, that provides an equation and some exact solutions for fXt
in certain cases. Note that their results apply to a slightly different general setting than
we are constrained to by Eq. (4.5), so the expressions that we include here are only the
specific cases of their original results that apply to our system. Additionally, for their
results to hold we must assume that i) our degradation rate L ≡ λ is constant, and ii) Mt

can be written as the time derivative of the “noise generating process” Ξt, i.e.:

∆Ξt ..= Ξt+∆t − Ξt =
∫ t+∆t

t
Mτ dτ.

Then, the increment ∆Xt
..= Xt+∆t − Xt during a time interval of ∆t, ∆t → 0, can be

written in the form
∆Xt = −λXt∆t+ ∆Ξt.

Write the probability density function of the random variable ∆Ξt as f∆Ξt(ξ,∆t), denote
its Fourier transform by f̂∆Ξt(k, t), and define

φk ..= lim
∆t→0

1
∆t

[
f̂∆Ξt(k, t)− 1

]
,

which is a measure of the strength of the influence of Mt on the system. Denoting also by
f̂Xt(k, t) the Fourier transform of fXt(x, t), we have (Denisov et al. 2009)

f̂Xt(k, t) = exp
(
− 1
λ

∫ k

0

φze−λt − φz
z

dz

)
,
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or equivalently

fXt(x, t) = F−1
{

exp
(
− 1
λ

∫ k

0

φze−λt − φz
z

dz

)}
, (4.16)

where F−1 is the inverse Fourier transform operator.

Example 4.5–1 — Poisson white noise: in the limit of infinitesimally short
burst intervals

Pedraza and Paulsson (Pedraza and Paulsson 2008) assumed that transcriptional
bursts occurred on timescales so short that they could be modelled by discrete jumps
in the sample paths of N (see Figure 4.4). They were able to obtain expressions for
the mean and variance of Nt in the stationary case, but using the Fourier transform
method we can obtain a closed-form expression for P (n, t) for certain waiting time and
burst size distributions.

0

10

20

30

40

Figure 4.4: Sample path of N for a model with Poisson white noise: random burst
times ti occur according to a Poisson process with constant rate β, and the burst sizes
si are drawn from a probability distribution q. Degradation of mRNA transcripts is a
first-order process with constant rate.

Suppose L ≡ λ and transcription only occurs during short “burst” intervals, with
exponentially distributed waiting times between bursts. Suppose further that each
burst at time t increases the expectation of Nt by a random variable S, i.e. S describes
the burst size. In the limit of infinitesimally short burst times, the transcription rate
can be modelled by a Poisson sequence of Dirac delta pulses:

µω(t) =
Bt∑
i=1

si δ(t− ti),

where

Bt ∼ Poi(β) is a Poisson process that counts the bursts up to time t,

ti are the burst times of this Poisson process,
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si are independent outcomes from the random variable S

with probability density q,

δ(·) is the Dirac delta function.

In this case
φk = β(qk − 1),

where qk is the Fourier transform of the probability density of the burst sizes, so
substitution into Eq. (4.16) gives

fXt(x, t) = F−1
{

exp
(
−β
λ

∫ k

0

qze−λt − qz
z

dz

)}
. (4.17)

For certain choices of q we can evaluate Eq. (4.17) to give an explicit solution in terms
of x and t only. For example, choosing the exponential distribution we have (Denisov
et al. 2009)

q(s) = r

2e
−rs, r, s > 0

so qk = r2

r2 + k2

and fXt(x, t) = F−1
{

exp
(
−β
λ

∫ k

0

r2(1− e−2λt)z
(r2 + z2)(r2 + z2e−λt) dz

)}

= F−1


(
r2 + k2e−2λt

r2 + k2

) β
2λ
 .

Letting t→∞ we can invert the Fourier transform to obtain the stationary distribu-
tion:

fX(x) =
√

2
π

r(rx)(β−λ)/2λ

2β/2λΓ
(
β
2λ

) K(β−λ)/2λ(rx),

where K is the modified Bessel function of the second kind (Abramowitz and Stegun
1964).

4.6 Discussion

As noted at the end of Chapter 3, the mixing density fXt is the essence of any transcription-
degradation model of the kind we consider in this thesis. Before moving on to using the
Poisson mixture result to derive solutions and properties of models, this chapter aimed
to give some physical intuition for the extrinsic random variable Xt, and introduce some
methods one may use to obtain its density fXt . It is far from a complete exposition of the
known approaches to derive or approximate fXt , which would have taken us away from
the scope of this thesis.
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Part II, Chapter 4 – On the mixture density fXt

In particular, we could have dwelt far longer on the advantages afforded to us by the
Poisson mixture result when obtaining numerical solutions. We stated in Section 4.2.2
that approximating fXt using a stochastic simulation algorithm can be much quicker than
approximating P (n, t), but a more detailed investigation would exemplify how significant
the savings can be.
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Chapter 5

Averaging in space or time

The previous two chapters were concerned with obtaining the complete statistical descrip-
tion P (n, t) = Pr(Nt = n) of the random process N = {Nt}t≥0. In general, this solution
would give information about cell-to-cell heterogeneity of a population, as well as how that
is expected to change over time. However, in certain circumstances such detailed infor-
mation may not be required or relevant, and simpler characterisations based on averages
are of more interest. This chapter uses what we know about the full distribution P (n, t)
to derive some corollaries in this direction.

In particular, a fundamental question in the study of gene expression concerns the
nature and origins of the heterogeneity due to stochastic processes, or “noise”, that is
observed so ubiquitously in this field. Noise is characterised using different metrics ac-
cording to the type of data or model being analysed, but many of the most simple, intuitive
metrics use combinations of moments. These include the two that are most commonly
used for gene expression data: the coefficient of variation, η, (or the squared coefficient of
variation, η2) (Elowitz et al. 2002; Swain et al. 2002; Paulsson 2005):

η ..= standard deviation
mean , or η2 ..= variance

mean2 ,

and the Fano factor (Thattai and Oudenaarden 2001; Golding et al. 2005; Munsky et al.
2012):

Fano factor ..= variance
mean .

It is clear from the definitions that these metrics are very similar, and one is usually
chosen over the other based only on how easy they are to interpret in the given con-
text. The coefficient of variation is a dimensionless quantity, so it gives a standardised
measure of dispersion. The Fano factor has been popularized more recently by van Oude-
naarden (Thattai and Oudenaarden 2001; Raj and Oudenaarden 2009) specifically for the
kinds of gene transcription models we consider here; under the assumption that there
is no gene regulation, transcription and degradation of mRNA are zero- and first-order
stochastic processes with constant rates µ and λ, say, and the stationary distribution of
N is a Poisson distribution with parameter µ/λ. The Fano factor equals one for a Pois-
son distribution, so it is a useful measure of deviation from the constant-rate model of
unregulated gene expression.

Although it is rarely explicitly stated, Fano factor analysis of gene transcription data
or models so far have used ensemble moments in the definition (see below). However,
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the Fano factor was originally defined to characterise noise in time course data (Fano
1947), using the mean and variance calculated over a time window (temporal moments,
see below). We will refer to the Fano factor calculated using ensemble (resp. temporal)
moments as the ensemble (resp. temporal) Fano factor, and discuss each separately in the
corresponding sections below, as they have very different interpretations and will not give
the same value.

Before we continue, let’s clarify what we mean by ensemble and temporal moments:
under the general framework outlined in Chapter 3, the distribution P (n, t) has two di-
mensions across which we may take an average. First, for each fixed t we can consider the
ensemble moments

E
(
Nk
t

)
..=
∑
n

nk P (n, t).

They correspond to averaging on a snapshot of the population at time t, and will be
time-dependent if the statistical properties of the transcription and/or degradation rates
are. For example, mean expression levels of circadian genes exhibit approximately periodic
behaviour over 24-hour intervals (Bieler et al. 2014; Lück and Westermark 2015). Expres-
sions for the ensemble moments and other corollaries will be discussed in Section 5.1.

Second, with single-cell time course data or ergodic models we can consider the temporal
moments

〈Nk
t 〉 ..= 1

T

∫ T

0
nk P (n, t) dt.

As the name suggests, temporal moments can allow us to compare the average expression
of single cells over a time interval, such as a cell cycle, duration of an experiment, or after
a change at the promoter. In addition, the temporal average can be used to derive an
alternative solution of the master equation for ergodic models which is especially useful
when we have periodic drives. All these concepts will be discussed in more detail in
Section 5.2.

5.1 Ensemble moments

Ensemble moments hold an important place in gene expression analysis. Experimental
methods such as northern blotting, microarrays, qPCR, and RNA-Seq are only capable of
obtaining the concentration or a measure of the total amount of a substance or molecule in
a cell population, equivalent to the mean value of a population snapshot. Even with single
cell data, moments are useful quantitative characterisations of the data that can be used
for comparisons or expression summaries. On the theoretical side, we showed in Chapter 3
that the solution P (n, t) can always be written in Poisson mixture form, but if fXt can not
be determined or the integration is difficult this description might not be fit for purpose.
On the other hand, expressions for the moments are usually easier to obtain and/or work
with, and can be used to approximate the full distribution if necessary (Lasserre 2002;
Bertsimas and Popescu 2005). In addition, conclusions regarding gene expression noise
are usually based on the squared coefficient of variation or ensemble Fano factor (Paulsson
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2004; Ozbudak et al. 2002; Thattai and Oudenaarden 2001).
Our possession of the integral form of the solution (Eq. (3.11)) enables us to determine

the time-dependent moments E(Nk
t ) from {E (Xr

t )}kr=1, and vice versa. We will first
derive these relations, and then use them to deduce properties of the ensemble noise
characteristics.

5.1.1 Derivation of the ensemble moments of Nt

In Section 3.2 we showed that Nt conditioned on Xt = x is a Poisson random variable
with parameter x (Eq. (3.10)):

P (n, t|Xt = x(t)) = x(t)n
n! e−x(t).

Now, the kth conditional moment of a Poisson random variable is

E
(
Nk
t

∣∣∣Xt = x
)

=
k∑
r=1

xr S(k, r),

where

S(k, r) ≡
{
k

r

}
..= 1

r!

r∑
j=1

(−1)r−j
(
r

j

)
jk

are the Stirling numbers of the second kind (Riordan 1937). The law of total expectation
then gives us

E
(
Nk
t

)
=
∫

E
(
Nk
t

∣∣∣Xt = x
)
fXt(x, t) dx

=
k∑
r=1

S(k, r)
∫
xrfXt(x, t) dx

=
k∑
r=1

S(k, r)E (Xr
t ) . (5.1)

In particular,

E (Nt) = E (Xt) , and

E
(
N2
t

)
= E

(
X2
t

)
+ E (Xt)⇒ Var(Nt) = Var(Xt) + E (Xt) .

Conversely, given the moments {E (N r
t )}kr=1 we can use the relationship (5.1) to find

E(Xk
t ): Eq. (5.1) can be written in matrix form



E (Nt)
E
(
N2
t

)
E
(
N3
t

)
...

E
(
Nk
t

)


=



S(1, 1) 0 0 . . . 0
S(2, 1) S(2, 2) 0 . . . 0
S(3, 1) S(3, 2) S(3, 3) . . . 0

...
...

... . . . ...
S(k, 1) S(k, 2) S(k, 3) . . . S(k, k)





E (Xt)
E
(
X2
t

)
E
(
X3
t

)
...

E
(
Xk
t

)


.
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The matrix above is easily invertible (Usmani 1994), but the set of equations can also be
solved simply by forward substitution. For example,

E (Nt) = S(1, 1)E (Xt)

⇒ E (Xt) = E (Nt)
S(1, 1) = E (Nt) ,

E(N2
t ) = S(2, 1)E (Xt) + S(2, 2)E(X2

t ) = S(2, 1)E (Nt) + S(2, 2)E(X2
t )

⇒ E(X2
t ) = E

(
N2
t

)
− S(2, 1)E (Nt)
S(2, 2) = E(N2

t )− E (Nt) ,

etc.

See Fig. 5.1 for an illustration of the ensemble moments of Xt and Nt as they vary in time,
for a model with promoter strengths coupled via a simple Kuramoto model.

Remark: Parameter estimation via the method of moments
The above shows that given the moments {E (N r

t )}kr=1, we can easily obtain {E (Xr
t )}kr=1.

This correspondence makes parameter estimation using the method of moments straight-
forward: suppose we have a model with k unknown parameters, and mRNA count
data for a population at times ti. We can estimate {E(N r

ti)}
k
r=1 using the data, and

thus find the corresponding estimates for {E(Xr
ti)}

k
r=1. These will give us k equations

for the k unknown parameters to be found at each time ti.

5.1.2 Ensemble Fano factor

Recall that the ensemble Fano factor, Fano(Nt), is defined by:

Fano(Nt) ..= Var(Nt)
E (Nt)

.

Since it is calculated on population snapshots, the statistics of the population may change
over time whilst maintaining a constant value of Fano(Nt). For example, by Eq. (3.10)
snapshots of a population with perfectly synchronous transcription and degradation rates
has a Poisson distribution at any given time t, and thus has ensemble Fano factor equal to
one. The Poisson parameter {x(t)}t≥0 may change in time, but the degree of synchrony
remains constant and therefore so does the Fano factor (Figs. 4.1 and 5.1).

In fact, Fano(Nt) can be thought of as a measure of synchrony in a population at time
t. Using Eq. (5.1), the theoretical value for the Fano factor of the population at time t is

Fano(Nt) ..= Var(Nt)
E (Nt)

= E (Xt) + Var(Xt)
E (Xt)

= 1 + Fano(Xt).
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Here we see why the ensemble Fano factor is highly suited to the analysis of transcription-
degradation models and systems, and how it can be used as a measure of synchrony;
all deviation from the Poisson distribution is contained in the Fano factor of the mixing
density fXt . The more correlated or “synchronised” the cellular drives are, the closer the
Fano factor of Nt will be to one. In particular, the Fano factor will be greater than or equal
to one, with equality only when the Fano factor of X is zero, i.e. when the transcription
and degradation rate functions are perfectly synchronous for all cells in the population.

Example 5.1–1 — Kuramoto model

The Kuramoto model is a set of coupled oscillators whose coupling strength can be
tuned and phase coherence measured, which has found numerous applications in bi-
ological, chemical, and some physical systems (Kuramoto 1975; Strogatz 2000). We
will use it to illustrate how the spatial characteristics of a population vary in time and
according to the degree of synchrony of the cellular drives.

Consider a set of 100 coupled oscillators {θi(t)}100
i=1 under the Kuramoto model with

coupling strength K (Kuramoto 1975; Strogatz 2000). The order parameter rt ∈ [0, 1]
measures the phase coherence of the oscillators at time t; the closer rt is to 1 the
greater the degree of synchrony at that point in time.

Assuming transcription rate µi(t) := 8 cos θi(t) + 16 and degradation rate λ ≡
1, we determined xi(t) and simulated ηi(t) over a range of K (Fig. 5.1, rows 1-2).
Using both sets of this in silico data, we calculated the ensemble mean, variance, and
Fano factor for Nt at every time point t (Fig. 5.1, rows 3-6). For K = 0.002, the
oscillators are so weakly coupled the phase coherence rt is close to zero and the system
is effectively stationary. Hence all ensemble statistics are approximately constant over
time, and the Fano factor is large. On the other end of the scale, for K = 0.4 the
oscillators are coupled strongly enough to maintain phase coherence rt extremely close
to one; the drives are almost in perfect synchrony over all times. Notice how this
ensures that the Fano factor remains approximately constant around the value of
one, even though the mean and variance vary in time. K = 0.1 takes the oscillators
between the two extremes, where there is some degree of order but the oscillations
occur on different timescales or with phase differences. Here, the Fano factor shows
some periodic behaviour, indicating that the degree of synchrony of the population
varies over time.

The order parameter rt measures the phase coherence of the oscillators, so if the
ensemble Fano factor is an effective measure of the degree of synchrony in a population
over time, there should be a strong correlation between rt and Fano(Nt). For each value
of K we plot in Fig. 5.1b the time-average of the Fano factor, 〈Fano(Nt)〉, against the
time-average of the order parameter, 〈rt〉. The negative correlation is clear: the greater
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the degree of synchrony, the closer the Fano factor is to 1. Similarly, there is a clear
relationship between the coupling parameter K and Fano(Nt) (Fig. 5.1b inset), that
mirrors the well-known relationship between rt and K (Strogatz 2000).
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Figure 5.1: Spatial statistics and comparison of results from simulations of X vs N
for the Kuramoto model. (a) Using the numerical solution of the Kuramoto model
for 100 oscillators {θi(t)}100

i=1 with coupling strength K = 0.002 (left column), K = 0.1
(middle column), K = 0.4 (right column), the transcription rates for each oscillator
are defined as {µi(t)}100

i=1 = 8 cos θi(t) + 16. The degradation rate is λ ≡ 1. Rows 1-2:
Sample paths of X and N , respectively. Rows 3-5: Mean, variance, and ensemble
Fano factor calculated from the sample paths of N (blue lines), and the corresponding
estimations calculated from the sample paths of X (black dashed lines). Row 6: The
order parameter rt that measures the phase coherence of the oscillators. (b) Scatter
plot of the time-averaged Fano factors against the time-averaged order parameters for
coupling parameter values between K = 0.002 and K = 0.4. (c) P (n, t) at fixed time
t = 100 for a system of 10 000 oscillators, using simulated sample paths for N (blue)
and X (red).

5.1.3 Squared coefficient of variation

The coefficient of variation η, or more usually the squared coefficient of variation η2, is
a popular measure of noise for models of gene expression, particularly those considering
proteins as well as mRNA transcripts.

As a dimensionless quantity η2 is useful for comparisons across species, and in an
influential paper by Swain et al. 2002 it was shown that it can be decomposed into a
sum of its “intrinsic” and “extrinsic” components η2

int and η2
int, from which we can try to

deduce the sources of the noise. They defined intrinsic noise as variation generated by the
“inherent stochasticity of biochemical processes such as transcription and translation”,
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and extrinsic noise as “fluctuations in the amounts or states of other cellular components”.
This additive property is naturally recovered when we use the expressions for the ensemble
moments (Eq. (5.1)) to write down an expression for η2, as we did for the ensemble Fano
factor. We have:

η2 ..= Var(Nt)
E (Nt)2

= E (Xt) + Var(Xt)
E (Xt)2

= 1
E (Xt)

+ η2
X

=.. η2
int + η2

ext.

As could be expected, the intrinsic noise for gene transcription models is simply the squared
coefficient of variation for a Poisson random variable. The extrinsic noise can now be more
precisely defined as the squared coefficient of variation for the random variable Xt.

5.2 Stationarity and ergodicity

The results presented so far have not placed many restrictions on the stochastic processes
for transcription M and degradation L, so in general the distributions fXt and P (n, t)
depended on time. However, many gene transcription models assume (at least implicitly)
that there is no coupling or correlations between cells in the population, and that the
statistics of the stochastic processes M and L do not change over time. In these cases,
the system will be ergodic and/or stationary, so fXt and P (n, t) will tend to equilibrium
distributions fX and P (n) that are independent of time.

In this section we discuss some corollaries of the Poisson mixture result that are related
to these important properties: in Section 5.2.1 we give an alternative expression for P (n)
under the assumption of ergodicity, which is especially useful when considering periodic
drives. In Section 5.2.2 we discuss the temporal Fano factor in the context of stationarity
and use a simple example to illustrate shifts between stationary and non-stationary inter-
vals in time course in silico data. Before proceeding, however, let us recall the definitions
of stationarity and ergodicity, the difference between them, and what they each imply in
the context of gene transcription models.

A stationary process, or a system at stationarity, means that its joint probability
distribution does not change when shifted in time: ∀ k, ∀ τ , and ∀ t1, . . . , tk,

Pr(Nt1 = n1, . . . , Ntk = nk) = Pr(Nt1+τ = n1, . . . , Ntk+τ = nk),

and similarly for the mixing density fXt . Simply speaking, and for our purposes, this
means that the mRNA distribution and mixing density do not depend on time:

P (n, ti) = P (n, tj) ≡ P (n) ∀ n ∈ N, ∀ ti, tj > 0, and
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fXti (x, ti) = fXtj (x, tj) ≡ fX(x) ∀ x > 0, ∀ ti, tj > 0.

Since the probability distribution of a stationary process does not depend on time, the
time derivatives ∂P/∂t, ∂G/∂t, and ∂fXt/∂t that appear in the master equation (3.2), the
corresponding equation for the probability generating function (3.3), and the Kramers-
Moyal equation (4.9), respectively, can be set equal to zero. This greatly simplifies the
process of solving the equations, and usually the solutions themselves are much easier to
work with.

However, it must be remembered that in terms of cell populations, the stationarity
assumption implies that distributions from snapshot population data should look the same
regardless of when they are taken. (Note that the expression for each individual cell can
(and usually does) change in time, but taken as a whole the statistical properties of the
population remain constant). In particular, the mean, variance, autocovariance and other
functions of ensemble moments are not time-dependent. Therefore, there can not be any
synchrony or coupling between cells, andM and L must be stationary.

Ergodicity is stronger than stationarity: for a random process in an ergodic population,
the distribution obtained from observing a single cell for a time T , T →∞, is equivalent
to the distribution obtained from a single-time snapshot of the population of C cells,
C →∞. For example, if we follow a cell with sample path {ηω(t)}t≥0 from the stochastic
process N , for any n ∈ N the proportion of time spent with ηω(t) = n will be equal to
P (n). Since time averages do not depend on time, ergodic systems are also stationary.
However, the converse is not true. Models of ergodic systems must assume that all cells
are indistinguishable from each other in terms of parameter values and behaviour. The
flip-side of this means that ergodic populations can not consist of subpopulations.

Example 5.2–1 — Non-ergodic, stationary systems

Consider a population consisting of two subpopulations of equal size. In the first
subpopulation, the cells transcribe stochastically at constant rate µ and degrade at
constant rate λ. Cells in the second subpopulation do not transcribe this particular
gene, i.e. they never have any mRNA molecules of the type that we are interested
in. Assume each subpopulation is at stationarity, and let N1 and N2 be the random
variables describing the number of mRNA transcripts in a randomly chosen cell from
the first and second subpopulation, respectively. N describes the number of transcripts
in a cell chosen at random from the population as a whole. Then we have:

Pr(N1 = n) =
(µ
λ

)n
e−µ/λ

n! , n ∈ N
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5.2. Stationarity and ergodicity

Pr(N2 = n) =

1 if n = 0,

0 otherwise.

so P (n) = Pr(N = n) = 1
2Pr(N1 = n) + 1

2Pr(N2 = n)

=


1
2e
−µ/λ + 1

2 if n = 0,
1
2

(µλ)ne−µ/λ
n! otherwise.

This distribution is clearly stationary, but it is not ergodic: there are cells in the pop-
ulation (in fact, all of them) whose averaged behaviour over time would not reproduce
the distribution of N shown above. On the other hand, each subpopulation taken by
itself is ergodic.

Extending the idea of subpopulations, we can easily concoct a toy example that
reproduces the stationary distribution of the standard random telegraph model, but is
not ergodic. Suppose we have a population where each cell i has constant transcription
rate mi drawn from a random variable M that takes values on the interval [0, µ], and
all cells have degradation rate λ. Then X = M/λ. Suppose the transcription rates
are distributed such that X has the same scaled Beta distribution that we saw for the
mixing density for the random telegraph model in Chapter 4 (Eq. (4.3)):

fX(ξ) =
(
µ

λ

)1− kon
λ
− koff

λ Γ
(
kon
λ + koff

λ

)
Γ
(
kon
λ

)
Γ
(
koff
λ

) ξ kon
λ
−1
(
µ

λ
− ξ

) koff
λ
−1
, where ξ ∈

(
0, µ
λ

)
.

Then the distribution for the number of mRNA transcripts is the same as for the
random telegraph model:

P (n) =
∫ µ/λ

0

ξn

n! e
−ξ fX(ξ) dξ

=
Γ
(
kon
λ + n

)
Γ
(
kon
λ

) Γ
(
kon
λ + koff

λ

)
Γ
(
kon
λ + koff

λ + n
) (µλ)n

n! F1 1

(
kon
λ

+ n,
kon
λ

+ koff
λ

+ n;−µ
δ

)
.

Again, this system is stationary but not ergodic: each cell i has its own constant
transcription rate mi, so over time its averaged behaviour would tend to a Poisson
distribution with parameter mi/λ.

The second example above highlights the fact that a distribution is not sufficient in
itself to describe a population.

Many of the models that are currently used assume ergodicity and the stationary
solution is used (Iyer-Biswas et al. 2009; Shahrezaei and Swain 2008). In particular,
multistate models where the gene state is governed by a Markov chain, and the state-
dependent transcription and degradation rates are constant, all have a stationary solution.
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Part II, Chapter 5 – Averaging in space or time

This sometimes causes confusion as to the meaning of “time-dependent solutions” in these
systems. This time dependence is due only to choosing an initial distribution away from the
stationary, equilibrium distribution. The time-dependent solution P (n, t) thus describes
the relaxation to the usual stationary solution. When enough time has passed for the initial
condition to be negligible, the system can be considered to be ergodic and the stationary
solution can be used. The transient part of the solution is usually only of interest if one
is investigating the response of a whole population to a stimulus or step-change in the
environment, for example. Timescales for the duration of this transience are derived in
Chapter 8. The example below, from Iyer-Biswas et al. 2009 illustrates this scenario.

Example 5.2–2 — Exponential relaxation to stationarity: random telegraph
model (Iyer-Biswas et al. 2009)

In their 2009 paper, Iyer-Biswas et al. 2009 considered the random telegraph model
assuming that the system started out of equilibrium: that all cells start in the inactive
state with zero mRNA transcripts. Not stated, but implicit in the random telegraph
model because of the stochastic switching of the promoter states, is that the cells
are uncoupled and so behaviour of each cell is uncorrelated with any of the others.
In other words, if the system started at equilibrium it would be ergodic. Here, the
authors assume that the system starts with the initial distribution P (n, 0) = δn,0, so
we expect it to relax towards the usual stationary solution (4.4).

Denoting here the transcription rate by µ, the degradation rate by λ, and the
transition rates between the active and inactive states by kon and koff , they derived
the probability generating function G(z, t) for the solution P (n, t):

G(z, t) = Fs(t) F1 1 (kon, kon + koff ;−µ(1− z))

+ Fns(t) F1 1 (1− koff , 2− kon − koff ;−µ(1− z)) , where

Fs(t) ..= F1 1

(
−kon, 1− kon − koff ;µe−t(1− z)

)
, and

Fns(t) ..= konµ e
−(kon+koff)t(1− z)

(kon + koff)(1− kon − koff) F1 1

(
koff , 1 + kon + koff ;µe−t(1− z)

)
,

where F1 1 is the confluent hypergeometric function (Abramowitz and Stegun 1964).
From here, one needs to obtain P (n, t) by writing G explicitly in polynomial form, or
using the identity

P (n, t) = 1
n!
∂G

∂z

∣∣∣
z=0

.

A visualisation of the solution P (n, t) is shown in Fig. 5.2, but the expression for P (n, t)
itself is extremely unwieldy and is omitted here. It is clear from the time dependence in
G, that unless one is specifically interested in the relaxation to the stationary solution
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5.2. Stationarity and ergodicity

(in this case, timescales up to about four times the lifetime of an mRNA), one should
assume that the system starts at stationarity.

t

µ
(t
)

t

η
(t
) t

n
=
30n

=
20n

=
10n

=
0

0
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Figure 5.2: Time dependence of the random telegraph model describes only exponen-
tial convergence to the stationary distribution. (a) Sample paths of the transcription
rateM, (b) sample paths of the number of mRNA moleculesN , and (c) the probability
distribution P (n, t) for the random telegraph model with initial condition P (0, 0) = 1
and all cells initialised in the inactive state (Iyer-Biswas et al. 2009). The distribution
at t = 0 is omitted for scaling purposes.

5.2.1 Alternative solution for ergodic systems
Consider a model of an ergodic cell population: the transcription and degradation rates
of each cell are sample paths from the same stationary stochastic processes M and L,
respectively, and the population itself starts at stationarity. Choose a cell at random,
and denote its sample paths from M and L by {µω(t)}t≥0 and {λω(t)}t≥0, respectively.
As shown in Chapter 3, given these transcription and degradation rates the probability
distribution for the number of mRNA transcripts N for this particular cell will be given
by

Pω(n, t) ..= P (n, t|µω, λω) = xω(t)n
n! e−xω(t), where

xω(t) ..=
∫ t

0
µω(τ)e−

∫ t
τ
λω(τ ′) dτ ′ dτ.

Since we have assumed ergodicity, the time average of this sequence {Pω(n, t)}t≥0 is equal
to the ensemble average P (n) for the whole population, at any time t:

P (n) = lim
T→∞

1
T

∫ T

0

xω(t)n
n! e−xω(t) dt. (5.2)

This expression for P (n) suffers from the fact that for an exact solution in practice, it
requires the sample path xω to be known ∀ t ≥ 0. Nonetheless, it can be used to our
advantage when sample paths are periodic, because then the integral only needs to be
over a single time period, T say:

P (n) = 1
T

∫ T

0

xω(t)n
n! e−xω(t) dt. (5.3)
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The following example shows how we can use this simple solution to investigate how the
choice between stochastic and periodic drives affects population distributions, for example
when modelling cell cycles or oscillatory signalling. Such questions have been studied in
the context of fluctuating environments, using stochastic simulations and expressions for
ensemble moments (Thattai and Oudenaarden 2004; Hilfinger and Paulsson 2011).

Example 5.2–3 — Ergodic systems: stochastic vs deterministic drives

Oscillatory expression in single cells has been observed in several systems that could
be modelled as being ergodic, due for example to dynamics linked with cell cycles or
negative feedback loops. The oscillations are usually noisy and not precisely regular,
but since our observations are mRNA or protein counts rather than the transcription
or degradation rates themselves, it is natural to wonder whether the oscillations were
caused by deterministic periodic drives (at least approximately), or stochastic drives.
Additionally, deterministic periodic drives are easier to work with mathematically
than stochastic drives, so we may wonder how much the output of our models might
be affected if we approximated stochastic drives with deterministic ones.

As an example, consider three directly comparable gene expression models over
different timescales T . The transcription rate for each model has sample paths {t 7→
µω(t) : ω ∈ ΩM} that oscillate between the values 0 and 20 with period (or expected
period) T , with either

1. sinusoidal form,

2. square wave form, or

3. random telegraph form, the stochastic analogue of the square wave.

For simplicity we take the degradation rate to be λ ≡ 1 throughout.

Sinusoidal model
Sample paths for the transcription rate of the sinusoidal model are given by

µsin,ω(t) ..= 10
[
1 + cos

(2π
T

(t+ ω)
)]

,

where necessarily for ergodicity the ω are drawn from the random variable Ωsin which
has a uniform distribution on the interval [0, T ). Since we have an ergodic model we
can pick any sample path to use in Eq. (5.3), so without loss of generality take the
sample path {µsin,0(t)}t≥0. To obtain the corresponding sample path {xsin,0(t)}t≥0,
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5.2. Stationarity and ergodicity

solve the differential rate equation

dxsin,0
dt

+ xsin,0 = µsin,0 = 10
[
1 + cos

(2πt
T

)]
to obtain

xsin,0(t) = 10
[
1 +A cos

(2πt
T
− α

)]
,

where A ..= T/
√
T 2 + 4π2, α ..= arctan 20, and the initial condition xsin,0(0) = 10[1 +

A cos(−α)] has been chosen to ensure periodicity of the solution. Then using Eq. (5.3),
we can immediately write down the exact solution Psin(n) for the sinusoidal model in
integral form as

Psin(n) = 10n
n!T

∫ T

0

[
1 +A cos

(2πt
T
− α

)]n
e−10[1+A cos( 2πt

T
−α)] dt.

Squarewave model
Transcription rates for the square wave model are simply step functions that switch
between the values 0 and 20 every T/2 time units. Without loss of generality we can
take the sample path µsqw,0 that starts with value 20 at t = 0, so we have to solve:

dxsqw,0
dt

+ xsqw,0 =

20, if t ∈
[
kT,

(
k + 1

2

)
T
)
, k ∈ N,

0 otherwise.

We obtain:

xsqw,0(t) =


x

(on)
sqw,0(t) ..= 20 + [xsqw,0(kT )− 20] e−t, for t ∈

[
kT,

(
k + 1

2)T
) )
, k ∈ N,

x
(off)
sqw,0(t) ..= xsqw,0

(
(k + 1

2)T
)
e−t, for t ∈

[ (
k + 1

2

)
T, (k + 1)T

)
, k ∈ N,

and to ensure ergodicity we need to determine the values of xsqw,0 at the switch times
kT and (k + 1/2)T , k ∈ N so that

xsqw,0(kT ) = xsqw,0(lT ), and

xsqw,0

((
k + 1

2

)
T

)
= xsqw,0

((
l + 1

2

)
T

)
∀ k, l ∈ N.

Finding the values of xsqw,0 at the switching times given any initial condition, our
desired values are those in the limit of k →∞:

xsqw,0(kT ) = 20e−T/2
1 + e−T/2

, and

xsqw,0

((
k + 1

2

)
T

)
= 20

1 + e−T/2
∀ k ∈ N.
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Finally,

Psqw(n) = 1
n!T

[∫ T/2

0

(
x

(on)
sqw,0(t)

)n
e−x

(on)
sqw,0(t) dt+

∫ T/2

0

(
x

(off)
sqw,0(t)

)n
e−x

(off)
sqw,0(t) dt

]
.

Random telegraph model
Denote the solution of the random telegraph model by P rt(n, t). Analytical expressions
for it are already known (Eq. (4.4)) and (Raj and Oudenaarden 2008): setting µ = 20,
λ = 1, and kon = koff = 1/T , we have:

P rt(n, t) = 201− 2
T

Γ
(

2
T

)
Γ
(

1
T

)2

∫ 20

0

ξn

n! e
−ξ ξ

1
T
−1 (20− ξ)

1
T
−1 dξ

=
Γ
(

1
T + n

)
Γ
(

1
T

) Γ
(

2
T

)
Γ
(

2
T + n

) 20n
n! F1 1

( 1
T

+ n,
2
T

+ n;−20
)

It is easy to see that similarities between the three models vary considerably ac-
cording to the timescale of the period T . At all timescales the distribution of the
random telegraph model has greater weight at n low and n high, caused by the wait-
ing times in either state that are longer than T/2. The longer waiting times allow more
time for the sample paths of N to reach the equilibrium states at n = 0 and n = 20,
although this effect is less pronounced when state switching is fast (T = 1/5) because
the longer waiting times are not significant relative to the timescales of transcription
and degradation. Indeed, the variable waiting times of the random telegraph model
have a greater effect on the distribution than the wave forms do (i.e. discrete jumps
or continuous sinusoids), until T is large: for all timescales shown in Fig. 5.3 apart
from T = 50, the distribution of the square wave is more similar to the distribution of
the sinusoidal model than its own stochastic analogue, the random telegraph model.
When T = 50, the state switches for the square wave and random telegraph models
are so slow that sample paths of N are able to reach equilibrium in both the active
and inactive states, and the transient periods of convergence to either state are negligi-
ble. Hence the differences between the square wave and random telegraph models are
negligible and far different to the solution of the sinusoidal model, where the expected
number of mRNA transcripts in each cell is more dynamic.
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Figure 5.3: Comparison of models with periodic or stochastic transcription rate over
a range of timescales. Stationary probability mass functions P (n) for models with
transcription rate alternating between the values 0 and 20 via i) a sinusoidal wave
with period T (yellow), ii) a square wave with period T (red), or iii) a random tele-
graph process with expected waiting time T/2 in each state (blue). Insets: Example
sinusoidal wave with the period indicated to illustrate the timescales for each figure
relative to each other.

Furthermore, Eq. (5.2) provides another straightforward way to reduce costs when
approximating P (n) numerically for an ergodic system using a stochastic simulation algo-
rithm. For models where an exact analytical solution is not known, a common approach
is to simulate sample paths of the trancription and degradation rates, {µ(t)}t∈[0,T ] and
{λ(t)}t∈[0,T ], and use these to simulate the sample path of N , {η(t)}t∈[0,T ]. The solution
of the model P (n) is then approximated by the proportion of time spent with η(t) = n,
i.e.

P (n) ≈ 1
T

∫ T

0
1n(η(t)) dt,

where 1n is the indicator function.
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However, simulating {η(t)}t∈[0,T ] can be computationally expensive, so Eq. (5.2) can
reduce these costs by removing the need to simulate a sample path for N whatsoever. We
only require a sample path {x(t)}t∈[0,T ], which may even be deterministic or piecewise-
deterministic, for example the Ladder model illustrated in Example 4.2–2.

5.2.2 Temporal Fano factor

The temporal Fano factor is calculated using the variance and mean of a single timeseries
in some time window W . This is in fact the original definition of the Fano factor, used
in signal processing to estimate statistical fluctuations of a count variable in a time win-
dow (Fano 1947). However, the random variable Nt in transcription-degradation models
decreases with degradation events, and hence is not a count variable. We therefore can not
use the temporal Fano factor to analyse gene expression data in the same way as it was
originally intended. Nevertheless, knowing the Poisson result from Chapter 3 (Eq. (3.10)),
we can use the temporal Fano factor to infer windows of stationarity and timescales when
analysing single-cell time course data.

Consider a stochastic simulation {η(t)}t≥0 of a cell under the leaky random telegraph
model, where the transcription rate in the inactive and active promoter states are µ0

and µ1, respectively, and the degradation rate is λ. Given sufficient time before a state
transition, there will be a time window W where {η(t)}t∈W can be considered to be at
stationarity: its behaviour averaged over W will be described by a Poisson distribution
with parameter µ0/λ (resp. µ1/λ) in the inactive (resp. active) state. Therefore, the
temporal Fano factor for W should be approximately equal to one. After each promoter
state transition there is a transient period W ′ during which the statistics of {η(t)}t∈W ′
are time-dependent. Over W ′ the averaged behaviour will therefore not be described by
a Poisson distribution, and the temporal Fano factor will be greater than one.

Fig. 5.4a illustrates this dynamical behaviour of the temporal Fano factor using a fixed
window length. The moving windows are indicated by the horizontal bars, and are akin
to a moving average. Notice that the right-hand edge of the moving windows (indicated
by the purple solid line) are a good predictor of the switching times of the gene state, as
the change in the distribution causes the Fano factor to increase sharply.

We can also calculate the temporal Fano factor over growing windows, to estimate the
time taken for the sample path to describe a stationary regime immediately following a
switch in the gene state. We will refer to this function as the cumulative Fano factor. To
be more specific, for a start time t0 that we choose, the cumulative Fano factor at time T
for the sample path ηω is its temporal Fano factor calculated over the time interval [t0, T ].
Fig. 5.4b zooms in on the first part of the sample path ηω(t) shown in Fig. 5.4a, and shows
four instances of the cumulative Fano factor, starting at each of the first four gene switching
event times. For example, the height of the blue line at time T indicates the temporal
Fano factor for {ηω(t)}t∈[0,T ], since the first switch event takes place at t = 0. Notice that
the cumulative Fano factor increases initially as ηω adjusts to the regime change after the
switch, before returning towards the value of one as ηω increasingly behaves like a sample

86



5.3. Discussion

path from a stationary process. The rate at which it does this gives an indication as to the
timescales involved in transitioning between the ‘active’ and the ‘inactive’ regime. The
cumulative Fano factor increases again at each gene switch, thus it can also be used to
estimate the switching event time where the next cumulative Fano factor function should
start.

Figure 5.4: Temporal Fano factor over time for a single sample path ηω : t → ηω(t) of
the leaky random telegraph model. Time periods when the gene is in the active state are
indicated by background shading. (a) The height of each horizontal bar corresponds to
the temporal Fano factor of {η(t)}t∈W , with the time window W indicated by the length
and position of the bar along the time axis. When W falls upon a section of the sample
path that is at stationarity, the Fano factor is at or close to the value 1 (indicated by
the black dotted line). (b) The Fano factor calculated over growing windows (cumulative
Fano factor), starting from each of the first four gene switch event times shown in (a). A
cumulative Fano factor starting at time t0 has value approximately one at time t when
the sample path describes a stationary process over the domain [t0, t].

5.3 Discussion

This chapter presented some immediate corollaries of the Poisson mixture result based
on ensemble and temporal moments. The ability to decouple the Poisson variation from
the model-specific variation mentioned at the end of Chapter 3 manifests itself cleanly
for the ensemble moments of Nt, which can easily be written in terms of moments of Xt.
It is well-known in the field that (ensemble) gene expression noise can be decomposed
into “intrinsic” and “extrinsic” components, although there is sometimes confusion as
to the precise definition of each; often, a list of possible sources of each type of noise
is given, as opposed to a precise mathematical definition (Swain et al. 2002; Wikipedia
2014). Using our expressions for the ensemble moments, the Fano factor and squared
coefficient of variation were shown to break down naturally into the sum of a “Poisson”
component common to all transcription-degradation models, and a component from the
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mixing density fXt that is model-specific. Each of these noise components corresponds
to the “intrinsic” and “extrinsic” noise discussed in the influential paper by Swain et al.
2002, clarifying precisely what they represent in the context of gene transcription models.

The use of temporal averages to analyse gene transcription models is relatively rare,
apart from data analyses using autocorrelation. We have not discussed autocorrelation
here, as its properties are well-defined and we would not be able to contribute any more
here. Alternatively, we capitalised on the insights given by the Poisson mixture result to
give a few novel examples using temporal averages. In particular, we are not aware of
any investigations into the potential uses of the temporal Fano factor for the analysis of
time-lapse gene transcription data beyond our short discussion in Section 5.2.2.
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Multistate models
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Introduction

In the early 1990s, Ko et al. observed bimodal and long-tailed gene expression in single
cells (Ko et al. 1990). Ko attributed this heterogeneity to “the randomness correspond-
ing to the random timing of molecular collisions and dissociations between transcription
factors and a gene copy, since at any instant each copy is thought to be either ‘switched
on’ by having a transcription complex bound to it, or ‘switched off’ by not having a tran-
scription complex bound” (Ko 1991). In doing so, he sparked a paradigm shift from using
deterministic models of gene expression, to models based on stochastic changes in the
promoter architecture, especially for eukaryotes. As a general framework, multistate pro-
moter models are biologically interpretable and flexible enough to model most hypotheses
for transcriptional regulation. As such they are now almost ubiquitous, and are regularly
used to model the effects of nucleosome occupancy and chromatin remodelling (Kim and
E. K. O’Shea 2008; Tirosh and Barkai 2008), TATA box strength (Raser and E. J. O’Shea
2004; Hornung et al. 2012), the binding of transcription factors, and the number of their
sites (Raj et al. 2006; Suter et al. 2011; Senecal et al. 2014), for example.

In this part we focus on stochastic models under this “multistate” framework. We use
the term multistate model to refer to the class of models where the temporal behaviour
of the transcription and/or degradation rates in single cells is governed by a continuous-
time random walk between a finite number of discrete states. We refer to the subset of
multistate models with a Markovian random walk by Markov chain multistate models. In
order to avoid confusion with the term “state of the system”, which is sometimes used to
refer to the number of mRNA transcripts in a cell, we will refer to the discrete states here
as promoter states or gene states. Each promoter state has a transcription and degradation
rate associated with it, which we will take to be constants unless otherwise stated, as is
usual in the literature. Thus sample paths of the stochastic processesM and L are step
functions, with waiting times in each state drawn from a probability function specified
by the model. As is usual for multistate models, switching events are assumed to occur
independently of other cells and at random times, and therefore the models considered
in this part describe ergodic systems and possess a stationary solution. As explained in
Sections 3.2 and 5.2, we are not interested in the convergence to the stationary distribution
from an initial condition, so we will be deriving and analysing stationary solutions P (n)
in this part.

In Chapter 6, we solve the multistate model with a cyclic promoter structure in two
different ways, each of which conferring different insights into the behaviour and properties
of the solution. One of these insights leads us to discuss in Chapter 7 how the multistate
Kramers-Moyal equations for multistate models governed by a continuous-time Markov
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chain (i.e., waiting times in each gene state are exponentially distributed), can help us
deduce some models which are solvable, and the form that their solutions will take. We
also obtain solutions for non-Markovian gene-state switching by drawing upon classical
results in the electrical engineering and information theory literature, as well as relatively
recent results from investigations into Dubins-Freedman processes. Finally, in Chapter 8
we introduce a quantitative characterisation of timescales for gene switching in order to
delineate between “fast” and “slow” switching behaviour and classify parameter regimes.
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Chapter 6

Cyclic models

Gene transcription often occurs in discrete burst periods, which are punctuated by intervals
of inactivity. Quantitative data analysis for such transcription kinetics commonly uses the
random telegraph model, a two-state (ON-OFF) model of gene transcription, for which
the exact solution is known (Raj et al. 2006). However, this model implies that the waiting
times in both the ON and OFF states should be exponentially distributed, whereas recent
time-lapse recordings show that the silent intervals often show a refractory period (Suter
et al. 2011; Harper et al. 2011; Kandhavelu et al. 2012). A model with several inactive
states in sequence is sufficient to capture the dynamical behaviour that has been observed,
so could provide a more realistic basis for data analysis (Suter et al. 2011; Zoller et al.
2015; Rybakova et al. 2015). We will refer to this model with one active promoter state
and M inactive promoter states as the M -cycle (see Fig. 6.1).

In this chapter we will derive the exact stationary solution for the M -cycle via two
different routes. First, we obtain P (n) concisely in terms of standard functions and explic-
itly in terms of the parameters of the model, via the probability generating function. We
will use it to infer noise characteristics of the model, and perform preliminary maximum
likelihood estimation (MLE) and model selection using the Akaike Information Criterion
(AIC) on in silico generated data. Second, we derive the solution of the M -cycle using
the Poisson mixture result derived in Chapter 3 (Eq. (3.11)), by solving the appropriate
multistate Kramers-Moyal equations (4.9) to obtain fX . We use the solution to help us
navigate parameter space when searching for different qualitative behaviours for P (n).

6.1 Theoretical framework for the M-cycle model

As described briefly above, we extend the random telegraph (two-state) model to account
for refractory periods in gene reactivation by adding several inactive promoter states that
are visited in sequence. We will refer to the cyclic model with an active promoter state
and M inactive states as the M -cycle:

Suppose we have a population of identical, uncoupled cells. In each cell, the promoter
must cycle throughM inactive (OFF) states s1, . . . , sM in sequence before returning to the
active (ON) state son, where the gene is transcribed according to a Poisson process with
rate µ. Regardless of promoter state, degradation of mRNAmolecules occurs stochastically
at rate λ per molecule per unit time. Stochastic transitions away from promoter state si
occur at rate ki (see Fig. 6.1).

Maintaining the same notation as in Part II, the random variables that describe the

93



Part III, Chapter 6 – Cyclic models

A
c
ti
v
e

In
a
c
ti
v
e

mRNA

Figure 6.1: M -cycle model of gene transcription. The gene state cycles sequentially
between the single active (ON) state and the M inactive (OFF) states, with transition
rates kon and ki, i = 1, . . . ,M . When the gene is in the active state, transcription takes
place as a Poisson process with constant rate µ, and mRNA molecules degrade as a first-
order reaction with constant rate λ.

mRNA copy number and promoter state at time t will be denoted by Nt and St, respec-
tively. We will consider the expanded state space {Nt, St}, and write down the master
equation in terms of the joint probability mass functions

Pi(n, t) ..= Pr(Nt = n, St = si) and Pon(n, t) ..= Pr(Nt = n, St = son).

Our desired marginal distribution for the mRNA copy number, P (n, t), will then be given
by

P (n, t) = Pon(n, t) +
M∑
i=1

Pi(n, t).

To simplify notation before we continue, any indices should be considered modulo M + 1,
with M + 1 ≡ 0 ≡ on. For example, PM+1 ≡ P0 ≡ Pon. Then, the master equations for
the joint probability mass functions are:

dPi(n, t)
dt

= λ[(n+ 1)Pi(n+ 1, t)− nPi(n, t)] + ki−1Pi−1(n, t)− kiPi(n, t), (6.1a)

for i = 1, . . . ,M ,
dPon(n, t)

dt
= λ[(n+ 1)Pon(n+ 1, t)− nPon(n, t)] + µ[Pon(n− 1, t)− Pon(n, t)]

+kMPM (n, t)− konPon(n, t). (6.1b)

Notice that the stochastic processes describing the promoter state, transcription, and
degradation are all stationary, and recall that the cells are assumed to be uncoupled and
described by the same model and parameter values. Hence, any time dependence in the
solution P (n, t) would only describe the system’s convergence from an initial condition
towards the stationary solution P (n) (see Section 5.2). Most snapshot data are assumed
to be of a population at stationarity, and the expressions for P (n, t) can make analysis
extremely unwieldy, so for simplicity we will assume in the following that the system is
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already at stationarity and will omit the variable t.

6.2 Solution for P (n) via the probability generating function

In this section we will follow the usual route for solving a system of master equations
of the form (6.1), by transforming them into a system of ordinary differential equations
for the corresponding probability generating functions. A solution for this model has
been published using this method, but the derivation is opaque in parts and the final
expression is not given explicitly in terms of the parameters of the using a relevant adjugate
matrix to show that P (n) can be expressed concisely in terms of gamma functions and
hypergeometric functions. The relevant parameter set is the model parameters themselves,
and the eigenvalues of the transition matrix for the promoter cycle. As a result, properties
of the solution, including expressions for the moments and noise, are transparent.

We will use this expression for P (n) to show how the noise characteristics can be
tuned with the timescales at the promoter, and perform maximum likelihood estimation
(MLE) and model selection using the Akaike Information Criterion (AIC) on in silico
generated data. In doing so, we exemplify how the assumption of the minimal two-state
(random telegraph) model can lead to gross mis-estimation of the underlying parameters,
and demonstrate that for many parameter regimes snapshot population data cannot be
used to infer the underlying timescales. This quantitative data analysis is only possible
due to our possession of the algebraic expression for P (n) that we derive in the next
subsection.

6.2.1 Derivation of the solution

Define for each state si, i = 1, . . . ,M, on, the stationary probability generating functions

Gi(z) ..=
∞∑
n=0

znPi(n), Gon(z) ..=
∞∑
n=0

znPon(n),

and

G(z) ..=
∞∑
n=0

znP (n) = Gon(z) +
M∑
i=1

Gi(z).

Transform the master equations (6.1) in the usual manner, by multiplying through by zn

and summing over n ∈ N to obtain, at stationarity:

λ(z − 1)dGi
dz

= ki−1Gi−1(z, t)− kiGi(z, t), i = 1, . . . ,M, (6.2a)

λ(z − 1)dGon
dz

= kMGM (z, t)− konGon(z) + µ(z − 1)Gon(z). (6.2b)

Without loss of generality let λ = 1, and to simplify notation, make the change of variable

s ..= µ(z − 1); Hi(s) ..= Gi(z), i = 1, . . . ,M, on,
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and write Eqs (6.2) in the form

s dds + k1 −kon

−k1 s dds + k2

−k2
. . .
. . . s dds + kM

−kM s dds + kon





H1

H2
...

HM

Hon


=



0
0

. . .
0

s





H1

H2
...

HM

Hon


(6.3)

i.e.
(θI −K) H = s eM+1eTM+1 H, (6.4)

where

θ ..= s
d

ds
, H ..=


H1
...

HM

Hon

 , eM+1
..=


0
...
0
1


and K is the state transition matrix

K ..=



−k1 kon

k1 −k2

k2
. . .
. . . −kM

kM −kon


Before we continue, let us take a small detour to consider some properties of the promoter
state transition matrix K; our desired distribution P (n) ≡ Pr(Nt = n) is a marginal of
the joint distribution Pr(Nt = n, St = si), so integral conditions based on the properties
of the continuous-time Markov process {St}t≥0, with associated transition rate matrix K,
will be required later.

Denote the probability of being in state si at time t by PS (si, t) ..= Pr(St = si), and
define

PS (s, t) ..=


PS (s1, t)

...
PS (sM , t)
PS (son, t)

 .

By definition of the Markov chain {St}t≥0, we have

dPS

dt
= K PS .

K clearly has a zero eigenvalue1, and by Gershgorin’s circle theorem (Horn and Johnson

1The columns of K sum to zero, for example.
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1999) the non-zero eigenvalues of K have negative real parts. Hence a stationary solution
π = (π1, . . . , πM , πon)T always exists, that satisfies

Kπ = 0 ;
M+1∑
i=1

πi = 1.

π is the eigenvector corresponding to the zero eigenvalue of K, which is normalized so
that its elements sum to 1 (since π represents a probability mass function). It can easily
be shown that π has elements

πi =
∏
j 6=i kj∑M+1

r=1
∏
j 6=r kj

.

For example for M = 2, πon = π3 = k1k2/(k2kon + k1kon + k1k2).
Returning to the derivation of P (n), sum the rows of Eq. (6.3) to see that

dH

ds
≡ d

ds
(H1 + · · ·+HM +Hon) = Hon(s), (6.5)

so to determine H(s) ≡ G(z) we need only determine Hon, and integrate once under the
condition H(0) = G(1) = ∑

n P (n) = 1.
In order to obtain an uncoupled equation for Hon, we will employ a trick using an

adjugate matrix and capitalise on the structure of the model. Multiply both sides of
Eq. (6.4) on the left by the transposed matrix of cofactors adj(θI−K), remembering that
for any square invertible matrix A, adj(A)A = det(A)I:

det(θI −K) H = adj(θI −K) s eM+1 eT
M+1 H (6.6)

=


(−1)M+2MM+1,1

...
(−1)2M+2MM+1,M+1

 sHon,

where Mi,j is the (i, j)th minor of [θI −K].
Notice that the submatrix of [θI−K] formed by deleting the last row and last column

is lower triangular, so

(−1)2M+2MM+1,M+1 = MM+1,M+1 =
M∏
i=1

(θ + ki).

Also, the determinant is equal to the product of the eigenvalues and hence

det(θI −K) =
M+1∏
i=1

(θ − νi) = θ
M∏
i=1

(θ − νi),

where the νi are the eigenvalues of the matrix K, and without loss of generality we have
taken νM+1 to be the zero eigenvalue. The first coordinate of this equation is now an
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uncoupled equation in terms of Hon only:

θ
M∏
i=1

(θ − νi)Hon(s) =
M∏
i=1

(θ + ki) sHon(s)

= s
M∏
i=1

(θ + ki + 1)Hon(s),

where we used the operator identity (θ + a)s = s(θ + a + 1), for a a constant. This
differential equation is satisfied by the generalized hypergeometric function FM M (Erdelyi
1953), where

Fp q

[
a1, a2 . . . , ap

b1, b2 . . . , bq
; z

]
..=

∞∑
n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)n

zn

n! ,

where (x)n ..= x(x+ 1) . . . (x+ n− 1) = Γ(x+ n)/Γ(x) is Pochhammer’s function2. Thus
we can immediately write down the general solution for Hon:

Hon(s) = c0 FM M

[
1 + k1, . . . , 1 + kM
1− ν1, . . . , 1− νM

; s
]

+
M∑
i=1

ci s
νi FM M

[
1 + k1 + νi, . . . . . . , 1 + kM + νi

1 + νi, 1− ν1 + νi, . . ∨ . . , 1− νM + νi
; s

]
, (6.7)

where . . ∨ . . denotes suppression of the term 1− νi + νi, and c0, . . . , cM are constants to
be determined.

Notice that νi ∈ C, and we want sνi ∈ R ∀ s ∈ R. Hence ci = 0 for i = 1, . . . ,M . We
are left only with c0, which is given by:

c0 = Hon(0) ≡ Gon(1) = πon =
∏M
j=1 kj∑M+1

r=1
∏
j 6=r kj

.

Hence Eq. (6.7) is reduced to

Hon(s) = πon FM M

[
k1 + 1, . . . , kM + 1
−ν1 + 1, . . . , −νM + 1

; s
]

=.. πon FM M

[
(k) + 1

(−ν) + 1
; s

]
,

where here we have introduced the notation in the latter equation, similar to that used
in (Slater 1966), for compactness and clarity.

2The notation (x)n itself is known as Pochhammer’s symbol. Confusingly, in combinatorics and statis-
tics Pochhammer’s function is usually denoted x(n) and is referred to as the rising factorial, whereas
Pochhammer’s symbol (x)n denotes the falling factorial. However, in the theory of special functions
and in particular the hypergeometric functions that we will be using, Pochhammer’s symbol is standard
notation for Pochhammer’s function, or the rising factorial, as defined in the text.
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Now, recall from Eq. (6.5) that we can integrateHon(s) to obtainH(s). Using standard
properties of generalized hypergeometric functions (Erdelyi 1953), we get

H(s) = πon

∏M
j=1(−νj)∏M
j=1 kj

FM M

[
(k)

(−ν)
; s

]
+ cH ,

where cH is a constant of integration. To see that cH = 0, we can use our expression for
Hon and Eq. (6.3) to obtain HM , . . . ,H1 via back substitution. Since these operations will
only involve differentiation, no function Hi, i = 1, . . . ,M , will have any additive constant
terms. Therefore, neither will H ..= H1 + · · ·+HM +Hon, so we must have cH = 0.

Furthermore, we need 1 = ∑
n P (n) = G(1) = H(0)†, so we are left with

H(s) = FM M

[
(k)

(−ν)
; s

]
, or

G(z) = FM M

[
(k)

(−ν)
; µ(z − 1)

]
. (6.8)

Now expand G(z) in a Taylor expansion around z = 0 so that we will be able to find P (n)
by reading off the coefficient of zn:

G(z) =
∞∑
n=0

zn

n!
dnG

dzn

∣∣∣∣∣
z=0

=
∞∑
n=0

zn

n! µ
n (k1)n . . . (kM )n

(−ν1)n . . . (−νM )n
FM M

[
(k) + n

(−ν) + n
; −µ

]
.

Again using some notation introduced in (Slater 1966) for compactness:

Γ
[
(k) + n, (−ν)

(k), (−ν + n)

]
..= Γ(k1 + n)

Γ(k1) . . .
Γ(kM + n)

Γ(kM )
Γ(−ν1)

Γ(−ν1 + n) . . .
Γ(−νM )

Γ(−νM ) + n
,

we finally have

P (n) = (k1)n . . . (kM )n
(−ν1)n . . . (−νM )n

µn

n! FM M

[
(k) + n

(−ν) + n
; −µ

]

†Incidentally, this property provides us with an expression for the pseudo-inverse of the promoter state
transition matrix K:

1 = H(0) =
∏M

j=1(−νj)∏M

j=1 kj
πon =

∏M

j=1(−νj)∏M

j=1 kj

∏M

j=1 kj∑M+1
r=1

∏
j 6=r kj

,

i.e.
M+1∑
r=1

∏
j 6=r

kj =
M∏
j=1

(−νj) = (−1)M × pseudo-inverse of K.
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= Γ
[
(k) + n, (−ν)

(k), (−ν + n)

]
µn

n! FM M

[
(k) + n

(−ν) + n
; −µ

]
. (6.9)

Example 6.2–1 — Rederivation of the solution of the random telegraph
model (1-cycle)

It is easy to check that our results reproduce the known solution of the random tele-
graph model (Ko 1991; Peccoud and Ycart 1995; Raj et al. 2006; Iyer-Biswas et al.
2009). Substituting M = 1 into the above, we have

K =
(
−k1 kon

k1 −kon

)
, (6.10)

with eigenvalues ν1 = −(kon + k1) and ν2 = 0. Eq. (6.9) then becomes

P (n) = Γ(k1 + n)
Γ(k1)

Γ(kon + k1)
Γ(kon + k1 + n)

µn

n! F1 1 (k1 + n, kon + k1 + n;−µ) , (6.11)

as shown in (Raj et al. 2006; Iyer-Biswas et al. 2009).

Example 6.2–2 — Explicit solution for the 2-cycle

The 2-cycle has already been proposed to account for the non-exponential waiting
times observed in the inactive gene state in single-molecule, single-cell time course
data (Suter et al. 2011; Molina et al. 2013; Harper et al. 2011; Kandhavelu et al.
2012). However, an algebraic expression for P (n) was not available so fitting and
analysis was done computationally. Using Eq. (6.9) we can straightforwardly write the
down the required expression.

For M = 2, (ν) = ν1, ν2 are the non-zero eigenvalues of K, which are

ν1,2 = 1
2

(
−kon − k1 − k2 ±

√
(kon − k1 − k2)2 − 4k1k2

)
, (6.12)
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so the stationary solution of the model is

P (n) = Γ(k1 + n)
Γ(k1)

Γ(k2 + n)
Γ(k2)

Γ(−ν1)
Γ(−ν1 + n)

Γ(−ν2)
Γ(−ν2 + n)

µn

n! F2 2

[
k1 + n, k2 + n

−ν1 + n, −ν2 + n
; −µ

]
.

(6.13)

6.2.2 Noise regulation

With the exact solution, and certain other elements of its derivation, we can obtain prop-
erties of the M -cycle and analyse how they differ from the two-state random telegraph
model (the 1-cycle).

First, the moments can be straightforwardly obtained from the probability generating
function (Eq. (6.8)):

E (N) = dG

dz

∣∣∣∣∣
z=1

= µ

∏M
i=1 ki∏M

i=1(−νi)
, (6.14)

and

Var(N) = d2G

dz2

∣∣∣∣∣
z=1

+ dG

dz

∣∣∣∣∣
z=1

−

dG
dz

∣∣∣∣∣
z=1

2

(6.15)

= µ

∏M
i=1 ki∏M

i=1(−νi)

(
µ

∏M
i=1(ki + 1)∏M
i=1(−νi + 1)

+ 1− µ
∏M
i=1 ki∏M

i=1(−νi)

)
. (6.16)

However, it would be helpful to write these expressions explicitly in terms of the expected
waiting times in each state, denoted

τon = 1
kon

, τi = 1
ki
, and τoff =

M∑
i=1

τi.

Thus we need to employ some manoeuvres to obtain expressions for ∏M
i=1(−νi) and∏M

i=1(−νi+1). For the former, we continue from the last footnote remarking thatH(0) = 1
implies that:

M∏
j=1

(−νj) =
M+1∑
r=1

∏
j 6=r

kj

=
M+1∑
r=1

1
kr

M+1∏
i=1

ki

=
M+1∑
r=1

τr

M+1∏
i=1

1
τi

= τon + τoff

τon
∏M
i=1 τi

. (6.17)
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In order to obtain a similar expression for ∏M
i=1(−νi + 1), notice that it is equal to the

determinant of the matrix [I −K] (since νM+1 = 0):

M∏
i=1

(−νi + 1) =
M+1∏
i=1

(−νi + 1) (6.18)

= det(I −K)

= det



1 + k1 −kon

−k1 1 + k2

−k2
. . .
. . . 1 + kM

−kM 1 + kon


= (−1)M+2(−kon)(−k1) . . . (−kM ) + (−1)2M+2(1 + kon)(1 + k1) . . . (1 + kM )

= (1 + kon)
M∏
i=1

(1 + ki)− kon

M∏
i=1

ki

= (τon + 1)∏M
i=1(τi + 1)− 1

τon
∏M
i=1 τi

. (6.19)

Substituting these expressions in terms of waiting times (Eqs (6.17) and (6.19)) into the
expressions for the mean and variance obtained above (Eqs (6.14) and (6.15)), we have

E (N) = µ
∏M
i=1 ki

(τon + τoff)kon
∏M
i=1 ki

(6.20)

= µ τon
τon + τoff

,

Var(N) = E (N)
(

µ τon
∏M
i=1(τi + 1)

(τon + 1)∏M
i=1(τi + 1)− 1

+ 1− E (N)
)
. (6.21)

Notice that the expression for E (N) is the same as for the random telegraph model; it is
the expectation for the constitutive (Poisson) model with only one state, µ, scaled by the
proportion of time the promoter is active. In particular, the expectation is independent
of the individual expected waiting times τi in each inactive state, although the variance is
not. Hence we may fix the waiting times τon and τoff = ∑

τi, thus fixing the expectation,
whilst tuning the noise by varying the expected waiting time in each inactive state τi.

Let us investigate in more detail how noise is affected by the choice of τi, i = 1, . . . ,M ,
and byM , the number of inactive states. We will use the ensemble Fano factor as a measure
for noise, although we would arrive at the same conclusions if we chose the coefficient of
variation, η ..=

√
Var(N)/E (N) instead, since we have fixed E (N) = τon/(τon +τoff). Since

the number of inactive states will now be a variable, we will specify it using a superscript,
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i.e., Fano(2) refers to the Fano factor for the 2-cycle. The waiting times τi are also variables,
but it should not cause confusion if we do not specify them explicitly.

Suppose τon and τoff are fixed constants, but the τi, i = 1, . . . ,M , can vary under the
constraints

τi > 0, i = 1, . . . ,M, and
M∑
i=1

τi = τoff .

For now, the number of inactive states M is fixed. Using Eqs (6.20) and (6.21), we have

Fano(M) ..= Var(N)
E (N)

= µ τon
∏M
i=1(τi + 1)

(τon + 1)∏M
i=1(τi + 1)− 1

+ 1− E (N) ,

which we can minimize over the τi’s using for example the method of Lagrange multipliers.
The minimum Fano(M)

min occurs when τi = τj = τoff/M ∀ i, j ∈ {1, . . . ,M}, giving

Fano(M) ≥ Fano(M)
min = µ τon(τoff/M + 1)M

(τon + 1)(τoff/M + 1)M − 1 + 1− E (N) .

On the other hand, the maximum possible Fano factor occurs at the other extreme of
τi-space, where without loss of generality τ1 → τoff , and τi → 0, i = 2, . . . ,M . Notice that
in the limit τi = 0, i = 2, . . . ,M , the M -cycle is reduced to the 1-cycle, i.e. the usual
two-state random telegraph model, so we have:

Fano(M) ≤ Fano(M)
max < Fano(1)

= µ τon(τoff + 1)
(τon + 1)(τoff + 1)− 1 + 1− E (N)

= µ τonτ
2
off

(τonτoff + τon + τoff)(τon + τoff) + 1.

Now to see how the number of states M affects the noise characteristics of the model,
we now allow M to be a variable. Consider first the expression above for Fano(M)

min , the
minimum Fano factor given M . The function

g(M) ..= µτon(τoff/M + 1)M
(τon + 1)(τoff/M + 1)M − 1 ,M ∈ N

is a monotonically decreasing function of M , hence (since E (N) is fixed) the minimum
possible Fano factor for anM -cycle decreases as the number of inactive statesM increases:

Fano(L)
min < Fano(M)

min ∀ L > M.

Since any M -cycle reduces to the 1-cycle in the limit τ1 = τoff , τi = 0, i = 2, . . . ,M , we
have

sup
(
Fano(M)

max

)
= Fano(1).
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To sum up, for an M -cycle model with expected waiting times in the inactive states τi,
i = 1, . . . ,M , the Fano factor Fano(M) satisfies

Fano(L)
min < Fano(M)

min ≤ Fano(M) < Fano(1)
min ≡ Fano(1)

max ≡ Fano(1) ∀ L > M > 1.

In other words, assuming the simple two-state random telegraph model of gene tran-
scription necessarily implies assuming the maximum level of noise for the given expected
waiting times. It is well-known that negative feedback motifs can reduce gene expres-
sion noise (Austin et al. 2006; Nevozhay et al. 2009; Shimoga et al. 2013), but here we
have shown that we may achieve similar effects via the introduction of additional gene
states, and/or tuning the transition rates towards the parameter regime τi = τoff/M, i =
1, . . . ,M .

6.3 Estimating parameter values and model selection

In 2006 Raj et al. published their seminal paper where for the first time the exact expres-
sion for P (n) for the 1-cycle (random telegraph model) was known, and could be used to
fit to their fluorescence in situ hybridization (FISH) data (Raj et al. 2006). More recently,
several different 1-cycle parameter regimes have been shown to fit snapshot data for yeast
equally well (Zenklusen et al. 2008; Senecal et al. 2014), and several groups have shown that
waiting time distributions in the inactive state are not exponentially distributed (which
the 1-cycle can not account for) (Suter et al. 2011; Zoller et al. 2015; Harper et al. 2011).
Nevertheless, in the absence of an exact, practical3 solution, it remains common practice
to estimate transcription rates and timescales at the promoter by fitting snapshot data
to the solution of the 1-cycle, or by using expected waiting times τon and τoff to estimate
the 1-cycle transition rates kon = 1/τoff and koff = 1/τon (Suter et al. 2011; Senecal et al.
2014).

Now that we have the exact solution explicitly in terms of measurable parameters, we
can use it to estimate M -cycle parameter values for snapshot data, and perform quanti-
tative model selection. As an example, we generated in-silico snapshot data for 5-cycle
models designed to mimic the results published in (Zoller et al. 2015), where M -cycles
are fitted to time-lapse data. We then used maximum likelihood estimation (MLE) to
estimate the parameter values under the assumptions of several M -cycle models, and the
Akaike Information Criterion (AIC) to perform model selection. We use these results:

• to exemplify how the assumption of the minimal 1-cycle (random telegraph) model
can lead to gross mis-estimation of the underlying parameters; and

• to demonstrate that for many parameter regimes, snapshot population data cannot
be used to infer the underlying timescales. In those cases single-cell time series
analysis is necessary to validate the results.

3Although an exact solution for theM -cycle was published in 2012 (Zhang et al. 2012), it was not given
explicitly in terms of the model parameters µ, k1, . . . , kM , kon as we were able to do here.
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However, a thorough parameter fitting exercise would require more detailed investiga-
tions into which measures should be used to measure disparity between two probability
distributions.

6.3.1 Generating in-silico data

To be able to critically analyse the output of the MLE, we generated several sets of in-silico
data using Gillespie’s stochastic simulation algorithm (SSA) (Gillespie 1977). The expres-
sion for P (n) (Eq. (6.9)) was derived under assumptions that imply an ergodic system, so
to obtain “snapshot” data it is sufficient to simulate a single time trace {η(t)}0≤t≤T for
the number of mRNA transcripts in a single cell4. We conservatively discarded the first
1000 minutes after the sample path first reached its expected mean value to avoid effects
from the initial condition. Then, what we refer to as the empirical probability distribution
Pemp was given by

Pemp(n) = 1
T

∫ T

0
1n(η(t))dt,

where 1n is the indicator function:

1n(η(t)) =

1 if η(t) = n,

0 otherwise.

We sampled 200 data points from the empirical distribution to use in the maximum like-
lihood estimation procedure.

To work only within biologically relevant parameter regimes, we used the models and
parameter values for the NcKap1 and Hmga2 genes, which were recently estimated from
time-lapse recordings of mammalian cells (Zoller et al. 2015).

6.3.2 Maximum Likelihood estimation and model selection

Despite the expression for P (n) (6.9) being a concise function of relatively few parame-
ter combinations, the gamma functions and generalized hypergeometric function lead to
unwieldy likelihood and log-likelihood functions that are impractical to maximise analyt-
ically. As such, we used the ‘Squeeze-and-breathe’ numerical optimization algorithm to
maximise the log-likelihood function, since it has been shown to be robust to situations
where parameter values may span several orders of magnitude, and can find parameter
regimes that lie outside of the range of the initial prior (Beguerisse-Díaz et al. 2012). The
method iteratively refines a sequence of parameter distributions using local optimisation
and partial resampling of the historical prior, followed by ranking and culling of the lo-
cal optima. The iteration continues until the parameter distributions and the negative
log-likelihood values converge.

The results of the parameter estimation process for the NcKap1 and Hmga2 genes
4As per the discussions in Sections 4.2.2 and Example 5.1–1, an estimate for P (n) could have been

obtained quicker using sample paths of X instead of N . However, the simulation process here was not
prohibitively slow because only one sample path was required.
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NcKap1: Fitting to the 5-cycle NcKap1: Fitting to the 1-cycle
Parameter True Estimated Parameter Effective Estimated

µ/λ 344.83 233.01 µ/λ 344.83 65.36
kon/λ 57.47 43.94 kon/λ 57.47 14.35
k1/λ 3.05 3.06 koff/λ, k1/λ 1.61 2.32
k2/λ 8.62 11.20
k3/λ 12.54 15.62
k4/λ 16.42 20.45
k5/λ 27.59 34.28
lnL -621.93 -621.41 lnL -621.46 -620.86
AIC 1257.85 1256.82 AIC 1256.91 1247.73

(a) Results of the maximum likelihood estimation procedure for the NcKap1 in silico data

Hmga2: Fitting to the 5-cycle Hmga2: Fitting to the 1-cycle
Parameter True Estimated Parameter Effective Estimated

µ/λ 51.39 37.39 µ/λ 51.39 31.84
kon/λ 42.09 32.00 kon/λ 42.09 41.42
k1/λ 8.17 6.75 k1/λ, koff/λ 2.52 4.07
k2/λ 9.99 11.50
k3/λ 12.29 14.87
k4/λ 16.53 21.19
k5/λ 30.19 33.96
lnL -412.51 -412.43 lnL -414.67 -412.40
AIC 839.02 838.86 AIC 837.35 830.80

(b) Results of the maximum likelihood estimation procedure for the Hmga2 in silico data

Table 6.1: Results of the maximum likelihood estimation procedure for the in silico
data, which were generated using 5-cycle models. The parameter values used for the
simulations are shown in the columns entitled “True” on the left hand side. lnL and AIC
are the log-likelihood values. Left: The estimated parameter values obtained when fitting
to the 5-cycle, and for comparison, the true values used to generate the data. Right: The
estimated parameter values obtained when fitting to the 1-cycle. To enable comparison
with the true values, koff/λ = 1/λτoff is given in the column with the true parameter
values, where τoff is the total expected waiting time in the inactive states for the true
model.

are shown in Table 6.1, and Figs 6.2 and 6.3. All parameters are reported in ratio to
the degradation rate. koff is calculated using the true parameter values according to
k−1

off = ∑5
i=1 k

−1
i , purely to enable comparisons for the estimated parameter values for

the 1-cycle; it was not used in the estimation process. In other words, the “effective”
parameter values quoted in the tables for the 1-cycle are the parameters one obtains when
converting the 5-cycle into a 1-cycle by conserving expected waiting times in the active
and inactive states. We refer to this “converted” 1-cycle as the 1-cycle equivalent in the
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figures showing probability mass functions (pmfs) and cumulative mass functions (cmfs)
for the 1-cycles (bottom rows), again solely for the purposes of comparison.

Using the log-likelihood values, we can use the AIC to select the preferred model for the
data we used. The AIC is a measure for statistical model selection based on information
theory (Akaike 1974), defined by

AIC ..= −2 lnL+ 2(number of independently adjusted parameters within the model).

The AIC values are shown in Tables 6.1; the preferred model is the one with lowest AIC
value.
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Figure 6.2: The probability mass functions P (n) and cumulative mass functions F (n) for
the NcKap1 empirical data (blue) and the theoretical mass functions, calculated using: the
parameter values from the maximum likelihood estimation (red); true parameter values
(yellow); and the parameter values for the 1-cycle with the same expected waiting times
in each gene state as the true model (purple). The legends apply to both the pmf and cmf
graphs.

There are several observations to be made from these maximum likelihood estimates
and corresponding AIC values. First, the 1-cycle maximum likelihood parameter estimates
do better in terms of the log-likelihood lnL than both the true values, and the estimates
obtained when fitting the 5-cycle (the true model). Second, since the log-likelihood values
for the fitted models are very similar, selection using the AIC amounts to choosing the
model with the fewest parameters, in this case the 1-cycle. However, the 1-cycle parameter
values are grossly mis-estimated. Although the 5-cycle estimates are incorrect, they are
significantly closer to the true values than the 1-cycle estimates are, in particular for µ/λ.

Third, as can be clearly seen from the figures, we recover the observations from Zen-
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Figure 6.3: The probability mass functions P (n) and cumulative mass functions F (n) for
the Hmga2 empirical data (blue) and the theoretical mass functions, calculated using: the
parameter values from the maximum likelihood estimation (red); true parameter values
(yellow); and the parameter values for the 1-cycle with the same expected waiting times
in each gene state as the true model (purple). The legends apply to both the pmf and cmf
graphs.

klusen et al. 2008 that these models are unidentifiable – several different models can fit
population snapshot data equally well. The estimated parameter values outperform the
true parameter values when maximising the log-likelihood function, suggesting that the
log likelihood function is extremely flat for these models, and perhaps not an effective
measure for these models. Precision tolerances must be kept low when maximising the
log-likelihood function numerically, and one typically needs to restrain the parameter space
if possible (Murphy and Vaart 2000).

Taken together, these results issue a stark warning to those inferring timescales of
activities at the promoter from snapshot data (Raj et al. 2006; Taniguchi et al. 2010;
Senecal et al. 2014; Bahar Halpern et al. 2015), even with more complex models than the
simple 1-cycle. In particular, good fits to the empirical distribution are not necessarily
indicative of the best parameter estimates; the 1-cycle equivalent effective parameters
produce the worst fits to the data (Figs 6.2 and 6.3), but the timescales implied by them
are closer to reality than those implied by the MLE for the 1-cycle.

There are several functions apart from the likelihood or log-likelihood that can be used
to measure the disparity between two discrete probability distributions, for example the
Kullback-Leibler divergence or the related Jensen-Shannon divergence, the total variation
distance, or the Wasserstein (or earth mover’s) distance, to name just a few. Each diver-
gence or metric has a bias towards certain kinds of differences between two distributions,
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for example the Kullback-Leibler divergence emphasizes tails more strongly than the total
variation distance. A thorough parameter-fitting exercise would need to check the results
obtained from several appropriate divergences or metrics, possibly defining a new measure
if a particular property of the distribution needed to be given particular importance. Vali-
dation using single-cell time series analysis is in general necessary to confirm the reliability
of the results (Zoller et al. 2015; Suter et al. 2011).

6.4 Solution for fX

Recall from Chapter 3 that the probability mass function P (n) for the mRNA copy number
can be written in Poisson mixture form

P (n) =
∫
ξn e−ξ

n! fX(ξ) dξ,

so that one route to obtaining P (n) is simply to search for the mixing density fX . Since
we already have an explicit expression for P (n) from the previous section, we will not need
to use the Poisson mixture property to obtain a solution of the M -cycle. However, the
value of fX extends far beyond simply being a stepping stone towards an expression for
P (n). Since fX is the central, model-specific core of any transcription-degradation model,
we gain a deeper understanding of the mathematical structure and properties of the model
than we do when only looking at P (n). After deriving fX using the multistate Kramers-
Moyal equations, in Section 6.4.2 we will use it to help navigate parameter space to search
for qualitatively different solution behaviours. We defer discussion of the mathematical
structures that reveal themselves when deriving fX until Chapter 7, as the scope extends
beyond M -cycle models.

6.4.1 Derivation of the solution

The M -cycle is a multistate promoter model that falls within the framework described in
Section 4.4 on the multistate Kramers-Moyal equations: we have a Markov jump process
S between M + 1 discrete states {s1, . . . , sM , son}, and the bivariate process {X,S} is
Markovian. Therefore we can straightforwardly write down the multistate Kramers-Moyal
equations in the same way as we did for the solution of the leaky random telegraph model
(Example 4.4–1).

Define for each state {s1, . . . , sM , son} the joint probability density function fi(x) ..=
fX,S(x, si), and recall the convention introduced in Section 6.1 that indices should be
considered modulo M + 1, with M + 1 ≡ 0 ≡ on. The law of total probability gives us

fX(x) =
M+1∑
i=1

fi(x),
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and the multistate Kramers-Moyal equations are (Pawula 1967; Pawula 1970):

d

dx
[−λxfi(x)] = ki−1fX,S(x, si−1)− kifi(x), i = 1, . . . ,M, and (6.22a)

d

dx
[(µ− λx)fon(x)] = kMfM (x)− konfon(x). (6.22b)

To simplify notation, set λ = 1 and use the change of variables z = λx/µ. We will keep the
same notation for the joint probability density functions, but specify the variable for the
marginal, i.e. we will now work to obtain fZ(z) = f1(z) + · · ·+ fM (z) + fon(z)z ∈ (0, 1).
Eqs (6.22) become

d

dz
[A(z)f(z)] = Kf(z), (6.23)

where f = (f1, . . . , fM , fon)T , A(z) = (eM+1eTM+1 − zI), eM+1 = (0, . . . , 0, 1)T , and K is
the state transition matrix

K =



−k1 kon

k1 −k2

k2
. . .
. . . −kM

kM −kon


As we saw in Section 6.2.1, K has a zero eigenvalue and by Gershgorin’s circle theorem
the non-zero eigenvalues of K have negative real parts, so a stationary solution exists.
The probabilities πi =

∫ 1
0 fi(z) dz of being in state si, i = 1, . . . , sM , son, evolve to an

equilibrium state given by the eigenvector π that corresponds to the zero eigenvalue,
where

πi =
∫ 1

0
fi(z) dz =

∏
j 6=i kj∑M+1

r=1
∏
j 6=r kj

. (6.24)

Now, integrating (6.23) we have

[A(z)f(z)]10 = K

∫ 1

0
f(z) dz = Kπ = 0,

hence we get the boundary conditions

fi(1) = 0, i = 1, . . . ,M, and (6.25a)

fon(0) = 0. (6.25b)

Also, for 1T := (1, . . . , 1), we have

d
dz
(
1TA(z)f

)
= 1TKf = 0
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(equivalent to summing the rows), so that

1TA(z)f = −zf1(z)− · · · − zfM (z) + (1− z)fon(z) = C. (6.26)

Equation (6.26) is true for all z ∈ (0, 1), so substituting in z = 0 or z = 1 we can show
that the constant of integration C is equal to 0. Hence

fZ =
M+1∑
i=1

fi = 1
z
fon, (6.27)

so we need only solve the Kramers-Moyal equations (6.23) for fon, the marginal probability
density corresponding to the active state. In order to obtain an uncoupled equation for
fon, we will employ the same trick we used in Section 6.2.1, using an adjugate matrix and
capitalise on the structure of Eq. (6.23).

Define θ ..= z d
dz and write the Kramers-Moyal equations (6.23) in the form

(θI + I +K) f = eM+1eTM+1

1
z
θ f .

Multiply both sides on the left by the transposed matrix of cofactors adj(θI + I + K),
remembering that for any square invertible matrix A, adj(A)A = det(A)I:

det(θI + I +K) f = adj(θI + I +K) eM+1eTM+1

1
z
θf

=


(−1)M+2MM+1,1

...
(−1)2M+2MM+1,M+1

 1
z
θ fon,

where Mi,j is the (i, j)th minor of [θI + I +K].

Notice that the submatrix of [θI + I + K] formed by deleting the M th row and the
M th column is lower triangular, so

MM+1,M+1 =
M∏
i=1

(θ + 1− ki).

Also, the determinant is equal to the product of the eigenvalues and hence

det(θI + I +K) =
M+1∏
i=1

(θ + 1 + νi),

where the νi are the eigenvalues of the matrix K. The M th coordinate of this equation is
now an uncoupled equation in terms of fon only:

M+1∏
i=1

(θ + 1 + νi) fon(z) =
M∏
i=1

(θ + 1− ki)
1
z
θ fon(z)
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= 1
z

M∏
i=1

(θ − ki) θ fon(z), (6.28)

where we used the operator identity (θ+ a)1
z = 1

z (θ+ a− 1). This is a Fuchsian5 equation
of order M + 1 with singularities at 0, 1, and +∞, so we can write down the solution
of this equation directly in terms of generalised hypergeometric functions (Slater 1966).
When the ki are distinct modulo 1, the general solution is given by

fon(z) = c0 z
0 FM+1 M

[
1 + ν1, . . . . . . , 1 + νM , 1
1− k1, . . ∨ . . , 1− kM

; z
]

+
M∑
i=1

ci z
ki FM+1 M

[
1 + ν1 + ki, . . . . . . , 1 + νM + ki, 1 + ki

1− k1 + ki, . . ∨ . . , 1− kM + ki, 1 + ki
; z

]
(6.29a)

≡ c0 FM+1 M

[
1 + ν1, . . . . . . , 1 + νM , 1
1− k1, . . ∨ . . , 1− kM

; z
]

+
M∑
i=1

ci z
ki FM M−1

[
1 + ν1 + ki, . . . . . . , 1 + νM + ki

1− k1 + ki, . . ∨ . . , 1− kM + ki
; z

]
, (6.29b)

where without loss of generality we have taken νM+1 to be the zero eigenvalue of K, and
c0, . . . , cM are constants. Here . . ∨ . . denotes suppression of the term 1 − ki + ki, and

FM+1 M and FM M−1 are generalised hypergeometric functions (Erdelyi 1953).

At this point, we will adopt the contracted notation introduced in (Slater 1966), as
it will greatly improve clarity later on. For generalized hypergeometric functions we will
write

Fp q

[
a1, . . . , ap

b1, . . . , bq
; z

]
=.. Fp q

[
(a)
(b)

; z
]
,

for a product of several Gamma functions we will write

Γ(a1)Γ(a2) . . .Γ(ap)
Γ(b1)Γ(b2) . . .Γ(bq)

=.. Γ
[
a1, a2, . . . , ap

b1, b2, . . . , bq

]

=.. Γ
[
(a)
(b)

]
,

and a dash will denote the omission of a zero factor in a sequence, for example

(a)′ − ai ..= a1 − ai, . . . , ai−1 − ai, ai+1 − ai, . . . , ap − ai.

The general solution (6.29b) can then be written

fon(z) = c0 FM M−1

[
1 + (ν)
1− (k)′

; z
]

+
M∑
i=1

ci z
ki FM M−1

[
1 + (ν) + ki

1− (k)′ + ki
; z

]
, (6.30)

5Fuchsian equations will be defined and discussed in Chapter 7.
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where (ν) denotes the sequence ν1, . . . , νM (we omit νM+1 = 0), and (k) denotes the
sequence k1, . . . , kM .

Now, recall that fZ(z) = fon(z)/z, and the boundary condition (6.25b) implies that
c0 = 0, so finally we have the general solution

fZ(z) =
M∑
i=1

ci z
ki−1 FM M−1

[
1 + (ν) + ki

1− (k)′ + ki
; z

]
. (6.31)

The constants ci can be determined using the integral constraints
∫ 1

0 fi(z) dz = πi and∫ 1
0 fZ(z) dz = 1, and the identity (Rainville 1960)

∫ 1

0
zk−1 Fp p−1

[
(a)
(b)

; z
]
dz = 1

k
Fp+1 p

[
(a), k

(b), k + 1
; 1

]
.

However, using the solution for P (n) derived in Section 6.2.1 and the Poisson mixture
result, we can do better. First, use our general solution for fZ (6.31) to write down an
expression for P (n) using the Poisson mixture result:

P (n) =
∫ 1

0

(µz)n
n! e−µz

M∑
i=1

ci z
ki−1 FM M−1

[
1 + (ν) + ki

1− (k)′ + ki
; z

]
dz

= µn

n!

M∑
i=1

ci

∫ 1

0
e−µz zki−1+n FM M−1

[
1 + (ν) + ki

1− (k)′ + ki
; z

]
dz. (6.32)

Now, identity 4.8.3.13 from (Slater 1966) is (with letters and symbols as found in the
reference):

Γ
[
(a) + s

(c) + s

]
FA+E A+F

[
(a) + s, (e)
(c) + s, (f)

; y
]

=
A∑
µ=1

Γ
[
(a)− aµ
(c)− aµ

] ∫ 1

0
xs+aµ−1 FA A−1

[
1 + aµ − (c)
1 + aµ − (a)′

; x
]

FE F

[
(e)
(f)

; xy
]
dx,

for E < F or for E = F and |y| < 1. Use this identity with E = F = 0, (e) = (f) = (0),
(a) = (k), (c) = (−ν), and y = −µ to write our explicit solution for P (n) (6.9) in the form

P (n) = Γ
[
(k) + n, (−ν)
(k), (−ν) + n

]
µn

n! FM M

[
(k) + n

(−ν) + n
; −µ

]

= µn

n!

M∑
i=1

Γ
[
(−ν)
(k)

]
Γ
[

(k)′ − ki
(−ν)− ki

] ∫ 1

0
e−µz zki−1+n FM M−1

[
1− (−ν) + ki

1− (k)′ + ki
; z

]
dz.

(6.33)
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Finally, compare Eqs (6.32) and (6.33) to find

ci = Γ
[
(−ν)
(k)

]
Γ
[

(k)′ − ki
(−ν)− ki

]
.

Putting everything together, we finally obtain the solution

fZ(z) = Γ
[
(−ν)
(k)

]
M∑
i=1

Γ
[

(k)′ − ki
(−ν)− ki

]
zki−1 FM M−1

[
1 + (ν) + ki

1− (k)′ + ki
; z

]
, (6.34)

for z ∈ (0, 1). We can easily obtain fX by changing variables back to X = µZ/λ:

fX(x) = λ

µ
fZ

(
λ

µ
z

)
(6.35)

= λ

µ
Γ
[
(−ν)
(k)

]
M∑
i=1

Γ
[

(k)′ − ki
(−ν)− ki

] (
λ

µ

)ki−1
xki−1 FM M−1

[
1 + (ν) + ki

1− (k)′ + ki
; λ
µ
x

]
,

(6.36)

for x ∈ (0, µ/λ).

Example 6.4–1 — Rederivation of the solution of the random telegraph
model (1-cycle)

As for the explicit solution for P (n) (6.9), we can easily check that our results reproduce
the known solution of the random telegraph model (Ko 1991; Peccoud and Ycart 1995;
Raj et al. 2006; Iyer-Biswas et al. 2009). For M = 1, λ = 1 we have eigenvalues
ν1 = −(kon + k1) and ν2 = 0. Eq. (6.34) then becomes

fZ(z) = Γ(kon + k1)
Γ(k1)

1
Γ(kon + k1 − k1) z

k1−1 F1 0 [1− kon − k1 + k1 ; z ]

= Γ(kon + k1)
Γ(k1)Γ(kon) z

k1−1(1− z)kon−1 .

In other words, Z ∼ Beta(k1, kon), so the final solution is a Poisson-Beta mixture:

P (n) =
∫ 1

0

(µz)n
n! e−µz

Γ(k1 + k2)
Γ(k1)Γ(k2) z

k1−1(1− z)k2−1 dz

= Γ (k1 + n)
Γ (k1)

Γ (kon + k1)
Γ (kon + k1 + n)

µn

Γ (n+ 1) F1 1 (k1 + n, kon + k1 + n;−µ) ,

as shown in (Raj et al. 2006; Iyer-Biswas et al. 2009).
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Example 6.4–2 — Mixture distribution for the 2-cycle

For M = 2, (ν) = ν1, ν2 are the non-zero eigenvalues of K, which are

ν1,2 = 1
2

(
−kon − k1 − k2 ±

√
(kon − k1 − k2)2 − 4k1k2

)
,

so the stationary solution of the mixing density is

fZ(z) = Γ(−ν1)Γ(−ν2)
Γ(k1)Γ(k2)

(
Γ(k2 − k1) zk1−1

Γ(−ν1 − k1)Γ(−ν2 − k1) F2 1

[
1 + ν1 + k1, 1 + ν2 + k1

1− k2 + k1
; z

]

+ Γ(k1 − k2) zk2−1

Γ(−ν1 − k2)Γ(−ν2 − k2) F2 1

[
1 + ν1 + k2, 1 + ν2 + k2

1− k1 + k2
; z

])

= Γ(−ν1)Γ(−ν2)
Γ(k1)Γ(k2)

(
Γ(k2 − k1) zk1−1(1− z)kon−1

Γ(−ν1 − k1)Γ(−ν2 − k1) F2 1

[
−ν1 − k2,−ν2 − k2

1− k2 + k1
; z

]

+ Γ(k1 − k2) zk2−1(1− z)kon−1

Γ(−ν1 − k2)Γ(−ν2 − k2) F2 1

[
−ν1 − k1,−ν2 − k1

1− k1 + k2
; z

])
.

6.4.2 Using the mixing density to analyse parameter spaces

We would like to be able to use the exact expression (6.35) for the mixing density to
demarcate the parameter space into regions that produce qualitatively different solution
behaviour for P (n), for example to find bimodality. The usefulness of this technique has
already been shown for a certain type of feedback model (Iyer-Biswas and Jayaprakash
2014).

For example, Zhang et al. 2012 searched for multimodality in the solution P (n) of the
2-cycle via large-scale sampling of the system parameters; with our possession of fZ we
can deduce that multimodality does not exist6 for any M -cycle: Recall from Eq. (6.28)
that fon is Fuchsian with only 2 finite singularities, and therefore so are fZ and fX . Since
P (n) = E(Xne−X/n!), P (n) can be bimodal, but not multimodal (see Chapter 7 for a
more detailed discussion about what we can learn from the Fuchsian properties).

To see if we can deduce any more, for simplicity we consider the 2-cycle here. The
same approach can be taken for M > 2, using the Euler-type identity for generalized
hypergeometric functions given in (Miller and Paris 2011). Using the Euler identity to
factorize (1− z) from the expression for fZ (6.34), and writing the constant coefficients of

6We do not count the trivial cases where modes are adjacent to each other.
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Figure 6.4: fX (blue) and corresponding P (n) (red) for four different qualitative be-
haviours of fX . (a) fX monotonically decreasing leads to P (n) monotonically decreasing.
(b) fX concave downwards (peaked away from zero) leads to P (n) concave downwards
with peak more towards zero. (c) fX concave upwards (bimodal) can lead to P (n) bi-
modal. (d) fX monotonically increasing leads to P (n) concave downwards with peak more
towards the upper end of the support of Xt.

each term as c1 and c2 to improve readability, we have

fZ(z) = (1− z)kon−1
(
c1 z

k1−1 F2 1

[
−ν1 − k2,−ν2 − k2

1− k2 + k1
; z

]

+c2 z
k2−1 F2 1

[
−ν1 − k1,−ν2 − k1

1− k1 + k2
; z

])

= zk1−1(1− z)kon−1
(
c1 F2 1

[
−ν1 − k2,−ν2 − k2

1− k2 + k1
; z

]

+c2 z
k2−k1 F2 1

[
−ν1 − k1,−ν2 − k1

1− k1 + k2
; z

])

= zk1−1(1− z)kon−1
( ∞∑
i=0

[
aiz

i + biz
i+k2−k1

])
,

where without loss of generality we assumed that k1 < k2, and the ai and bi are constants.
Due to the generalised hypergeometric functions, we have not been able to factorize the
expression any further. Nonetheless, fZ and fX enable us to search for qualitatively
different behaviours of P (n) using “informed” trial and improvement. Fig. 6.4 shows
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Figure 6.5: Use of the mixing density fX (top row) to identify parameter regimes where
the probability distributions P (n) (bottom row) for the 1-cycle (blue) and the 2-cycle (red)
are similar (left) and qualitatively different (right). Legends apply to both graphs in its
row

fX and P (n) for four sets of parameters for the 2-cycle. For P (n) to show bimodality
for example, we require fX to be bimodal (which corresponds to slow switching at the
promoter, see Chapter 5). fX monotonically decreasing implies that P (n) will be too. fX
unimodal or monotonically increasing leads to a unimodal P (n), with non-zero mode.

The same idea can be used for testing whether the addition of inactive states has any
qualitative effect on the resulting distributions P (n). Since all model-specific behaviour
is contained in the mixing density, it suffices to find parameter regimes where fX is qual-
itatively different for each model. Fig. 6.5 illustrates this concept for comparisons of the
1-cycle and 2-cycle, where the expected waiting times τon and τoff were kept equal for
the two models. If the mixing density is similar for the two models, we can immediately
deduce that P (n) will also be similar. Conversely, when searching for parameter regimes
where P (n) are qualitatively different, we need to find regimes where fX displays different
behaviour for each model.

6.5 Final remarks

We have shown how to calculate the exact solution of the M -cycle in two ways, each
of which is useful for different purposes. Using an adjugate matrix, we determined that
the relevant parameter combinations are the transition rate constants for the gene state
switching process, and the non-zero eigenvalues of the transition matrix K. The ap-
pearance of the eigenvalues is significant; further properties of the solution or implied
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timescales may be forthcoming via spectral analysis procedures, as has been achieved in
several related fields to show how perturbations die away, to characterise convergence to
stationarity, or to describe how noise propagates in a system (Walczak et al. 2009; Kampen
1992). Moreover, the eigenvalues for the M -cycle always appear in products of the form∏M
i=1(−νi + r), r ∈ N, which we can calculate as we did for ∏M

i=1(−νi + 1) (see Eq. (6.18))
to obtain

M∏
i=1

(−νi + r) = (r + kon)
M∏
i=1

(r + ki)− kon

M∏
i=1

ki (6.37)

= (rτon + 1)∏M
i=1(rτi + 1)− 1

τon
∏M
i=1 τi

. (6.38)

Hence P (n) can be written explicitly in terms of only the expected waiting times τi in
each state, and the transcription rate µ.

Figure 6.6: OFF-OFF-ON model of gene transcription. The gene transitions between
the active state (ON) and the inactive states (OFF1 and OFF2) with the rates shown.
Transcription only takes place in the ON state, with rate constant µ. Degradation occurs
as a first-order reaction with rate constant λ, independently of gene state.

Note also that we can use the same method of solution for any multistate model with
one active state andM inactive states; the solution will still be in terms of gamma functions
and a FM M generalised hypergeometric function with eigenvalues in the denominator,
but for the parameters in the numerator we need to obtain the roots of an M th-order
polynomial (the polynomial is given by the (M + 1,M + 1)st minor of [θI − K]). For
example, for the OFF-OFF-ON ladder model with transition rate matrix

K =


−k12 k21 0
k12 −(k12 + k23) k32

0 k23 −k32

 , (6.39)

(see Fig. 6.6), we can follow the method in Section 6.2.1 step-by-step until we reach
Eq. (6.6), where the (M + 1)st coordinate is

det(θI −K)Hon(s) = MM+1,M+1 sHon(s) (6.40)
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and

MM+1,M+1 = det
(
θ + k12 −k21

−k12 θ + (k23 + k21)

)
(6.41)

= (θ + κ+)(θ + κ−); (6.42)

κ± = 1
2

[
k12 + k21 + k23 ±

√
(k12 + k21 + k23)2 − 4k12k23

]
. (6.43)

We can then straightforwardly continue as for theM -cycle, replacing k1 and k2 by κ+ and
κ− where appropriate, to obtain the solution

P (n) = Γ(κ+ + n)
Γ(κ+)

Γ(κ− + n)
Γ(κ−)

Γ(−ν1)
Γ(−ν1 + n)

Γ(−ν2)
Γ(−ν2 + n)

µn

n! F2 2

[
κ+ + n, κ− + n

−ν1 + n, −ν2 + n
; −µ

]
.

For these examples with only one active state, we needed only obtain Hon(s), since the
transformed probability generating function H(s) satisfied dH/ds = Hon(s). For models
with more than one active state, we can still use the same general approach but we would
find that dH/ds is a linear combination of each function Hi(s) corresponding to an active
state.

Similar comments can be made for finding the mixing densities of other multistate
promoter models, but we can make further deductions because, as alluded to in the text,
we obtain Fuchsian equations. These properties are discussed in Chapter 7.
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Chapter 7

Which models are solvable?

The Poisson mixture result shows that extrinsic fluctuations or cell-to-cell variation in
parameter values can be completely described by the single explanatory variable Xt. Fur-
ther, in Chapter 4 we showed that Xt satisfies a simple first-order random differential
equation that has countless applications in numerous fields, and has been studied for over
a century (Soong 1973; Langevin 1908; Risken 1989). In this chapter, we take advantage
of both of these insights to find shortcuts towards solutions and properties of multistate
models that have not yet been solved.

In Section 7.1 we show that all Markov chain multistate models have certain regularity
properties that enable several deductions about the form that solutions should take, and
why. In Section 7.2, we draw from literature in other fields where fXt has already been
calculated for non-Markovian ON-OFF models, so we can write down the exact Poisson
mixture form for P (n) directly.

7.1 Insights for Markov chain multistate models using Fuchsian theory

In Section 6.4 we showed how to use the multistate Kramers-Moyal equations to obtain
P (n) and the mixing density fX for theM -cycle model. The same approaches can be used
for any multistate model where the random walk between promoter states is independent
of the state of the system, n: we can write down the set of L ODEs for the probability gen-
erating functions for each state, or write down the L multistate Kramers-Moyal equations.
In theory, the systems of equations can be solved to obtain P (n) and fX .

Arguably more important than a solution for a particular model, however, is a means of
predicting which models are solvable and the form the solutions might take. The derivation
of fX via the multistate Kramers-Moyal equations allows us to do just that for Markov
chain multistate models, where the random walk between the promoter states is a Markov
chain.

Essentially, for Markov chain multistate models the system of multistate Kramers-
Moyal equations is Fuchsian, meaning that it has numerous important properties that
allow us to make immediate inferences about the form of the equivalent Lth-order differ-
ential equation, and in some cases the form of the solution. A full treatment of these
questions requires a fairly advanced level of analysis and geometry of differential equa-
tions, so after a brief interlude to introduce some context and required definitions, we will
only state some relevant classical results and briefly describe the implications and possible
routes for further work.
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7.1.1 Interlude: A very brief introduction to Fuchsian systems

We will be considering a system of L first-order ODEs for f ..= (f1, . . . , fL)T . It is well
known that an Lth-order ODE can be rewritten as a system of L first-order ODEs, but
the converse is also true: any coupled system of first-order ODEs is equivalent to a system
which comes from an ODE (Beukers 2009).

Now, consider the differential equation

dLy

dxL
+ q1(x)d

L−1y

dxL−1 + · · ·+ qL−1(x)dy
dx

+ qL(x)y = 0,

where the qi(x) are rational functions. To study this ODE it is useful to know whether
it has any singularities, and how the solution will grow close to those singular points. In
particular, close to a regular singularity at point p, |y(x)| will grow at a rate of at most
|x − p|−L. Hence around regular singularities any growth is moderate, and ensures that
several important properties will hold. For example, y will only have a finite number of
Laurent terms.

An ODE or a system of first-order ODEs where all points are either regular or a
regular singularity is called Fuchsian, and for the reasons mentioned above they have
been of great interest to mathematicians, physicists, and engineers for centuries. In fact,
Hilbert’s twenty-first problem concerned Fuchsian systems, and such greats as Poincaré,
Riemann, Birkhoff, and Grothendieck contributed far-reaching, general results to the field.
We are thus extremely fortunate to find that our multistate Kramers-Moyal equations are
Fuchsian for Markov chain multistate models (as will be shown in the next section), as it
means that we can immediately apply some of these results. Here we mention the most
relevant conclusions.

First, when studying a differential equation or an analytic function it is useful to find
and classify the singularities. In general, detecting regular singularities can be difficult
but Fuchsian systems have a particularly simple form: if our L × L system of ODEs for
y ..= (y1, . . . , yL)T is given by

dy
dx

= A(x)y, with A(x) =
r∑
i=1

Ai
x− pi

, (7.1)

where the Ai are constant matrices, the system is Fuchsian with finite regular singularities
{pi}ri=1. The point x = ∞ is regular if and only if ∑iAi = 0. Hence it is relatively easy
to determine whether we have a Fuchsian system, and usually we simultaneously obtain
the regular singular points. We will see this at play in the next section where we use this
property to show that we have a Fuchsian system ourselves.

It has been proven (under certain assumptions) that a solution for Lth-order equations
with r singularities exists (Plemelj 1964), and in certain cases one can construct an ansatz
for the analytic solution near the singularities according to prescribed forms (Ilyashenko
and Yakovenko 2008). Further, Fuchsian equations with few singularities can be com-
pletely characterised, or characterised to some extent:
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One singularity: Any Fuchsian equation with only one singularity can be transformed
into the equation

dLy

dxL
= 0,

which has a regular singularity at x = ∞ (Beukers 2009). The solutions therefore
take the form

y = c1x
L−1 + · · ·+ cL−1x+ cL,

where c1, . . . , cL are constants.

Two singularities: Any Fuchsian equation with two singularities can be transformed
into an Euler equation:

xL
dLy

dxL
+ a1x

L−1 d
L−1y

dxL−1 + · · ·+ aL−1x
dy

dx
+ aLy = 0,

which has regular singularities at x = 0 and x = ∞ (Beukers 2009). The change of
variable x = eu reduces this equation to a linear differential equation with constant
coefficients.

Three singularities: Any Fuchsian equation with three singularities can be transformed
into the equation

xL−1(1− x)d
Ly

dxL
+ xL−2(a1x− b1)d

L−1y

dxL−1 + · · ·+ aLy = 0, (7.2)

with regular singularities at x = 0, x = 1, and x =∞ (Slater 1966). Assuming that
b1, . . . , bL−1 are distinct modulo 1, Eq. (7.2) has L linearly independent solutions for
|x| < 1, given by the generalised hypergeometric functions

FL L−1

[
a1, . . . , aL

b1, . . . , bL−1
; x

]
, and

x1−bi FL L−1

[
1 + a1 − bi, . . . . . . , 1 + aL−1 − bi, 1 + aL − bi
1 + b1 − bi, . . ∨ . . , 1 + bL−1 − bi, 2− bi

; x
]
, i = 1, . . . , L− 1,

where the ∨ indicates that the term 1 + bi − bi is omitted from the sequence in the
denominator. This was the case we saw for the M -cycle in Chapter 6.

Order two, four singularities: Second-order Fuchsian equations with four singular points
are usually called Heun’s equation. Its solutions are listed in Maier’s recent arti-
cle (Maier 2007). See Ronveaux’s excellent book (Ronveaux 1995) for a comprehen-
sive discussion of Heun’s equation, its solutions and its properties.

Order one, r singularities: Any first-order Fuchsian equation with singularities {p1, . . . , pr}
can be written in the form

dy

dx
+
(

a1
x− p1

+ · · ·+ a1
x− pr

)
y = 0,
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where the a1, . . . , ar are scalar constants, and hence y has the form

y = C

(x− p1)a1 . . . (x− pr)ar
,

where C is a constant of integration.

7.1.2 Multistate Kramers-Moyal equations are Fuchsian

Now we know some basics of Fuchsian systems, let us return to multistate models of gene
transcription and use this knowledge to our advantage. To avoid confusion with the M -
cycle model from the previous chapter, in this section we specify the general Markov chain
multistate model we will be considering here, and show that we obtain a Fuchsian system.
The following sections will use this information to draw conclusions regarding specific gene
transcription models.

We consider a multistate model with L distinct promoter states {s1, . . . , sL}, where
in state si the transcription and degradation rates are constants µi and λi, respectively.
Promoter state transitions are modelled by a Markov chain, with kij the transition rate
from state sj to si. We assume that the cells are uncoupled, so the system has a stationary
solution. For simplicity, we assume the system is already at stationarity.

Ultimately, we are interested in the probability distribution P (n) for the number n of
mRNA transcripts, but we showed in Section 3.2 that P (n) can be written as a mixture
distribution

P (n) =
∫
ξn

n! e
−ξ fX(ξ) dξ.

Recall from Section 4.4 that to find fX , we can expand the state space to {X,S} and
consider the joint probability density functions fi(x) ..= fX,S(x, si) for i = 1, . . . , L. Then
we have fX = ∑

i fi, and the fi satisfy the multistate Kramers-Moyal equations

d

dx
[(µi − λix)fi] =

L∑
j=1

kijfj −

 L∑
j=1

kji

 fi.
In matrix form, we have

d

dx
[diag{µi − λix}f ] = Kf , (7.3)

where

f ..= (f1, . . . , fL)T ,

diag{µi − λix} ..= diag(µ1 − λ1x, . . . , µL − λLx),

and Ki,j
..=

−
∑
r 6=j krj if i = j,

kij otherwise.
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Using the product rule on the left hand side of Equation (7.3), we can rewrite it as:

df
dx

= [diag{µi − λix}]−1(K + diag{λi})f

=
L∑
i=1

Ai
x− µi

λi

f ,

where the Ai, i = 1, . . . , L, are L×L matrices formed of the ith row of −(K+diag{λi})/λi,
and zeros everywhere else, i.e.

(Ai)n,m =

−
(
Ki,m
λi

+ δi,m
)

if n = i,

0 otherwise.

Hence, by definition (see Eq. (7.1)), we have a Fuchsian system with finite singularities
{pi ..= µi/λi}Li=1, and p∞ = ∞. Notice that for a Markov chain multistate model we
have at least three singularities1, including p∞. Furthermore, by employing a Möbius
transformation we can map any three singularities to a second set of three distinct points.
Since it is not usual to have different degradation rates for different gene states, we will
assume that distinct singularities simply correspond to distinct transcription rates, and
without loss of generality we will always map the smallest and largest finite singularities
to zero and one, respectively. In doing so, we transform the extrinsic random variable X
to the random variable Z, which takes values from the interval (0, 1).

It is worth pointing out here that the Fuchsian equations that correspond to the Fuch-
sian system are usually in terms of one of the components of f . For our multistate models,
conservation of probability constrains the rows of the transition matrix K to sum to zero.
We then have one degree of freedom less than the dimension of the system, so that for an
L- state model we obtain Fuchsian equations of order L − 1. This effect was seen in the
derivation of the mixing density for the cyclic model (Section 6.4), but for ease of reading
it will be demonstrated for the two state model in Section 7.1.3.

Note that we have not imposed a Fuchsian system on our model; the general multistate
model considered in this chapter is almost ubiquitous in studies involving gene transcrip-
tion models for a single gene. In studying them from the context of the Poisson mixture
result in Chapter 3, we were able to see this extremely fortunate2 underlying structure.

Armed with this information, we can now look back at the properties of Fuchsian
systems to help us in two directions. First, to understand the results we already have for
multistate gene transcription models in this wider context, and second, to guide us towards
potentially profitable directions to explore. As mentioned before, a thorough exploration

1For simplicity we are ignoring any cases where µi/λi = µj/λj , µi 6= µj , λi 6= λj , i 6= j, because they
are not likely to be relevant for gene expression models.

2It is “fortunate” that the multistate Kramers-Moyal equations for the mixture distribution in these
models is Fuchsian, as it means that we can draw upon the tremendous amount of work that has been
conducted over centuries to understand the properties of Fuchsian systems. On the other hand, in a sense
it is not surprising that the system is Fuchsian because as a model representing variation in transcription
rates due to promoter state switching, we would expect it to behave moderately near singularities.
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of the possibilities afforded to us with the Fuchsian tools would require a strong grasp of
areas of mathematics that are beyond the scope of this thesis. Nevertheless, with only the
basic properties mentioned in Section 7.1.1 we will use the following sections to:

• clarify why the solution of the two-state (random telegraph) model is completely
characterised and takes the form that it does;

• say why the mixing density for any Markov chain L-state model with only two
distinct transcription rates should be a linear combination of zk FL−1 L−2 functions;
and

• justify that the mixing density for any three-state model with three distinct tran-
scription rates should give us Heun’s equation, the solution of which is known for
certain cases.

7.1.3 Two-state model as a Fuchsian system
Recall that a Markov chain multistate model has a minimum of three singularities, includ-
ing p∞ =∞. Therefore for the two state model we have two finite singularities, which can
be mapped using a Möbius transformation to zero and one. We have no extra degrees of
freedom, so the model is completely characterised.

As mentioned in Section 7.1.1, a priori the solution of a Fuchsian equation deriving
from a second order Fuchsian system with three singularities should be a linear combina-
tion of F2 1 functions. However, because the 2 × 2 transition matrix K only has rank 1,
the F2 1 functions reduce to F1 0. Let’s illustrate this property to see how the reduction
happens.

Assume we have already applied a Möbius transformation, so the singularity for the
inactive state is at zero and the singularity for the active state is at one. As we did when
deriving the mixing density for the cyclic model in Section 6.4, denote the transformed
extrinsic random variable by Z and the joint probability density functions by fon and foff .
fZ = fon +foff thus has support on the interval (0, 1). kon and koff are the transition rates
to the active and inactive states respectively, as shown in the multistate Kramers-Moyal
equations for this system:

d

dz
[−zfoff ] = −konfoff + kofffon (7.4a)

d

dz
[(1− z)fon] = konfoff − kofffon. (7.4b)

Direct substitution method

With only two equations, this system can easily be solved by direct substitution. Sum
Eqs (7.4) to obtain

d

dz
[− zfoff(z) + (1− z)fon(z)] = 0,

i.e.
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− zfoff(z) + (1− z)fon(z) = c1,

where c1 is a constant of integration. Using the boundary condition fon(0) = 0 (see
Eq. (6.25b) for a reminder), we find that c1 = 0, so we can write

foff = 1− z
z

fon (7.5)

and substitute into Eq. 7.4b. Rearranging, we find

z(1− z)dfon
dz

= [kon + (1− kon − koff)z] fon,

with general solution

fon(z) = c2z
kon(1− z)koff−1

= c2z
kon F1 0 [1− koff ; ; z ] .

The integral condition (Eq. (6.24))
∫ 1

0
fon(z) dz = kon

kon + koff

gives us the particular solution

fon(z) = Γ(koff + kon)
Γ(koff)Γ(kon) z

kon(1− z)koff−1

≡ Γ(koff + kon)
Γ(koff)Γ(kon) z

kon F1 0 [1− koff ; ; z ] . (7.6)

Using Eq. (7.5) it follows that

foff(z) = Γ(koff + kon)
Γ(koff)Γ(kon) z

kon−1(1− z)koff

≡ Γ(koff + kon)
Γ(koff)Γ(kon) z

kon−1 F1 0 [−koff ; ; z ] ,

and so

fZ(z) = fon(z) + foff(z)

= Γ(koff + kon)
Γ(koff)Γ(kon) z

kon−1(1− z)koff−1

≡ Γ(koff + kon)
Γ(koff)Γ(kon) z

kon−1 F1 0 [1− koff ; ; z ] .

Notice that using this method of direct substitution, we immediately obtain solutions in
terms of F1 0 [1− koff ; ; z ] because we used the fact that the row sum of the transition
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matrix K is equal to zero at the beginning.

Matrix method of solution shown in Section 6.4

Following the method shown in Section 6.4 for the cyclic model, write Eqs (7.4a)-(7.4b)
in the following form:(

z d
dz + 1− kon koff

kon z d
dz + 1− koff

)(
foff

fon

)
=
(

0 0
0 1

)
d

dz

(
foff

fon

)
.

Denote the matrix on the left of this last equation by (θI+I+K), with θ ..= z d
dz . Multiply

both sides of the equation on the left by

adj(θI + I +K) =
(
θ + 1− koff −koff

−kon θ + 1− kon

)

to obtain

det(θI + I +K)
(
foff

fon

)
=
(

0 −koff

0 θ + 1− kon

)
1
z
θ

(
foff

fon

)
. (7.7)

Recall that the determinant of a matrix is equal to the product of its eigenvalues; the
eigenvalues of K are 0 and −kon − koff , so the second coordinate of Eq. (7.7) is

(θ + 1)(θ + 1− kon − koff)fon = (θ + 1− kon)1
z
θ fon

= 1
z

(θ − kon) θ fon,

or, when expanded out,

z(1− z)d
2fon
dz2 + [1− kon − (3− kon − koff)z] dfon

dz
− (1− kon − koff)fon = 0.

This last equation is Euler’s hypergeometric differential equation, which has general solu-
tion (Slater 1966)

fon(z) = c0 F2 1

[
1− koff − kon, 1

1− kon
; z

]

+ c1 z
kon F2 1

[
1− koff − kon + kon, 1 + koff

1 + koff
; z

]

= c0 F2 1

[
1− koff − kon, 1

1− kon
; z

]
+ c1 z

kon F1 0 [1− koff ; ; z ]

= c0 F2 1

[
1− koff − kon, 1

1− kon
; z

]
+ c1 z

kon(1− z)koff−1.

Notice that the second F2 1 reduced to a F1 0 because of the equal parameters in the
numerator and denominator. The remaining F2 1 does not appear in the particular solution
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because of the boundary condition at z = 0 (see Eq. (6.25b)). Using the conditions

fon(0) = 0 and
∫ 1

0
fon(z) dz = kon

kon + koff
,

(see Eqs (6.25b) and (6.24)) we obtain

fon(z) = kon
kon + koff

Γ(kon + koff + 1)
Γ(kon + 1)Γ(koff) z

kon(1− z)koff−1

= Γ(kon + koff)
Γ(kon)Γ(koff) z

kon(1− z)koff−1

= Γ(kon + koff)
Γ(kon)Γ(koff) z

kon F1 0 [1− koff ; ; z ] .

Similarly,

foff(z) = koff
kon + koff

Γ(kon + koff + 1)
Γ(kon)Γ(koff + 1) z

kon−1(1− z)koff

= Γ(kon + koff)
Γ(kon)Γ(koff) z

kon−1(1− z)koff

= Γ(kon + koff)
Γ(kon)Γ(koff) z

kon−1 F1 0 [−koff ; ; z ] ,

so finally

fZ(z) = fon(z) + foff(z)

= Γ(kon + koff)
Γ(kon)Γ(koff) z

kon−1(1− z)koff−1

= Γ(kon + koff)
Γ(kon)Γ(koff) z

kon−1 F1 0 [1− koff ; ; z ] .

Notice that using this method, we obtained solutions in terms of F2 1 first, as expected
for a Fuchsian system of dimension two with three singularities. However, the solution
eventually reduces to the form F1 0, to be consistent with the solution (7.6) we obtain by
direct substitution.

7.1.4 L-state models with two distinct transcription rates

Here we consider a generalisation of the two-state ON-OFF model by increasing the num-
ber of states, without increasing the number of distinct transcription rates. In other words,
we have L gene states that can be separated into two mutually exclusive subsets according
to transcription rate, which we will refer to as the inactive (or OFF) states, and the active
(or ON) states.

As usual, we use a Möbius transformation to map the finite singularity corresponding
to the inactive (resp. active) state to zero (resp. one). This Lth-order Fuchsian system
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has three singularities (including the singularity at infinity). In general, corresponding
Fuchsian equations have solutions that are linear combinations of functions of the form
zk FL L−1 for |z| < 1 (Slater 1966), but since we have the extra constraint that the row sum
of the transition matrix K is equal to zero, the solutions reduce to linear combinations of
functions of the form zk FL−1 L−2. One example has already been given in the derivation of
the mixing density of theM -cycle (Section 6.4): the model has a total ofM+1 states, and
we found that fon(z) (and hence fZ) is a linear combination of the functions zki FM M−1
(see Eqs (6.30) and (6.31)). The following example shows that it holds true for a different
structure of the gene states.

Example 7.1–1 — Mixing density for the OFF-OFF-ON ladder model

Consider the OFF-OFF-ON “ladder” model as illustrated in Fig. 7.1a, and map the
finite singularity µ/λ to one. The multistate Kramers-Moyal equations for this system,
where f1 and f2 correspond to the gene states OFF1 and OFF2, respectively, and fon

corresponds to the ON state, are

d

dz

[(
e3eT3 − zI

)
f(z)

]
= Kf(z),

where e3 = (0, 0, 1)T , f = (f1, f2, fon)T , and

K =


−k21 k12 0
k21 −(k12 + k32) k23

0 k32 −k23

 .
Denoting z d

dz by θ and following the method shown in Section 6.4, we obtain

fZ = f1 + f2 + fon = 1
z
fon,

f1(1) = f2(1) = fon(0) = 0,

and
det(θI + I +K) f = adj(θI + I +K) e3 eT3

1
z
θ f .

The third coordinate of this equation is

(θ + 1 + ν+)(θ + 1 + ν−)(θ + 1) fon(z) = (θ + 1 + κ+)(θ + 1 + κ−) 1
z
θ fon(z)

= 1
z

(θ − κ+)(θ − κ−) θ fon(z), (7.8)

where ν± are the eigenvalues of K and κ± are obtained when factorising the minor
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M3,3 of the matrix [θI + I +K]:

ν± = 1
2

(
−k21 − k12 − k32 − k23 ±

√
(k21 + k12 + k32 + k23)2 − 4(k21k32 + k21k23 + k12k23)

)
κ± = 1

2

(
k21 + k12 + k32 ±

√
(k21 + k12 + k32)2 − 4k21k32)

)
.

Equation (7.8) has the form of a generalised hypergeometric equation (Beukers 2009),
so we can straightforwardly write down the general solution:

fon(z) = c0 z
0 F3 2

[
1 + ν+, 1 + ν−, 1
1− κ+, 1− κ−

; z
]

+ c1 z
κ+ F3 2

[
1 + ν+ + κ+, 1 + ν− + κ+, 1 + κ+

1− κ− + κ+, 1 + κ+
; z

]

+ c2 z
κ− F3 2

[
1 + ν+ + κ−, 1 + ν− + κ−, 1 + κ−

1− κ+ + κ−, 1 + κ−
; z

]

= c0 z
0 F3 2

[
1 + ν+, 1 + ν−, 1
1− κ+, 1− κ−

; z
]

+ c1 z
κ+ F2 1

[
1 + ν+ + κ+, 1 + ν− + κ+

1− κ− + κ+
; z

]

+ c2 z
κ− F2 1

[
1 + ν+ + κ−, 1 + ν− + κ−

1− κ+ + κ−
; z

]
.

Notice again that the F3 2 functions reduced to F2 1, and the boundary condition
fon(0) = 0 implies that c0 = 0, so that

fZ(z) = 1
z
fon(z)

= c1 z
κ+−1 F2 1

[
1 + ν+ + κ+, 1 + ν− + κ+

1− κ− + κ+
; z

]

+ c2 z
κ−−1 F2 1

[
1 + ν+ + κ−, 1 + ν− + κ−

1− κ+ + κ−
; z

]
.

We could also obtain a differential equation for fon via substitution by hand (as we
did in Section 7.1.3), getting Euler’s hypergeometric equation and hence the Gaussian
( F2 1) hypergeometric functions directly.
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a) b)

Figure 7.1: 3-state ladder models of gene transcription. (a) OFF-OFF-ON model, where
the gene transitions between the active state (ON) and the inactive states (OFF1 and
OFF2) with the rates shown. Transcription only takes place in the ON state, with rate
constant µ. (b) OFF-ON-ON model, where the gene transitions between the inactive
state (OFF) and the active states (ON1 and ON2) with the rates shown. Transcription
only takes place in the ON1 state with rate constant µ1, and in the ON2 state with rate
constant µ2 > µ1. Degradation occurs as a first-order reaction with rate constant λ for
both models, independently of gene state.

7.1.5 Three-state models with three distinct transcription rates

We showed in Section 7.1.2 that the multistate Kramers-Moyal equations for any Markov
chain multistate model form a Fuchsian system. The finite regular singularities are given
by the distinct transcription rates and infinity. Recall that the order of the corresponding
Fuchsian equations reduce by one because the rows of K sum to zero. Hence, three-state
models with three distinct transcription rates give rise to second order Fuchsian equations
with four singularities, otherwise known as Heun’s equation (Ronveaux 1995; Maier 2007).
The canonical form of Heun’s equation is

d2y

dz2 +
(
γ

z
+ δ

z − 1 + ε

z − a

)
dy

dz
+ αβz − q
z(z − 1)(z − a) y = 0, (7.9)

with the Fuchsian constraint
γ + δ + ε = α+ β + 1

to ensure that the singular point at z =∞ is regular (Maier 2007).
Like the hypergeometric equation, solutions of Heun’s equation are usually given as

power-series solutions. However, the coefficients of the series are governed by three-term
recursion relations so it is generally impossible to write down the series solution explic-
itly (Ronveaux 1995; Maier 2007). In some cases, the solution of Heun’s equation can
be written as a linear combination of Gauss hypergeometric ( F2 1) functions (Craster and
Hoàng 1998; Shanin and Craster 2002; Maier 2007; Ishkhanyan and Suominen 2009), or
in integral form (Takemura 2008).

Due to the difficulties involved in solving Heun’s equation, and the geometrical analysis
of differential equations that would be required, obtaining the mixing density for a model
with three distinct transcription rates goes beyond the scope of this thesis. However,
we will show that we do indeed obtain Heun’s equation for a relevant model of gene
transcription.
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Example 7.1–2 — Heun’s equation for the OFF-ON-ON ladder model

The OFF-ON-ON “ladder” model (Fig. 7.1b) has been proposed to model interplay
between the TATA box and the nucleosome (Tirosh and Barkai 2008), DNA conden-
sation by nucleoid proteins or changes in DNA supercoiling (Sánchez et al. 2013),
and variable polymerase initiation frequency (Senecal et al. 2014). Apply a Möbius
transformation, so that the singularities corresponding to the OFF, ON1 and ON2

transcription rates are at z = 0, z = a, and z = 1, respectively, with a < 1. kij is the
transition rate from gene state j to gene state i, as shown in Fig. 7.1. The multistate
Kramers-Moyal equations for this system, where f0 corresponds to the OFF state and
f1 and f2 correspond to the gene states ON1 and ON2, respectively, are

d

dz
[−zf0] = −k10f0 + k01f1 (7.10a)

d

dz
[(a− z)f1] = k10f0 − (k01 + k21)f1 + k12f2 (7.10b)

d

dz
[(1− z)f2] = k21f1 − k12f2. (7.10c)

As we did for the cyclic model, we can show that

f0(1) = f1(0) = f2(0) = 0,

hence if we sum the three equations (7.10) and integrate, the constant of integration
will be equal to zero and we obtain

−zf0 + (a− z)f1 + (1− z)f2 = 0. (7.11)

We want to obtain an equation in terms of f2 only, via substitution; the details are
omitted, as they simply involve some tedious algebra. There are several routes, but for
example one can use Eq. (7.11) to eliminate f0 from Eq. (7.10b), and then Eq. (7.10c)
to eliminate f1, to obtain

0 = z(a− z)(1− z)d
2f2
dz2

+ {(k12 − 2)z(a− z) + (1− z) [(k01 + k21 − 1)z − k10(a− z)]} df2
dz

+ {(k10k21 + k10k12 + k01k12 − k10 − k01 − k21 − k12 + 1)z . . .

−k10(k12m−m+ k21)} f2(z)

= d2f2
dz2 +

{−k10
z

+ 2− k12
z − 1 + 1− k01 − k21

z − a

}
df2
dz

+ αβz − q
z(z − 1)(z − a)f2, (7.12)
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where

αβ = (k10k21 + k10k12 + k01k12 − k10 − k01 − k21 − k12 + 1),

q = k10(k12m−m+ k21).

Comparison to Eq. (7.9) shows that Eq. (7.12) is indeed Heun’s equation. An equation
for f0 can be obtained via a similar approach, and an equation for f1 can be calculated
by substitution of Eq. (7.12) into Eq. (7.10c).

7.2 ON-OFF models with non-Markovian promoter switching

The Markov chain two-state model is inadequate for describing systems with non-exponentially
distributed waiting times in either gene state (Suter et al. 2011; Harper et al. 2011; Kand-
havelu et al. 2012). So far, we have considered extensions of the two-state model that
cater for such observations by increasing the number of ON and/or OFF states. The dis-
tribution for the total waiting time τon (resp. τoff) spent in the active (resp. inactive) gene
states then depends on the structure of the Markov chain gene state transition matrix K.
However, extending the Markov chain two state model in this way constrains the possible
waiting time distributions, as the time spent in each individual gene is still exponentially
distributed. For example, for the M -cycle described in Chapter 6, the total waiting time
τoff spent in the inactive gene states before returning to the active state is the sum of M
independent, exponentially-distributed waiting times (and hence τoff is hypo-exponentially
distributed (Smaili et al. 2013)).

A more general approach to account for non-exponential waiting times is to maintain
only two gene states, but allow the waiting times τon and τoff to be independent random
variables drawn from any distribution we choose (Schwabe et al. 2012; Stinchcombe et al.
2012). In other words, we allow the jump process for the gene state to be non-Markovian.

Despite the simplicity of this system, we are not aware of any analytical expressions
for the probability distribution P (n) of the mRNA copy number that have been derived.
The Poisson mixture result tells us that we need only obtain the mixing density fX ,
but the corresponding multistate Kramers-Moyal-type equations require numerical solu-
tions (Stinchcombe et al. 2012). Nevertheless, if we look further afield we find several
useful results: calculating fX for problems of this sort was of significant interest to elec-
trical engineers in the 1950s–1980s, since the process X models the output of an RC filter
driven by a binary random process (Wonham and Fuller 1958; McFadden 1959; Pawula
and Rice 1986). More recently, Dubins-Freedman chains were shown to be special cases of
RC filters (Mazza and Piau 2001). We can therefore draw directly from a fairly substantial
body of existing results, including some exact solutions, elementary relations and integral
equations for the conditional density of X given the gene state and the densities of X at
the switching times, moment expressions and Laplace transforms, several approximation
methods, and inevitably, indications as to which waiting time distributions might allow
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us to obtain analytical solutions. We refer the interested reader to the excellent papers
by Pawula and Rice (1986) and Mazza and Piau (2001) for an overview of the available
results. For completeness we nevertheless state the exact solutions they obtained here, as
they are instructive for suggesting amenable waiting time densities.

In the following, we assume without loss of generality that λ = 1 and we have already
made the appropriate change of variable, e.g. X = µZ, so that the mixing density fZ has
support on (0, 1) and its sample paths ζ satisfy

dζ

dt
+ ζ(t) = ξ(t),

where ξ(t) ∈ {0, 1} is the binary random process.

7.2.1 McFadden interval pdfs

Suppose the waiting times τ in both the active and the inactive gene states are distributed
according to the McFadden interval pdf (McFadden 1959)

fτ (t) = e−at
(
1− e−t

)b−a−1

B(a, b− a) , b > a,

where
B(α, β) =

∫ 1

0
sα−1(1− s)β−1 ds

is the Beta function. Then fZ is given by (Pawula and Rice 1986)

fZ(z) = 1− Iz(b, a)− I1−z(b, a)
2[ψ(b)− ψ(a)]z(1− z) ,

where
Ix(α, β) =

∫ x
0 s

α−1(1− s)β−1 ds

B(α, β)

is the regularized incomplete beta function (Abramowitz and Stegun 1964), and

ψ(x) = Γ′(x)
Γ(x)

is the logarithmic derivative of the gamma function, often referred to as the digamma
function (Abramowitz and Stegun 1964). When b− a ∈ N,

ψ(b)− ψ(a) =
b−a−1∑
k=0

1
k + a

,

and when a, b ∈ N, fZ reduces to

fZ(z) =
1−∑a−1

k=0
(b+a−1

k

) [
zk(1− z)b+a−1−k + zb+a−1−k(1− z)k

]
2z(1− z)∑b−a−1

k=0
1

k+a
. (7.13)
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b = a + 1 and b = a + 2

Surprisingly, the first two cases of Eq. (7.13) give the same distribution for Z. When
b = a + 1, the McFadden interval pdf reduces to the exponential distribution and we
obtain the Beta distribution for Z, as expected. We obtain the same distribution when
b = a+ 2: for waiting time distributions

fτ (t) = ae−at or fτ (t) = a(a+ 1)e−at(1− e−t),

the density of Z is given by the Beta distribution

fZ(z) = za−1(1− z)a−1

B(a, a) .

7.2.2 Gamma waiting time densities

Using integral equations adapted from McFadden 1959, in 1986 Pawula and Rice derived
several differential equations for the conditional pdfs fZ|ON and fZ|OFF, the densities of the
local minima and maxima of Z, and fZ . Taken together, once the waiting time densities
are specified they can be used to obtain a differential equation in terms of fZ only.

When the waiting times are gamma distributed with shape parameter 2 and rate
parameter β, i.e.

fτ (t) = β2te−βt,

the equation to solve is

0 = z2(1− z)2f
′′′
Z − (5− 2β)z(1− z)(2z − 1)f ′′Z

+ [(β − 2)2 − 2(3β2 − 11β + 12)z(1− z)]f ′Z (7.14)

+ (3− 2β)(β2 − 2β + 2)(2z − 1)fZ .

Pawula and Rice: τ ∼ Γ(2,1/2)

When β = 1/2, Eq. (7.14) simplifies and can be solved:

fZ(z) =
√

2
π3

∣∣∣Γ (3−i
4

)∣∣∣2
√

1− z
F2 1

[
(1 + i)/4, (1− i)/4 ; 1/2 ; (2z − 1)2

]
.

When β 6= 1/2, (Pawula and Rice 1986) instead provides recurrence formulae for the
coefficients of the series expansion of fZ .

Mazza and Piau: τ ∼ Γ(2, β)

In a veritable tour de force, Mazza and Piau investigated the properties of a certain kind of
iterated random function (Mazza and Piau 2001), and in doing so obtained several results
for RC filters of the kind we are interested in. Here we note only their most relevant,
explicit results which extend those given above for Γ(2, β)-distributed waiting times.

First, they show how to find an explicit solution of Eq. (7.14), which are linear com-
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binations of functions

[4z(1− z)]−n F3 2[a1, a2, a3 ; b1, b2 ; 4z(1− z)]

for n satisfying an indicial equation which in this case gives n = 0, 1− β.
When β = 1, all the exponents of the indicial equation coincide and they show that

fZ has the form

fZ(z) = c1

(
F3 2

[
2a, 2b, 1

2
1, 1

; z
]

+ F3 2

[
2a, 2b, 1

2
1, 1

; 1− z
])

+ c2 F2 1

[
a, b

1
; z

]
F2 1

[
a, b

1
; 1− z

]
,

where
a ..= 1− i

4 , b ..= 1 + i

4 .

7.3 Discussion

As far as we are aware, the Fuchsian property of the multistate Kramers-Moyal equations
for Markov chain multistate models has not yet been explored, but given the insights
gained here with only minimal tools from the theory of Fuchsian systems and equations,
the subject merits deeper investigations. Beyond the obvious advantage of obtaining
solutions for more Markov chain multistate models, the Fuchsian properties can assist with
understanding potential qualitative behaviour of the solutions. For example, Zhang et al.
2012 searched for multimodal behaviour in P (n) for the 2-cycle, whereas we know that the
mixing density fXt for any M -cycle has only two finite singularities, and therefore P (n)
can have a maximum of two (non-adjacent) modes. The potential insights that could be
gained from applications of more sophisticated Fuchsian theorems remain to be uncovered.

Similarly, in Section 7.2 we drew upon on the associated results from just two different
fields to obtain some solutions for multistate models with non-exponential waiting times
in each gene state. Given the vast number of fields for which a random variable Xt satisfies
a first-order random differential equation, there are likely more results for the taking.
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Chapter 8

Quantification of timescales

As mentioned in Chapters 1 and 2, it is widely accepted that changes in promoter architec-
ture, or other kinds of “gene state switching”, cause the transcription rate in single cells to
change stochastically in time (Sánchez et al. 2013). Multistate promoter models describe
these gene state transitions explicitly, giving rise to several timescales: (i) the degradation
rate of the mRNA molecules λ, which we are assuming here to be independent of the gene
state, (ii) the transcription rates µi, i = 1, . . . , L, one for each gene state, and (iii) the
transition rates kij , i, j = 1, . . . , L, i 6= j. The dynamical behaviour of the mRNA copy
number in single cells, and the properties of the solution P (n) of the master equation for
the model depend on the balance of these timescales relative to each other.

Parameter regimes with timescale separations between the gene state switching rates
and the transcription rates have been well studied. First, if gene state switching is suffi-
ciently slow the copy number distribution P (n) can be multimodal. For some organisms,
each mode can correspond to a different phenotypic state (Choi et al. 2008; Gupta et al.
2011; Ozbudak et al. 2004). It has been shown that stochastic transitioning between
multiple phenotypic states can be an effective survival strategy for cell populations in
fluctuating or unpredictable environments (Balaban et al. 2004; Kussell and Leibler 2005;
Acar et al. 2005; Thattai and Oudenaarden 2004). On the other hand, in other cases
timescales of gene switching are often assumed to be in “rapid pre-equilibrium” (Ge et al.
2015), i.e., much faster than the timescales for transcription, to take advantage of the sim-
plifications that follow for the mathematical analysis of a model (Shahrezaei and Swain
2008; Hu et al. 2011; Thomas et al. 2012).

However, true understanding and practical applications of results under timescale sep-
arations suffer from two limitations. First, there is no exact quantification or measure for
“fast” or “slow” switching regimes, so it is difficult to judge how applicable results obtained
under such assumptions are for real data. Second, timescale assumptions are usually based
on mean waiting times, and there has been little investigation into the effects of the waiting
time distribution on parameter regime estimates. It is plausible that these effects could
be important in intermediate switching regimes in particular. These issues are becoming
more pertinent now that more and more time course data is emerging showing switching
in intermediate switching regimes (Li and Xie 2011; Taniguchi et al. 2010; Choi et al.
2008; Gupta et al. 2011; Ozbudak et al. 2004), the appearance of non-exponential waiting
times (Suter et al. 2011; Harper et al. 2011; Kandhavelu et al. 2012), and the emergence
of exact solutions for models that are opening the door to the analysis of models with
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non-exponential waiting times (Hornos et al. 2005; Huang et al. 2014; Stinchcombe et al.
2012; Zhang et al. 2012).

We will address the first limitation using the mean-first-passage time to reach one
stable state from another to characterise parameter regimes quantitatively (Szabo et al.
1980). We then apply our results to parameter sets that have been inferred from published
experiments in gene expression (Golding et al. 2005; Zenklusen et al. 2008; Suter et al.
2011; Molina et al. 2013; Zoller et al. 2015), and show that most genes fall within interme-
diate regimes where approximations based on timescale separations are invalid. Finally,
we make some preliminary remarks on the effects of waiting time distributions, based
in part on our observations from our classification of the parameter sets from published
experiments.

8.1 The mean-first-passage time between stable states

The dynamical responses of multistate models can be understood as follows. An L-state
promoter model is a hybrid dynamical system with steady states corresponding to distinct
values of {µi/λ}Li=1. When there is a state transition, there is a ‘transience period’ during
which the probability distribution of the mRNA evolves in time approaching the new
steady state. The dominance of this transient behavior thus depends on the amount
of time spent in the transience periods, compared to the time spent in each gene state
before a switch occurs. In ‘slow switching’ regimes, for example, the transience time is
negligible compared to the waiting time in each state, whereas in ‘fast switching’ regimes
the transience time is far longer than the waiting times in the gene states, so the steady
states are never reached.

In order to quantitatively compare parameter regimes and distinguish between ‘fast’,
‘slow’ and ‘intermediate’ promoter switching, we need to first define the characteristic
times of the transients. For simplicity, assume we have an inactive (OFF) state with no
transcription, and an active (ON) state with constant transcription rate µ. The degra-
dation rate is a constant, λ, independently of gene state. At steady state in the active
(resp. inactive) gene state, the expected value of the mRNA copy number is µ/λ (resp.
zero). Hence, we define the time it takes for a sample path to transition from the inactive
steady state to the active steady state by its first passage time to dµλe when starting at
zero (in the absence of gene switches). These transition times are outcomes from a random
variable that we denote by Tup. Similarly, the random variable Tdown denotes the time it
takes for a sample path of the mRNA copy number to reach zero when the gene is inactive,
having started with dµλe transcripts. See Fig. 8.1 for an example outcome of (a) Tup and
(b) Tdown. We characterise the transient times by the mean-first-passage times E (Tup)
and E (Tdown).

Notice that E (Tup) and E (Tdown) are completely specified by the transcription and
degradation rate constants µ and λ. In the following section we derive their exact expres-
sions.
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a) b)

Figure 8.1: Characteristic timescales of the switching transients. (a) Outcome of the
random variable Tup, which describes the time it takes for a sample path of the mRNA
copy number to reach the value dµλe while the gene is active, from starting value zero.
(b) Outcome of the random variable Tdown, which describes the time it takes for a sample
path of the mRNA copy number to reach the value zero while the gene is inactive, from
starting value dµλe.

8.2 Derivation of E (Tup) and E (Tdown)

Denote the mean of the active steady state by

m ..=
⌈
µ

λ

⌉
.

We will use the theory of absorbing Markov chains to show that

E (Tup) = 1
µ

m∑
i=1

1
i

m!
(m− i)!

1
mi−1 ,

E (Tdown) = 1
λ

m∑
i=1

1
i
.

Note that these two transient times are non-trivial functions of µ, λ, and m ..= dµ/λe.
Since Tup and Tdown are calculated in the absence of gene state switching, η : t 7→ η(t)

is a continuous-time absorbing Markov chain with m + 1 states {0, 1, . . . ,m}. In the
calculation of Tup, η(0) = 0 and has reached its absorbing state when η(t) = m, whereas
in the calculation of Tdown, η(0) = m and has reached its absorbing state when η(t) = 0.
The Markov process can be represented by the infinitesimal generator:

Q =
(
S S0

0 0

)
,

where S is an m ×m matrix such that Sii < 0 for i = 1, . . . ,m, Sij ≥ 0 for i 6= j, and
S 1m×1 +S0 = 0m×1. We wish to calculate the expected time until absorption in the state
represented by the (m + 1)st row. The time T to absorption is phase-type distributed,
with probability distribution corresponding to the initial probability vector (α1×m, αm+1)
given by (Neuts 1981):

F (t) = 1−α exp (St)1, t ≥ 0.
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The expectation is thus given by

E (T ) = −αS−11m×1.

In our case, α = (1, 0, . . . , 0) so we need only calculate the sum of the first row of −S−1

to obtain the result.

To avoid confusion, in the calculation of E (Tup) (resp. E (Tdown)) we denote the matrix
S by Sup (resp. Sdown).

Inversion of S−1
down to obtain E (Tdown)

For a Markov chain with absorbing state 0 represented by the (m + 1)st row of the in-
finitesimal generator Q, S−1

down is

Sdown =



−mλ mλ 0
0 −(m− 1)λ (m− 1)λ

0
· · ·

−(m− 2)λ
· · ·

(m− 2)λ
· · ·

0 −2λ 2λ
0 0 −λ


.

Tdown is given by the sum of the first row of −S−1
down.

To invert Sdown, write it in the form Sdown = −λD(I − N), where D = diag{m,m −
1, . . . , 1}, I is the m×m identity matrix, and N is a nilpotent matrix with ones along the
upper diagonal and zeros everywhere else, i.e. Ni,i+1 = 1 for i = 1, . . . ,m−1, and Nij = 0
otherwise. Then

S−1
down = [−λD(I −N)]−1

= − 1
λ

(
I +

m−1∑
k=1

Nk

)
D−1

= − 1
λ



1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1
...

...
... . . . ...

0 0 0 . . . 1





1
m

1
m−1

. . .
1
2

1


.

The expression for E (Tdown) follows immediately:

E (Tdown) = 1
λ

m∑
i=1

1
i
.
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Inversion of S−1
up to obtain E (Tup)

For a Markov chain with absorbing state m represented by the (m + 1)st row of the
infinitesimal generator Q, Sup is given by

Sup =



−µ µ

λ −µ− λ µ

2λ
· · ·

−µ− 2λ
· · ·

µ

· · ·
(m− 2)λ −µ− (m− 2)λ µ

(m− 1)λ −µ− (m− 1)λ


To invert Sup we use the results from Usmani 1994 to calculate each element of the first
row of [σij ] ..= S−1

up .

Denote the lower diagonal elements of Sup by ai, the diagonal elements by bi and the
upper diagonal elements by ci. We have

ai = (i− 1)λ,

bi = −µ− (i− 1)λ,

ci = µ.

Let Θn denote the n × n submatrix formed from the first n rows and columns of Sup,
θn ..= det(Θn), and define the sequence {φi}ni=1 as follows:

φi = biφi+1 − ai+1ciφi+2, i = n, n− 1, . . . , 2, 1,

φn+1 = 1,

φn+2 = 0.

It can easily be shown by induction that θn = (−µ)n for n = 0, 1, . . . ,m. So, using the
identity

σ1j = (−1)j+1c1c2 . . . cj−1
φj+1
θn

, j 6= 1,

(Eq. (4.3) in Usmani 1994) directly gives the jth element of the first row of S−1
up :

σ1j = (−1)j+1µj−1φj+1
(−µ)m

= − 1
µ

(−µ)jφj+1
(−µ)m .

Now define
Fj ..= (−µ)jφj+1

(−µ)m .
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Then E (Tup) = (1/µ)∑m
j=1 Fj , and using the identity

θkφk+1 − ak+1ckθk−1φk+2 = θn, k = n, n− 1, . . . , 1,

(Lemma 2 in Usmani 1994) we have the recurrence relation

Fj = 1 + j

m
Fj+1; Fm = 1.

It can then be verified that

Fj = 1
(j − 1)!

m−j∑
s=0

(j + s− 1)!
ms

,

so that

m∑
j=1

Fj =
m∑
j=1

1
(j − 1)!

m−j∑
s=0

(j + s− 1)!
ms

=
m−1∑
s=0

1
ms

m−s∑
j=1

(j + s− 1)!
(j − 1)!

=
m∑
i=1

1
mi−1

m+1−i∑
j=1

(i+ j − 2)!
(j − 1)!

=
m∑
i=1

1
mi−1

m+1−i∑
j=1

(i+ j − 2)i−1, (8.1)

where (x)i ..= x(x− 1) . . . (x− i+ 1) = x!/(x−m)! is the falling factorial.

Now using the recurrence relation i(x)i−1 = (x+ 1)i − (x)i (Roman 1984), we have

m+1−i∑
j=1

(i+ j − 2)i−1 = (i− 1)i−1 + 1
i

m+1−i∑
j=2

[
(i+ j − 1)i − (i+ j − 2)i

]

= (i− 1)!
0! − 1

i

i!
0! + 1

i

m!
(m− i)!

= 1
i

m!
(m− i)! . (8.2)

Finally, using Eqs. (8.1) and (8.2) we have

E (Tup) = 1
µ

m∑
j=1

Fj = 1
µ

m∑
i=1

1
i

m!
(m− i)!

1
mi−1 ,

as required.
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8.3 Regime characterisation using expected waiting times

In order to characterise parameter regimes in terms of state switching timescales, we
need to compare the characteristic transient times E (Tup) and E (Tdown) with the waiting
times in each state. The most straightforward way to characterise the waiting times is
to use E (Ton) and E (Toff), the expected waiting times in the active and inactive states,
respectively. For Markov chain multistate promoter models, the expected waiting times
can usually be easily determined by the transition rates kij . For example, if k is the
(constant) transition rate from the inactive to the active state, Toff ∼ Exp(1/k) so that
E (Toff) = 1/k. For the M -cycle we presented in Chapter 6, Toff is hypoexponentially
distributed with E (Toff) = ∑ 1/ki.

Slow switching regimes

If E (Toff)� E (Tdown) and E (Ton)� E (Tup), or equivalently E (Toff) /E (Tdown)� 1 and
E (Ton) /E (Tup) � 1, the system displays slow-switching behavior, i.e., the system has
sufficient time to reach the steady states at N = 0 and N = µ/λ when the promoter
is inactive and active, respectively, and the average time spent in each promoter state
before switching is longer than the transience periods where the system moves between
the two steady states (Fig. 8.2a, top-right corner). Hence steady states around N = 0
and N = µ/λ are reached, leading to bimodal copy number distributions as seen in gene
expression with stochastic transitioning between two phenotypic states, or transcriptional
bursting with long silent periods.

In the limits E (Toff) /E (Tdown) → ∞ and E (Ton) /E (Tup) → ∞, the dynamical be-
havior can be described as a mixture of the two stationary distributions Poi(0) = δ0,n and
Poi(µ/λ). The limiting distribution can easily be shown more rigorously using the results
from Chapter 3. For example, the stationary distribution of the Markov chain two-state
(random telegraph) model in the Poisson mixture form is (Raj et al. 2006)

P (n) =
∫ 1

0

e−
µ
λ
z

n!

(
µ

λ
z

)n
fZ(z) dz, (8.3)

where

Z ∼ Beta
(
kon
λ
,
koff
λ

)
,

i.e. fZ(z) =
Γ
(
kon
λ + koff

λ

)
Γ
(
kon
λ

)
Γ
(
koff
λ

) z kon
λ
−1(1− z)

koff
λ
−1,

and kon and koff are the transition rates to the active and inactive states, respectively.
The limits E (Toff) /E (Tdown) → ∞ and E (Ton) /E (Tup) → ∞ correspond to the limits
kon → 0 and koff → 0, and the Beta distribution becomes concentrated at 0 and 1 with
weights koff/(kon + koff) and kon/(kon + koff), respectively. Substituting into Eq. (8.3), in
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this slow-switching limit P (n) becomes

P (n) =
∫ 1

0

e−
µ
λ
z

n!

(
µ

λ
z

)n [ koff
kon + koff

δ(z) + kon
kon + koff

δ(z − 1)
]
dz

= koff
kon + koff

δ0,n + kon
kon + koff

e−
µ
λ

n!

(
µ

λ

)n

= E (Toff)
E (Ton) + E (Ton) δ0,n + E (Ton)

E (Ton) + E (Ton)
e−

µ
λ

n!

(
µ

λ

)n
,

where δ is the Dirac delta function and δ0,n is the Kronecker delta function.

Fast-switching regimes

If E (Toff) /E (Tdown) � 1 and E (Ton) /E (Tup) � 1, the system has no time to reach
the steady states before promoter switching occurs (Fig. 8.2a, bottom-left corner). We
refer to this as the fast-switching regime, although it is sometimes referred to as rapid
pre-equilibrium (Ge et al. 2015).

In the limiting case where E (Toff) /E (Tdown) → 0 and E (Ton) /E (Tup) → 0, the dis-
tribution of N becomes a scaled Poisson distribution. Again using the random telegraph
model as an example, E (Toff) /E (Tdown) → 0 and E (Ton) /E (Tup) → 0 correspond to
kon/λ → ∞ and koff/λ → ∞, so that the Beta distribution tends to a Dirac delta distri-
bution centred at kon/(kon + koff). Substitution into Eq. (8.3) leads to

P (n) =
∫ 1

0

e−
µ
λ
z

n!

(
µ

λ
z

)n
δ

(
z − kon

kon + koff

)
dz

= e
−µ
λ

kon
kon+koff

n!

(
µ

λ

kon
kon + koff

)n
,

i.e. N ∼ Poi((µ/λ)(kon/(kon + koff))).

Intermediate, transient-dominated regimes

Finally, for parameter sets leading to the intermediate regimes, i.e. E (Toff) /E (Tdown) ∼ 1
and E (Ton) /E (Tup) ∼ 1, the system is dominated by transients: the promoter remains
active for just long enough so that on average the sample paths of the mRNA copy number
reach values close to or just past µ/λ, at which point the promoter switches to the inactive
state for just long enough for them to return close to zero (Fig. 8.2a, centre). These are
the regimes where transient dynamics become significant aspects of the system, and the
full distribution P (n) is required.
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Figure 8.2: Classification of parameter regimes in a normalised space that quantitatively
delineates between “fast” and “slow” switching dynamics. (a) Sample paths of the gene
state switching and mRNA copy number, and corresponding time-average probability
distributions for five illustrative points in the normalised regime space. Light blue shading
indicates an active gene state. The horizontal axis measures the value of E (Ton), the
expected time spent in the active state, relative to E (Tup), the mean-first-passage time
for the mRNA copy number to transition from zero to dµλe. Similarly, the vertical axis
measures the value of E (Toff), the expected time spent in the inactive state, relative to
E (Tdown), the mean-first-passage time for the mRNA copy number to transition from
dµλe to zero. Thus parameter regimes falling in the upper right-hand corner display slow
promoter switching dynamics, and those in the lower left-hand corner display fast switching
dynamics. Transient-dominated gene-state switching fall around the centre of the figure.
(b) Characterisation of the parameter sets reported in published data sets. All but one of
the points lie in the “fast”-switching quadrant of the regime space.
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8.4 Quantification of parameter regimes from published experiments

When working with experimental data, it would be useful to characterise the parameter
regime in order to judge whether approximate solutions of an ON-OFF model would
suffice for the description of the system. For example, an important parameter regime
is that of instantaneous bursts, where one can assume that all the mRNA molecules that
are transcribed during an active period of the gene state appear at the same time. In
this case the model can be described fully in terms of just three parameters: the ‘burst
frequency’, the ‘burst size’, and the degradation rate (Cai et al. 2006; Raj et al. 2006; Dar
et al. 2012). However, without a quantitative characterisation of the relevant timescales,
parameter values are described in vague relational terms such as “when x is much larger
than y” (Popović et al. 2015; Munsky et al. 2012; Raj and Oudenaarden 2009).

Using the characterisation that we described in the previous sections, we can quan-
titatively check where in parameter space real data lie, and whether the timescale as-
sumptions that are often used to analyse them are valid. We have used parameter values
(kon = 1/E (Toff) , koff = 1/E (Ton) , µ, λ) from the literature that were estimated by fitting
the two-state random telegraph model to time-lapse data (Golding et al. 2005; Suter et al.
2011; Molina et al. 2013) and snapshot data (Zenklusen et al. 2008). We have also used
the parameter values estimated by Zoller et al. 2015, where timeseries data from Suter
et al. 2011 were fit to M -cycle models. The results are shown in Fig. 8.2b.

We can see that all but one of the parameter regimes lie in the lower left quadrant of
the plane, corresponding to ‘fast’ switching between both states. Here we use ‘fast’ in the
sense of the fast-switching paragraph in the previous section: the gene state switches over
timescales that are too short for the mRNA numbers to reach either steady state around
N = 0 or N = µ/λ. The only gene in the lower right quadrant, where the gene state is
active most of the time, is the NcKap1 gene1 from Suter et al. 2011.

With the exception of the data point for the Golding et al. 2005 parameter values, which
used data from E. coli, the other studies obtained data from eukaryotes. Interestingly,
the parameter regime for the prokaryote imply that the gene was inactive more than it
was active, and the switching occurred on slower timescales than reported for most of the
other genes. As expected for eukaryotic genes, most of the data lie above the line y = x,
indicating that the gene was inactive more than it was active. The genes furthest above
the line y = x are the ones that display the most “bursty” behaviour, where transcription
only takes place during short, infrequent time intervals. However, none of the parameter
regimes are in the upper quadrant, where the ‘instantaneous bursts’ regime would lie.
Since none of the genes lie in the upper right quadrant, which would be indicative of slow
switching, we can deduce immediately that none of the fitted models displayed bimodality.
A quick check of the figures in the references (Golding et al. 2005; Suter et al. 2011; Molina
et al. 2013; Zoller et al. 2015) confirms the validity of this deduction.

1However, when the same data was evaluated in Zoller et al. 2015 using the M -cycle rather than the
two-state random telegraph model, the NcKap1 gene appears in a regime with short waiting times in the
active state. We discuss this effect briefly in the following section.
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Figure 8.3: Comparison of parameter regimes implied by fitting the 1-cycle (in Suter
et al. 2011) and the M -cycle (in Zoller et al. 2015) to the same data. Different colours
correspond to different genes; circles correspond to results from Suter et al. 2011, and
crosses correspond to results from Zoller et al. 2015. The legend is valid for both subfigures.
(a) Zoomed-in view of the region in regime space where the scatter points lie to compare
results from fitting data to models with different waiting time densities in each state.
Circles show fitting to the 1-cycle, crosses show fitting to theM -cycle, whereM is indicated
by a number next to each cross. (b) All the scatter points lie in the lower-left region of
regime space.

In Fig. 8.2 the expected waiting times were plotted to characterise regimes and make
comparisons between different genes and datasets. Clearly, differences in experimental
and parameter estimation procedures will bias comparisons between datasets, but it is
interesting to see that despite using the same data, the parameter characterisation from the
Suter et al. 2011 and Zoller et al. 2015 papers are markedly different (note the logarithmic
scale). The difference between the parameter estimation for the two studies is that in
Suter et al. 2011 all data parameters were fit to the random telegraph model (1-cycle),
whereas in Zoller et al. 2015 both parameter estimation and model selection fromM -cycles
were performed. To allow for a more direct comparison, Fig. 8.3 includes only the ‘Suter
2011’ and ‘Zoller 2015’ scatter points from Fig. 8.2 where the same data was analysed in
both papers. The number of OFF states used to model each gene in Zoller et al. 2015 are
indicated next to each data point in subfigure (a).

Notwithstanding differences in estimation procedures, one might expect the regime
characterisations to be different since here we have only considered the expected waiting
times E (Ton) and E (Toff). Recalling how the “1-cycle equivalent” model (where for the
5-cycle we used the effective rate 1/koff = ∑ 1/ki) performed so poorly in the MLE
estimation Section 6.3, perhaps the effects are similar: when fitting to the 1-cycle some
parameters overcompensate the others. Indeed, Suter et al. 2011 found that parameter
estimation overestimated koff and underestimated kon when fitting the 1-cycle to 2-cycle
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data, even when fitting using time-series rather than snapshot data (Suter et al. 2011,
supplementary material).

A possible cause is that any property other than the expected waiting times are lost.
For example, the waiting time in the inactive state is exponential for the 1-cycle, with zero
mode, whereas the total waiting time in the inactive state τoff for the M -cycle is hypoex-
ponentially distributed (Neuts 1981), and can be peaked away from zero. Furthermore,
the coefficient of variation of an exponentially distributed random variable is equal to one,
whereas for a hypoexponentially distributed random variable it is less than one (Neuts
1981).

Estimated parameter values and the corresponding timescales form an essential com-
ponent of data analysis of gene expression since we can not observe all the processes at
work. With increasing evidence to show that the dynamical properties of waiting time
distributions can not be accounted for by the random telegraph model (1-cycle), investi-
gations into the effects of waiting time distributions on parameter estimation is becoming
more pertinent. The timescale quantification introduced in this chapter, combined with
model fitting using time-lapse data with consistent estimation procedures, could be a step
forward in this direction.
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Part IV: Further directions and discussion

Introduction

Having derived and evaluated the Poisson mixture result in Part II, and utilised it more
systematically in Part III, this part can be viewed as a two-part discussion of the potential
gains of working within the Poisson mixture framework, how it fits within previous work
which followed similar courses, and future directions to extend the scope of the work.

Chapter 9 shows how we can extend some of our approaches to be applicable to certain
types of feedback model. Suggestions are given for how we can compare and contrast the
initial results with what we know about non-feedback models, to make progress towards
greater understanding and facility with feedback models. Chapter 10 concludes the thesis
with a short summary.
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Chapter 9

Further directions

Several sequential steps, requiring various biomolecules, are involved in the transcription
of a gene. Mathematically, this means that a realistic model of gene transcription can not
simply assume constant transcription and degradation rates. Indeed, the resulting Poisson
distributions fail to describe much of the gene expression data that has been collected from
a broad range of species, and thousands of genes. For this reason, we derived the results
of Chapter 3 starting from a theoretical framework that allows the transcription and
degradation rates in the population to have general, time-dependent distributions.

However, in addition to the process of transcription itself, it is becoming increasingly
clear that gene expression is controlled by large regulatory networks (Lee et al. 2002;
Austin et al. 2006). Autoregulation of gene expression has been identified in many cellular
processes (Becskei and Serrano 2000; Thattai and Oudenaarden 2001; Rosenfeld et al.
2002; Austin et al. 2006; Süel et al. 2007), and is an important control mechanism for the
cell. The derivation of the Poisson mixture result does not account for transcription and
degradation rates that depend on the current state of the system itself, i.e., the number of
mRNA transcripts present in the cell. However, it was recently shown that a simple au-
toregulation model has a Poisson mixture solution (Iyer-Biswas and Jayaprakash 2014). In
light of this, the purpose of this section is to discuss some of the connections between feed-
back models and Poisson mixtures. Several papers presenting the solution of a certain type
of autoregulation model with first-order feedback terms have appeared recently (Hornos
et al. 2005; Visco et al. 2008; Grima et al. 2012; Vandecan and Blossey 2013; Pendar et al.
2013; Kumar et al. 2014; Huang et al. 2014; Iyer-Biswas and Jayaprakash 2014), so we
show how to derive differential equations for the mixing density for models with nth-order
feedback terms. Using the understanding we have about Poisson mixture solutions for
non-feedback models presented in previous chapters, we mention the nuances of the Pois-
son mixture approach for feedback models compared to non-feedback models, and pose
some questions that naturally follow for further investigation.

9.1 ON-OFF feedback models

Autoregulation models for transcription of a single gene usually take the form of a two-
state, ON-OFF model where a feedback mechanism regulates the switching rates between
the two gene states. There are two main justifications for this. First, transcription is
usually assumed to be a zero-order reaction because the mRNA molecules are not directly
involved in the transcription process, and the transcriptional ‘machinery’ – the number of
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DNA molecules, and the number and location of promoter sites, for example – does not
change. Second, autoregulation is often effectuated in an indirect manner, by activating or
repressing the production of transcription factors or other proteins that are necessary for or
promote transcription initiation (Navarro et al. 2012; Fidalgo et al. 2012). Mathematically,
this autoregulatory effect can be described by allowing the propensities of the gene state
switching to depend on the mRNA copy number (see Fig. 9.1).

Under the assumption of such ON-OFF feedback models, sample paths of the tran-
scription rate are random binary processes. At stationarity, the waiting times in each gene
state have some distribution, at least one of which will be non-exponential. Examples of
ON-OFF models with non-exponential waiting times were studied in Part III under the
Poisson mixture framework, where we could say a priori that we could find a mixing
density that would completely specify the full distribution P (n, t) for the mRNA copy
number. It thus seems reasonable to assume that the feedback models have solutions that
can be written in Poisson mixture form, and then search for the mixing densities. In fact,
Gardiner and Chaturvedi 1977 proposed such an approach for handling any chemical mas-
ter equation, including those for multi-molecular reactions and systems of several species
(although they do not appear to have studied feedback models). They showed that any
discrete probability distribution could be represented in what they termed the Poisson
representation, as long as we allow the quasiprobability distribution (the equivalent of our
mixing density fX) to be complex.

Iyer-Biswas and Jayaprakash 2014 recently used the Poisson representation to obtain
an exact solution for an ON-OFF autoregulation model with a linear feedback term. They
found that the solution for the autoactivation model can always be written as a Pois-
son mixture, but the weight function for the autorepression model is complex for certain
parameter regimes (see Section 9.4). When the weight function is complex, the mRNA
distribution P (n) can be sub-Poissonian, i.e., the Fano factor is less than one. As shown
in Chapter 5, Poisson mixtures have a minimum Fano factor of 1, and therefore autore-
pression is able to minimize noise to an extent that is not possible for autoactivation or
non-feedback models. The form of the weight function in this case is simple enough to
infer the relevant parameter combinations that determine the shape of the distribution.
As such, the authors were able to justify using the Poisson representation for these simple
models that had already been solved for P (n) explicitly several times (Hornos et al. 2005;
Visco et al. 2008; Grima et al. 2012; Vandecan and Blossey 2013; Pendar et al. 2013;
Huang et al. 2014).

Although it is extremely useful to be able to demarcate parameter space according to
qualitatively different properties of the solution, in the context of the properties of Poisson
mixtures presented in this thesis, it seems that far more could be gained from comparing
the properties of the Poisson representation for feedback and non-feedback models. For
example:
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• We showed that all models without feedback can be written in Poisson-mixture form,
where the mixing density fXt is a true density on the positive real line, and the
extrinsic random variable Xt has clear physical interpretations. What, if anything,
does the weight function physically represent for feedback models?

• Sample paths of the transcription rates for ON-OFF autoregulation models can pro-
duce sub-Poissonian mRNA distributions, which is not possible for models without
feedback. This phenomenon is due to sufficient feedback control of the gene switch
times in such a way as to reduce variability of the mRNA copy numbers. Consider
the following thought experiment. Suppose we observe the cellular drives in each
cell of a stationary population, which, due to feedback effects, has a sub-Poissonian
probability distribution P (n). Then feed the same drives to a cell population with
identical initial conditions, but no capacity for feedback. The non-feedback popula-
tion would still produce super-Poissonian behaviour. The density fXt of the extrinsic
random variable Xt would be the same in both systems, so we can immediately de-
duce that the weight function is different to fXt . However, are fXt and the weight
function related?

• Since the weight function for the autoactivation model with a linear feedback term
is always a mixing density, can we work forwards to derive the Poisson mixture
result for this model, and others with the same property, as we did for non-feedback
models?

Answering these questions falls beyond the scope of this thesis. However, one way to work
towards answering the first and second bullet points is to derive equations for the weight
functions, and compare them to the multistate Kramers-Moyal equations we obtain for
models without feedback. Since such a discussion was not included in the recent paper that
gave the Poisson mixture solution for the model with a linear feedback term (Iyer-Biswas
and Jayaprakash 2014), we take the first steps towards addressing the idea below. We
show how to derive equations for the weight function for polynomial feedback terms, since
the method was omitted from Iyer-Biswas and Jayaprakash 2014 and they only gave the
equations for linear feedback. We will then make some comparisons between the equations
for the weight functions, the forms of the weight functions themselves for these ON-OFF
feedback models, and the mixing density for non-feedback models.

9.2 Obtaining equations for fXt

We consider two-state ON-OFF models where one or both of the gene switching rates is a
function of the number of transcripts present in the cell. Denote the transition rate from
ON to OFF (resp. OFF to ON) by the function a(n) (resp. b(n)). The transcription
rate constant is µ in the ON state, and zero in the OFF state, and the degradation rate
constant is λ, irrespective of gene state (see Fig. 9.1a).
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a) General autoregulatory model First-order autoactivation model

First-order autorepression modelSecond-order autorepression modelb)

c)

d)

Figure 9.1: ON-OFF feedback models of gene transcription. The gene transitions between
the active (ON) state and the inactive (OFF) state with rates that may depend on n, the
number of mRNA molecules in the system. Transcription only takes place in the ON
state, with rate µ. Degradation occurs as a first-order reaction with rate constant λ,
independently of gene state. (a) General autoregulatory model where transition rates are
undefined functions of n. (b) Autorepression model with second-order feedback terms. (c)
Autoactivation model with linear feedback term. (d) Autorepression model with linear
feedback term.

Similar to our approach when writing down multistate Kramers-Moyal equations for
fXt , use the law of total probability to write

P (n, t) = Pon(n, t) + Poff(n, t),

where Pon and Poff denote the probability that there are n ∈ N mRNA molecules, and the
gene is ON and OFF, respectively. The master equations for Pon and Poff are

Pon
dt

= µ[Pon(n− 1, t)− Pon(n, t)] + λ[(n+ 1)Pon(n+ 1, t)− nPon(n, t)]

− a(n)Pon(n, t) + b(n)Poff(n, t) (9.1a)
Poff
dt

= λ[(n+ 1)Poff(n+ 1, t)− nPoff(n, t)] + a(n)Pon(n, t)− b(n)Poff(n, t). (9.1b)

For models without feedback we can use the Poisson mixture result to infer that Pon and
Poff can be written as Poisson mixtures, but for feedback models we must assume that we
can write

Pon(n, t) =
∫
xn

n! e
−xfon(x, t) dx, and (9.2a)

Poff(n, t) =
∫
xn

n! e
−xfoff(x, t) dx, (9.2b)

where fon and foff are functions of the continuous variables x and t, not necessarily density
functions. Thus we refer fon and foff as weight functions rather than mixing densities.

To obtain equations for the weight functions, we substitute the assumed expressions (9.2)
for Pon and Poff into the master equations (9.1), and attempt to consolidate the weight
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functions under the integral sign. Below we take each term that can appear in a master
equation individually, and show how to consolidate the weight function. For clarity, we
drop the subscripts and dependence on t for the purpose of these illustrations. Throughout
we will use the fact that the weight functions have zero boundary conditions.

Degradation terms

Degradation terms always appear in the form (n+ 1)P (n+ 1)− nP (n). We have

(n+ 1)P (n+ 1)− nP (n) =
∫ [

xn+1

n! e−x f(x)− xn

(n− 1)! e
−x f(x)

]
dx

=
∫ [

xn

n! e
−x − xn−1

(n− 1)! e
−x
]
xf(x) dx

=
∫
xn

n! e
−x d

dx
[xf(x)] dx, (9.3)

where we used integration by parts to obtain the final line.

Transcription terms

Transcription terms always appear in the form P (n− 1)− P (n). We have

P (n− 1)− P (n) =
∫ [

xn−1

(n− 1)! e
−x − xn

n! e
−x
]
f(x) dx

=
∫
xn

n! e
−x d

dx
[−f(x)] dx,

again using integration by parts.

Feedback terms

When a(n) and b(n) are linear combinations of n(n − 1) . . . (n − k), k < n, k ∈ N (and
hence linear combinations of ni, i ∈ N), we can consolidate the weight functions so that
they are independent of n using integration by parts. For linear feedback terms, we have

nP (n) =
∫

xn−1

(n− 1)! e
−x x f(x) dx

=
∫ [

xn−1

(n− 1)! e
−x − xn

n! e
−x
]
x f(x) dx+

∫
xn

n! e
−x x f(x) dx

= −
∫
xn

n! e
−x d

dx
[x f(x)] dx+

∫
xn

n! e
−x x f(x) dx

=
∫
xn

n! e
−x
(
x f(x)− d

dx
[x f(x)]

)
dx.

For terms of the form n(n− 1)P (n), we have

n(n− 1)P (n) =
∫

xn−2

(n− 2)! e
−x x2 f(x) dx
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=
∫ [

xn−2

(n− 2)! e
−x − xn−1

(n− 1)! e
−x
]
x2 f(x) dx

+
∫

xn−1

(n− 1)! e
−x x2 f(x) dx

=
∫

xn−1

(n− 1)! e
−x
(
x2 f(x)− d

dx

[
x2 f(x)

])
dx

=
∫ [

xn−1

(n− 1)! e
−x − xn

n! e
−x
] (

x2 f(x)− d

dx

[
x2 f(x)

])
dx

+
∫
xn

n! e
−x
(
x2 f(x)− d

dx

[
x2 f(x)

])
dx

= −
∫
xn

n! e
−x d

dx

(
x2 f(x)− d

dx

[
x2 f(x)

])
dx

+
∫
xn

n! e
−x
(
x2 f(x)− d

dx

[
x2 f(x)

])
dx

=
∫
xn

n! e
−x
{
x2 f(x)− d

dx

[
x2 f(x)

]
− d

dx

(
x2 f(x)− d

dx

[
x2 f(x)

])}
dx.

The process of iterated integration by parts yields expressions for terms of the form n(n−
1) . . . (n − k), k < n, k ∈ N, and hence any polynomial feedback terms can be deduced.
For example, for an autoregression model with ON to OFF transition rate a2n

2 +a1n+a0,
we have

a(n) = a2n
2 + a1n+ a0 = a2n(n− 1) + (a2 + a1)n+ a0,

so with OFF to ON transition rate k1, transcription rate µ, and degradation rate parameter
λ (Fig. 9.1b), so the equations for fon and foff are:

∂fon
∂t

= − ∂

∂x
[(µ− λx)fon] + k1foff

− a2

{
x2fon −

∂

∂x

[
x2fon

]
− ∂

∂x

(
x2f(x)− ∂

∂x

[
x2fon

])}
− (a2 + a1)

{
xfon −

∂

∂x
[xfon]

}
− a0fon

∂foff
∂t

= − ∂

∂x
[−λxfoff ]− k1foff

+ a2

{
x2fon −

∂

∂x

[
x2fon

]
− ∂

∂x

(
x2f(x)− ∂

∂x

[
x2fon

])}
+ (a2 + a1)

{
xfon −

∂

∂x
[xfon]

}
+ a0fon,

or, factorising:

∂fon
∂t

= − ∂

∂x
[(µ− λx)fon] + k1foff
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− a2

{(
∂

∂x
− 1

)2
x2fon

}
+ (a2 + a1)

{(
∂

∂x
− 1

)
xfon

}
− a0fon

∂foff
∂t

= − ∂

∂x
[−λxfoff ]− k1foff

+ a2

{(
∂

∂x
− 1

)2
x2fon

}
− (a2 + a1)

{(
∂

∂x
− 1

)
xfon

}
− a0fon.

9.3 First order autoactivation model

Consider the ON-OFF autoactivation model with linear n-dependence in the transition
rate from the inactive to the active state, i.e. b(n) = βn+ k1 (Fig. 9.1c). The transition
rate from the active to the inactive state is a constant, k0. The master equations for Pon

and Poff are then

∂Pon
∂t

= µ[Pon(n− 1, t)− Pon(n, t)] + λ[(n+ 1)Pon(n+ 1, t)− nPon(n, t)]

− k0Pon(n, t) + (βn+ k1)Poff(n, t)
∂Poff
∂t

= λ[(n+ 1)Poff(n+ 1, t)− nPoff(n, t)]

+ k0Pon(n, t)− (βn+ k1)Poff(n, t),

and using the expressions in the previous subsection for each term, we obtain the following
equations for the weight functions:

∂fon
∂t

=− ∂

∂x
[(µ− λx)fon]− k0fon + k1foff + βxfoff −

∂

∂x
[βxfoff ]

∂foff
∂t

=− ∂

∂x
[−λxfoff ] + k0fon − k1foff − βxfoff + ∂

∂x
[βxfoff ] .

These are the multistate Kramers-Moyal equations for the usual non-feedback ON-OFF
model, with the addition of the terms involving β.

As could be expected, the autoactivation term β increases the propensity of the gene
state to switch from OFF to ON, in proportion to x. We also see from the ∂

∂x [βxfoff ] term
that feedback has an effect on foff in the same way as degradation does; we can interpret
this part of the feedback effect as an increase in the rate of degradation from λ to λ+ β.

If one prefers, interpretation can be made on the system as written in the form

∂fon
∂t

+ ∂

∂x
[(µ− λx)fon] = −k0fon + k1foff + β(x− 1)foff − βx

∂foff
∂x

∂foff
∂t

+ ∂

∂x
[−λxfoff ] = k0fon − k1foff − β(x− 1)foff + βx

∂foff
∂x

.

In this way we see that autoactivation adds

−βx ∂foff
∂x , an advection term, and

β(x− 1)foff , a source term
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to the equation for fon, and similar interpretations can be made for foff .
These coupled equations can easily be solved at stationarity (Iyer-Biswas and Jayaprakash

2014), to obtain for fX ..= fon + foff

fX(x) = C e
β

β+λxx
k1
β+λ−1(µ− λx)

k0
β+λ−1

,

where C is a normalisation constant. Comparison to the solution of the non-feedback
(random telegraph) model, which has the form C̃ xk1/λ−1(µ − λx)k0/λ−1, where C̃ is a
constant, shows explicitly that the linear feedback effectively increased the “degradation
rate” from λ to λ+β, as predicted. The increasing propensity to switch from OFF to ON
when x is increasing manifests itself in the exponential term.

9.4 First order autorepression model

We can proceed in the same way to investigate the effects of adding a term αn to the rate of
switching from ON to OFF, to produce a negative motif (Fig. 9.1d). With a(n) = k0 +αn,
the equations for the weight functions are

∂fon
∂t

=− ∂

∂x
[(µ− λx)fon]− k0fon + k1foff − αxfon + ∂

∂x
[αxfon]

∂foff
∂t

=− ∂

∂x
[−λxfoff ] + k0fon − k1foff + αxfon −

∂

∂x
[αxfon] ,

and the solution for fX at stationarity is

fX(x) = C e
α

α+λxx
k1
λ
−1(µ− λx)

aµ

(α+λ)2
+ k0
α+λ−

αk1
λ(α+λ)−1

.

Interestingly, the effects of the feedback term are harder to interpret here: the exponential
term still increases with x, the index of x is still k1/λ − 1, not k1/(λ + α) − 1, and the
index of µ− λx is quite different to the form taken for the autoactivation model, and the
random telegraph (non-feedback) model. In particular, the index of µ− λx here can take
values below -1, which is not the case for the autoactivation or non-feedback models.

According to Iyer-Biswas and Jayaprakash 2014, when the index of µ−λx takes values
below -1, P (n) is sub-Poissonian so fX has support on the complex plane. An explanation
that aids some intuition and physical interpretation for such results could lead to significant
benefits for this field; analytical investigations into several very similar models have been
conducted (Hornos et al. 2005; Visco et al. 2008; Grima et al. 2012; Pendar et al. 2013;
Kumar et al. 2014; Huang et al. 2014; Liu et al. 2015), which, individually, do not do
much to further our tools or understanding for quantitative analysis of gene expression.
The hope is that, in the same way as we were able to show how the results and methods
presented in this thesis follow from working within a general framework, the same could
be done for feedback models.
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9.5 Further remarks

With the exception of Iyer-Biswas and Jayaprakash 2014, to our knowledge all other
solutions for master equation feedback models have been obtained using the probability
generating function (Hornos et al. 2005; Visco et al. 2008; Grima et al. 2012; Pendar et al.
2013; Kumar et al. 2014; Huang et al. 2014; Liu et al. 2015). We note that in the same
way as the equations for fon and foff were derived here, we can also obtain corresponding
equations for the probability generating functions, which, if solved, would give us an
expression for P (n) directly. However, our preference lies with the weight function in the
interests of gaining physical intuition and further insights into the whole class of ON-OFF
feedback models.
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Chapter 10

Summary and discussion

This thesis set out to address two obstacles faced when using master equation models both
to understand the process and regulation of gene transcription, and to make inferences
from mRNA count data. First, few models have been solved analytically; even then the
vast majority of those for which we do have solutions were obtained using the probability
generating function at stationarity. Second, with the field quickly becoming data-rich, we
need to move past a culture of only solving specific models one-by-one, so that our findings
can be understood and placed within a wider context. These issues were addressed by first
solving a transcription-degradation model under a general framework, allowing for non-
stationarity of the processes involved. Only with the solution for the general model in hand,
and its properties, did we then consider specific models. By doing so our understanding
of these models was enhanced, leading to greater physical insight.

Under this framework, the Poisson mixture form of the solution of the general model
was derived in Chapter 3, which then provides access to numerous analytical tools. This
approach of solving the general model first, and then capitalising on its Poisson mixture
form, brings with it two broad advantages. The first is more directly pragmatic: Since
the mixing density is the only model-specific component of the Poisson mixture solution,
we have identified another approach for solving models of this kind, namely, obtaining an
expression for the mixing density fXt . As described in Chapter 4, the random variable
Xt is continuous and satisfies a simple random differential equation that has been well-
studied. We can thus draw upon the rich theory and results that already exist in the
literature to help us calculate fXt , even for non-stationary models. If we are unable to
determine fXt analytically, obtaining a numerical solution via stochastic simulations of
Xt is far quicker than simulating the mRNA copy number directly, and standard ODE or
PDE solvers give further options for solving the differential equations for fXt . As a result,
solutions of several previously-unsolved models were derived in Chapters 4-7. In Chapter 5
we saw how the Poisson mixture form allows us to derive moment expressions in terms of
the mixing density that are common to all gene transcription models, including the results
for ‘intrinsic’ and ‘extrinsic’ noise (Swain et al. 2002), which simplify and explain analysis
of noise in data.

The second broad advantage of this more general approach is more fundamental, more
profound: By studying a model via the natural decoupling of the solution into its discrete,
Poisson component and continuous, mixing component, we gain a far deeper intuition for,
and understanding of, the model’s structure and the properties of its solution. Through the
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derivation of the Poisson mixture solution in Chapter 3, we understood that all extrinsic
fluctuations, that is, uncertainty or variability in the transcription and degradation rates,
take effect exclusively via a certain combination of the parameters that we used to define
the extrinsic variable Xt. Moreover, in Chapter 4 we saw how Xt has clear physical
interpretations. Both of these realisations clarify how extrinsic fluctuations combine to
affect the final probability distribution of the mRNA copy number, and we start to gain
some intuition for the sources of, and reasons for, solution behaviour and characteristics.
Stripping the model down to its extrinsic component by solving for fXt provides us with
additional understanding of the structure of a model. We utilised this understanding in
Chapter 6 to navigate parameter space and identify regimes with qualitative characteristics
of our choosing, and in Chapter 7 to deduce properties of models without first needing to
solve them.

Continuing with the philosophy that biomathematicians should aim to develop tools
and derive results that are applicable to whole classes of situations or models, and which
aid comprehension of models or data within a wider context, Chapter 8 proposes a quan-
titative characterisation of timescales in the ubiquitous ON-OFF gene switching models.
Parameter regimes can then be classified objectively in a normalised space that quantita-
tively delineates between “fast” and “slow” switching dynamics.

Finally, it would be remiss of me not to mention the “Poisson representation” for han-
dling master equations (Gardiner and Chaturvedi 1977). While Gardiner and Chaturvedi
recognised the utility of working within a Poisson representation framework, their intent
was different: They showed that their Poisson representation is a basis for solutions of
master equation models, if we allow the weight function (or quasiprobability distribution,
in their nomenclature) to have support on the complex plane. They thus proposed to
assume that a solution of the master equation can be written in terms of the Poisson
representation, in order to derive the weight function and in so doing, obtain an exact
solution of the master equation. On the other hand, we arrived at the Poisson mixture
form organically for the transcription-degradation models in our framework, where the
weight function is a true density with support on the positive real line and with strong
physical interpretations, without making any prior assumptions.

Armed with our understanding of the Poisson mixture solution for transcription-
degradation models without feedback, as discussed in this thesis, better comprehension of
the Poisson representation for feedback models may well be forthcoming. Some prelimi-
nary results and initial questions to prompt investigations were discussed in Chapter 9,
but a more complete comprehension of the transition from Poisson mixture solutions of
non-feedback models to Poisson representations of the solutions of feedback models may
well yield fruitful extensions of the results presented in this thesis.
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