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ABSTRACT 

Protein precipitation using a variety of surfactants has been shown to have considerable potential as a 

protein separation technique, and considerable work on using anionic surfactants has been carried out 

by previous researchers. However, anionic surfactants are only suitable for high pI proteins due to 

concerns about protein stability. Therefore, the first aim of this work was to develop a surfactant 

precipitation method for low pI proteins based on using cationic surfactants. The effect of important 

parameters such as the molar ratio of TOMAC to protein (Rp), and pH on the precipitation of bovine 

serum albumin, α-amylase, and trypsin inhibitor were examined. Recovery of the TOMAC-protein 

complex by solvent extraction and counter-ionic surfactant (AOT) was also studied. Varied results 

were obtained for the three proteins, and were correlated with protein properties, and it was found that 

the protein’s hydrophobicity and molecular weight were the best predictors for precipitation 

efficiency and recovery. 

The second aim of this research was to examine the feasibility of using a biocompatible surfactant – 

methyl ester sulphonate (MES) as a precipitating-ligand for target proteins in this surfactant 

precipitation technique. This work was a major breakthrough in the application of a new generation of 

‘green’ surfactants for protein extraction. Lysozyme was used as a model protein in a single 

component system, and the influence of Rp, and pH were examined. Similarly, the recovery of the 

precipitate using solvent extraction and a counter-ionic surfactant, AOT, was studied. The 

performance of MES in precipitation was compared to a conventional surfactant, AOT, and it was 

found that their performance was comparable. This further highlighted its potential to be used as 

precipitant in protein purification. 

The third aim of this work was to apply the surfactant precipitation method to the purification of a 

target protein from a real industrial sample. Bacteriocin produced by Pediococcus acidilactici Kp10 

was chosen as a target protein for this purpose. With a concentration of 11.56 mM of AOT (pH 4), 

precipitate recovery by acetone (0.99 mM NaCl), and a final recovery phase of 20 mM PBS (pH 7), 

about 86.3% of overall activity recovery, and a purification factor of about 53.8 was obtained. 

Further, this separation technique was shown to be better than reverse micellar extraction, and 

aqueous two-phase extraction in terms of performance. Hence, the surfactant precipitation technique  

was proven to be an effective and a viable separation method. 
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CHAPTER 1 INTRODUCTION 
 

1.1 DOWNSTREAM PROCESSING OF PROTEINS 
Production of commercially important proteins such as industrial enzymes and therapeutic proteins is 

one of the most important areas in industrial biotechnology. Downstream processing of these products 

is the most challenging and overall cost-determining step immediately after the fermentation step 

(Sadama and Beelaram, 1995). There are various choices of unit operations available to be considered 

as a primary purification step of the target protein from the crude extract. To date most of the primary 

protein purification methods rely on chromatographic techniques which are based on the retention of a 

target protein in the stationary phase followed by a selective elution step. The method has been well 

established, and offers high resolution product recovery. However, chromatography is known to be 

high in capital and operational costs, occasionally complicated, and has low process throughput. Thus, 

there is a pressing need to develop alternative separation methods in the field of the bioseparation of 

proteins. 

1.2 PRECIPITATION OF PROTEINS  

Classical precipitation has the advantage of enabling purification in addition to concentration of the 

protein. A typical way of precipitation is by adding a compound to precipitate the target protein 

followed by centrifugation to obtain the protein pellet; the protein pellet is then re-dissolved in a new 

buffer that is compatible with the subsequent downstream processing. Hence, a soluble target protein 

relatively free from other unwanted impurities is eventually obtained. Additionally, this two stage 

separation method is very suitable for use with a large volume of sample (Hilbrig and Freitag, 2003). 

Theoretically, precipitation occurs as a result of the removal of 'bound' water molecules from the 

hydrophobic surfaces of a protein that causes protein association by hydrophobic interaction (Wenk 

and Fernandis, 2007); the protein then precipitates due to aggregation and an increase in relative 

density. 

Several precipitants have been used previously for protein precipitation including salts, polyethylene 

glycol (PEG) and organic solvents (Hönig and Kula, 1976; Shih et al., 1992; Chertov et al., 2004). 

However, varying degrees of success have been achieved due to limitations such as low recovery, 

non-specificity, solubility problems and denaturing effects (Scopes, 1994; Vaidya et al., 2001). 

Nevertheless, despite these drawbacks precipitation remains a simple and cost effective method for 

protein separation. 
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Shin (2002) developed the novel method of using a surfactant, di-(2-ethylhexyl) sulfosuccinate 

(AOT), in protein precipitation, and this method was also investigated further by Cheng and Stuckey 

(2011), and this work supported its potential for protein separation. In fact, surfactants are deemed to 

be an interesting choice for such a purpose since they are widely used in laboratories, simple, and 

inexpensive. Price et al. (2003) even suggested that the reaction behaviour of surfactants at interfaces 

are expected to be more representative of biological reactions than reactions in dilute aqueous 

solutions. Precipitation only requires a short processing time as there is instant formation of an 

insoluble protein-surfactant complex upon contact, and can operate at room temperature or even 

below, minimizing protein denaturation (Shin et al., 2003). Compared with the reverse micelle 

technique, direct surfactant precipitation uses significantly less surfactant. Furthermore, it is also 

proven that the protein recovered maintains its original activity (Shin, 2002). The purity of the final 

product is also not compromised as the recovered protein is free of surfactant and other contaminating 

proteins (Shin et al., 2004). 

The aim this work was to look more closely at the feasibility of using surfactants as a precipitant to 

improve protein precipitation and separation. Basically this work is the continuation of previous work 

(Shin et al., 2003; Cheng and Stuckey, 2011) in order to improve the understanding and application of 

this technique.  

1.3 MOTIVATIONS AND AIMS 
Previously, significant work had been carried out on the development of the surfactant precipitation 

technique, especially for high pI proteins using the anionic surfactant, AOT. Nevertheless, little 

emphasis has been put on the use of its cationic surfactant counterparts in this application. To this end, 

it was unclear whether cationic surfactants could perform a similar function, and if a similar 

mechanism is shared in the case that it does. Thus, with this in mind, the first aim was to develop a 

surfactant precipitation method for low pI proteins based on using cationic surfactants.  

A new generation of ‘green’ surfactants has also emerged in the detergent manufacturing industry due 

to raised concerns about environmental issues. One example of this class of surfactant is methyl ester 

sulphonate (MES) which is a palm-oil derived surfactant with abundant environmentally friendly 

features, not to mention with improved performance in detergency. Hence, the second aim of this 

research was to examine the feasibility of using a biocompatible surfactant - MES as a precipitating-

ligand for target proteins in this surfactant precipitation technique. 

In order to establish the surfactant precipitation technique as a viable bioseparation tool, its ability to 

perform in a real complex fermentation broth must be proven. Is that possible for surfactants to 

selectively precipitate a target protein molecule in the presence of high concentrations of impurities 
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such as found in a fermentation broth? Hence, the third broad aim of this work was to apply the 

surfactant precipitation method to the purification of a target protein from a real industrial sample. 

 

1.4 THESIS OUTLINE 
 

Chapter 2 presents the literature review associated with the subject of the protein separation technique 

by surfactant: fundamentals of proteins and surfactants, including their properties and previous studies 

on this separation technique.  

Chapter 3 describes the experimental procedures for the precipitation of low pI proteins with cationic 

surfactants, and their recovery from the precipitates. The influence of various experimental 

parameters such as; molar ratio of surfactant to protein, pH, type of recovery solvent and counter-

ionic surfactant, on performance was also discussed. In addition, the results of the analytical assays 

used in this work were also reviewed such as: circular dichroism to determine the secondary structure 

of the protein, and surfactant concentration measurements by methylene blue/methyl orange, to 

support the research findings. The possibility of establishing a correlation between various protein 

properties on the performance parameters such as the percentage of precipitation and recovery was 

also presented. 

Chapter 4 explored the feasibility of using a biocompatible surfactant, methyl ester sulphonate (MES) 

derived from palm oil, to be used as a precipitating-ligand in this separation technique. Optimisation 

of process parameters during the precipitation (molar ratio of surfactant to protein and pH) and 

recovery stage (type of solvent and ratio of counter-ionic surfactant to protein) was also detailed. The 

effect of these experimental conditions on protein stability was also examined, and a comparison 

made with the conventional surfactant, AOT, in terms of performance was also presented. 

In Chapter 5, the viability of this separation technique in protein downstream processing was 

investigated, and it application to purify an anti-bacterial peptide, bacteriocin from a complex 

Pediococcus M17 broth was examined. The influence of system parameters, namely pH and 

surfactant (AOT) concentration was described, and in addition, a general comparative study with 

other purification techniques was presented. 

Finally, a summary of the results and recommendations for future work are concluded in Chapter 6. 
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CHAPTER 2 LITERATURE REVIEW 
 

2.1 PROTEIN STRUCTURE 
 

The native conformation of a protein is key to its biological activity or functionality; however, the 

structures are dynamic with localised variations in their conformation (Darby and Creighton, 1993). 

Proteins have a repeating backbone from which 20 different possible kinds of side chains protrude. 

Their single backbone is termed a polypeptide which is made up of amino acid residues that are linked 

together by peptide bonds. The peptide bond has a resonance effect (delocalisation of electrons over 

several atoms) that causes the atoms involved with the bond to be coplanar, although the other two 

bonds, the C-N and C-C bonds which are not involved with the peptide bond can have free rotation 

within certain angles. Thus, a protein is a unique polymer with rotatable covalent bonds alternating 

with rigid planar ones (Petsko and Ringe, 2004); this forms the basis of protein structure and folding. 

In addition, the stability of proteins is maintained by several non-covalent interactions, namely; 

electrostatic interactions, Van der Waals interactions, and hydrogen bonds. Formation of a hydrogen 

bond is energetically favourable, either between the polar groups themselves (if present in the interior 

of the protein), or with water molecules (if present on the protein surface). The tendency to form 

hydrogen bonds amongst protein polar groups leads to the formation of the secondary structure of a 

protein.  

2.1.1 THE SECONDARY STRUCTURE OF A PROTEIN 
β-turn: The simplest form of secondary structure is formed by the hydrogen bond between the 

carbonyl oxygen of one residue (n) and the amide, N-H, of residue n+3; the hydrogen bond formed 

makes the chain turn in the reverse direction. These elements are prevalent on protein surfaces which 

are in contact with an aqueous environment (Petsko and Ringe, 2004). 

α-helix: The most common secondary structure in a protein is formed by local hydrogen bonding 

between the carbonyl oxygen atom of each residue (n) and the amide nitrogen of residue n+4. A 

resulting cylindrical structure is formed as all of the polar amide groups form hydrogen bonds with 

one another except for the amino and the carboxy acid terminal group (Petsko and Ringe, 2004). 

β-sheet: A secondary structure that is formed by hydrogen bonding between polar amide groups of 

two or more separate strands which are arranged side by side. 2 types of β-sheet exist: parallel, if the 

chains are in the same direction and anti-parallel, if the chains are antiparallel to one another (Petsko 

and Ringe, 2004). 
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2.1.2 PROTEIN FOLDING IN WATER 
Proteins are made up of polar and non-polar amino acid residues. Hence, in water the polar and 

charged groups of the protein will form a favourable hydrogen bond with water molecule. On the 

other hand, the non-polar, hydrophobic patches cannot do so and their presence on the protein surface 

will disrupt the hydrogen-bonded structure of water (Petsko and Ringe, 2004). Hence, these 

hydrophobic side chains tend to clump together, forming Van der Waals interactions, making the 

polypeptide compact in order to minimize its contact with water. As a consequence, protein folding 

occurs with polar charged groups occupying the protein surface area, while the hydrophobic patches 

are buried to form the hydrophobic core unless they are part of a specific binding site on the protein 

surface (Petsko and Ringe, 2004). 

2.1.3 PROTEIN STRUCTURE DETERMINATION BY CIRCULAR 

DICHROISM SPECTROSCOPY 
Circular dichroism (CD) is the difference in the absorption (∆A) of left and right circularly polarised 

light of the chiral amide chromophore (light-absorbing groups) in a protein. It is measured by 

spectropolarimeters, and the CD spectrum is displayed in ellipticity (θ) as a function of wavelength 

(Kelly et al, 2005). When a sample is impinged upon by a linearly polarized light, an ellipse is drawn 

from the resulting electrical field vector. The unit of ellipticity is defined by the ratio of the minor to 

major axes of the ellipse, and can be calculated as ellipticity (θ) =32.98 ∆A (Kelly et al, 2005). 

 
Proteins will assume a specific three-dimensional structure which is made up of packed α-helices and 

β-strands, β-sheets and reverse turns. Each of the α-helices, β-sheets and reverse turns gives a 

different spectrum in the far-UV region (180 nm-240 nm). Hence, by comparing the spectra with an 

existing database of protein spectra with a known structure, the average content of such secondary 

structures can be estimated (Darby and Creighton, 1993). Thus, CD can be very useful in detecting 

changes in a protein’s native conformation.  

2.2 PHYSICOCHEMICAL PROPERTIES OF PROTEINS 
The two important physicochemical properties of a protein that are frequently exploited to purify it 

using adsorption are surface charge and hydrophobicity. In fact, these properties have paved the way 

for ion exchange chromatography and hydrophobic interaction chromatography (HIC) to be used 

extensively in protein purification. Hence, if these protein parameters are known, then predicting 

protein downstream processing performance can be carried out.  

i. Overall surface charge (q) 

Quantitative measurement of protein surface charge is indispensable in order to assess the 

electrostatic interactions involved in protein adsorption. The surface charge of a protein was 
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previously determined by hydrogen ion titration and conductometry. Horn and Heuck (1983) 

also proposed the polyelectrolyte titration method to determine the surface charge (with 

known amino acid composition), which is performed by the incubation of a protein solution 

with excess amounts of an oppositely charged polyelectrolyte, followed by re-titration of the 

remaining polyelectrolyte. The difference between the initial and re-titrated amount of 

polyelectrolyte is equal to the number of charge residues per protein, assuming a 

stoichiometric binding between the protein and polyelectrolyte (Horn and Heuck, 1983). 

 

ii. Charge distribution on the protein surface (%S) 

Cheng and Stuckey (2011) in their study of protein precipitation have suggested the use of 

%S, as an indication of the symmetry/asymmetry of the charged group distributed on the 

protein surface. %S is defined as the percentage of random charge distributions with 

calculated dipole moments greater than the observed value (Barlow and Thornton, 1986). 

iii. Average surface hydrophobicity (φ) 

The average surface hydrophobicity (Φ) of a protein is determined in 2 steps: the visualization 

of the protein’s three-dimensional structure, and; the determination of Φ based on a specific 

equation (Lienqueo, 2002). The protein’s three-dimensional structure is determined by a 

program from a known amino acid sequence, to provide the accessible surface area of each 

amino acid residue. Next, Φ is calculated based on the area and hydrophobicity scale of each 

amino acid (Lienqueo, 2002). However, there are many hydrophobicity scales to choose from, 

for example Lienqueo et al. (2002) applied the Miyazawa–Jernigan and the Cowan–Whittaker 

scale in their calculation, while relating the theoretical hydrophobicity of the protein and its 

behaviour in hydrophobic interaction chromatography. In addition, Cheng and Stuckey (2011) 

used the Φ determined from the hydrophobicity scale of Yano et al (1994) for several proteins 

in a surfactant precipitation study. 

iv. Hydrophobic Imbalance 

In order to consider the homogeneity of protein surface hydrophobicity, the term hydrophobic 

imbalance (HI) is used. HI represents the displacement of the superficial geometric centre of 

the protein after taking into account the effect of the amino acids hydrophobicity (amino acid 

property vectors) (Salgado et al., 2006). The calculation is based on the expression below: 

 

rHI = rH – rC 

 

Where rH and rC represent the new and original superficial geometric centre of the protein, 

respectively, and each are calculated by a certain equation. A higher value of HI will 

correspond to a more evenly distributed surface hydrophobicity of the protein.  
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v. Grand average of hydropathicity (GRAVY) 

GRAVY is the sum of hydropathy values of all amino acids in a protein sequence (where the 

calculation is based on Kyte-Doolittle scale) divided by the number of residues in the 

sequence. In general, increasing positive scores indicates greater hydrophobicity. With a 

known protein sequence (e.g. stored in Swiss-Prot, TrEMBL, or for a user entered protein 

sequence), calculation of this parameter can be carried out through the bioinformatics and 

resource portal, ExPASy server. 

 

2.3 SURFACTANT (SURFACE ACTIVE AGENT) 
 
Surfactants consist of a hydrophilic head group which determines their different classes: anionic, 

cationic, zwitterionic and non-ionic, and also a hydrophobic tail which is made of hydrocarbon chains. 

The hydrophobic tail is the largest part of the molecule, and hence contributes to the major cost of a 

surfactant (Porter, 1994). Generally surfactants are associated with the detergent/cleaning industry. 

The first synthetic surfactant made in Germany during World War I was for general application, to 

compensate for the shortages of animal and vegetable fats, and the predominant types used were the 

alkylaryl sulfonates, and alcohol sulphates.  

After World War II, a new variant propylene tetramer benzenesulfonate was formulated and used until 

the early 1960s. However, due to environmental concerns, a more biodegradable alternative, linear 

alkylbenzene sulfonates (LABS) was developed and used in the detergent industry. Beside its 

application in the detergent industry, it was also being used in mining, and petroleum recovery, and as 

an additive in products such as paints, cosmetics, pharmaceuticals and foods (Myers, 1992). 

2.3.1 TYPE OF SURFACTANT 

2.3.1.1 ANIONIC  
Anionic surfactants are made by the addition of anionic species onto many types of hydrophobic 

groups (Myers, 1992). Compared with other types of surfactant, they are most extensively used for 

detergent applications because of their ease and low cost of manufacturing. According to Myers 

(1992), usually the alkyl groups are in the C12-C18 range in order to maintain surface activity and 

solubility. On the other hand, the types of hydrophilic group can be: carboxylate (RCOO-), sulphonate 

(RSO3-), sulphate (ROSO3
-) or phosphate (ROPO(OH)O-). 
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2.3.1.2 CATIONIC 
Cationic surfactants are uniquely used as antiseptic agents, fungicides and germicides, and for 

chemical applications (Myers, 1992). They are relatively less used compared to other surfactant types 

such as anionic and non-ionics. In addition, they mainly consist of positive charges, based on the 

positive charge-carrying nitrogen atom. Categories of cationic surfactants are the quaternary 

ammonium compounds, amine salts and amine oxides. The general formula for a quaternary 

ammonium salt is: 

R’R’’R’’’R’’’’N+X- 

where R’, R’’, R’’’ and R’’’’ are alkyl chains which can be straight chain or heterocyclic (pyridinium, 

morpholinium or imidazolinium); and X is the counterion which may be halide, sulphate, acetate, etc.  

2.3.1.3 NON-IONIC 
These are the second largest class of surfactants (Jonsson et al., 1999) after anionics. They are 

electrically neutral, and this fact has made them insensitive to electrolytes in the system and has 

lessened their effect on solution pH (Myers, 1992). Interestingly, they are compatible with other types 

of surfactants in which mixed micelles with other surfactants are known (Porter, 1994).The most 

important example is the polyoxyethylenes (POE)-based surfactants with a general formula of: 

RX(CH2CH2O)nH 

where R is the hydrophobic group, X is O, N, etc. The number of oxyethylene units in the hydrophilic 

group, n, is usually greater than 5 or 6 in order to provide the solubility required. 

2.3.1.4 AMPHOTERICS 
They have two ionic groups with different charges, and form cations in acidic solution, or anions in 

alkaline solutions, and will become ‘zwitterions’ in the middle pH range (Porter, 1994). Among the 

categories of amphoteric surfactants are: N-Alkyl betaines, N-Alkyl glycinates, imidazoline based 

amphoterics and amine oxides. The most common anionic and cationic groups are the carboxyl group 

(COOH) and the amine group (NH), respectively (Jonsson, 1999). The pH at which these two groups 

have equal ionisation is known as the isoelectric point. At this pH, its physicochemical behaviour 

resembles that of a non-ionic surfactant, while at below and above the pH, it shifts to cationic and 

anionic properties, respectively (Jonsson, 1999). 

Furthermore, they are suitable to be used in shampoos and personal care products since they show low 

eye and skin irritation (Jonsson, 1999). However, this class of surfactant is not compatible with the 

anionic surfactants. 
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Figure 2.1 Examples of surfactants: (I) anionic (Sodium dodecyl sulphate, SDS), (II) 

cationic (Cetyltrimethylammonium bromide, CTAB), (III) non-ionic 

(Tetraethylene glycol dodecyl ether, C12E4) and (VI) zwitterionic (Dioctanoyl 

phosphatidylcholine, C8-lecithin) (Rangel-Yagui et al., 2005). 

 

2.3.2 SURFACTANT PROPERTIES 

2.3.2.1 SOLUBILITY 
Generally, a surfactant refers to compounds that can alter interfacial interactions by enhancing the 

adsorption at interfaces. Surfactant molecules tend to concentrate at the interface as a result of their 

amphipathic structure. Such interfacial adsorption serves as the main mechanism to reduce the free 

energy of the system. However, when all of the available interfaces become saturated, the mechanism 

will shift to the thermodynamically favourable mode of crystallization/precipitation or aggregate 

(micelle) formation (Myers, 1992). 

The solubility of ionic surfactants increased with increases in temperature, and there is a dramatic 

increase in the solubility at a certain temperature which is known as the Krafft temperature, TK 

(Myers, 1992). Below TK ionic surfactants follow the characteristics of a solid phase (hydrated 

crystal), while above TK thermodynamically favourable micelles are formed (Porter, 1994). 

Conversely, the non-ionic counterpart has an inverse temperature/solubility relationship. Its solubility 

decreases dramatically above a certain temperature which is known as the “cloud point”. 
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Figure 2.2 Temperature dependence of surfactant solubility (Jonsson, 1999). 

 

2.3.2.2 CRITICAL MICELLE CONCENTRATION (CMC) 
As highlighted previously, micellisation is an alternative mechanism to interface adsorption. It results 

from a balance between intermolecular forces of hydrophobic, steric, electrostatic, hydrogen bonding 

and Van der Waals interactions (Rangel-Yagui et al., 2005). Basically, the CMC is the most important 

characteristic of a surfactant, and refers to the highest monomeric surfactant concentration achievable 

in an aqueous solution of surfactant. The number of surfactant molecules in a micelle is known as the 

“aggregation number”, and the CMC is influenced by several factors such as temperature, pressure, 

pH and salt concentration (Fresta et al., 2002). The CMC of an ionic surfactant is generally higher 

than that of a non-ionic; it is also higher for surfactants with higher hydrophilicity.  

The physicochemical properties of a solution of a micelle-forming surfactant are dependent on its 

concentration (Figure 2.3). Hence, CMC can be determined by the measurement of surface tension, 

solubilisation, self-diffusion, nuclear magnetic resonance (NMR) and fluorescence spectroscopy 

(Jonsson et al., 1998). Generally the CMCs for anionic surfactants are much lower than for their ionic 

counterparts, being of the order of 10-4 mol/L. 
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Figure 2.3 Changes of physical properties: conductivity (κ), osmotic pressure (π) and 

surface tension (γ) of an aqueous solution of surfactant as a function of 

surfactant concentration (Rangel-Yagui et al., 2005). 

 

2.4  PROTEIN-SURFACTANT INTERACTION 
 

Considerable research has been carried out studying protein-surfactant interactions through various 

approaches, for example: a phase diagram study (Morén and Khan, 1998; Stenstam et al., 2003); 

binding isotherm study (Jones, 1975); thermodynamics of adsorption (Randolph and Jones, 2002) and 

kinetics (Otzen, 2002 and 2002b). Moreover, the theoretical structures of surfactant-protein 

complexation have been proposed, namely rod-like (Reynolds and Tanford, 1970), decorated micelles 

(Jones, 1996) and pearl-and-necklace model (Turro et al., 1995), albeit this has not been conclusively 

proven. 

 

The most established way to understand the interactions between proteins and surfactants is by 

scrutinising the binding isotherm of surfactants and proteins (specific binding-non-cooperative 

binding-cooperative binding) (Jones, 1975). A binding isotherm is displayed with the average number 

of surfactant molecules bound per protein molecule (ν) as a function of the logarithm of the free 

surfactant concentration. There are four characteristic regions in the binding isotherm: (I) specific 

binding, (II) non-cooperative binding, (III) cooperative binding, and (IV) saturation, as shown in 

Figure 2.4. 

 

Specific binding: In general this is governed by electrostatic interactions between the head group of 

the surfactant and the oppositely charged binding site on the protein. Therefore, this binding is greatly 

influenced by pH as it mainly controls the net charge of a protein. As the pH is lowered, the anionic 
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binding isotherm is shifted to a lower surfactant concentration in contrast to the cationic binding 

isotherm (Valstar, 2000). What follows next is the non-cooperative binding stage: the binding causes 

the protein to expand somewhat and allows non-cooperative binding (Turro et al, 1995). Next is the 

cooperative binding stage, where subsequent binding of the added surfactant results in the formation 

of surfactant clusters on the protein (micelle-like structures at sub-CMC). This is a cooperative 

process (like micellisation), and the binding affinity increases as more surfactant is bound (Valstar, 

2000). This is a critical stage as protein unfolding occurs at this stage. Otzen (2011) has described the 

fact that the clusters may be stabilised by the association of several protein molecules (extracted from 

Andersen, 2009), leading to small protein complexes driven by the formation of shared micelles 

(which are formed under a relatively small concentration window). As the concentration of surfactant 

increases (but still sub-CMC), each protein is able to form a cluster on its own. Finally, the interaction 

comes to a saturation stage, where further binding of the surfactant on the protein does not occur, and 

normal micelle formation occurs as excess surfactant is added (Turro et al, 1995). 

 

 
Figure 2.4 Binding isotherm of surfactant and protein. The ordinate is the number of 

surfactants bound per protein molecule, ῡ, and the abscissa  is the logarithm of 

free surfactant concentration, log (c) (Jones, 1975). 
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2.5 PROTEIN SEPARATION BY SURFACTANT REVERSE 

MICELLES 
 
Reverse micelles are formed when the added surfactant concentration in aqueous solution is higher 

than its CMC value in the presence of an organic solvent. For example, if we have 250 mM of an 

AOT micellar solution in isooctane. Due to the amphipathic property of the surfactant, aggregates 

(micelles) are formed which align themselves in a way such that the hydrophilic head groups are 

sequestered in the centre, while the hydrophobic tail groups are in contact with the surrounding 

solvent. Thus, many researchers have exploited the use of reverse micelles for liquid-liquid extraction 

of proteins (Aires-Barros and Cabral, 1991; Pires et al, 1996; Shin et al., 2003a). Basically, the steps 

involved consist of two stages: 1) forward extraction- in which the protein-containing buffered 

aqueous phase is mixed with the micellar solution; 2) back extraction- after phase separation, where 

the protein-loaded micellar solution is mixed with a fresh aqueous solution and addition of salt, 

solvent or counter-ionic surfactants enables us to recover the surfactant-free protein (Aires-Barros and 

Cabral, 1991; Shin et al., 2003a) back into the aqueous phase. 

2.5.1 MECHANISM OF PROTEIN SEPARATION BY REVERSE 

MICELLES 
As a result of electrostatic interactions between the charged protein groups and the surfactant head 

groups at the interface of the aqueous-solvent mixture, the proteins are solubilised inside the polar 

core of the micelles (entrapment), and stabilized by the surfactant shell layer that protects them from 

denaturation by the organic phase (Aires-Barros and Cabral, 1991; Pires et al, 1996). In addition, Shin 

et al. (2003a) proposed that there are 2 steps in the mechanism of reverse micelles extraction: 1) the 

formation of an insoluble lysozyme-AOT complex (precipitate); and, 2) the solubilisation of this 

complex in the reverse micellar phase, and this complex will remain as a precipitate if the micellar 

phase saturation limit has been reached. This is based on the findings of the formation of a white 

precipitate at the aqueous-organic interface when the lysozyme concentration exceeds the saturation 

limit, and the reduction of its concentration in the reverse micellar phase. 

2.5.2 FACTORS INFLUENCING THE PERFORMANCE OF 

REVERSED MICELLE PROTEIN EXTRACTION 
The effectiveness of reversed micellar extraction depends on the ease of protein extraction into the 

reverse micellar phase, its recovery from the micellar phase, and its capacity to maintain the protein 

biological function (Aires-Barros and Cabral, 1991). There are several factors that influence the 

performance of reverse micelle extraction which are highlighted below. Indeed these factors 
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determine the water content of the micellar solution (w0), which is directly related to the size of the 

reverse micelles. The ease of protein transfer between phases is believed to be higher if the water pool 

radius (rmicelle) is larger than the protein size (Aires-Barros and Cabral, 1991; Shin et al., 2003a).  

Factors that influence the performance of reversed micelle extraction (Pires et al, 1996) are: 

i. pH 

Electrostatic interaction is the main driving force in protein transfer, and since a change of pH 

will determine the protein net charge, pH has a strong influence on reverse micellar 

extraction. Another interaction involved are the hydrophobic interactions that predominate at 

pHs close to the pI, however, this effect is reduced as the temperature decreases (Pires et al, 

1996).  

ii. Ionic strength 

Extraction efficiency is reduced when the ionic strength is increased because of the screening 

effect of the electrostatic interactions between the protein and surfactant, and the size 

exclusion effect as the water pool radius (rmicelle) approaches the protein radius (Pires et al, 

1996). 

iii. Surfactant concentration 

The extraction efficiency can be increased with an increase in surfactant concentration; 

however, as a result the back extraction process can become more difficult.  

iv. Charge distribution 

The extraction efficiency of proteins with higher charge asymmetry into TOMAC reverse 

micelles is higher than its low charge symmetry counterpart. 

v. Type of electrolyte 

Different buffering systems and ionic species can influence the process efficiency. 

vi. Factors affecting reversed micelle structure 

The organic solvent used and temperature also affect the physicochemical properties of the 

reverse micelles, and thus influence the protein transfer efficiency in different phases. 

 

vii. Use of biospecific ligands 

Previous work by other researchers have also shown an improvement in extraction with the 

inclusion of affinity ligands or other co-surfactants. 
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2.5.3 DISADVANTAGES OF REVERSE MICELLAR PROTEIN 

EXTRACTION 
Even though reverse micelle protein extraction has been proven to be effective; its main drawback is 

that there is normally a loss of protein by the formation of a precipitate at the interface which can 

eventually reduce the final yield (Jauregi and Varley, 1998; Lye et al., 1995; Shin et al., 2003a). 

 

2.6 DIRECT PROTEIN PRECIPITATION BY SURFACTANT 

2.6.1 MECHANISM OF DIRECT PRECIPITATION BY 

SURFACTANTS 
 
The isoelectric point (pI) is the pH at which a protein will have a zero overall net charge (McMurry, 

1992). The protein will have a net positive surface charge below this point, while it will possess a 

negative surface charge above this pH. Once the oppositely charged protein and surfactant make 

contact, the protein will form an ion pair with the surfactant head group resulting in the formation of 

an insoluble surfactant-protein complex (precipitate) (Shin et al., 2003b). Hence, the surfactant will 

act as a ligand to bind the target protein and later precipitating it. After precipitation the recovery of 

the target protein from the protein-surfactant complex (precipitate) is achieved by adding a solvent or 

counter-ionic surfactant. If a surfactant is used, due the attractive electrostatic interactions between the 

two oppositely charged surfactants, the target protein will be solubilised from the surfactant-protein 

complex. Furthermore, in comparison with reverse micelle extraction, the concentration of surfactant 

used for precipitation is lower than the CMC. 

 

2.6.2 ADVANTAGES OF DIRECT PROTEIN PRECIPITATION 
 
Among the highlighted advantages of direct precipitation from the literature are:  

i. Simple; 

ii. Short processing time;  

iii. High performance; in previous work on lysozyme recovery, about 95% and 50% recovery 

efficiency were obtained for a lysozyme-albumin solution and hen egg white solution, 

respectively, by reverse micellar extraction (Chou and Chiang, 1998), and Shin et al. (2003b) 

showed that a similar yield can be achieved by direct precipitation; 
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iv. More economic in terms of the amount of surfactant used compared to surfactant mediated 

reverse micelle recovery (Cheng and Stuckey, 2011). The surfactant required to extract the 

same amount of enzyme using reverse micelles was orders of magnitude higher than the 

surfactant required for direct precipitation (Shin et al., 2003b); 

v. The method of surfactant initiated precipitation has an advantage over micellar extraction in 

its capability to recover protein without any unfolding; it has less of a protein denaturing 

problem than is usually encountered in reverse micellar extraction while recovering protein 

that is electrostatically bound to surfactants. This point is confirmed during the recovery of 

trypsin from the precipitate (Cheng and Stuckey, 2011).  

 

2.6.3 TYPE OF SURFACTANT USED FOR PROTEIN 

PRECIPITATION 

2.6.3.1 ANIONIC 
Basically, an anionic surfactant is usually used to precipitate a protein with a higher pI. As an 

example, Cheng and Stuckey (2011) used AOT for various proteins with a pI>8 with a pH under 6.2. 

The direct precipitation of lysozyme by the anionic ligand, di-(2-ethylhexyl) sodium sulfosuccinate 

(AOT) has been studied (Shin et al., 2003a; Cheng and Stuckey, 2011), and the effect of two 

important parameters: molar ratio (R) and pH, on lysozyme precipitation have been examined.  

A molar ratio of AOT to lysozyme in the range 5-35 was tested for precipitation. Varying results for 

an optimum R were obtained by different researchers, even though the same buffer conditions were 

used: Shin et al (2002) achieved 100% removal at only R=10, while it was R=16 in the case of Cheng 

and Stuckey (2011). However, these findings were generally consistent given that there was only 5% 

of non-precipitated lysozyme at R=10 for the latter group. Notably, when a large amount of AOT was 

used (R>23), the lysozyme underwent structural changes or denaturation due to the hydrophobic 

binding of the excess AOT to lysozyme as determined by HPLC analysis (Cheng and Stuckey, 2011). 

Complete precipitation of lysozyme was obtained at pH 4-9, and the lysozyme recovered maintains its 

activity across this range. However, the amount of precipitate reduced markedly (60%) at pH 12 due 

to the electrostatic repulsion between the lysozyme and anionic surfactant; the lysozyme isoelectric 

point is 11. In addition, the percentage of precipitation drops at acidic pH 2 as probably most of the 

lysozyme becomes inactive and unable to interact with AOT, and there is ion exchange between the 

Na+, the surfactant counter-ion, and the H+, which reduce the solubility of AOT in the aqueous phase 

(Shin et al., 2002; Cheng and Stuckey, 2011). 

Successful precipitation of other proteins by the anionic surfactant (AOT) has also has been achieved 

previously:  
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i. Ovalbumin  

Complete precipitation of ovalbumin was attained at pH 4.0 in 20 mM phosphate buffer as the 

isoelectric point of ovalbumin is 4.9 (Shin et al., 2003b). It was found that 14 moles of AOT 

bind to 1 mole of albumin. Nonetheless, the ovalbumin was not recoverable from the 

precipitate even though various polar organic solvents such as acetone, methanol, 

isopropanol, pentanol, methyl acetate, methyl ethyl ketone and formaldehyde were tested. The 

researcher offered no explanation for the unsuccessful recovery of ovalbumin protein.  

ii. Cytochrome c  

At R=17 and pH 6.2, full precipitation of cytochrome c was achieved in 20 mM phosphate 

buffer (Cheng and Stuckey, 2011). From CD analysis of the remaining supernatant after the 

addition of AOT, the secondary structure of the protein only remains identical to the native 

one up to R=17. The β-sheet content increases while the helical structures are reduced; HPLC 

results also confirm the unfolding behaviour of the cytochrome c as another peak with a 

higher retention time was observed.  

iii. Ribonuclease A  

As for ribonuclease A, an optimum R of 22 for complete precipitation was obtained with the 

same buffer conditions (Cheng and Stuckey, 2011). Protein stability and conformation also 

show similar outcomes as cytochrome c with increasing R, as revealed by the CD and HPLC 

findings.  

iv. Trypsin  

In the interaction of AOT with trypsin, denaturation occurred with increasing AOT 

concentration. Initially, unbound trypsin maintained its native structure and activity at R=4. 

Then undesirable cooperative binding of the surfactant with the protein started at R=8, 

although no major conformational changes started to occur until R=14. However, 

denaturation begins to occur at R=20 and consequently trypsin lost its activity at R=31. 

Notably, the highest recovery achieved was only 43% at R=14. On the other hand, it was 

observed that the unfolded protein eluted earlier than the trypsin and this was different from 

previous proteins as they were normally being eluted later. 

v. α-Chymotrypsin 

Comparable to trypsin, complete precipitation was not achievable for α-chymotrypsin, and 

only 62% precipitation was reached at R=8. The protein remained structurally stable in the R 

range of 4 to 8. As the R was increased from 14 to 31, slight conformational changes 

occurred.  
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Figure 2.5 Chromatogram of lysozyme samples: (a) Initial lysozyme solution without AOT 

(tR = 5.8min); Soluble lysozyme in the aqueous solution after addition of AOT at 

(b) R=5, (c) R=10, (d) R=16, (e) R=23, (f) R=29, and (g) R=35 (Cheng and 

Stuckey, 2011). 

From the above results, it is clear that electrostatic interactions are the most important interactions 

involved in protein precipitation by surfactants. As in the case of hydrophilic proteins: lysozyme, 

cytochrome c and ribonuclease a, the level of precipitation increases until it reaches full precipitation 

with increments in the anionic surfactant, AOT. In order to gain insight into the precipitation process, 

more surfactant was added beyond the optimum R; it was found that the percentage removal for this 

group of proteins reduced slightly as the R exceeded this point. In addition, with counter-ionic 

surfactant (TOMAC) recovery, not only was complete recovery achieved, but these proteins also 

retained their conformation and activity (Cheng and Stuckey, 2011). Interestingly, there is also a 

29 
 



linear trend in the optimum R as a function of surface charge distribution (%S) (Figure 2.5). It was 

also suggested that an increase in %S will require less R. 

On the other hand, for the hydrophobic proteins, trypsin and α-chymotrypsin, different phenomena 

were observed. As the AOT concentration increased, the level of trypsin precipitation increased until 

it reached 80% at R=31 (maximum tested). However, the trypsin was strangely unrecoverable at this 

R. In fact, the maximum recovery of 43% was obtained at R=14 when the percentage precipitation 

was only 70%. For α-chymotrypsin, the precipitation trend was similar to the hydrophillic proteins, 

but with a significant reduction in the level of precipitation (from 70% to 30%) as the optimum R (8) 

was exceeded. Highest protein recovery (62%) was also achieved at this R. 

 

 

Figure 2.6 The molar ratio of AOT to proteins as a function of surface charge distribution 

(Cheng and Stuckey, 2011). 

2.6.3.2 CATIONIC  
In contrast, cationic surfactants were used to precipitate low pI proteins. For example, Ward and 

Stuckey (2011) employed cationic surfactants (DTAB, TOMAC and DODMAC) to precipitate bovine 

serum albumin (BSA- pI 4.7) at pH 6.2 and 9.0 from buffer. Intriguingly, in comparison with anionic 

surfactants, precipitation by cationic surfactants was achieved at high molar ratios above 40. In the 

case of DODMAC, BSA still maintains its conformation even at Rs as high as 100. The authors 

presumed that hydrophobic interactions were the main interactions after R=40, and as the R was 

increased, the precipitation increased mainly due to hydrophobic interactions. Nevertheless, even 
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though the highest precipitation was achieved at R=140 (56%), the conformation of BSA was 

affected, as shown by the HPLC and CD data. 

 

Amongst the three surfactants tested, DODMAC was found to be the only one that could bind to BSA 

at pH 6.2. However, this finding was unforeseen considering that DODMAC was the lowest in the 

order of charge density, which is DODMAC<TOMAC<DTAB (Ward and Stuckey, 2011). By also 

taking into account the order of the hydrophobicity, DTAB<TOMAC<DODMAC, the authors 

claimed that only subtle electrostatic interactions were available to bring the BSA molecules close 

enough to support the hydrophobic interactions. As the pH was increased to 9.0, there was a marked 

increase in the precipitation level, and this was consistent with the postulate of charge density 

increment which promotes the electrostatic interactions between BSA molecules and the cationic 

surfactant. At this point, TOMAC reached a higher precipitation level than DODMAC (94% 

compared to 88%) since it had a higher charge density.  

2.6.3.3 NON-IONIC  
Protein extraction into non-ionic microemulsions, reverse micelles and aqueous two phase micellar 

systems have been successfully developed (Naoe et al, 1998; Nikas et al., 1992; Vasudevan and 

Wiencek, 1996). Non-ionic surfactants possess a relatively stable negative charge at pH 5-9, and are 

able to bind positively charged protein residues at these pHs (Vasudevan and Wiencek, 1996). In 

addition, non-ionic surfactants also have low affinity interactions and non-denaturing effects on 

proteins (Naoe et al, 1998; Nikas et al., 1992; Vasudevan and Wiencek, 1996). However, the 

application of non-ionic surfactants (Triton X-100, Tween 85 and Brij 30) for direct protein 

precipitation proved to be unsuccessful (Cheng and Stuckey, 2011). This result is also reported to be 

similar in mixed ionic/non-ionic systems. Precipitation or recovery of proteins by non-ionic 

surfactants failed to occur as the surfactant monomer binding does not occur. Hence, it was concluded 

that the non-ionic properties of these surfactants has hindered their use as a ligand for protein binding. 

2.6.4 RECOVERY OF TARGET PROTEIN FROM THE PRECIPITATE 
The precipitate is the insoluble surfactant/protein complex resulting from the addition of an ionic 

surfactant to the protein sample. Previously, Shin et al. (2004) reported on the use of acetone, a polar 

organic solvent, as a recovery solvent. Further electrolytes such as sodium chloride are required here 

to separate the protein from the surfactant in the acetone. The surfactant/protein complex solubilises 

once acetone is added, and later the desired protein precipitates out of solution after salt addition. 

Other solvents like ethanol, methanol and other solvent mixtures have also been tested for protein 

recovery. Varying results were achieved, and there was an undesired effect of protein 

unfolding/denaturation when the contact time with solvents was increased (Cheng and Stuckey, 2011; 
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Shin et al., 2004). In addition, Shin et al. (2004) found that the use of a large volume of a polar 

solvent such as acetone significantly decreased the recovered xylanase activity. 

 

Rather than having the final target protein in an insoluble form, Cheng and Stuckey (2001) developed 

a recovery method based on counter-ionic surfactant addition that gave a free and soluble form of the 

protein, while simultaneously precipitating the surfactant. 4 types of cationic combination 

(TOMAC/ethanol, TOMAC/isooctane, DODMAC/ethanol and DTAB) were studied. DTAB is more 

hydrophilic, and therefore does not require a solvent to be dissolved into like the other surfactants 

used, in particular TOMAC, which is only soluble in organic solvents such as ethanol due to its high 

hydrophobicity attributed to its 3 alkyl chains (Ward and Stuckey, 2011). The effect of the recovery 

phase ionic strength and pH were also examined; the dissociation of the AOT-lysozyme complex was 

favoured at low ionic strength, and a high recovery was maintained over a wide range of pHs tested 

(4-7) for TOMAC/ethanol. From these results, TOMAC/ethanol in 20 mM potassium phosphate 

buffer at pH 6.2 was found to be the best recovery phase for lysozyme from the lysozyme-AOT 

complex in that it gives a higher yield (100% recovery at R=2 compared to only 81% recovery at R=2 

for DODMAC/ethanol), is more miscible, more economic (only R=2 to achieve complete recovery as 

compare to R=2.5 for TOMAC/isooctane to achieve a similar result) and does not interfere with 

absorbance measurements at 280nm as with DTAB. 

 

Nevertheless, DTAB was still being used to recover lysozyme after its precipitation by AOT, and it 

was found to follow a similar trend to TOMAC (Ward and Stuckey, 2011). As it is known that DTAB 

has a higher charge density than TOMAC, it was expected that DTAB would give a higher yield than 

TOMAC at low molar ratios (1.0), which were 83% and 77%, respectively. However, as the R 

increased to 3.0, the performance of the two surfactants was found to be equal in that 100% recovery 

was obtainable. DTAB has the advantage over TOMAC in the sense that it can be directly dissolved 

in water due to its high hydrophilicity, thus eliminating the use of an organic solvent to aid solubility 

that might denature the protein (Ward and Stuckey, 2011). However, the application of DTAB for 

counter-ionic recovery is complicated because of its large absorption at the far-UV CD spectra 

(Cheng and Stuckey, 2011). 

 

 

2.6.5 SELECTIVITY IN FERMENTATION BROTH/BINARY PROTEIN 

SYSTEM 
A separation selectivity study was conducted based on a binary protein system. It was determined that 

the surface hydrophobicity (average surface hydrophobicity & surface hydrophobicity distribution) of 

the proteins did not seem to control their extraction selectivity, even though better separation tends to 
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occur with proteins closer to each other on the surface hydrophobicity scale (low ∆Ф). However, the 

selectivity from a protein mixture was found to be a strong function of the surface charge distribution, 

and this correlation only applied to the hydrophilic proteins studied (lysozyme, ribonuclease A and 

cytochrome c)(Cheng and Stuckey, 2011). 

 

Previously, Shin et al. (2003a) had reportedly failed to separate two proteins with similar pIs in a 

binary mixture, however, it was suspected that this might be due to the large difference in 

hydrophobicity of the two proteins (Cheng and Stuckey, 2011). This hypothesis was proven later as 

two proteins (lysozyme and ribonuclease A) with close pIs and hydrophobicity (low ∆Φ) in a binary 

mixture were selectively separated by surfactant precipitation. It is believed that the hydrophobicity 

effect was minimal here, while the surface charge distribution (%S) was controlling.  

 

In binary system extraction from a broth, the protein with the lowest R (previously determined in 

buffer) was extracted first to prevent the denaturation problem. After the precipitate was removed, a 

second extraction step was performed on the remaining supernatant with the optimum R for the other 

protein, and this was later recovered similarly; the extraction was easier for the protein with a higher 

overall surface charge and distribution (Cheng and Stuckey, 2011). Selectivity was also achieved from 

a fermentation broth of Pichia pastoris, and these results were consistent with the results obtained in a 

buffer system (Table 2.1).  

 

Table 2.1 Selectivity of surfactant extraction from buffered protein mixtures (Cheng and 

Stuckey, 2011b). 

Equimolar Protein Solutions 

Binary Mixtures 
% Recovery 

Step (1) Step (2) 

(A) 
Lysozyme 

Cytochrome c 

98 

33 

0 

60 

(B) 
Lysozyme 

Ribonuclease A 

99 

0 

0 

94 

(C) 
Cytochrome c 

Ribonuclease A 

98 

13 

0 

82 
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Surface charge distribution (%S) was found to be the most important factor influencing selectivity, as 

there was a good correlation between the relative difference in precipitation (∆% precipitation) and 

the relative difference in surface charge distribution (∆%S) (Figure 2.7) in which each was 

determined as: 








 +

−
=

2

 difference Relative
yx
yx

 
where the x and y refers to the parameter for each of the protein tested. 

A further test with least square estimates and analysis of variance (ANOVA) also confirmed the 

significance of %S in influencing the precipitation efficiency, and this was modelled in the equation 

below: 

∆Pm=0.65 + 1.13 ∆S 

Where ∆Pm is the relative difference of precipitation in binary mixtures, and ∆S (%) is the relative 

difference in surface charge distribution. 

This finding is vital in the sense that it highlighted the effectiveness of surfactant precipitation since 

most of the proteins have a large difference in surface charge distribution, although often with small 

differences in overall surface charge (Barlow and Thornton, 1986). 

 

Figure 2.7 Fitted straight line for selective precipitation of protein mixtures in broth 

according to the relative difference of surface charge distributions (Chen and 

Stuckey, 2011). 
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2.6.6 SURFACTANT PRECIPITATION OF PROTEINS FROM 

COMPLEX SAMPLES 
When dealing with mixtures, it has been reported that lower protein precipitation is obtained in 

contrast to using a single protein sample (Shin et al., 2004). Shin et al. (2004) successfully recovered 

78% of xylanase from an industrial cellulase mixture, with 4 g/L of total protein. At pH 4.5, xylanase 

(pI = 9) will have a stronger electrostatic interaction with AOT compared to cellulose (pI about 6). 

This might be the reason why AOT can precipitate xylanase more selectively, and even the bound 

cellulose can still be removed from the AOT-xylanase complex by an additional washing step. This 

proves that selective recovery is achievable despite the proteins having similar charges at the same 

pH.  

 

Nevertheless, the sample employed was not as complicated as a fermentation broth as there were only 

2 types of proteins present in the mixture, and even with a different molecular weight range, each of 

the proteins had a distinct pI that could be easily manipulated. A close scrutiny of the SDS-PAGE 

results revealed that xylanase was the major protein in the sample compared with cellulases, even 

though it was claimed that there was only 15-20% xylanase.  

 

Previous experiments also used spiked Pichia pastoris fermentation broth with proteins (lysozyme, 

cytochrome c or ribonuclease A) to evaluate selectivity. In buffer solution, the protein initially 

unfolded reversibly, but later unfolded irreversibly out of the solution with an increment in surfactant 

addition (increased molar ratio, R). However, proteins in the broth will directly undergo irreversible 

denaturation even at a concentration of AOT below that needed for efficient precipitation (Cheng and 

Stuckey, 2011). Most proteins were efficiently extracted when adequate AOT ligands were added 

both to the buffer or broth system. Even though complete precipitation was achieved at the same R in 

the buffer system, only about 85% of the protein was recovered. This was attributed to the formation 

of insoluble aggregates caused by hydrophobic compounds in the broth. Furthermore, it was observed 

that minor denaturation occurred even below the optimum R, and significantly increased above it, and 

this effect was also shown to be proportional to the increase in protein surface hydrophobicity.  

 

2.6.7 MIXED SURFACTANT SYSTEM FOR PROTEIN 

PRECIPITATION 
 
A combination of ionic/non-ionic surfactants for protein recovery has been proven to be quite 

successful in the reverse micelle technique (Fan et al., 2001; George and Stuckey, 2010; Goto et al., 

1998; Shen, 2005). However, this is not the case for direct precipitation as demonstrated previously 
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with the combination of AOT (anionic)/Triton X-100 and DTAB (cationic)/Triton X-100 (Cheng and 

Stuckey, 2011). Non-ionic surfactants do not seem to improve the performance of ionic surfactants for 

direct precipitation due to the formation of monomers. The explanation for this is that non-ionic 

surfactants lack the charged head group, and even the amount that can be used is restricted by its low 

CMC. In addition, the previous study also showed that the sequence of adding it to a mixed surfactant 

experiment does not have any influence on its outcome.  

 

2.7 SUMMARY 
Previous work so far has elucidated the mechanisms behind the surfactant precipitation of proteins. 

This separation is initiated through electrostatic interactions that allow the surfactant monomer to 

interact with the protein molecules. Subsequently, following charge neutralisation, the surfactant and 

protein bind together by hydrophobic interactions, and eventually precipitate out of the solution 

(Cheng and Stuckey, 2011). This conclusion is supported by several experiments:  

i. The precipitation study that used hydrophilic proteins (lysozyme, cytochrome c, ribonuclease 

a), found through circular dichroism and HPLC that the structure of proteins remained intact 

up to the optimum molar ratio (R), but began to unfold and denature as the R value increased 

above the optimum.  

ii. The low level of precipitation and recovery of hydrophobic proteins (trypsin and α-

chymotrypsin) where complete precipitation and recovery were not achievable. 

iii. The inability of non-ionic surfactants to precipitate these proteins. 

iv. In the protein precipitation study using cationic surfactants, DODMAC (even with the lowest 

charge density as compared to TOMAC and DTAB) was the only cationic surfactant that was 

able to bind to BSA at pH 6.2, while TOMAC and DTAB only started to interact with BSA at 

pH 9.0. 

 

In addition, amongst the protein surface properties studied, surface charge distribution (%S) was 

found to be the main parameter that affected precipitation. There was a linear correlation between 

(%S) of these hydrophilic proteins, and the optimum molar ratio (R). The optimum R also reduced as 

%S increased. 

When the method was also applied to protein mixtures in buffer and fermentation broth, similar 

extraction levels were obtained, and selectivity was achieved on the basis of the difference in surface 

charge distribution between proteins. However, the extent of protein unfolding in fermentation broth 

was greater due to the presence of hydrophobic constituents in the fermentation broth. 
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Nevertheless, the work to date on cationic surfactants for low pI protein separation was not as 

comprehensive as those using anionic surfactants. Basically, 3 proteins (BSA, lipase and trypsin 

inhibitor) have been used for the separation study by using cationic surfactants, and surprisingly only 

trypsin inhibitor was successfully precipitated and recovered (Cheng and Stuckey, 2011). The 

extraction of lipase failed, due to the difficulty in dissolving the lipase-TOMAC complex, and 

denaturation problems (Cheng and Stuckey, 2011). In the case of BSA, even though full precipitation 

was achieved, there was no attempt to recover the BSA from its precipitate by counter-ionic 

surfactants (Ward and Stuckey, 2011). Hence, more work on protein precipitation by cationic 

surfactants is necessary in order to gain a better understanding of surfactant precipitation. Moreover, it 

is currently still not clear if the protein precipitation mechanism and selectivity using cationic 

surfactants is similar to their anionic counterparts. Finally, provided that sufficient understanding has 

been gained of surfactant precipitation, it would be very interesting to try this technique on the 

separation of a high value protein.  

 

2.8 OBJECTIVES 
1) Developing the surfactant precipitation method for low pI proteins based on using a 

cationic surfactant.  

1.1 Examine if the precipitation mechanism is identical to anionic surfactant precipitation 

1.2 Evaluate the effect of experimental factors (molar ratio of surfactant to protein, Rp, and 

pH) on precipitation performance. 

1.3 Assess the performance of different organic solvents in recovering a target protein from 

its surfactant-protein complex 

1.4 Optimise the recovery of a target protein from its precipitate through the counter-ionic 

surfactant method. 

1.5 Investigate the influence of various protein properties (molecular weight, hydrophobicity, 

GRAVY, total charge and charge density, as well as adiabatic compressibility) on the 

overall performance of surfactant precipitation. 

1.6 Examine the structural integrity of a protein that has been subjected to surfactant 

precipitation. 

 

2) Feasibility of using a biocompatible surfactant - MES as a precipitating-ligand. 

1.1. To study the feasibility of using a “biosurfactant” - MES as a precipitating ligand for 

lysozyme in the surfactant precipitation technique. 

1.2. To compare the performance of MES to a conventional surfactant (AOT) with lysozyme 

precipitation. 
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3) Application of the surfactant precipitation method to the purification of a target protein 

from a real complex sample.  

1.1 To develop the method of separation based on the surfactant precipitation technique for 

bacteriocin from lactic acid bacteria, Pediococcus acidilactici Kp10 by using AOT.  

1.2 To compare the performance of the surfactant precipitation method to another surfactant 

based separation technique, reverse micellar extraction. 
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CHAPTER 3 PRECIPITATION OF LOW PI 

PROTEINS WITH A CATIONIC 

SURFACTANT 
 

3.1 INTRODUCTION 
Since its development in 2003 by Shin et al., research on the protein separation technique using direct 

precipitation by surfactant has been mainly continued by Cheng and Stuckey (2011a, 2011b and 

2012). Literature on the study of surfactant precipitation thus far has focused almost exclusively on 

the use of an anionic surfactant – AOT, and only a little weight was given to the use of cationic 

surfactant-based precipitation, for example some of the preliminary work done by Cheng and Stuckey 

(2011b) and Ward and Stuckey (2011). However, for separating low pI proteins, because of the 

importance of charge neutralisation during precipitation, and most importantly for this protein 

category to remain within its stability range, a cationic surfactant based precipitation should be 

examined and developed in more detail.  

Protein unfolding/denaturation is known to be of great concern during surfactant precipitation. 

Ironically, it was suggested in the literature that cationic surfactants should cause fewer structural 

perturbations compared to anionic surfactants because they have less affinity for the protein during its 

interactions (Nozaki et al., 1974; Somasundaran, 2006). This was explained by the fact that cationic 

arginine and lysine side chains projected further from surface and contributed with more CH2 groups 

for incorporation in a cluster than the anionic aspartate and glutamate side chains, and thus the 

magnitude of attraction to proteins was higher for anionic surfactants (Nozaki et al., 1974). Another 

reason may be the fact that the stronger steric hindrance exerted by the multiple hydrophobic tail 

groups of the cationic surfactant (e.g. quaternary ammonium compound) diminishes the ionic links 

between the protein charge residues and the surfactant head group (Blinkhorn and Jones, 1973; 

Somasundaran, 2006). Therefore, the application of a cationic surfactant as a precipitant-ligand in 

surfactant precipitation has strong theoretical reasons why it should be effective. 

Thus, in this work we have extended the current precipitation technique by using cationic surfactants 

to complement the previous work with anionic surfactants, with the ultimate aim of establishing this 

technique as a viable purification method relevant to all proteins. It was also of interest to investigate 

whether cationic surfactants shared identical precipitation mechanisms with their anionic counter-

parts in precipitating proteins. In this initial Chapter, the cationic surfactant trioctyl-methyl 

ammonium chloride (TOMAC) was used to precipitate 3 model proteins with low isoelectric points 
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(pI): bovine serum albumin (BSA), α-amylase and trypsin inhibitor. In-depth studies were conducted 

examining the effect of various experimental conditions during precipitation and the recovery stage. 

In addition, the relationship between performance (% protein removal) and various protein properties 

(molecular weight, hydrophobicity, GRAVY, total charge and charge density, as well as adiabatic 

compressibility) was also being investigated, to determine the best parameter that could predict 

performance. Last but not least, the structural integrity of the protein products subjected to surfactant 

precipitation was also examined. 

3.2 MATERIALS AND METHODS 
Materials: Lyophilised powders of the proteins: α-amylase from Aspergillus oryzae (MW≈51,86 

kDa) , trypsin-chymotrypsin inhibitor from soybean (MW=7.9 kDa) and bovine serum albumin 

(MW=66.43 kDa) were purchased from Sigma Aldrich (UK). Commercial surfactants: Sodium bis-(2-

ethylhexyl) sulfosuccinate (AOT) (MW=444.56 g/mol) and trioctyl-methyl ammonium chloride 

(TOMAC)/aliquat® 336 (MW=404.16 g/mol) were obtained from Sigma Aldrich (UK). For 

surfactant concentration measurement, methylene blue and methyl orange were obtained from Sigma. 

For protein activity determination, Remazolbrilliant Blue (RBB)-starch, N-benzoyl-L-arginine ethyl 

ester hydrochloride (BAEE) and trypsin from bovine pancreas were obtained from Sigma, UK. Buffer 

components: potassium phosphate monobasic (KH2PO4), sodium phosphate dibasic (Na2HPO4), 

sodium phosphate monobasic, disodium hydrogen orthophosphate (Na2HPO4.7H2O) and citric acid 

were from Sigma, UK. Concentrated hydrochloric acid (HCl) (37%) and sodium hydroxide (NaOH) 

pellets were from AnalaR (VWR Ltd, UK). Solvents for high-performance liquid chromatography 

(HPLC): acetonitrile and 99.5% trifluoroacetic acid (TFA) were from Sigma, UK. For the protein 

recovery study, absolute ethanol was from AnalaR, 99% purity methanol, acetone and sodium 

chloride were from Sigma, UK. Distilled and deionised water was used throughout the experiment. 

 

Instruments: 

An analytical balance (AL204 from Mettler-Toledo AG, Greifensee, Switzerland) was used to weight 

all chemicals. A vortex mixer (VWR Ltd) was used for mixing. A Hanna Instruments benchtop 

microprocessor pH/mV/°C meter model pH 213 was used to monitor the pH (standard deviation = 

±0.02). Disposable syringes (B.Braun Melsungen AG, Germany) and 0.2 μm Minisart syringe driven 

filter units (Sartorius Stedim Biotech, Germany) were used to remove any particulates before 

analyses. A centrifuge (Biofuge Stratos, Heraeus Instruments) was used for solid separation. A UV-

VIS scanning spectrophotometer (UV-2101PC, Shimadzu, Japan) and 1-cm quartz cuvettes were used 

to measure the absorption of protein at 280nm and surfactant concentration. Chirascan CD 

spectroscopy (Applied Photophysics Ltd, Leatherhead, UK) and 1-mm quartz cell was used to 

perform circular dichroism spectral analysis. 
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3.2.1 PREPARATION OF PROTEIN SOLUTION 
0.1 g of protein powder was weighed and dissolved in 10 mL of 20 mM potassium dihydrogen 

phosphate/sodium phosphate dibasic, pH 3.91-9.19 to be the stock solution. 1 mL of the stock solution 

was then diluted to the volume of 10 mL in a 15 mL tube to make up a 1 g/L solution that was used as 

the starting solution for the precipitation experiment. 

3.2.2 PREPARATION OF TOMAC PHASE FOR PRECIPITATION 
TOMAC was dissolved into ethanol at various concentration ranges, from 1.50 to 26.28 mM. 

Basically, TOMAC is water insoluble and thus ethanol was used as its solubiliser as it is miscible with 

water. The final concentration of TOMAC after being added to the protein solution was between 0.11 

to 2.39 mM, and this falls well below its critical micelle concentration, CMC (in the range of 1-10 

mM for ionic surfactants - Mackie and Wilde, 2005). 

3.2.3 PREPARATION OF AOT PHASE FOR RECOVERY 
The AOT solution was prepared by dissolving it in distilled water with a concentration range of 0.98 

to 30.12 mM; at the moment of AOT addition to the protein sample, the final AOT concentration 

ranged from 0.09 to 2.74 mM. Therefore, AOT was present in the monomeric form at these 

concentrations as the CMC of AOT in water is 2.5 in 20 mM phosphate buffer; 4.1 mM in water at 

25°C (Linfield, 1976), and increases to 6.7 mM with lysozyme prepared in buffer (between 0.03 to 

0.2 mol%). 

3.2.4 PRECIPITATION METHOD 
10 mL (1g/L) of protein solution was contacted with 1 mL of surfactant solution (TOMAC) followed 

by 10 s of vortex mixing. Instant formation of an insoluble complex was observed right after the 

addition of the surfactant. The sample was then centrifuged at 7,500g for 10 min at 4°C to separate the 

insoluble solid from the solution. The supernatant was collected and analysed for the protein content 

and enzyme activity. The amount of protein left in solution indirectly indicated the amount of protein 

precipitated by difference. Meanwhile, the surfactant-protein precipitate formed was collected and 

underwent recovery with either solvent or counter-ionic surfactant. All experiments were performed 

in at least triplicate, at 25°C. 

3.2.5 RECOVERY METHOD 
In the recovery study, the precipitate from the optimum R for the respective protein was further 

recovered with either solvent or counter-ionic surfactant, TOMAC. All experiments were performed 

in at least triplicate, at 25°C. 
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3.2.5.1 Recovery by Organic Solvent 
The precipitate was washed with 10 mL of phosphate buffer, followed by 10 s of vortexing and then 

centrifuged at 7,500g for 10 min. The supernatant (wash fraction) was collected and further analysed 

for protein concentration and activity. 10 mL of solvent was later added to the pellet, vortexed in 10 s 

and subjected to a second centrifugation. The supernatant (solvent) was then removed and the 

surfactant-free precipitates were then dissolved in a fresh phosphate buffer at pH 6.2, before being 

subjected to the analysis. 

3.2.5.2 Recovery by Counter-Ionic Surfactant (AOT) 
The anionic surfactant, AOT, was employed for the counter-ionic surfactant recovery of lysozyme 

from the insoluble complex of protein-TOMAC. After the addition of 10 mL of fresh phosphate 

buffer to the recovered precipitate, 1 mL of AOT solution with various concentrations (0.98 to 30.12 

mM) was added to the final phase. The mixture was later vortexed for 10 s to promote the interaction 

between the cationic surfactant, TOMAC, and its anionic counterpart, AOT, to form a TOMAC-AOT 

dimer complex, while leaving lysozyme in solution. The sample was then subjected to centrifugation 

(7,500g, 10 min) to remove the complex, and the supernatant was then analysed for protein 

concentration and activity. 

 

3.2.6 ANALYTICAL METHODS 
All measurements were performed in triplicate. 

3.2.6.1 High Performance Liquid Chromatography (HPLC) 
The YMC J’Sphere ODS-M80 column was first equilibrated with mobile phase A (0.1% TFA in 

water) at 25°C. 15 μL of sample volume was injected into the column and this was followed by an 

elution step with mobile phase B (0.1% TFA in acetonitrile). 15 min linear gradients were run from 0-

90% B at a flowrate of 1 mL/min. A diode array detector was operated at 280nm for protein detection 

with an absorbance unit of mAU. Protein concentration was measured based on the integrated area of 

the peak obtained. For each of the proteins used in the study, its respective standard curve with a 

concentration range of 0 to 1.0 mg/mL was used to determine the concentration of protein in the 

sample. OriginPro 9.1 software was used to analyse and calculate the data obtained. 

3.2.6.2 Determination of Circular Dichroism  
The concentration of the protein sample in solution was diluted to 0.1 g/L in 20 mM potassium 

phosphate buffer, or immediately analysed if the original sample was below this concentration prior to 

the CD measurement. The sample was scanned over a far-UV wavelength range of 190 to 260 nm at 

20°C in a thermostated cell holder. The scan speed was set at 10 nm/min with path length of 1 mm, 

step resolution of 0.5 nm and the bandwidth of 1 nm. The phosphate buffer used was set as the 

42 
 



baseline of the measurement to determine the spectra of the protein. The signal was presented as 

molar ellipticities [θ] based on a mean molecular mass per residue of 129 Da. The spectra were 

analyzed by using a deconvolution software, CDNN program version 2.1 (Böhm, 1997), and the 

software calculates the secondary structure of the protein by comparing it with a base set of 13 known 

protein structures. 

3.2.6.3 Measurement of Αlpha-Amylase Activity 
The activity of α-amylase was determined based on the modified method of Rinderknecht et al. 

(1967). A 2% suspension of Remazolbrilliant Blue R (RBB)-starch (Sigma) was used as a substrate in 

4.5 mL of 20 mM sodium phosphate buffer, with 50 mM sodium chloride at pH 7.0. 500 μL of the 

protein sample solution was later added to the suspension and incubated in a shaker at 37°C for 15 

min. 2 mL of acetic acid was later added to the suspension that reduced the pH to 4, to terminate the 

enzymatic reaction. The mixture was then centrifuged at 10,000 g for 10 min, and the supernatant was 

assayed colorimetrically at 595 nm against a blank. 

3.2.6.4 Measurement of Trypsin Inhibitor Activity 
The activity of trypsin inhibitor was determined by a continuous rate spectrophotometric assay and 

expressed as the inhibition of BAEE units, in which one unit is defined as ∆A253 of 0.001 per min at 

pH 7.6 and 25°C with BAEE as a substrate. The total volume was brought up to 10 mL by adding 1 

mM HCl. The mixture was allowed to stand at 25°C for 5-6 mins. 

100 μL of the prepared above standards was pipetted into the cuvettes that were preloaded with a 

mixture of 3 mL of BAEE and 100 μL of 1 mM HCl (equilibrated to 25°C) to make up the final 

reaction volume to 3.2 mL. The reaction mixture was immediately mixed by inversion and the 

increase in A253nm was recorded for approximately 5 mins. The ∆A253/min was obtained by using the 

maximum linear rate. The trypsin activity was determined as: 

 

Trypsin Activity in 
BAEE units/mL enzyme  =

(∆𝐴𝐴253𝑛𝑛𝑛𝑛 ∕ min Sample− ∆𝐴𝐴253𝑛𝑛𝑛𝑛 min⁄  Blank)(df)(10)
(0.001)(0.10)(0.5)

 

 

df = Dilution factor 

0.001 = The change in A253nm/min per unit of trypsin at pH 7.6 at 25°C in a 3.2 mL reaction       

mixture 

0.10 = Volume of standard/sample used in final reaction mixture (mL) 
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10 = Total volume of standard prepared (mL) 

0.5 = Volume of trypsin (1 mg/mL) used in standard preparation (mL) 

The activity was determined as the difference between the trypsin activity in the absence and in the 

presence of inhibitors (BAEE units/mg trypsin inhibitor). 

3.2.6.5 Determination of TOMAC Concentration 
The method for determining the concentration of the cationic surfactant, TOMAC, was taken from 

Wang and Langley (1975), but with a slight modification. The method was based on the use of an 

anionic dye, methyl orange. A specified volume of the sample was brought up to 5 ml with distilled 

water. 500 μL of disodium hydrogen orthophosphate/citric acid buffer (pH 3) was then added, 

followed by the addition of 50 μL of 0.1% methyl orange reagent in distilled water. The mixture was 

subsequently added to 5 mL of chloroform and vortexed for 30 s in order to reach equilibrium. The 

water and chloroform were allowed to separate by gravity for about 10 min. The chloroform layer was 

collected and analysed for TOMAC concentration by spectrophotometer, at 415 nm with reference 

Cell A of pure chloroform. The concentration of TOMAC in the sample was determined from a 

standard curve of known TOMAC concentrations ranging from 0.1 to 1 mM. 

3.2.6.6 Determination of AOT Concentration 
The assay for the determination of AOT concentration was performed by using a cationic dye, 

methylene blue that formed a complex with an anionic surfactant (Takagi et al., 1975; Fuda et al., 

2004). 1 mL of 0.007% methylene blue that was prepared in 0.1% sodium sulphate solution was 

added to 5 mL of chloroform and this was followed by mixing. 100 μL of the sample was then added 

to the initial mixture and this was followed by mixing with a vortex mixer for 20 s. The bottom phase 

(chloroform) was separated from the water phase and analyzed for AOT concentration by 

spectrophotometer at the wavelength of 650 nm. The concentration of AOT was determined based on 

a linear standard curve with a concentration range of 0 to 1 mM. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 SURFACTANT PRECIPITATION OF BSA 

3.3.1.1 Effect of Molar Ratio of TOMAC to BSA (Rp) on the Precipitation 
Unlike AOT, the interference of TOMAC with the protein concentration assay at A280 nm in the UV 

spectrophotometer was not negligible. Thus, HPLC was used in this work for both quantitative and 

qualitative analysis of the protein samples. It was observed that a white insoluble complex formed 
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upon addition of the TOMAC solution into the sample, as described by previous researchers (Cheng 

and Stuckey, 2012). The percentage of protein precipitation was calculated by using the equation 

below: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝 (%) = �1 −
𝐶𝐶𝑒𝑒 ∙ 𝑉𝑉𝑒𝑒
𝐶𝐶𝑖𝑖 ∙ 𝑉𝑉𝑖𝑖

� × 100% 

where Ci refers to the concentration of protein in the initial solution, while Ce is the equilibrium 

concentration of protein  remaining after the formation of a surfactant-protein complex. The volumes 

of the initial and the recovered phase are denoted as Vi and Ve, respectively. 

 

As shown in Figure 3.1, it is apparent that the percentage of protein precipitated increased with an 

increase in the molar ratio (Rp) of TOMAC to BSA up to R = 50. At pH 6.2, about 23% of the protein 

was precipitated at Rp = 10, followed by an increase up to 76% at Rp = 30, and eventually achieved 

almost complete precipitation (99%) at Rp = 50. This suggested that below the optimum Rp (50), the 

amount of TOMAC monomer was not sufficient to form insoluble complexes with BSA in the 

sample. In addition, it appeared that the binding stoichiometry was approximately 50 moles of 

TOMAC to 1 mole of BSA. This precipitation trend was similar to the findings of Shin et al. (2003) in 

the precipitation study of ovalbumin and lysozyme by AOT, in which the maximum precipitation 

level was maintained even after the optimum Rp was exceeded. Moreover, identical trends in 

precipitation increment as a function of Rp was observed at both pH 6.2 and 7.0 but not at pH 5.4 

where it decreased above R=70. This can be explained by the theory of degree of ionization as a 

function of pH. At lower pHs, i.e., pH 5, the number of negatively charged groups is supposedly 

lower compared to those in higher pH range, i.e., pH 6.2 and 7.0. As a result, under the same 

concentrations of TOMAC employed, some of the TOMAC molecules may have interacted with BSA 

molecules through hydrophobic interactions after all the ionic groups on the protein surface have been 

occupied, therefore leaving the ionic groups of the surfactant free. Such circumstances resulted in a 

slight solubilisation of the BSA-TOMAC complex as a repulsion effect between the complexes is 

introduced. This phenomenon is consistent with the redissolution effect of a protein precipitate in 

solution by surfactant aggregates (micelles) as reported by previous researchers (Morén and Khan, 

1998; Stenstam et al, 2001). 

 

CD is an effective method to study the secondary structure of proteins (Greenfield, 1996), and a 

change in the CD spectra reflects a change in protein conformation (Chang et al., 1997). Furthermore, 

the computational analysis applied to calculate and estimate the changes in secondary structure in the 

protein proved to be useful. 
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Figure 3.1 Percentage of BSA precipitation as a function of molar ratio (Rp) between 

TOMAC and BSA at different pHs. 

 

In this work, CD was used to compare the physical characteristics of the remaining BSA in the 

supernatant after precipitation of the native BSA. The CD spectra of the sample obtained were 

essentially quite similar to the native structure, suggesting that no major structural change had taken 

place (Figure 3.2). In accordance with the work of Takeda et al. (1987), the spectrum of BSA exhibits 

a double-minimum, at 208 and 222 nm, indicative of an α-helix structure (Takeda et al., 1987; Pi et 

al., 2006). From the deconvolution of the CD data by CDNN software, it was also confirmed that the 

secondary structure was maintained as the Rp increased to 30 (R = 30: 63.4% α-helix, 5.6% β-sheet, 

13.6% β-turn, 17.3% random coil; native: 63% α-helix, 5.7% β-sheet, 13.8% β-turn, 17.4% random 

coil; average difference to native state for the secondary structures = -1.1%). 

The deconvolution obtained was also in agreement with the literature (alpha helix = 54-66%) 

(Putnam, 1975; Takeda et al., 1987). Basically these proportions depend on the reference spectra 

difference, and experimental conditions including protein concentration (Takeda et al., 1987). 

However, this finding is in contrast with a previous report (Takeda et al., 1987) on the changes in the 

secondary structure of BSA after the addition of surfactants which found a significant decrease in the 

α-helix fraction, a slight increase in the β-structure, and an increase in the random coil fraction as the 

surfactant concentration was increased in aqueous solution. Basically, this difference is likely due to 

the precipitation effect in conjunction with the additional centrifugation step employed right after the 
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formation of complex that removed the insoluble complex formed or possibly the partially unfolded 

BSA. 

 

Figure 3.2 CD spectra of the residual BSA in the supernatant solution after precipitation 

(from Rp = 10 to Rp = 100) and a scan of the native structure. The protein 

concentration was 0.1 mg/mL for the Rp = 10 to 30 separations and the native 

structure, while the samples at Rp = 70 and 100 were run in the CD as negative 

controls (no BSA). 

 

3.3.1.2 Precipitation as a Function of pH 
The precipitation of BSA by TOMAC was then tested as a function of pH. The objective of this study 

was basically to investigate any effect of electrostatic interaction in the precipitation of BSA by 

TOMAC. Since the pI of BSA is 4.7, and its stable pHs are between 5 to 7, the pH experiment was 

performed for pHs of 5.4, 6.2 and 7.0. Thus, at these pHs it was expected that BSA had a negative 

overall net surface charge. 

 

Theoretically, the overall net surface charge of a protein depends on the pH of the solution. At below 

the pI a protein assumed a net positive charge, while as the pH was increased above its pI the protein 

takes on a negative charge (McMurry, 1992). Thus, in the interaction of a protein with an ionic 

surfactant, as the pH is increased, the cationic binding isotherm was shifted to a lower surfactant 

concentration, while the anionic binding isotherm to a higher concentration (Valstar, 2000). 

 

From Figure 3.1 it can be clearly seen that the precipitation level increased with an increment in the 

pH. For instance, at Rp = 30, 95% precipitation was obtained at pH 7, while only 69% was achieved at 
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pH 5.4. In addition, under the set of Rps examined here, notably, almost complete precipitation was 

achieved at pH 6.2 and above, however, only a maximum of about 92% was reached at pH 5.4. 

 

In this work, at pHs set higher than BSA’s pI (~4.7), a favourable electrostatic interaction occurred 

between the negatively charged BSA and the positively charged head group of the TOMAC monomer 

to form an insoluble BSA-TOMAC complex, as evidenced by the development of turbidity in 

solution. Basically, the added TOMAC offsets the repulsive electrostatic interactions between the 

protein molecules that existed when surfactant was not introduced. By mixing the solution through the 

vortex, increased collisions between the TOMAC-BSA complex occurred, and it rapidly aggregates to 

form seed particles for growth of larger aggregates. At this point, the resulting increased hydrophobic 

attraction leads to agglomeration (Guzman et al., 1990). As the density of the aggregates formed is 

higher than the bulk solution, further centrifugation then lead to the precipitation.  

 

Basically, this result was in accordance with the previous work of other researchers (Shin et al., 

2003a, 2003b; Cheng and Stuckey, 2011) which highlighted the important role of electrostatic 

interactions in protein precipitation. Thus, due to the importance of electrostatic interactions, this 

work further highlights the specificity of this precipitation technique.  

 

3.3.1.3 Recovery of BSA from the Precipitate 
In the BSA recovery study, the precipitate from the Rp = 50 mixture was further recovered with 

organic solvent and the counter-ionic surfactant, AOT. The percentage of protein recovered was 

calculated from: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑃𝑃𝑝𝑝𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝 (%) =
𝐶𝐶𝑓𝑓 ∙ 𝑉𝑉𝑓𝑓
𝐶𝐶𝑖𝑖 ∙ 𝑉𝑉𝑖𝑖

× 100% 

where Cf refers to the concentration of protein in the final buffer solution, while Ci is the concentration 

of protein in the initial solution. The volumes of the initial and the recovered phase are denoted as Vi 

and Vf. 

3.3.1.3.1 Recovery by Organic Solvent 

The use of a solvent (acetone) to recover the protein from its precipitate was first proposed by Shin et 

al. (2003), and lysozyme was fully recovered from a lysozyme-AOT precipitate with its original 

enzymatic activity. This method drew parallels with the conventional acetone precipitation technique 

typically employed in a protein purification step to concentrate the protein. The aim of this method 

was to resolubilise the surfactant precipitant in the added solvent, while leaving the protein in the 

precipitate form. Next, surfactant-free protein was obtained by resolubilising the protein precipitate in 

a new buffer. 
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In this work, however, the BSA precipitate was found not be recoverable by any means of solvent 

addition (neither with salt added). Several solvent types were indeed examined as shown in Table 3.1. 

Besides, the precipitates from an Rp below the optimum of 50 (i.e., 10, 20 and 30) were also treated 

with solvent to try and recover them, but to no avail. 

3.3.1.3.2 Recovery by Counter-Ionic Surfactant (AOT) 
Cheng and Stuckey (2011) previously proposed the use of a counter-ionic surfactant (TOMAC) to 

recover lysozyme precipitated by the anionic surfactant, AOT. Thus, following on from this concept, 

the use of AOT to recover protein from the protein-TOMAC complex was examined in this work. 

In order to recover BSA from the BSA-TOMAC complex (precipitate), AOT was used. Essentially, 

AOT is an anionic surfactant and thus possesses a permanent negative charge which can form salts 

with cations over a wide pH range. This recovery method basically evolved out of reverse micelle 

back-extraction technique (Jarudilokkul et al., 1999; Matthew and Juang, 2005; Gϋnther and Stuckey, 

2011). It was postulated previously that the mechanism of back extraction by counter-ionic surfactant 

is caused by the electrostatic interaction between the two oppositely charged surfactant head groups 

that eventually lead to the collapse of reverse micelle (Jarudilokkul et al., 1999). Meanwhile, in 

surfactant precipitation, in principle the electrostatic interactions between AOT & TOMAC are 

stronger than those between the surfactant and the oppositely charged groups on the protein surface 

(Cheng and Stuckey, 2011). Hence, as the counter-ionic surfactant is added to the precipitate, protein 

will be released from the complex into solution while the two surfactants form a dimer complex that 

will be precipitated simultaneously.  

 

Table 3.1 Summary of the various types of recovery phase and conditions employed 

during the BSA recovery study. 

Recovery Phase  

Ethanol 50 – 100% 

Acetone  100% 

Acetone/Ethanol 50% (v/v) 

Isopropanol 30% 

Counter-ionic Surfactant, AOT AOT to TOMAC molar ratio (Rr): 0.25 to 1 
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Nevertheless, the attempt to recover the precipitated BSA in this work by means of a counter-ionic 

surfactant (AOT) proved unsuccessful, even at an AOT to TOMAC molar ratio (Rr) of up to 1, far 

exceeding the complex ratio of 0.5, as suggested by Cheng and Stuckey (2011). Similarly with 

organic solvent recovery, all the precipitates from below the optimum Rp (50) were also treated with 

counter-ionic surfactant recovery and still it did not work. There was no clear explanation for this 

finding, although this observation will be discussed in more depth as this work progresses. 

3.3.2 SURFACTANT PRECIPITATION OF α-AMYLASE 

3.3.2.1 Effect of RP on the Precipitation 
After the addition of TOMAC to the protein solution, its final concentration fell between 0.18 to 1.78 

mM, which makes up an Rp of between 10 and 100; after addition a white insoluble complex formed. 

A “negative control” was constructed by adding 100 μL of ethanol to 1 mL of α-amylase solution in 

20 mM phosphate buffer at pH 6.0; no formation of the white insoluble complex was observed, and 

therefore no precipitation had taken place. Figure 3.3 shows the percentage of precipitation as a 

function of Rp; the error bars indicate the standard deviation of each point. The relationship between 

the degree of protein precipitation and increasing molar ratio was observed from the molar ratios of 

10 to 25 (precipitation level of 57.7% and 99%, respectively), followed by a plateau. Similarly with 

the trend in BSA precipitation, complete precipitation was still achieved even beyond Rp = 25 

(optimum), up to Rp = 100. At the optimum point (Rp = 25), the binding between surfactant and 

protein in forming the insoluble complex occurred at a stoichiometry molar ratio of about 25 to 1 

(TOMAC: α-amylase). 

 

Figure 3.3 Percentage of α-amylase precipitation as a function of Rp. 

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

Pe
rc

en
ta

ge
 o

f P
re

ci
pi

ta
tio

n 
(%

) 

Molar Ratio (Rp) 

50 
 



In order to examine the conformational change of the residual α-amylase in solution after precipitation 

at Rp = 10 and 15, their CD spectra were recorded and computational analysis using CDNN software 

was applied to determine the type and fraction of secondary structure. Table 3.2 illustrates the 

calculated content of the secondary structure and its relative difference with the native structure. From 

the deconvolution of the CD data, a change of the secondary structure was observed as the Rp was 

increased from 10 up to 15. The general tendency of the change was a reduction in the α–helix and 

random coil, and an increment in the β-sheet content. It was found that the α-helix content reduced 

from 13.3 ± 0.2 (native) to 12.1 ± 0.5% (R= 15), with the estimated average difference of 9.4%. 

Although overall there was an increment in the β-sheet content with reference to the native structure 

at both Rps (10 and 15), their calculated amounts were not significantly different to each other based 

on a t-test analysis. Hence, it can be concluded that the change in the secondary structure was not 

substantial with the increment in Rp at pH 6.0.  

Table 3.2 The secondary structure of the residual α-amylase remaining in solution after 

precipitation, and its relative difference from the native form. 

Sample 
 

Percentage of Secondary Structure (%) 
Average Difference (%)c 

 

α-helix 

 

β-sheet 

 

Coil 

          Nativea 

 

13.3 ± 0.2 

 

37.1 ± 0.3 

 

34.4 ± 0.0 

 

- 

 
          Rp = 10, pH 6.0 12.6 ± 0.1 

 

39.6 ± 0.2 

 

32.5 ± 0.2 

   Difference (%)b -5.6 

 

+7.0 

 

-5.4 

 

6.0 

 
          Rp = 15, pH 6.0 12.1 ± 0.5 

 

39.2 ± 0.4 

 

33.7 ± 0.6 

   Difference (%) -9.4 

 

+5.9 

 

-2.0 

 

5.8 

 
          Rp = 25, pH 7.6 13.0 ± 0.1 

 

38.2 ± 0.4 

 

33.5 ± 0.6 

   Difference (%) -2.6 

 

+3.2 

 

-2.5 

 

2.8 

 
          Rp = 25, pH 9.19 12.5 ± 0.2 

 

38.8 ± 0.7 

 

33.4 ± 0.6 

   Difference (%) -6.0 

 

+4.8 

 

-2.8 

 

4.5 

     

        aThe native structure was based on the average of all pHs (5.5 to 9.19). bThe difference in the 

percentages of secondary structure between the protein sample and the native state, determined by 

computational analysis (Chen et al., 1977). In general, it is accepted that there is a major deviation 

from the native state when the difference (%) is larger than 10, as suggested by Chang et al. (1997). 
cThe average difference for the three kinds of secondary structure. 
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3.3.2.2 Precipitation as a Function of pH 
Almost complete precipitation was achieved at a pH of 6.0 (R= 25), thus it was expected that a similar 

outcome could be attained at a higher pH at a similar Rp. However, interestingly, the results showed 

that percentage of precipitation dropped with an increase in pH from 6.0 to 9.19 (Figure 3.4). It was 

also noteworthy to highlight that complete precipitation was obtained at just pH 5.5 (knowing that the 

pI of α-amylase is about 5.4). On the other hand, at pH 7.6 and 9.19, α-amylase was detected in the 

solution after precipitation, at 11.3 ± 1.77% and 7.7 ± 0.9%, respectively. 

CD analysis performed on these remaining protein (Table 3.2) samples, indicated that the structural 

integrity was mainly retained. This was indicative of a lesser hydrophobic interaction between the 

protein and surfactant since any cooperative binding (hydrophobic interaction) might have resulted in 

a significant change in the secondary structure. It is well understood that hydrophobic interactions are 

mostly linked with protein unfolding or denaturation (Cheng and Stuckey, 2012; Pi et al., 2006; 

Valstar, 2000). Hence, at these pHs presumably an electrostatic interaction seems to be the 

predominant force that governs the protein-surfactant interaction, and possibly the precipitation.  

 

 

Figure 3.4 Percentage of non-precipitated α-amylase in solution after precipitation as a 

function of pH. 

The influence of pH on precipitation can be explained in the context of a binding isotherm as a 

function of pH. In an earlier study on cationic surfactants (CTAB, DTAB and CPB) binding with 

lysozyme, Subramanian et al. (1986) highlighted that as the pH was increased from 5.0 to 9.0, the 

binding isotherm shifted to a higher surfactant concentration. It was claimed that the binding ratio 

between the surfactant and protein increased because the number of binding site increased. Therefore, 

if the above finding can be used to explain our data, the reduction in precipitation at higher pHs might 
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be the result of a lack of TOMAC monomers present to accommodate the additional number of 

anionic binding sites which need to be neutralised for precipitation to occur. Unfortunately, measuring 

the residual TOMAC concentration in solution after precipitation was not done, and further work on 

this will be needed to shed light on this hypothesis. The next question raised was why the above 

phenomenon was not encountered with BSA. Presumably, at their optimum Rp for precipitation (i.e. 

50), excess TOMAC was present in solution and they can bind with the additional binding sites 

exposed with the increase in pH; as a result, complete precipitation was retained. Again, this 

hypothesis was not supported by the determination of the bound TOMAC concentration. 

3.3.2.3 Recovery 

3.3.2.3.1 Recovery by Organic Solvent 

Previous researchers (Shin et al., 2003) had highlighted the need for NaCl addition (less than 0.5 mM) 

in lysozyme recovery during the recovery step with acetone after AOT precipitation to neutralize the 

protein charges. In contrast, Cheng and Stuckey (2011) found that NaCl was not required during 

lysozyme recovery by methanol and ethanol because of the protic nature of these solvents, which 

solvate the negatively charged AOT via hydrogen bonding that consequently caused the released 

lysozyme to become attracted to each other and precipitate. 

 

Figure 3.5 The effect of solvent on the recovery of α-amylase. 
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concentration exceeded 0.01 mM, maximal recovery of about 95% can be reached. A model of ion-

pairing was proposed which exists between Na+ and Cl−, and charges on the surface of proteins that 

shield the electrostatic repulsive forces which are responsible for protein solubility.  

In this work, however, since the improvement using acetone recovery with salt addition proved 

insignificant, coupled with the poor recovery by the various solvents employed (Figure 3.5), it can 

therefore be concluded that the poor overall recovery is not merely because of solubility effects alone, 

but also  related to  denaturation effects caused by the precipitant- TOMAC.  

3.3.2.3.2 RECOVERY BY COUNTER-IONIC SURFACTANT (AOT) 

In the α–amylase recovery study, the precipitate from Rp = 25 was recovered with the counter-ionic 

surfactant, AOT; the concentration of AOT used ranged from 0.98 (Rr= 0.2) to 4.9 mM (Rr = 1.0).  

Figure 3.6 shows the recovery of α-amylase as a function of the molar ratio of AOT to TOMAC (Rr); 

the standard deviation is indicated by the error bars shown in the graph. It is noteworthy to mention 

that the pattern of recovery resembled the recovery profile of DODMAC on a lysozyme-AOT 

precipitate as performed by previous researchers (Cheng and Stuckey, 2011), who found that the 

recovery increased up to 81% (R= 2) before it dropped to only 54% at an Rr= 3.5.  

 

 

Figure 3.6 Percentage of α-amylase recovery as a function Rr (AOT to TOMAC). 

In this work, the percentage recovery generally increased as the Rr was raised from Rr= 0.2 to 0.5, 

where a maximum of 36.6% was reached. Based on the calculated SD value, there was no significant 
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difference in yield as Rr increased further to 1.0. Basically, α-amylase became solubilised and released 

from the TOMAC-α-amylase complex as the counter-ionic surfactant concentration was raised. The 

counter-ionic surfactant, AOT, was capable of recovering α-amylase from the precipitate (even 

though the extent was low at just 37%), in contrast to the use of the solvents acetone and ethanol. 

However, the addition of sodium chloride to the organic solvent only slightly increased recovery by 

about 5.3%.  

 

3.3.2.3.2.1 Measurement of surfactant concentration after recovery (carry-over of surfactant) 

In general, the yield and purity of the final product after the downstream processing of proteins is of 

great importance. With surfactant precipitation it was found that there was a small carry-over of 

surfactant into the final protein phase after the recovery step performed here (Figure 3.7). The results 

show that there was a carry-over of AOT even at an Rr= 0.2 of about 0.02 mM. Nevertheless, no 

attempt was made to remove the residual AOT at this point, but further discussion of this topic will 

occur in the following Chapter 4. In contrast, TOMAC, which was used as the precipitant in this 

work, was not detected.  

 

Figure 3.7 Concentration of residual surfactants (TOMAC and AOT) in the recovered 

phase of α- amylase as a function of Rr. 
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3.3.2.3.3 Structural integrity and activity of the recovered α-amylase 

The main conformational structure of the recovered α-amylase was preserved after recovery, as 

determined from the CD spectra (Figure 3.8) and deconvolution analysis (Table 3.3), and only a very 

minimal change in the secondary structure (average difference ≤ 3.6%) was detected. Furthermore, 

the calculated values of the secondary structure content for the various Rrs (AOT to TOMAC) tested 

were also consistent, indicating that the slight changes detected were not being influenced by Rr.  

 

Figure 3.8 CD spectra of the recovered α-amylase relative to its native structure at pH 6.0. 

The protein concentration of the recovered α-amylase and native form were 

about 0.25 g/L. For simplification, only the final product recovered at Rr = 0.5 

(AOT to TOMAC) was shown, and the detail results of the deconvolution for all 

final products is presented in Table 3.3. 

 

Table 3.4 highlights the specific activity of recovered α-amylase as determined by the RBB-starch 

analysis. This method is based on the colorimetric determination of Remazolbrilliant Blue R (RBB) at 

595 nm after it is released from RBB-starch as a result of α-amylase digestion. All of the enzymes 

recovered at the various Rrs are shown to be active, and the calculated specific activities are 

surprisingly higher (and statistically significant at the 95% confidence level) than the crude protein 

sample, averaging 39.5 U/mg (% SD= 4) compared to about 33.6 ± 0.0 U/mg for the crude control.  

It was suspected that the presence of AOT (as detected by the methylene blue assay in the solution 

after the counter-ionic recovery) might have contributed to this increment in enzyme activity, rather 

than as the result of the initial interaction with TOMAC (which was not detected in the recovered 

solution). This result is similar to the findings of previous researchers (Muga et al., 1993; Lamb and 

Stuckey, 1999) who reported an increase in activity of the enzymes α-amylase and β-galactosidase in 
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the presence of anionic surfactants such as SDS. The theory of a protein structure’s “loosening’’ was 

proposed by these authors to explain the phenomenon of enzyme activation. However, further work is 

still needed to confirm the effect of the AOT alone on the α-amylase activity in aqueous solution. In 

addition to that, physical filtration (sieving) could possibly be carried out to remove any carry-over of 

the surfactant, and the resulting surfactant-free protein solution can be analysed in terms of 

activity/CD profile, to verify if the unbound AOT may have contributed to this observation. 

 

Table 3.3 The secondary structure content of the recovered α-amylase by counter-ionic 

surfactant, AOT at various Rrs (ranging from 0.20 to 1.00) and its relative 

difference from the native form. The result was based on the average of at least 3 

samples. 

Sample/Rr 
 

Percentage of Secondary Structure (%) 
Average Difference (%)b 

 

α-helix 

 

β-sheet 

 

Coil 

 

Native 

 

13.3 ± 0.2 

 

37.1 ± 0.3 

 

34.4 ± 0.0 

 

 

- 

 
          0.20 

 

12.8 ± 0.1 

 

38.7 ± 0.2 

 

33.4 ± 0.4 

 
 

 Difference (%)a -3.8 

 

+4.0 

 

-2.9 

 

3.6 

 
          0.25 

 

12.9 ± 0.1 

 

38.6 ± 0.1 

 

33.3 ± 0.1 

 
 

 Difference (%) -3.0 

 

+4.0 

 

-3.2 

 

3.4 

 
          0.33 

 

12.9 ± 0.1 

 

38.7 ± 0.3 

 

33.2 ± 0.1 

 
 

 Difference (%) -3.0 

 

+4.0 

 

-3.5 

 

3.5 

 
          0.40 

 

12.9 ± 0.1 

 

38.6 ± 0.1 

 

33.2 ± 0.1 

 
 

 Difference (%) -3.0 

 

+4.0 

 

-3.5 

 

3.5 

 
          0.50 

 

12.9 ± 0.1 

 

38.6 ± 0.6 

 

33.3 ± 0.5 

 
 

 Difference (%) -3.0 

 

+4.0 

 

-3.2 

 

3.4 

 
          1.00 

 

12.8 ± 0.2 

 

38.3 ± 0.3 

 

33.5 ± 0.6 

 
 

 Difference (%) -3.8 

 

+3.2 

 

-2.6 

 

3.2 

 
          aThe difference in the percentages of secondary structure between the protein sample and the native 

state, determined by computational analysis (Chen et al., 1977). In general, it is accepted that there is 

a major deviation from native state when the difference (%) is larger than 10, as suggested by Chang 

et al. (1997). bThe average difference for the three kinds of secondary structure. 
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Table 3.4 Measured activity of the recovered α-amylase at various Rrs (AOT to TOMAC) 

employed, and in its crude form. 

Sample/Rr Specific Activity (U/mg) 

Crude* 33.6 ± 0.0 

0.2 38.1 ± 2.0 

0.3 41.8 ± 1.9 

0.4 38.8 ± 5.3 

1.0 39.4 ± 0.0 

*The crude activity was determined in 20 mM phosphate buffer, pH 6.0, in accordance with 

the condition employed in the precipitation and recovery study. 

 

3.3.3 SURFACTANT PRECIPITATION OF TRYPSIN INHIBITOR 

3.3.3.1 Effect of RP on the Precipitation 
The effect of Rp on the percentage of precipitation was investigated from Rp = 2.3 (2.94 mM) to 20.8 

(26.28 mM) at pH 7.6. Typically, the onset of turbidity was observed with the addition of TOMAC 

into the trypsin inhibitor solution to indicate the formation of a protein-surfactant complex. A 

comparable trend in the increase of precipitation as a function of Rp was observed for trypsin inhibitor 

as with α-amylase (Figure 3.9). Optimum Rp for the precipitation was determined to be 7.7 where 

about 95% precipitation was reached. The conformational change of the residual protein in solution 

after precipitation was also examined (Table 3.5). In contrast to α-amylase, there was no significant 

change detected in the non-precipitated protein at Rp = 2.3 and 4.0. 

3.3.3.2 PRECIPITATION AS A FUNCTION OF PH 
By taking into account the stable pH range (1-10) and pI (4.0-4.3) of the trypsin inhibitor, an 

examination of the pH effect on precipitation was performed from pH 3.91 to 9.19, under the 

optimum Rp determined earlier (Rp = 7.7). The plot of trypsin inhibitor precipitation as a function of 

pH (Figure 3.10) concurred with the charge mechanism concept in this surfactant mediated 

precipitation. At pH 3.9 (lower than its pI point, 4.0 – 4.3), only about 20 ± 2.9% of the protein 

precipitated. Notably, once a sufficient degree of ionization was reached, complete precipitation was 

obtained as observed at pH 6, and contrary to α-amylase, this level was maintained up to pH 9.2. 

Presumably, due to the smaller size of trypsin inhibitor (7.9 kDa), as compared to α-amylase (51.9 

kDa), the charge density for trypsin inhibitor was more consistent as the pH increased; the effective 
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ionic interaction between the surface ionic groups of trypsin inhibitor and the cationic group of 

TOMAC was retained, and therefore the neutralisation for precipitation was possible at higher pHs. 

 

Figure 3.9 Percentage of trypsin inhibitor precipitating as a function of Rp. 

 

Table 3.5 The secondary structure of the residual trypsin inhibitor remaining in solution 

after precipitation, and its relative difference from its native form. 

Sample/ Rp 
Percentage of Secondary Structure (%) 

Average Difference (%)b 
α-helix 

 
β-sheet 

 
Coil 

Native, pH 7.6   13.3 ± 0.1 

 

42.5 ± 0.3 

 

28.3 ± 0.4 

 

- 

 
          Rp = 2.3, pH 7.6 13.4 ± 0.0 

 

43.4 ± 0.5 

 

27.1 ± 0.5 

 
 

 Difference (%)a +0.8 

 

+2.1 

 

-4.2 

 

2.4 

 
          Rp = 4.0, pH 7.6 13.2 ± 0.1 

 

43.6 ± 0.1 

 

27.1 ± 0.1 

 
 

 Difference (%) -0.8 

 

+2.6 

 

-4.2 

 

2.5 

 
          Native, pH 3.91 12.6 ± 0.0 

 

42.3 ± 0.0 

 

29.5 ± 0.0 

 

- 

 
          Rp = 7.7, pH 3.91 12.8 ± 0.1 

 

41.2 ± 0.2 

 

30.5 ± 0.1 

   Difference (%) +1.6 

 

-2.5 
 

+3.3 
 

2.5 
 

aThe difference in the percentages of secondary structure between the protein sample and the native 

state, determined by computational analysis (Chen et al., 1977). In general, it is  accepted that there is 

a major deviation from the native state when the difference (%) is larger than 10, as suggested by 

Chang et al. (1997). bThe average difference for the three kinds of secondary structure. 
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In addition, the structural integrity of the non-precipitated trypsin inhibitor at pH 3.91 was examined 

using CD analysis; with regards to its native structure at pH 3.91, there was no significant change 

detected. This result indicated that presumably no hydrophobic interaction has taken place, and hence 

this is why no structural perturbations occurred at a pH<pI (where supposedly no ionic attraction 

existed). This observation was in contrast to the previous finding by Cheng and Stuckey (2012), 

where it was found that although the ionic attraction was theoretically not prevailing (pH>pI), 

structure-altering hydrophobic interactions were instead happening during the lysozyme-AOT 

(anionic surfactant) precipitation study. However, their result was not supported in terms of the 

amount of TOMAC in solution (as no measurement of surfactant was made), and additionally, the 

specific activity of the residual protein was not determined. 

 

 

Figure 3.10 Percentage of trypsin inhibitor precipitated as a function of pH. Concentration 

of the TOMAC solution was 9.8 mM (Rp = 7.7). 

 

3.3.3.3 RECOVERY OF TRYPSIN INHIBITOR FROM PRECIPITATE 

3.3.3.3.1 Recovery by organic solvent 

Figure 3.11 illustrates the percentage of trypsin inhibitor recovered in the final aqueous phase, and its 

corresponding fraction in the organic phase (wash-out) as detected by HPLC. Recovery by acetone 

was shown to be slightly better as compared to ethanol (8.8 ± 0.7% as compared to 6.9 ± 0.3%), 

however, overall it can be concluded that organic solvent was not effective to recover trypsin inhibitor 

from its precipitate. Apparently, the problem of trypsin inhibitor solubility was identified as the major 

cause of its poor recovery by ethanol. This result was in agreement with Frattali (1969) who claimed 

0

20

40

60

80

100

120

2 4 6 8 10

Pe
rc

en
ta

ge
 o

f P
re

ci
pi

ta
tio

n 
(%

) 

pH 

60 
 



that trypsin inhibitor from soybean is alcohol-soluble, however, the effect of salt on the recovery by 

organic solvent was not investigated further in this section. 

 

Figure 3.11 The effect of acetone and ethanol on the recovery of trypsin inhibitor. 

 

 

Figure 3.12 Plot of percentage of trypsin inhibitor recovery (%) as a function of Rr. 

 

3.3.3.3.2 Recovery by counter-ionic surfactant (AOT) 

Figure 3.12 shows the percentage of trypsin inhibitor recovery as a function of Rr from Rr = 0.25 (2.45 

mM) to 2.0 (19.6 mM). The trend of the recovery curve was typical where an approximately 
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proportional relationship between percentage recovery and Rr was observed. Notably, about half 

(49.6%) of the protein was recovered at an Rr of 0.5, and this further increased to 89% as the Rr was 

doubled. Contrary to the case of BSA and α-amylase, quantitative recovery (100%) was obtained for 

trypsin inhibitor at an Rr = 2. As shown in Figure 3.13, there was carry-over of AOT in the final 

product; at an Rr of 2 the exact stoichiometric molar ratio of binding was actually 1.4 to 1 (AOT: 

TOMAC), and the carry-over was about 29% relative to the total AOT added. This implied that the 

manual mixing process performed, i.e. 10 s of vortex mixing, was not efficient. Therefore, in future 

work it is suggested that the mixing step be optimised, or that automated batch reactors be employed 

(Boychyn et al., 2000) to improve this contacting. 

 

Figure 3.13 Concentration of residual surfactants (TOMAC and AOT) in the recovered 

phase of trypsin inhibitor as a function of Rr. 

 

3.3.3.3.3 Structural Integrity and Activity of the Recovered Trypsin Inhibitor 

The CD spectra of the trypsin inhibitor recovered at the optimum point by counter-ionic surfactant (Rr 

= 2; 100% recovery) is shown in Figure 3.14, and this is followed by the detail results of the CD 

deconvolution for all of the final products (Rr from 0.25 to 2.0) in Table 3.6. Apparently, there was no 

obvious change in the secondary structure content of recovered trypsin inhibitor compared to its 

native form. Moreover, in terms of activity, they were also fairly potent toward trypsin, comparable to 

their native form (Table 3.7).  
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Figure 3.14 CD spectra of the recovered trypsin inhibitor relative to its native form at pH 

7.6. The protein concentration of the recovered trypsin inhibitor and native form 

were about 0.4 g/L. For simplification, only the final product recovered at Rr = 

2.0 (AOT to TOMAC) is shown, and the detail results of the deconvolution for 

all the final products is presented in Table 3.6. 

 

Table 3.6 The secondary structure content of the recovered trypsin inhibitor by counter-

ionic surfactant, AOT, at various Rrs (ranging from 0.25 to 2.00), and their 

relative difference from the native structure. 

Sample/ 

Rr 

  Percentage of Secondary Structure (%) Average Difference 

(%)b   α-helix 
 

β-sheet 
 

Coil 

Native 
 

13.3 ± 0.1 
 

42.5 ± 0.3 
 

28.3 ± 0.4 
 

- 
 

R = 0.25 

 

13.0 ± 0.4 

 

41.8 ± 0.5 

 

29.5 ± 1.0 

 
 

 Difference (%)a -2.3 

 

-1.6 

 

+4.2 

 

2.7 

 R = 0.50 

 

12.9 ± 0.1 

 

42.2 ± 0.5 

 

29.2 ± 0.7 

 
 

 Difference (%) -3 

 

-0.7 

 

-3.2 

 

2.3 

 R = 1.0 

 

12.8 ± 0.1 

 

41.7 ± 0.1 

 

30.6 ± 0.1 

 
 

 Difference (%) -3.8 

 

-1.9 

 

+8.1 

 

4.6 

 R = 2.0 

 

12.9 ± 0.1 

 

41.9 ± 0.2 

 

30.6 ± 0.1 

 
 

 Difference (%) -3 

 

-1.4 

 

+8.1 

 

4.2 

 aThe difference in the percentages of secondary structure between the protein sample and the native 

state, determined by computational analysis (Chen et al., 1977). In general, it is accepted that there is 

a major deviation from the native state when the difference (%) is larger than 10, as suggested by 

Chang et al. (1997). bThe average difference for the three kinds of secondary structure. 
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Table 3.7 Specific activity of the recovered trypsin inhibitor recovered by the counter-

ionic surfactant, AOT, across all the Rrs tested. 

Rr (AOT to TOMAC) BAEE units/mg 

0.25 2740.4 ± 193.5 

0.50 2704.1 ± 268.9 

1.00 2504.0 ± 429.5 

2.00 2833.3 ± 394.2 

Crude 2680.0 ± 226.3 

 

3.3.4 CORRELATION BETWEEN PROTEIN PROPERTIES AND 

EXPERIMENTAL RESULTS 
Table 3.8 summarizes the experimental results obtained with respect to several proteins’ parameters 

which may influence the performance of the surfactant precipitation technique. Cationic surfactant – 

TOMAC precipitation as performed in this work exhibited similar behaviour to its anionic 

counterpart, AOT, in the sense that the precipitation was mainly governed by electrostatic 

interactions, while hydrophobic interactions seem to be the limiting factor. With that, the 

experimental data shown are also taken from the work of previous researchers, as well as the results 

for anionic surfactant, AOT, precipitation for high pI proteins in order to establish a correlation 

between the results obtained and protein properties. Another point which deserves to be highlighted is 

that all of the recovered protein is active compared to its native form.  

 

3.3.4.1 RELATIONSHIP BETWEEN PRECIPITATION AND PROTEIN 
PROPERTIES 

In terms of precipitation, because of the importance of the charge neutralisation mechanism as 

highlighted in this finding, it is intended to correlate the percentage precipitation, or optimum Rp of 

precipitation, with the protein parameters outlined earlier. There seems to be no correlation between 

the optimum Rp and proteins' charge during the precipitation. Nozaki et al. (1974) highlighted that the 

number of bound detergent ions is much larger than can be accounted for on the basis of one detergent 

per charged side chain because of significant hydrophobic attraction (surfactant clustering) between 

surfactant ions and protein. However, from Figure 3.15(c and d), it seems that a proportional 

relationship between precipitation level and protein charge/charge density at their optimum pH can 

still be observed by excluding BSA and trypsin inhibitor (27 kDa), as both seem to exhibit excessive 

hydrophobic binding during their precipitation. This was indicated by the Rp values of both proteins 

64 
 



(50 and 61, respectively) as they were high compared to other proteins. Based on this result, the role 

of charge - electrostatic interactions during the precipitation of proteins was shown.  

Basically, this finding is in agreement with the previous work of Cheng and Stuckey (2011b) who 

suggested that surface charge distribution rather than total charge was the most accurate parameter to 

predict the efficiency of precipitation. However, their conclusion was only based on just 3 model 

proteins (lysozyme, ribonuclease A and cytochrome c) which were categorised as hydrophilic proteins 

by Kato et al. (2002), and that class of protein must be separated from the hydrophobic proteins so 

that the correlation can be established. In addition, the surface charge distribution parameter is only 

available in the literature from the work of Barlow and Thornton (1986). The protein database 

provided by these authors was also very limited, and the determination of the parameter for a new 

protein was deemed very difficult to reproduce due its complex calculation and modelling using the 

Hammer projection for instance.  

In essence, this observation draws parallels with the concept of protein retention on strong ion-

exchange chromatography as proposed by Kopaciewicz et al. (1983). It was reported that protein net 

charge alone does not satisfactorily explain the interaction of the protein with the ionic matrix, but 

must rather take into account the protein’s intramolecular charge distribution. Furthermore, according 

to Kopaciewicz et al. (1983), protein retention on an ionic surface is the result of protein charge, 

surface charge (i.e. charge layers of ions extending from protein’s surface into the external medium) 

and the charge characteristics of the surrounding medium. Therefore, such complex circumstances 

might explain the difficulty in precisely predicting precipitation using the protein’s charge parameters. 

 

3.3.4.2 RELATIONSHIP BETWEEN RECOVERY AND PROTEIN PROPERTIES 
From the results obtained (Figure 3.16a), it can be argued that the percentage recovery for a specific 

protein was strongly correlated to its hydrophobicity (R2 = 0.8772). Hydrophilic proteins such as 

lysozyme, cytochrome c, ribonuclease A (Kato et al., 2002) were effectively precipitated and 

recovered using the anionic surfactant, AOT (Cheng and Stuckey, 2012). Meanwhile, for hydrophobic 

proteins such as lipase, trypsin, α-chymotrypsin, α-amylase, BSA and ovalbumin (Kato et al., 1984 

and 2002; Guo et al., 1986; Nozaki and Tanford, 1971; Bigelow and Channon, 1976), less satisfactory 

results were obtained, as detailed in the table above. Amongst the currently examined hydrophobicity 

parameters from the literature (great emphasis was given to these parameters because of the 

significant role of hydrophobic interactions in protein denaturation), only the one that was calculated 

based on the retention coefficients of amino acid residues by HPLC (Guo et al., 1986; Mant et al., 

1989) provided the best estimate for recovery percentage, as compared to other hydrophobicity 

parameters reported in the literature such as surface hydrophobicity, which was generally derived 

from the binding of SDS molecule on the protein (Kato et al., 2002), determination based on amino 
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acid solubility in solvent (Nozaki and Tanford, 1971), or GRAVY (i.e. sum of hydropathy values of 

all amino acids in a protein sequence divided by the number of residues in the sequence) (Kyte and 

Doolittle, 1982). For example, ovalbumin, somehow regarded as a hydrophilic protein by Kato et al. 

(1984 and 2002), but contrastingly by Guo et al. (1986) achieved full precipitation by AOT, yet it was 

not recoverable from a precipitate (Shin et al., 2003b). Indeed, a similar outcome was obtained for 

BSA which was assigned a relatively high hydrophobicity value of 7.82 by Guo et al. (1986) 

compared to lysozyme (about 4.8 factors lower in hydrophobicity index) which was precipitated and 

recovered with ease. 

Furthermore, an attempt was also made to perform denaturing purification on the BSA-TOMAC 

precipitate according to the method of Langenhof et al. (2005). A similar approach was also taken 

previously by Guzman et al. (1990) in the recovery of avidin by ligand-modified surfactants, and 

avidin was successfully resolubilized and refolded. However, in this work it was found that the BSA 

aggregate even failed to be solubilized during the solubilisation/denaturation step (50 mM Tris-HCl, 3 

mM EDTA, 8 mM urea, 0.1 M DTT, pH 8.5 for 3 - 24 hours), and this indicated that BSA had 

undergone irreversible denaturation after being precipitated by TOMAC. 
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Table 3.8  Summary of Experimental Results in Relation to Protein Parameters 

I Gekko and Hasegawa (1986); Nozaki and Tanford (1971); Bigelow and Channon (1976). II Kato et al. (1984). III Mant et al. (1989); Guo et al. (1986). 
aSigma Aldrich. bStein et al. (1960). cBased on the work of Shin et al. (2003b). dBased on the work of Cheng and Stuckey (2011b). eGekko and Hasegawa 
(1986), units: × 10-12 cm2 dyn-1. Since the protein property data is not available for every protein investigated, reference proteins were used (a similar protein 
which may not derived from same source). Denoted with an italic font and their respective molecular weight are indicated in parenthesis.

Protein 
 

Protein Parameters 
 

Experimental Result 

 
Molecular 

Weight 
(mol/g) 

Hydrophobicity 
Charge  N Charge 

Density 
Adiabatic 

Compressibilitye  
Optimum  

Rp 
Precipitation 

(%) 
Recovery 

(%) 
  I II III IV   

BSA 
 

66 430a 990 2729 7.82 -0.429 -0.3 607 0.05 10.5 
 

50 100 0 

α-amylase 

 

51 860b - - 4.63 -0.208 -16.4 433 3.79 5.12 (45.5 kDa) 

 

25 100 37 

Trypsin inhibitor 

 

7900a - - 1.16 -0.159 -16.7 110 15.18 - 

 

7.7 100 100 

Trypsin 
inhibitord 

 

27000a 
1031 
(21.5 
kDa) 

59 2.03  -8.0 210 3.81 0.17 (21.5 kDa) 

 

61 58 58 

Ovalbuminc 

 

44300c 992 15 
6.5 
(45 

kDa) 
-0.001 28.7* 386 7.44 9.18 

 

14 100 0 

Lysozymed 
 

14300a 893 25 1.62 -0.15 9.7 147 6.60 4.67 
 

16 100 100 

Cytochrome cd 

 

12400a 1049 - 
1 

(11.7 
kDa)  11.2 105 10.67 0.066 

 

17 100 100 

Ribonuclease ad 

 

13700a 777 30 1.1 -0.855 8.5 119 7.14 1.12 

 

22 100 100 

Trypsind 
 

23800a 884 94 2.53 -0.111 2.8 231 1.21 0.92 
 

14 70 43 

α-chymotrypsind   25000a 908 - 2.81 0.051 4.5 241 1.87 4.15   8 70 62 
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Figure 3.15 Plots of optimum Rp (a and b) and percentage of precipitation (c and d) against a 

protein’s hypothetical charge and charge density. The non-filled symbols in (c) 

and (d) indicate BSA and trypsin inhibitor (27 kDa), respectively. The least-

squares linear regression was represented by the solid line, and the regression 

equation including the correlation coefficient, r2 are shown on the respective 

graphs. 
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Figure 3.16 Plots of percentage protein recovery against various protein’s parameters: (a) 

hydrophobicity, calculated based on, (b) grand average hydropathicity, 

GRAVY, (c) adiabatic compressibility, (d) molecular weight. The least-squares 

linear regression was represented by the solid line, and the regression equation 

including the correlation coefficient, r2 are shown on the respective graphs. 
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Next, without neglecting the effect of charge and hydrophobicity, with the protein data set studied to 

date, a general trend in surfactant precipitation can also be observed based on protein size (Figure 

3.16c). Additionally, it seems that size (molecular weight) of the protein does affect the efficacy of 

protein recovery from its precipitate. The experimental data obtained to date with regard to molecular 

weight (Table 3.9) demonstrated that: 

1. For low molecular weight proteins (trypsin inhibitor, lysozyme, cytochrome c, ribonuclease A, 

with a molecular weight range of 7.9 to 14.3 kDa), for this protein set good performance (100% 

yields) was achieved both in precipitation and in the recovery stage.  

2. For intermediate size proteins (trypsin, trypsin inhibitor and α-chymotrypsin, with a molecular 

weight range of 23.8 to 27 kDa), modest performances were obtained in the precipitation stage, 

while their recoveries were quite high, reaching about 61 – 100% recovery efficiency from the 

precipitated protein. 

3. For large proteins (BSA, α-amylase and ovalbumin, with a molecular weight range of 44.3 – 

66.43), even though complete precipitation can be achieved, their recoveries were poor. 

Presumably the extent of hydrophobic interactions and aggregation for large and multi-domain 

proteins was high, eventually causing denaturation after interacting with the surfactant. Likewise, 

in an attempt to extract BSA by using AOT reverse micelles, Shiomori et al. (1998) has found 

that BSA underwent denaturation and precipitation by a strong electrostatic interaction with AOT 

molecules at a pH below its pI value. However, for α-amylase, another large protein with a size 

of 51.9 kDa, about 37% recovery was obtained, and this might be due to its lower degree of 

flexibility (another parameter which will be discussed next) in relative to BSA and ovalbumin.  

 

In addition, considering the amphiphilic nature of surfactants, the denaturing-causing hydrophobic 

interactions between the surfactant’s tail and hydrophobic groups in the protein may not be avoided, 

especially with a protein that has a significant amount of the hydrophobic moiety on its surface, and 

one with a high degree of flexibility. During the binding of protein with surfactant, it was elucidated 

that the hydrophobic core of the enzyme is being attracted to the hydrophobic surface as it attempts to 

achieve a lower energy state (entropy). Such a tendency can lead to a conformational change and 

flattening of the enzyme (Barlow and Thornton, 1986; Lamb and Stuckey, 1999). 

Finally, the influence of another parameter of interest - adiabatic compressibility that was introduced 

by Gekko and Hasegawa (1986) indicating the degree of protein flexibility, and therefore the degree 

of conformational change, was also scrutinized. The higher the value, the higher the degree of 

exposure of the protein’s hydrophobic core, and eventually increased overall protein-surfactant 

hydrophobic interaction (Lamb and Stuckey, 1999). This parameter may account for the results 

obtained for BSA and ovalbumin, as both have a high adiabatic compressibility value (10.5 and 9.18 
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cm2/dyn, respectively). This may shed some light on why full precipitation of BSA and ovalbumin 

was achieved, while the resulting precipitate (protein-TOMAC complex) was not recoverable; a high 

degree of hydrophobic interaction may result in irreversible unfolding. On the other hand, in the case 

of cytochrome c, ribonuclease A and lysozyme, all were hydrophilic proteins with low adiabatic 

compressibility values (0.066, 1.12 and 4.67 cm2/dyn, respectively), and precipitation and recovery 

was complete. Meanwhile, for the hydrophobic proteins, trypsin and α-chymotrypsin, although they 

have low adiabatic compressibility values (0.92 and 4.15 cm2/dyn, respectively), a lower yield in both 

the precipitation and recovery stages was still obtained. 

 

3.4 CONCLUSIONS 
The precipitation of three low pI proteins (BSA, α-amylase and trypsin inhibitor) by TOMAC was 

investigated as a function of Rp and pH. For all three proteins, the level of precipitation increased with 

an increase in Rp, until complete precipitation was eventually achieved. Moreover, for the proteins 

studied, it was found that the complete precipitation region extended well beyond their respective 

optimum Rps. Meanwhile, the percentage precipitation was determined to be a strong function of pH, 

although overall the results were in agreement with the proposed theory of net charge and protein- 

anionic surfactant interaction by earlier researchers (Shin et al., 2003; Cheng and Stuckey, 2012). 

Especially for BSA and trypsin inhibitor, the level of precipitation increased as the pH was increased 

further away from their pI point (estimated to be around 4.7 and 4.0-4.3, respectively). Therefore, it 

was confirmed that the electrostatic attraction between the protein and cationic surfactant was the 

driving force for the precipitation. For α-amylase, non-consistency with this trend was observed 

presumably due to a lack of TOMAC monomer available to neutralise the additional ionic binding 

sites at higher pH, rather than as a consequence of hydrophobic interaction. The optimum conditions 

in which complete precipitation was achieved for BSA, α-amylase and trypsin inhibitor were Rp = 50 

(pH 6.2), Rp = 25 (pH 6.0) and Rp = 24 (pH 7.6), respectively.  

In terms of recovery of these proteins from the precipitate, mixed results were obtained. BSA was not 

recoverable with either organic solvents or a counter-ionic surfactant, AOT. For α-amylase, the 

recovery was also poor, either by solvent (less than 10%) or counter-ionic surfactant (37%, at Rr = 

0.5). Due to its high solubility in organic solvent (acetone and ethanol), most of the precipitated 

trypsin inhibitor was lost in the organic phase, and therefore the overall recovery was low. However, 

trypsin inhibitor was efficiently recovered through counter-ionic surfactant (AOT) treatment, where 

complete recovery was achieved. 

In light of the experimental results obtained, we can hereby conclude that the mechanism of cationic 

surfactant – TOMAC precipitation was similar to its anionic counterpart – AOT, as reported in some 
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depth previously, which was based on the charge neutralisation of the protein molecules followed by 

aggregation of the neutral hydrophobic moieties.  

Among the protein parameters examined to be able to predict protein precipitation, the hydrophobicity 

index based on the method of Guo et al. (1986) and Mant et al. (1989), in addition to size (molecular 

weight) were highly correlated with overall protein recovery, and consequently the overall efficacy of 

this precipitation technique. Certainly it can be seen from the experimental results obtained that 

considerable difficulties were faced when dealing with large multi-domain and hydrophobic proteins, 

but this precipitation technique could still be applied for this class of protein by removing the 

impurities initially and leaving the target protein in solution, thus indirectly purifying it.  
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CHAPTER 4 A BIOCOMPATIBLE 

SURFACTANT, METHYL ESTER 

SULPHONATE (MES) AS A PRECIPITATING 

LIGAND 
 

4.1 INTRODUCTION 
To date the ground work on the surfactant precipitation method based on the use of conventional 

surfactants (including the work described in Chapter 3) has been substantial (Shin et al., 2003a, 

2003b; Cheng and Stuckey, 2011; Ward and Stuckey, 2011). The most important finding of this body 

of work was that the charge of the ionic surfactant’s head group is central to the mechanism of this 

precipitation technique, and this explains why conventional ionic classes of surfactant: anionic (AOT) 

and their cationic counterparts (TOMAC, DODMAC, DTAB and CTAB) have been successfully 

tested.   

However, advances in the detergent production industry are focussing on the production of a biobased 

surfactant due to raised concerns about environmental sustainability (Hayes, 2009). One of the 

examples of a biobased detergent is methyl ester sulphonate (MES), a palm oil-derived surfactant 

which has attracted a great deal of interest in commercial application (LION Eco Chemicals, (n.d.); 

Chemithon Corp., 2008). Basically, the two main features of MES that are appealing to the detergent 

industry are its higher detergency, and environmentally friendly features. In fact, the overall cost of 

detergent production is reduced significantly as MES has shown higher detergency with a low dosage 

in comparison with linear alkyl benzene sulphonate (Satsuki et al., 1992). From an environmental 

point of view, MES is a ‘greener’ alternative than conventional surfactants because it is carbon 

neutral, results in lower organic substance discharge due to its lower dosage during washing, and also 

exhibits a higher biodegradability as a result of its faster and easier decomposition in domestic waste 

water (Masuda et al., 1993). In addition, it was reported that MES has shown good compatibility 

when coexisting with protease, and has no adverse effect on enzyme activity (Satsuki, 1992). Hence, 

coupled with its anionic properties, it appears that MES might be very useful to apply to protein 

purification through the surfactant precipitation technique.  

In line with the development of this new generation of surfactants, the first aim in this chapter was to 

examine the feasibility of using MES as a precipitant in surfactant precipitation. Secondly, the 

performance of this biosurfactant was also compared to the conventional surfactant, AOT. In the 
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study conducted, lysozyme was used as a model protein in a buffer system, and its performance in 

both the precipitation and recovery stages was examined. Furthermore, the influence of various 

parameters such as: the molar ratio of surfactant to protein (R), pH, and type of organic solvent on the 

process, as well as the possibility of using a counter-ionic surfactant to recover the lysozyme were 

examined. Above all, the structural integrity of the target protein that was subjected to this technique 

was also analysed. 

 

4.2 MATERIALS AND METHODS 
Materials: Lysozyme from chicken egg white (EC 3.2.1.17, Mucopeptide N-

acetylmuramylhydrolase, pI=11.0, MW=14.3 kDa) was from Sigma (Missouri, USA). Anionic 

surfactants: sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) (MW=444.56 g/mol) was obtained from 

Sigma (UK), and, methyl ester sulfonates (MES), MIZULAN FL-80 (MW=372-400 g/mol) was 

obtained from the LION group (Malaysia). Micrococcus lysodeikticus (ATCC No. 4698) for 

determination of lysozyme activity was purchased from Sigma. 

4.2.1 PREPARATION OF LYSOZYME SOLUTION 
0.1 g of lysozyme powder was weighed and dissolved in 10 mL of 20 mM potassium dihydrogen 

phosphate/sodium phosphate dibasic, pH 6.23 to act as the stock solution. 1 mL of the stock solution 

was then diluted to a volume of 10 mL in a 15 mL tube to make up a 1 g/L solution that was used as a 

starting solution for the precipitation experiments. 

4.2.2 PREPARATION OF ANIONIC SURFACTANT, AOT PHASE 
The AOT solution was prepared by dissolving it in distilled water with a concentration range of 1.7 to 

26.6 mM. At the moment of AOT addition to the protein sample, the final AOT concentration ranged 

from 0.15 to 2.42 mM, and therefore AOT was present in its monomer form at these concentrations as 

the CMC of AOT in water is 2.5 in 20 mM phosphate buffer; 4.1 mM in water at 25°C (Linfield, 

1976), and increases to 6.7 mM with lysozyme prepared in buffer (between 0.03 to 0.2 mol%). 

4.2.3 PREPARATION OF ANIONIC SURFACTANT, MES PHASE 
MES (marketed under the name MIZULAN FL-80 by LION) flake was dissolved in distilled water to 

make up the same concentration range as AOT (1.7 to 26.6 mM) in order to facilitate the performance 

comparison study of the both surfactants. 
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4.2.4 PREPARATION OF COUNTER-IONIC SURFACTANT, TOMAC 

PHASE 
TOMAC was dissolved into ethanol (due to its low solubility in distilled water) at various 

concentration ranges, from 11.18 to 33.54 mM, to make up the different molar ratios of TOMAC to 

MES used in the recovery (1 to 3). Its final concentration in solution ranged from 1.02 to 3.05 mM.  

4.2.5 DETERMINATION OF MES CRITICAL MICELLE 

CONCENTRATION 
The critical micelle concentration (CMC) of MES was determined by using the conductivity method. 

Gradual addition of the MES solution into a 20 mM phosphate buffer was made, and the measurement 

of conductivity was performed simultaneously. A plot of conductivity as a function of MES 

concentration at equilibrium was constructed. In theory, below the CMC an increase in conductivity is 

observed as the concentration of monomer (charge carriers) increases with MES addition. Above the 

CMC, with further addition of surfactant the concentration of micelles increase while the 

concentration of surfactant monomer remains unchanged. Thus, the CMC was determined as the 

concentration where the rate of conductivity increment started to become considerably slower. 

4.2.6 PRECIPITATION PROCEDURES 

4.2.6.1 PRECIPITATION OF LYSOZYME WITH AOT/MES 
10 mL (1g/L) of lysozyme solution was contacted with 1 mL of surfactant solution (AOT or MES), 

followed by 10 s of vortex mixing; the instant formation of an insoluble complex was observed right 

after the addition of surfactant. The sample was then centrifuged at 7,500g for 10 min at 4°C to 

separate the insoluble solid from solution, and the supernatant collected and analysed for protein 

content and enzyme activity. The amount of protein left in solution indirectly indicated the amount of 

protein precipitated. Meanwhile, the surfactant-protein precipitate formed was collected and 

underwent the following recovery study with either solvent or counter-ionic surfactant.  

4.2.7 RECOVERY PROCEDURES: 

4.2.7.1 Recovery of Lysozyme From Lysozyme-MES Complex By Solvent 
The precipitate was washed with 10 mL of phosphate buffer, followed by 10 s of vortex mixing, and 

eventually centrifuged at 7,500 g for 10 min. The supernatant (wash fraction) was collected and 

further analysed for protein concentration and activity measurement. 10 mL of solvent was later added 

to the pellet, vortexed for 10 s, and then subjected to a second centrifugation. The supernatant 

(solvent) was then removed and the surfactant-free precipitates were then dissolved in a fresh 

phosphate buffer at pH 6.2 before being subjected to analysis. 
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4.2.7.2 Recovery of Lysozyme from a Lysozyme-MES Complex by Counter-Ionic 

Surfactant 
The cationic surfactant, TOMAC, was employed for counter-ionic surfactant recovery of lysozyme 

from the insoluble complex of lysozyme-MES. After the addition of 10 mL of fresh phosphate buffer 

to the recovered precipitate, 1 mL of TOMAC-containing ethanol with various concentrations (11.18 -

33.54 mM) was added to the final phase; TOMAC was pre-dissolved in ethanol as it was not soluble 

in water. The mixture was later vortexed for 10 s to promote the interaction between the anionic 

surfactant, MES, and its cationic counterpart, TOMAC, to form a MES-TOMAC dimer complex, 

while leaving lysozyme in solution. The sample was then subjected to centrifugation (7,500 ×g, 10 

min) to remove the complex, and the supernatant was analysed for protein concentration and activity. 

4.2.8 ANALYTICAL TECHNIQUES 

4.2.8.1 Protein Assay 
The protein concentration in the initial lysozyme solution, aqueous phase after the precipitation, wash 

fraction of the insoluble complex, and the final phase after recovery were determined by measuring its 

absorbance at 280nm. The spectrophotometer was calibrated to zero absorbance with 20 mM 

phosphate buffer (pH 6.23) that was used in the precipitation experiment. The concentration of the 

protein was determined from a standard curve of lysozyme, with concentrations ranging from 0 to 1.0 

g/L (R2= 0.99).  The lysozyme standards were also prepared in the same phosphate buffer. 

4.2.8.2 Lysozyme Activity Assay 
The activity assay of lysozyme was determined based on the enzymatic lysis rate of a Micrococcus 

lysodeikticus cell suspension by lysozyme (Shugar, 1952). The cell suspension was prepared in 20 

mM phosphate buffer (pH 6.23) with an absorbance at 450 nm of between 0.6 to 0.7 versus a buffer 

blank. 2. 5 mL of the substrate was loaded into the two reference Cells A and B. 100 μL of buffer and 

lysozyme-containing sample was added to the substrate in the cell A and B, respectively. After 

immediate mixing by inversion, the decrease in the substrate turbidity at 450nm was recorded for 5 

minutes. The rate (A450nm/min) was determined from the linear curve of the graph of absorbance 

(A450nm) as a function of time. The linear portion chosen was at least over a one minute interval. 

The specific activity was calculated as: 

Specific Activity (units mg⁄ ) =
∆A450 nm/min

mg lysozyme in reaction mixture
 �

1U
0.001

� 

4.2.8.3 Determination of the MES Concentration  
The assay for the determination of MES concentration was performed by using a cationic dye, 

methylene blue, which formed a complex with any anionic surfactant (Takagi et al., 1975; Fuda et al., 
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2004). 1 mL of 0.007% of a methylene blue solution that was prepared in 0.1% sodium sulphate 

solution was added to 5 mL of chloroform and mixed. 100 μL of sample was then added to the initial 

mixture and vortex mixed for 20 s. The bottom phase (chloroform) was separated from the water 

phase and analysed for MES concentration by spectrophotometer at a wavelength of 650 nm. The 

concentration of MES was determined based on a linear standard curve with concentrations ranging 

from 0 to 1 mM. 

4.3 RESULTS AND DISCUSSION 

4.3.1 EFFECT OF RP ON THE PRECIPITATION LEVEL 
Precipitation of protein by the biosurfactant MES, and a commercial surfactant AOT, was examined, 

and their performances compared. Lysozyme was chosen as the model protein as it is very well-

studied, relatively cheap, and was reportedly used by previous researchers (Cheng and Stuckey, 2012; 

Shin et al., 2003) in studies on surfactant precipitation. Most importantly, the high pI of lysozyme 

(about 11), and its pH stability range (6 to 9), has made it very suitable for studying surfactant 

precipitation by these anionic surfactants. One advantage of using anionic surfactants such as AOT 

and MES in protein precipitation is their lack of interference in the spectroscopic measurement of 

proteins at A280 nm, i.e. an absorbance of about 0.0157 at 27 mM MES, while only about 0.0010 at 

2.7 mM. Hence, at the maximum concentration employed in this work, 2.42 mM, to make up a molar 

ratio of 38 (at the moment of MES addition), the interference can be neglected. Hence, the use of an 

easy method like spectrophotometry for protein concentration determination is possible, rather than 

the more complicated method of HPLC. Furthermore, MES and AOT did not interfere with the 

activity determination of lysozyme also. 

Both surfactants were prepared in the concentration range of 1.7 to 26.6 mM, which made an Rp of 

between 2.38 and 38 possible. Lysozyme was prepared in 20 mM phosphate buffer (pH 6.23) because 

it was reported that maximal activity was produced at pH 6 - 9, with varying ionic strengths of 20 to 

100 mM (Davies et al., 1969). In this work, the salt concentration used in the phosphate buffer was 

kept at 20 mM as a minimum possible to prevent the salt ions from competing with MES and 

lysozyme in ionic interaction. 

Figure 4.1 shows the remaining fraction of protein, and activity in solution after precipitation as a 

function of the molar ratio between MES and lysozyme (Rp). As the Rp was increased from 2.38 to 16, 

the percentage of precipitation increased as indicated by the drop in the fraction of protein and activity 

(74.5% to 0%). The fraction of activity also reduced accordingly from 71% (Rp = 2.38) to 0% (Rp = 

16), at which point full precipitation of lysozyme was achieved. At the initial stage (Rp <16), there 

was insufficient amounts of MES to form a complex with lysozyme, and subsequently as more MES 

was added, the level of precipitation increased and finally approaching 100% at Rp of 16. This 
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complete level of precipitation for MES was found to be maintained up to an Rp of 38. It was also 

clear (Figure 4.1) that the amount of activity was in accordance with the remaining mass in solution 

after precipitation over the range of all the Rp s. In addition, the optimum Rp for complete 

precipitation of lysozyme by MES was also found to be similar to the case of AOT (Figure 4.2), 

suggesting that 16 moles of MES might have sufficiently interacted with 1 mole of lysozyme to form 

an insoluble complex. 

On the other hand, in the case of AOT precipitation (Figure 4.2), the ascending trend of precipitation 

as a function of Rp was only observed until its optimum Rp (16), before the level of precipitation 

reduced to about 87.5% (Rp = 29) and eventually to 33.4% (Rp = 38). The activity of lysozyme in the 

remaining solution was also found not to correspond to the mass of protein: 2.8% (Rp = 29) and 

16.4% (Rp = 38), for respective protein fractions of 2.8% and 66.6%. This finding was in agreement 

with the work of Cheng and Stuckey (2011).  

 

 

Figure 4.1 Amount of the residual lysozyme and its activity in solution after precipitation 

with MES.  The error bars highlight the standard deviation for each point. 
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Figure 4.2 Amount of the residual lysozyme and its activity in solution after precipitation 

with AOT.  The error bars highlight the standard deviation for each point. 

Previous research has highlighted the fact that surfactant aggregates (micelles) were responsible for 

the redissolution of the protein precipitate in solution (Morén and Khan, 1998; Stenstam et al, 2001). 

During protein-surfactant interactions, as the concentration of surfactant increases, surfactant 

molecules nucleate on the protein chain in a ‘pearl neklace’ structure (Turro et al., 1995). Normally, 

redissolution occurs when a critical concentration of surfactant molecules that aggregates on the 

complex is reached (Stenstam et al., 2001). Thus, in a homologous surfactant, redissolution at higher 

surfactant concentration (R) is more efficient with a more strongly associating surfactant (Morén and 

Khan, 1998; Stenstam et al, 2001). As the surfactant aggregates (micelles) are mainly responsible for 

the solubilisation of the neutral surfactant-protein complex, a surfactant with a lower CMC is thought 

to have a better solubilizing effect than one with a higher CMC value.  

MES has a straight hydrophobic chain, rather than a branched one for AOT (Figure 4.3). Moreover, 

AOT has a hydrophilic group (sulphate group) positioned at the centre of the hydrophobic chain, 

rather than at the end of it like MES. Thus, AOT has two hydrophobic tails, each of about 6 carbon 

chain lengths, and an ethyl group that is branched at the second position. In contrast, in MES a single 

linear hydrophobic tail of about 12 to 14 carbon chain lengths exists. Two tail surfactants generally 

have a higher CMC in aqueous solution compared to an analogous single tail surfactant since the 

linear non-branched and flexible hydrophobic tail is more efficient in forming micelles than a two tail 

surfactant. In addition, the branched hydrophobic chain of AOT sterically inhibits micellization which 

results in a high CMC value (Ryoo et al., 2003). Hence, theoretically, as far as redissolution of the 
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precipitate is concerned, MES is expected to exhibit a better effect than AOT. However, the result 

obtained in this work is not consistent with the above theory, in the sense that although MES has a 

lower CMC (determined to be around 0.2 mM), the phenomenon of precipitate redissolution which 

occurred in AOT precipitation was not encountered for MES; this point will be discussed in more 

depth as the work progresses.   

 

i) Sodium bis-(2-ethylhexyl) sulphosuccinate (AOT) (MW=444.56 g/mol) 

 

 

ii) Methyl ester sulphonates (MES) (MW=372-400 g/mol) 

 

Figure 4.3 Chemical structure of AOT and MES. Position of linear alkyl chain: in AOT, the 

hydrophilic group is flanked by a double hexyl chain with an ethyl group 

branched at position 2. In contrast, in MES the anionic head group is tailed by a 

single linear alkyl chain, with a 14 to 16 carbon chain length. 

Figures 4.4 and 4.5 show the binding isotherm at equilibrium for both MES and AOT. It can be 

observed that beyond the point of optimum binding for complete precipitation (Rp = 16), rather than 

remain as free surfactant, both MES and AOT anions continue to bind with protein-surfactant 

complex. However, in this work it was observed that the excess binding of MES (Rp > 16) to the 

lysozyme-MES complex was more pronounced in comparison with AOT. In fact, beyond the 

optimum Rp (equilibrium concentration above the CMC), and in the presence of lysozyme-MES 

complex in the aqueous phase, MES tended to bind with the complex rather than forming micelles 

among themselves to achieve thermodynamic equilibrium. The long linear hydrophobic chain in MES 

explained the greater adsorption of MES through cooperative binding on the neutral protein-surfactant 

complex through hydrophobic interactions. However, the “charging” of the complex with negative 

R = 14 ~ 16  
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charges due to excessive MES binding was somehow insufficient to provide a repulsive electrostatic 

force to overcome the hydrophobic attraction that kept the complex together. 

In contrast, the concentration of AOT anions detected in the supernatant were significant after 

exceeding the optimum Rp (Figure 4.5) indicating that there was an unfavourable interaction between 

AOT and the neutral complex beyond the optimum Rp (16). Nevertheless, interestingly, the 

redissolution effect was pronounced in AOT precipitation, specifically at Rp = 28 onwards, although 

its binding ratio on the complex was significantly lower. Thus, the findings of the current study did 

not support previous research on the redissolution effect at higher Rp s. It is difficult to explain this 

result, but it might be related to the conformational integrity of lysozyme in the presence of 

surfactants at a particular concentration. 

 

Figure 4.4 Equilibrium concentration of MES, and concentration of free MES in lysozyme 

solution at pH 6.2 as a function of Rp. 

 

Figure 4.5 Equilibrium concentration of AOT, and concentration of free AOT in lysozyme 

solution at pH 6.2 as a function of Rp. 
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In this work it seems that the excess binding of MES (with a higher amount bound than AOT at 

similar Rps) did not instigate the loss of native structure which was responsible for the drop in 

precipitation encountered in the AOT-lysozyme system (Cheng and Stuckey, 2011), and this extended 

in the precipitation region even up to Rp = 39. Cheng and Stuckey (2011) previously postulated that 

the structural integrity of lysozyme was a prerequisite for effective precipitation through the charge 

neutralisation mechanism driven by favourable electrostatic interactions between the AOT anionic 

group and ionic groups on the lysozyme surface. In fact, once the excessive binding of AOT on 

lysozyme occurs (Rp >23), its native structure and activity is lost as AOT started to bind with the 

protein's non-polar surface groups and enter its hydrophobic intracavity, eventually resulting in less 

lysozyme being precipitated. Furthermore, taking into account that the highest concentration of AOT 

employed in the system (2.4 mM at Rp = 38) was far below its CMC, it is logical to presume that the 

redissolution of the neutral precipitate was a result of structural changes in lysozyme after interacting 

with the bulkier hydrophobic structure of branched AOT, instead of the charging effect of the 

complex by excessive binding.  

 

4.3.2 EFFECT OF RP ON THE STRUCTURE OF LYSOZYME 
CD was used to monitor any structural changes of the residual lysozyme in the supernatant after 

precipitation. Figure 4.6 shows the CD spectra of the lysozyme at Rp =2.4 to Rp =9.5 in conjunction 

with the native form in the far-UV range of 190-260. In general, lysozyme has a negative band in the 

far-UV range of 200-240 nm, with a shoulder at about 222 nm, and the strongest intensity at 208 (Yao 

and Gao, 2008). 30.9 ± 0.4% α-helix, 24.0 ± 0.1% β-sheet, 18.5 ± 0.1% β-turn and 26.7 ± 0.4% 

random coil were calculated to be present in native lysozyme through the CDNN deconvolution 

software. It was apparent that there were no significant changes in the secondary structure of the 

soluble lysozyme as the Rp was increased from 2.4 to 9.5 (Figure 4.6). As a control, the CD spectra 

(Figure 4.6e) including the deconvolution result (Table 4.1) of the residual lysozyme in the 

supernatant after precipitation with AOT at Rp = 39 was also presented, which merely indicated the 

significant structural changes that occurred. These results are consistent with the findings of previous 

researchers (Cheng and Stuckey, 2012); the unfolding pattern observed was the loss of the α-helical 

structure and a gain in β-sheet and random coil fractions. 
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Figure 4.6 Far-UV CD spectra of native lysozyme and the residual lysozyme in the 

supernatant from Rp =2.4 to 9.5 (MES) and Rp =39 (AOT), in 20 mM phosphate 

buffer, pH 6.23: (a) Native lysozyme, (b) Rp =2.4, (c) Rp =4.8, (d) Rp =9.5, (e) Rp 

=39 for AOT. 
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Table 4.1 Secondary structure content of the non-precipitated lysozyme at Rp =39 with 

AOT, and its relative difference (%) with regards to the native lysozyme 

structure. 

Secondary Structure (%) 
Sample/Rp 

Native  Rp = 39 (AOT) Difference (%)a 

 
      α-helix  30.9 ± 0.4 

 

19.5 ± 1.7 -36.9 

      β-sheet  24.0 ± 0.1 

 

30.0 ± 2.1 +25.0 

   
   β-turn 18.5 ± 0.1 

 

16.6 ± 0.2 -10.3 

      Coil  26.7 ± 0.4 

 

34.0 ± 0.2 +27.3 

      Average Difference (%)b 

   

24.9 
 aThe difference in the percentages of secondary structure between the protein sample and the native 

state, determined by computational analysis (Chen et al., 1977). In general, it is accepted that there is 

a major deviation from native state when the difference (%) is larger than 10, as suggested by Chang 

et al. (1997). bThe average difference for all of the secondary structure. 

4.3.3 EFFECT OF PH ON THE PRECIPITATION OF PROTEIN 
In order to study the effect of pH on the precipitation of lysozyme by MES, lysozyme was initially 

dissolved (1 g/L) in a pH-specified 20 mM phosphate buffer ranging from pH 6 to 12. Pure lysozyme 

solution at all of the pHs was used as the negative control for each of the pHs examined. 1 mL of 

MES solution was later added to 10 mL of these single-protein solutions, to make up an Rp of 16. The 

pH study was performed beyond the active pH range of lysozyme (at 6 to 9, as specified by product 

manufacturer, Sigma) up to 12, so as to evaluate the effect of electrostatic interactions between MES 

and the lysozyme molecule, which has a pI of about 11. 

In general, the overall net charge of a protein depends on the pH of the solution; protein will assume 

an overall positive charge at a pH below its pI, a zero charge at its pI, and a negative charge at a pH 

above this point (McMurry, 1992); it is reported that lysozyme has 18 cationic amino acid residues (6 

lysyl including 1 N-terminal, 11 arginyl and 1 histidyl) (Canfield and Liu, 1965). In surfactant 

precipitation, specifically in the case of MES and lysozyme at a pH<pI, it is hypothesized that the 

anionic head group of the MES monomer will form an electrostatic interaction with the positively 

charged groups on lysozyme molecules to produce neutral insoluble MES-lysozyme complex that will 

eventually precipitate (Shin et al., 2003; Cheng and Stuckey, 2011). At a pH>pI there will be an 
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electrostatic repulsion between the two similar negatively charged molecules of lysozyme and MES, 

thus preventing the formation of the neutrally charged complex.  

 

 

Figure 4.7 Fraction of protein, and activity remaining, total concentration of MES, and 

final concentration of free MES in the after-precipitation solution. 

 

Figure 4.7 shows the fraction of the mass and lysozyme’s activity in the remaining solution after 

precipitation, as a function of the pH of the solution. Full precipitation was obtained at pH 6.23 and 

the level of precipitation decreased with increasing pH up to 12, as indicated by the increase in the 

remaining fraction, from 21% (pH 8.2) to almost 100% (pH 12). This behaviour was due to the 

explanation discussed previously, i.e. that the further away the pH is away from the pI of lysozyme 

(i.e. 11), the more likely is the formation of an ion pair between the anionic MES head group and the 

positively charged protein surface charge, and thus the higher the amount of precipitate obtained. 

An intriguing observation was that most of the non-precipitated lysozyme’s activity remained at pH 

12 (88%), contrary to the AOT precipitation study reported by Cheng and Stuckey (2011).  They 

previously reported that despite more than 50% of the lysozyme not precipitating, only 9% of its 

activity was detected at an Rp of 16 and pH 12. It was claimed that hydrophobic interactions between 

AOT and the lysozyme took place at this pH (>70% bound AOT) which consequently caused a 

significant drop in its activity. However, it was apparent that for MES, even with mild (manual end-
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over-end mixing) or rigorous (≈10 - 20s vortex) mixing were performed, no significant binding was 

observed at pH 12 as indicated by the non-formation of a white insoluble complex upon MES 

addition. Furthermore, in this study determination of the equilibrium MES concentration in the 

supernatant after precipitation was also being carried out to gain a better understanding of the 

interaction (Figure 4.7). 

From Figure 4.7 it can be seen that there was an increase in the concentration of free MES in solution 

with increasing pH, and this result was in accordance with the amount of precipitated lysozyme.. Less 

MES was interacting with lysozyme as the pH increased, due to the reduced electrostatic interactions 

between MES and lysozyme as a consequence of the reduced net positive charge of lysozyme.  

Moreover, at higher pH (above the pI of about 11) a considerable amount of free MES (about 85%) 

can still be detected. This implied that the degree of hydrophobic interaction between lysozyme and 

MES at this point was not very significant compared to that encountered in AOT precipitation (Cheng 

and Stuckey, 2012), which explained why the activity of the non-precipitating lysozyme remained i.e. 

88%, for the case of MES precipitation.  

CD and deconvolution analysis of the non-precipitated lysozyme over the pH range examined was 

also performed to check on their structural integrity (Figure 4.8 and Table 4.2). Only a slightly altered 

CD profile of the lysozyme at pH 12 was observed, and this is understood to be a result of the binding 

(15% of bound MES). However, in comparison to the AOT results where major loss in 

conformational structure was observed (Cheng and Stuckey, 2012), the degree of change caused by 

MES was relatively minor, and in fact most of its activity was retained. It is believed that with AOT, 

the dominant effect of the hydrophobic interactions at higher pH (>pI) might be due to the larger 

steric effect of its bulky branched double hydrophobic tail. 
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Figure 4.8 Far-UV CD spectra of the remaining lysozyme in the supernatant after 

precipitation by MES at Rp = 16, for the pH range of 6.23 to 12. 

 

After scrutinizing the results, it was clear that the interaction between MES and the protein was 

mainly governed by electrostatic interactions that were required to bring both molecules closer to 

form a solid-like complex. However, if such a condition was not met, it seems that any interaction 

between them including the hydrophobic interaction which was apparently encountered in the AOT-

lysozyme system was not very favourable for MES-lysozyme. Thus, this study highlighted another 

advantage of MES over AOT, in the sense that MES is more specific in interacting with lysozyme and 

exhibited significantly less denaturing hydrophobic interactions with lysozyme. Basically, this 

demonstrates that MES is a more appealing choice for a surfactant ligand for protein precipitation.
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Table 4.2 Secondary structure content of the non-precipitated lysozyme at pH 12, and its 

relative difference (%) with regards to native lysozyme structure. 

Secondary Structure 

(%) 

Sample/ Rp 

Native  pH 12 
Difference 

(%)a 

 
      α-helix 30.9 ± 0.4 

 

26.3 ± 2.1 -14.9 

      β-sheet 24.0 ± 0.1 

 

32.1 ± 2.2 +33.8 

      β-turn 18.5 ± 0.1 

 

18.8 ± 0.2 +1.8 

      Coil 26.7 ± 0.4 

 

22.7 ± 0.7 -15.0 

      Average Difference (%)b 

   

16.4 
aThe difference in the percentages of secondary structure between the protein sample and the native 

state, determined by computational analysis (Chen et al., 1977). In general, it is accepted that there is 

a major deviation from the native state when the difference (%) is larger than 10, as suggested by 

Chang et al. (1997). bThe average difference for all of the secondary structure.  

4.3.4 RECOVERY OF LYSOZYME FROM A LYSOZYME-MES 

COMPLEX 
All of the recovery studies were performed from optimally (Rp = 16) precipitated lysozyme. The 

precipitate was recovered by means of both organic solvent addition and counter-ionic surfactant, 

TOMAC. Apart from the parameter of overall protein/activity recovery, protein recovery efficiency 

and activity recovery efficiency were also determined to examine the effectiveness of the recovery 

method applied to separate the lysozyme from the precipitate. The efficiency of protein recovery was 

calculated from: 

Protein Recovery Efficiency (%) =
Cf ∙ Vf

Ci ∙ Vi − Ce ∙ Ve − Cw ∙ Vw
× 100% 

where Ce and Cw refer to the concentration of lysozyme at equilibrium after the formation of the 

precipitate, and the concentration of lysozyme in the wash fraction, respectively. Meanwhile, Ve and 

Vw refer to the volume of the equilibrium fraction after precipitation, and the washing fraction, 

respectively. On the other hand, the efficiency of the activity recovery was calculated as: 

Activity Recovery Efficiency (%) =
af ∙ Vf

ai ∙ Vi − ae ∙ Ve − aw ∙ Vw
× 100% 
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where ae and aw refer to lysozyme activity in the equilibrium fraction after precipitation, and in the 

washing fraction, respectively. 

4.3.4.1 The Use of Solvent in Lysozyme Recovery 
The effect of 6 types of solvent, namely; acetone, ethanol, acetone-ethanol (50% v/v), methanol, 

chloroform and dimethyl sulfoxide on recovery were examined. After addition of the solvent, the 

surfactant (MES) dissolves into the organic phase, while the lysozyme remains as a precipitate. The 

precipitate was finally dissolved in a fresh phosphate buffer at pH 6.2 to obtain a surfactant-free 

lysozyme solution. Filtration through 0.45 μm pore size was used to remove any undissolved 

precipitate that may remain in the final buffer. 

 

Figure 4.9 The effect of organic solvent type on the recovery of lysozyme from precipitate. 

Figure 4.9 shows the performance of the solvents in terms of overall protein recovery (%), protein 

recovery efficiency (%), overall activity recovery (%) and activity recovery efficiency (%). Basically, 

comparable performances were obtained for all the solvents tested for both protein and activity 

recovery, except chloroform and DMSO. Overall activity recoveries of about 54-56% were obtained 

for acetone, ethanol, acetone-ethanol (50% v/v) and methanol. However, as can be seen from Figure 

4.10, slightly higher protein recoveries were obtained for acetone (59%), either being used alone or in 

50% mix with ethanol. This can be explained by the strong absorption of traces of acetone at 280 nm 
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wavelength that caused an over-estimation in the quantification of protein concentration in the final 

phase. Traces of acetone remained after the addition of phosphate buffer at pH 6.2 in the final stage, 

even though a precautionary step was taken to ensure its complete removal by air drying in the fume 

hood for 3 hours, instead of the conventional 30 min to 1 hour period. The timeframe was also not 

increased further in order not to compromise the lysozyme stability factor. In addition, such 

circumstances were also encountered by other researcher (Shin and Stuckey, 2011), in which it was 

reported that protein recovery as high as 157.3 % was obtained for acetone recovery. 

It was reported earlier that lysozyme was not denatured by acetone, alcohol, ether, chloroform or 

toluene, even when they have acted for a considerable time (Fleming, 1932). In fact, these solvent can 

be used for the preservation of lysozyme-containing materials. Thus, the discussion on the recovery of 

lysozyme by organic solvents was made based on lysozyme’s solubility in organic solvent, rather than 

denaturation. The more the protein dissolves in them, the less the amount precipitated out, and the 

lower the recovery yield obtained. For instance, the solubility of lysozyme was >100 mg/mL and 0.25 

mg/mL, in DMSO and chloroform, respectively, as compared to 0.01 mg/mL and 0.02 mg/mL, in 

methanol and ethanol, respectively (Houen, 1996). This fact explains the generally comparable results 

of all of the solvents studied (i.e. 54 to 59%), except DMSO and chloroform where none of the 

lysozyme was recovered. 

As for the CD analysis of the recovered lysozyme, only minor changes in the α-helix content of the 

lysozyme sample recovered by acetone and ethanol were detected, as indicated by the relative 

percentage difference shown (Table 4.3), and through t-test analysis. The α-helix content of the 

acetone and ethanol-recovered lysozyme increased slightly (33.6% and 32.9%, respectively) 

compared to the native form (30.9%). Meanwhile the random coil fraction in acetone-recovered 

lysozyme reduced slightly to 24% from 26.7%. Nevertheless, based on the activity results and CD 

profile presented, it is clear that the major conformation of the recovered lysozyme was still retained. 
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Figure 4.10 Far-UV CD spectra of lysozyme recovered with various types of solvent followed 

by dissolution in 20 mM phosphate buffer, pH 6.23. Precipitation was performed 

at an Rp = 16, at pH 6.23. 

In addition, the results also highlighted that the overall protein/activity recovery and their recovery 

efficiency was comparable for all solvents, since the concentration of lysozyme in the supernatant 

after precipitation (Ce) and the washing fraction (Cw) were not significant. MES was able to 

completely precipitate the lysozyme in the sample, and there was no protein lost during the washing 

step (phosphate buffer) in the recovery stage. The recovery/extraction effect was solely achieved by 

the addition of an organic solvent, to dissolve the surfactant (and hence remove it from the protein) 

while precipitating the target protein. Again, this pointed to the effectiveness of the precipitation 

method overall. 
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Table 4.3 Fraction of secondary structure element of the lysozyme recovered by various 

types of solvent. 

Sample 
Percentage of Secondary Structure (%) Average Difference 

(%)b α-helix 
 

β-sheet 
 

β-turn 
 

Coil 

Native 30.9 ± 0.4 

 

24.0 ± 0.1 

 

18.5 ± 0.1 
 

26.7 ± 0.4 

 

-   

 
            Acetone 33.6 ± 1.5 

 

23.5 ± 2.0 

 

19.0 ± 0.1 

 

24.0 ± 0.7 

 

 

5.93  Difference (%)a +8.8 

 

-2.3 

 

+2.4 

 

-10.2 

  
            Ethanol 32.9 ± 2.1 

 

23.1 ± 0.5 

 

18.8 ± 0.3 

 

25.2 ± 1.9 

 

 

4.35  Difference (%) +6.6 

 

-3.6 

 

+1.5 

 

-5.7 

  
            Acetone-

Ethanol 
31.6 ± 0.1 

 

23.6 ± 0.5 

 

18.6 ± 0.2 

 

26.2 ± 0.8 

 

 

 

1.65  Difference (%) +2.4 

 

-1.8 

 

+0.5 

 

-1.9 

  
            Methanol 31.7 ± 1.0 

 

22.7 ± 1.2 

 

18.4 ± 0.1 

 

27.0 ± 0.1 

 

 

2.28  Difference (%) +2.6 

 

-5.2 

 

-0.3 

 

+1.0 

                          
aThe difference in the percentages of secondary structure between the protein sample and the native 

state, determined by computational analysis (Chen et al., 1977). In general, it is accepted that there is 

a major deviation from the native state when the difference (%) is larger than 10, as suggested by 

Chang et al. (1997). bThe average difference for the four kinds of secondary structure. 

4.3.4.2 THE USE OF A COUNTER-IONIC SURFACTANT IN LYSOZYME 

RECOVERY 
In order to recover lysozyme from the lysozyme-MES complex (precipitate), trioctyl-methyl 

ammonium chloride (TOMAC) was used. Essentially TOMAC is a quaternary ammonium salt, and 

thus possesses a permanent positive charge which can form salts with anions over a wide pH range. 

The precipitate recovered from the optimum Rp (16) was added to 20 mM phosphate buffer, pH 6.2, 

followed by the addition of 1 mL of TOMAC solution (dissolved in ethanol) to make up the molar 

ratio (Rr) of TOMAC to the MES range between 0 to 3.0 (0-3.05 mM). In principle, the ionic 

interactions between TOMAC and MES are stronger than between TOMAC and lysozyme, and this 

facilitates the release of lysozyme from the neutral complex into solution while leaving the 

simultaneously formed TOMAC-MES salt as a precipitate (Cheng and Stuckey, 2011). 
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As illustrated in Figure 4.11, it can be seen that there is an increasing trend of protein and activity 

recovery in conjunction with the recovery efficiency with an increment in Rr. By taking into account 

the protein/activity recovery and the concentration of surfactants (MES and TOMAC), it can be 

postulated that there are 3 stages in the counter-ionic surfactant recovery. Initially, at Rr = 0 (negative 

control), MES was detected, i.e., 0.0181 mM (standard deviation = ±0.0023) as it was released from 

the complex possibly due to the stripping effect of ethanol. However, the amount of protein released 

may still be too low to be detected at Rr = 0. Then, in the intermediate stage (between an Rr of 1 to 2), 

there was an increase in the activity recovery from about 70% (Rr = 1) to 83% (Rr = 1.5), and finally 

this reached a maximum of 90% (at Rr = 2.0); the activity recoveries were found to accord with 

protein recovery. At an Rr below 2, there was also an insufficient amount of the counter-ionic 

surfactant, TOMAC to interact with MES from the MES-protein complex. The concentration of MES 

was also found to decrease from 0.0139 mM (Rr = 1) to 0.0059 mM (Rr = 2). Meanwhile, TOMAC 

was starting to be detected at Rr = 1.5 at about 0.0567 mM, and this increased to 0.2188 mM at Rr = 

2.0. At Rr = 1.5, near ideal/complete interaction between both surfactants occurred, in which the 

concentration of both surfactants was relatively low (0.0567 mM and 0.0059 mM, respectively, for 

TOMAC and MES). In the final stage (beyond Rr = 2.0), a possible maximum release of protein was 

achieved i.e. 90%, and this level extends until Rr = 3.0. At this stage, any addition of TOMAC 

accumulated in solution, for example at around 7.2% (Rr = 2) to 16% (Rr = 3). Hence, it can be 

suggested that most of the TOMAC added still bound with the lysozyme-MES complex, but did not 

release the remaining precipitated lysozyme fraction.  

 

Figure 4.11 The effect of the counter-ionic surfactant, TOMAC to MES molar ratio (Rr) on 

the recovery of lysozyme. 
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Figure 4.12 Far-UV CD spectra of the recovered lysozyme by counter-ionic surfactant – 

TOMAC ranging from Rr = 1.0 to 3.0, with the respective native lysozyme, in 20 

mM phosphate buffer and a protein concentration range of 0.09 to 0.1 mg/mL. 
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Table 4.4 Fractions of α–helix, β-sheet, β-turn, and random coil for the native and 

recovered lysozyme by counter-ionic surfactant – TOMAC, from Rr = 1.0 to 3.0, 

respectively. 

Sample/ 

Rr 

  Percentage of Secondary Structure (%) Average 

Difference 

(%)b   
α-helix 

 
β-sheet 

 
β-turn 

 
Coil 

Native   30.9 ± 0.4 

 

24.0 ± 0.1 

 

18.5 ± 0.1 
 

26.7 ± 0.4 

 

- 

  
            1.0 

 

29.9 ± 0.2 

 

24.8 ± 0.2 

 

18.5 ± 0.1 

 

26.6 ± 0.3 

 
 

 Difference (%)a -4.1 

 

+3.3 

 

-0.1 

 

+0.3 

 

1.95 

 
            1.5 

 

29.6 ± 0.8 

 

24.9 ± 0.5 

 

18.4 ± 0.1 

 

27.2 ± 0.4 

 
 

 Difference (%) -5.1 

 

+3.7 

 

-0.6 

 

+2.5 

 

2.98 

 
            2.0 

 

28.8 ± 0.7 

 

25.8 ± 1.0 

 

18.4 ± 0.0 

 

27.0 ± 0.2 

 
 

 Difference (%) -7.4 

 

+7.1 

 

-0.6 

 

+1.7 

 

4.20 

 
            2.5 

 

30.3 ± 0.4 

 

24.1 ± 0.3 

 

18.4 ± 0.1 

 

27.2 ± 0.3 

 
 

 Difference (%) +2.7 

 

+0.8 

 

-0.5 

 

+2.4 

 

1.60 

 
            3.0 

 

30.5 ± 1.1 

 

24.6 ± 1.1 

 

18.5 ± 0.1 

 

26.4 ± 0.2 

 
 

 Difference (%) +2.1 

 

+2.5 

 

+0.1 

 

-0.3 

 

1.25 

                         
aThe difference in the percentages of secondary structure between the protein sample and the native 

state, determined by computational analysis (Chen et al., 1977). In general, it is accepted that there is 

a major deviation from the native state when the difference (%) is larger than 10, as suggested by 

Chang et al. (1997). bThe average difference for the four kinds of secondary structure. 

 

The CD results, together with the deconvolution of the spectra obtained across the range of Rr s 

examined (Figure 4.12 and Table 4.4), highlighted the fact that there were no significant changes in 

the conformation of the lysozyme recovered by using the counter-ionic surfactant – TOMAC. Hence, 

based on the activity and CD results, it was proven that MES can work similarly to AOT as a 

precipitant for this surfactant precipitation technique without causing any denaturation of the target 

protein. 

Previously, Cheng and Stuckey (2012) claimed to have successfully recovered lysozyme from the 

lysozyme-AOT complex using the counter-ionic surfactant, TOMAC, where 100% recovery was 
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obtained at an Rr of 2. However, they did not address the problem of TOMAC accumulation in 

solution after its addition up to Rr =3 (final concentration of 3.07 mM). They only performed a 

methylene blue (cationic dye) assay on the recovered lysozyme solution which can only detect anionic 

surfactants (AOT and MES). In our work, a methyl orange (anionic dye) assay was performed to 

detect any remaining TOMAC in solution according to the method of Wang & Langley (1975), with a 

slight modification in terms of volume. Hence, this allowed for a better monitoring of any carry-over 

of both surfactants in the recovered phase, and optimization of the recovery process based on counter-

ionic surfactant. Cheng and Stuckey (2012) previously reported the use of several cationic surfactants: 

TOMAC, DTAB and DODMAC to recover lysozyme from a lysozyme-AOT complex. 

TOMAC/DTAB were reported to have achieved full recovery, but for DODMAC, however, the 

highest recovery achieved was only about 80%; in addition to this, the recovery dropped as the 

concentration exceeded that point. They have put this down to the effect of the DODMAC structure, 

in which it is highly hydrophobic due to the presence of long alkyl chain. 

In this work, we accept that the optimum Rr was 1.5 where about 83% recovery was obtained with a 

TOMAC carry-over of 10.86%. Nonetheless, compromise on protein purity after protein precipitation 

depends on the downstream separations units that follow. Surfactant removal from protein samples 

can be very important; for example, in mass spectrometry the protein sample must be free from any 

detergent prior to the analysis, because even at low concentrations it can contaminate instruments and 

interfere with column binding, elution and ionization. 

Thus, in this work, an attempt was also made to improve this result in terms of yield and addressing 

the carry-over/bleeding of TOMAC by performing a 2-stage recovery process which has never been 

done before. In the first recovery step, counter-ionic recovery at Rr =1 was performed that yielded 

about 69.6% lysozyme. After the first stage recovery, the MES-TOMAC complex formed was present 

together with the remaining lysozyme-MES complex precipitate. During the second stage recovery, 

the amount of TOMAC added to the second stage was calculated based on the molar ratio of TOMAC 

to the released lysozyme in the earlier first stage, i.e. around 16, rather than based on the amount of 

MES as the amount of lysozyme-bound MES was unknown. About 8.8% of lysozyme was recovered 

in the second stage to make up a total recovery of 78.4%. Although the surfactant carry-over detected 

was low in both of the stages (0.0043 mM and 0.0397 mM, for the first and second stage, 

respectively), this 2-stage recovery approach proved to not significantly improve the result of single 

stage recovery, as reported earlier. This was probably down to the difficulty in recovering the 

lysozyme-MES precipitate after the extensive mixing-centrifugation steps, and overall some lysozyme 

might have been lost during these steps. For instance, although the centrifugation speed was increased 

from 7,500 to 12,500 rpm, this did not seem sufficient to completely separate the precipitate from the 

supernatant. The recovered solution was again filtered (0.45 μm pore size) to completely remove the 
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suspended particulates, and this may have contributed to the inefficiency of the second stage recovery 

process.  

However, surfactant carry-over should not be the bottleneck for surfactant precipitation because in 

order to remove the surfactant, a physical method can simply be employed after the counter-ionic 

recovery such as chromatography, addition of an adsorbent, or filtration. For instance, in this study, 

the lysozyme recovered at R=2 (where 90% recovery was achieved) can be further purified by 

additional filtration to remove the TOMAC carried over. 

 

4.4 CONCLUSION:  
Overall, it can be concluded that the precipitation level of lysozyme by MES was a strong function of 

Rp and pH. The level of precipitation increased proportionally with an increase in R up to an optimum 

point i.e. Rp = 16, but this full precipitation region extends up to a higher Rp (38). From the pH study 

it was clear that electrostatic interactions were the main driving force behind the MES precipitation 

technique, and a sufficient amount of net electrical charge neutralisation was required in order for the 

insoluble complex or precipitate to form.  

In the recovery of lysozyme precipitate by solvent, all of the solvents used: acetone, ethanol, 50% 

mixture of acetone/ethanol along with methanol generally showed comparable performance (about 54 

– 56% activity recoveries), except for chloroform and DMSO where none of the lysozyme was 

recovered due to the high solubility of lysozyme in both of the solvents, rather than it being denatured. 

In addition, the lysozyme precipitate was also successfully recovered by counter-ionic surfactant – 

TOMAC at Rr = 1.5, where the estimated protein recovery of 80% was achieved with a 10.86% 

“carry-over” of TOMAC. Although higher recovery was achieved at higher Rs in this work, the 

optimum R was set at 1.5 as a compromise to minimise the amount of surfactant carried over after 

only a single recovery step. Most significantly, the structural integrity of all the lysozyme recovered, 

either through solvent extraction or counter-ionic surfactant, was maintained which was confirmed by 

the CD spectra and deconvolution results. 

Interestingly, in contrast to AOT, MES did not demonstrate the phenomenon of major structural 

transformation at higher surfactant concentrations during precipitation which was reportedly 

responsible for the drop in the level of precipitation with AOT. Furthermore, MES only exhibited 

minimal hydrophobic interaction with the protein molecules once the favourable electrostatic 

interactions between the surfactant’s anionic group and the protein’s positively charged groups was 

absent (pH>pI). It interacts with lysozyme mainly through electrostatic interactions over hydrophobic 

interactions. Therefore, MES exhibits better selectivity than AOT, especially for the handling of 

samples with high impurities. In conclusion, along with its economic benefits and environmental 
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features, this work has highlighted the exciting potential of using MES as the precipitant in the 

surfactant precipitation technique. 
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CHAPTER 5 BACTERIOCIN EXTRACTION 

BY THE SURFACTANT PRECIPITATION 
 

5.1 INTRODUCTION 
 

Fundamental studies on the surfactant precipitation technique based on model protein systems i.e. a 

single protein in buffer, has been carried out quite extensively done to date, and basic insights have 

been gained. Its feasibility of use and potential benefits have also been highlighted (Shin et al., 2004; 

Cheng and Stuckey, 2012). Nevertheless, to our knowledge, there are only 2 reports in the literature 

on the application of this precipitation technique to a “real world” complex sample: (1) Lysozyme 

from chicken egg white, by Shin et al. (2003b), and (2) Xylanase from industrial cellulase product of 

Trichorderma, by Shin et al. (2004). Thereby, so as to prove the viability of this technique to 

downstream protein processing, it is very important to widen its application to other realistic samples. 

Bacteriocin is an extracellular secondary metabolite produced by lactic acid bacteria, and generally it 

is a ribosomally synthesized, small (<10 kDa) cationic peptide (Pingitore, 2007). It is used as a 

biopreservative in food products as it is active against pathogenic bacteria such as Listeria 

monocytogenes, Bacillus cereus and Salmonella spp. (Pingitore et al., 2007; Masuda et al., 2011). In 

addition, it has been granted with a GRAS (generally recognized as safe) status (Ahern et al., 2003; 

Sharma et al., 2011), and interest in its production is driven by the market need to have a natural 

antimicrobial agent as an alternative to the chemical additives that may cause adverse effects (Martin-

Visscher et al., 2008). 

Previously, Abbasiliasi et al. (2012) has isolated a bacteriocin-producing lactic acid bacteria, 

Pediococcus acidilactici Kp10, from dried curds derived from Iranian milk. The bacteriocin-like 

inhibitory substances (BLIS) activity was shown to be active from pH 2 to 9 against the pathogenic 

bacteria, Listeria monocytogenes, and it was also reported that its activity was stable in the presence 

of pepsin, α-amylase and catalase, but not to proteinase K or trypsin.  

In the typical downstream processing of bacteriocin, conventional multi-step methods such as 

precipitation by ammonium sulphate or ethanol, ion-exchange chromatography, molecular filtration 

chromatography and hydrophobic interaction chromatography were mainly employed (Pingitore et al., 

2007; Saint-Hubert et al., 2009). Hence, alternative separation methods are always needed due to the 

limitations that are commonly associated with the aforementioned conventional methods: tedious and 

expensive (Carolissen-Mackay et al., 1997; Kelly et al., 2000). In this work, a first attempt was made 
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to employ the surfactant precipitation technique with AOT to separate bacteriocin from a real 

complex sample of Pediococcus sp. in M17 fermentation broth. The influence of pH and AOT 

concentration on the precipitation and overall recovery of bacteriocin were investigated. In addition, a 

comparison was also made with the competing technique of reverse micellar extraction. 

 

5.2 MATERIALS AND METHODS 
Materials 

M17 broth used for the fermentation of Pediococcus was purchased from Merck (Darmstadt, 

Germany). Isooctane used in reverse micellar extraction was from Aldrich Chemistry, USA. 

Instruments 

All chemicals were weighed by using an analytical balance (ALPS-AL204, Mettler Toledo, UK). A 

pH meter (S47-K, Mettler Toledo, UK) was used for all pH measurements. An ultracentrifuge 

(Sorvall Evolution RC) and Sorvall SLA-1500 rotor, (Thermo Electron Corporation, USA) was used 

to separate the biomass. A UV-Vis Spectrophotometer (Lambda 25, PerkinElmer, UK) and 1 cm 

quartz cuvettes were used to measure the protein concentration. An end-over-end mixer, Reax 2 

(Heidolph. Germany) was used to mix the surfactant and protein mixture. 

5.2.1 MICROORGANISM AND BLIS PRODUCTION 
The BLIS producing strain, Pediococcus acidilactici Kp10, was isolated from dried curd and the 

details have been described in the previous study (Abbasiliasi et al., 2012). The primary culture was 

prepared by taking a single bacterial colony from an agar plate and growing it in a 50 mL tube 

containing 10 mL of M17 broth, followed by incubation at 37°C for 24 h without shaking. The 

inoculum was prepared by inoculating 1% (v/v) of the primary culture into a 50 mL tube containing 

10 mL of M17 medium, and incubated at 37°C on a shaker agitated at 100 rpm for 24 h.  

5.2.2 PREPARATION OF BACTERIOCIN CRUDE EXTRACT 
The cell free culture supernatant was prepared by ultracentrifuge (Sorvall Evolution RC) with Sorvall 

SLA-1500 Rotor, (Thermo Electron Corporation, USA) for 30 min, 30000 ×g, 4°C. 

5.2.3 PREPARATION OF AOT PHASE 
The AOT solution was prepared by dissolving it in distilled water with a concentration range of 2.89 

to 43.23 mM. At the moment of AOT addition to the sample, the final AOT concentration ranged 

from 0.26 to 3.93 mM. Therefore, AOT was present in the monomer form at these concentrations as 

the CMC of AOT in water is 4.1 mM in water at 25°C (Linfield, 1976). 
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5.2.4 PRECIPITATION METHOD 
1 mL volume of AOT solution in water was added to 10 mL of bacteriocin-containing fermentation 

broth, and the mixtures were mixed for 5 min with an end-to-end mixer. The samples were then 

centrifuged at 14000 ×g for 5 min. Acetone was added to the precipitates to dissolve the AOT in the 

precipitate, and this was followed by a second centrifugation step to recover the protein precipitate. 

Finally, the precipitates were dissolved in a fresh phosphate buffer at pH 7. 

5.2.5 RECOVERY OF BACTERIOCIN FROM THE AOT-

BACTERIOCIN COMPLEX 
The bacteriocin was recovered from the AOT-bacteriocin complex by first washing it with 1 mL of 

distilled water to remove the remaining impurities attached. Following a centrifugation step (14,000 

×g, 5 min), the complex was separated and 1 mL of acetone was added. 10 μL of 0.1 M NaCl solution 

was later added to the solvent phase followed by a second centrifugation step. The protein precipitate 

was collected and washed with acetone to remove the remaining AOT. After centrifugation, the 

precipitate was dissolved in fresh 20 mM, pH 6 PBS buffer. 

5.2.6 REVERSE MICELLAR EXTRACTION OF BACTERIOCIN 
Forward extraction was carried out by mixing 5 mL of cell-free supernatant of bacteriocin crude with 

5 mL of isooctane in presence of AOT. AOT was first dissolved in isooctane before the organic phase 

was added to the sample. The mixture was mixed in an axial-mixing mode in a 30 min contact time. 

Effect of AOT concentration (5-50 mM), pH (2-9), and NaCl concentration (0-0.3 mM) of the crude 

was studied. The two phases were allowed to be separated by gravity in room temperature, total 

protein and activity of bacteriocin in the remaining crude was analysed. The organic phase obtained 

from the forward extraction was subjected to backward extraction (i.e. stripping of bacteriocin from 

reverse micelle system). Stripping solution used during backward extraction for all experiments was 

20 mM phosphate buffer with 2 M KCl (pH 9). 

 

5.2.7 OPTIMISATION OF SEPARATION PARAMETERS 
Optimisation of the experimental conditions was performed with regard to overall bacteriocin’s 

activity recovery (%), protein recovery (%), and purification factor. These parameters were calculated 

using the following equations: 

𝐴𝐴𝑝𝑝𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝐴𝐴 𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝐴𝐴 (%) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑎𝑎𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑇𝑇𝑎𝑎 𝑖𝑖𝑛𝑛 𝑓𝑓𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇 𝑠𝑠𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇𝑖𝑖𝑇𝑇𝑛𝑛 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑎𝑎𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑇𝑇𝑎𝑎 𝑖𝑖𝑛𝑛 𝑇𝑇𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇 𝑎𝑎𝑜𝑜𝑠𝑠𝑐𝑐𝑒𝑒  

× 100%  (1) 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝐴𝐴 (%) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑜𝑜𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑛𝑛 𝑖𝑖𝑛𝑛 𝑓𝑓𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇 𝑠𝑠𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇𝑖𝑖𝑇𝑇𝑛𝑛
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑜𝑜𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑛𝑛 𝑖𝑖𝑛𝑛 𝑇𝑇𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇 𝑎𝑎𝑜𝑜𝑠𝑠𝑐𝑐𝑒𝑒

× 100%   (2) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑝𝑝𝑒𝑒𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑎𝑎 𝑇𝑇𝑎𝑎𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑇𝑇𝑎𝑎 𝑖𝑖𝑛𝑛 𝑓𝑓𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇 𝑠𝑠𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇𝑖𝑖𝑇𝑇𝑛𝑛
𝑆𝑆𝑝𝑝𝑒𝑒𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑎𝑎 𝑇𝑇𝑎𝑎𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑇𝑇𝑎𝑎 𝑖𝑖𝑛𝑛 𝑇𝑇𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝑇𝑇𝑇𝑇 𝑎𝑎𝑜𝑜𝑠𝑠𝑐𝑐𝑒𝑒

    (3) 

 

5.2.8 ANALYSIS 

5.2.8.1 BACTERIOCIN ACTIVITY 
The antimicrobial activity of bacteriocin was determined by the agar well diffusion assay (Abbasiliasi 

et al., 2012) based on the size of the inhibition zone formed against the indicator bacteria, Listeria 

monocytogenes on an agar plate. Aliquots of the sample (100 µL) were placed in wells (6 mm 

diameter) in cooled soft agar plates (25 mL) which was previously seeded (1% v/v) with the actively 

growing test strain. The plates were incubated at 37°C for 24 h for the growth of the test strain. After 

24 hours, the size of the growth inhibition zones was measured, and the activity unit (AU) is defined 

as the unit area of the inhibition zone per unit volume (mm2/mL) using the following formula: 

𝐴𝐴𝑝𝑝𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝐴𝐴 𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃 (𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚) =
𝑚𝑚𝑍𝑍 − 𝑚𝑚𝑆𝑆

𝑉𝑉
 

Lz = clear zone area (mm2) 

LS = well area (mm2) 

V = volume of sample (mL) 

 

5.2.8.2 PROTEIN CONCENTRATION  
The protein concentration in the initial crude bacteriocin extract and the remaining sample after the 

formation of precipitate was determined by UV spectrophotometer at an absorbance of 280 nm 

(A280nm). Distilled water was used as the blank, and all result were zeroed against it. A standard 

calibration curve was constructed based on BSA (rather than bacteriocin, due to non-availability of 

pure bacteriocin) with a concentration range of 0 to 1.0 mg/mL, to determine the total protein 

concentration in the sample (R2= 0.9988). Any sample with an absorbance reading of above 0.60 was 

diluted. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 PRECIPITATION OF BACTERIOCIN AS A FUNCTION OF PH 
Considering that charge is the driving force in surfactant precipitation, the experiment was started 

with pH variation looking for an optimum precipitation. It has been reported in the literature (Kelly et 

al., 2000) that generally bacteriocin has a pI point of around 8.5 and above. Thus, in order to perform 

the primary capture of bacteriocin using the anionic surfactant, AOT, as a precipitating ligand, the pH 

of the solution must be below 8.5 to allow for the formation of ionic pairs between AOT and the 

target protein, bacteriocin. Hence, the pH scouting was performed in the range of 2 to 6.  Basically, 

the natural pH of the fermentation broth was 6, and concentrated HCl (5 M) was used to adjust the pH 

downwards. From the experimental results (Table 5.1), surprisingly, it was observed that essentially 

precipitation only started to occur at pH 4 (indicated by the formation of a white insoluble complex), 

which was well below the hypothetical pI point. This result implied that for bateriocin, a certain 

degree of ionization and therefore charge density must be acquired before any electrostatic 

interactions can take place, and then for precipitation to occur. Interestingly, it was also observed that 

at a pH higher than 4, the estimated specific activities of the non-precipitated bacteriocin were 

reduced to about half of the original activity (Table 5.1), where the comparisons were made based on 

the specific activity of the original crude broth at their respective pHs. This pointed to the effect of 

non-specific hydrophobic interactions that have taken place as the result of weak electrostatic 

interactions being present.  

 

Table 5.1 Fraction of non-precipitated bacteriocin in solution as a function of pH. 

Precipitation was performed with an AOT concentration of 11.58 mM. The 

standard deviation is shown in parenthesis. The original bacteriocin was most 

active at pH 3 to 6, with a specific activity averaging 53.9 (± 1.1); at pH 2 the 

original specific activity was 44.1 (±2.0). 

pH Fraction of Activity (%) Fraction of Protein (%) Specific Activity (U/mg) 

2 0.0 (± 0.0) 91.0 (± 3.3) 0.0 (± 0.0) 

4 0.0 (± 0.0) 94.2 (± 1.1) 0.0 (± 0.0) 

5 47.1 (± 5.2) 100 (± 0.0) 27.4 (± 5.0) 

6 48.7 (± 8.9) 100 (± 0.0) 29.0 (± 2.1) 
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5.3.2 EFFECT OF AOT CONCENTRATION ON THE 

PRECIPITATION OF BACTERIOCIN  
 

 

Figure 5.1 The effect of AOT concentration on the bacteriocin’s activity removal in the 

crude broth at pH 4. 

 

Figure 5.1 highlights the percentage of bacteriocin’s activity removal as a function of AOT 

concentration employed during the precipitation. The effect of AOT concentration added ranged from 

2.9 to 43.2 mM on precipitation, was conducted at pH 4. The AOT concentrations applied were in the 

range of 1.1 to 3.9 mM at the moment of addition, which was below its CMC value reported to be 4.1 

mM in water at 25°C (Linfield, 1976); thus it was ensured that the AOT added was in a free 

monomeric form rather than in micellar structures. From Figure 5.1, apparently, more activity was 

removed as the concentration of AOT was increased. Complete removal of activity was achieved at 

the concentration of 11.27 mM, and this plateau level was maintained up to 43.2 mM, the highest 

concentration examined. 
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5.3.3 EFFECT OF AOT CONCENTRATION ON ACTIVITY 

RECOVERY 

 

Figure 5.2 Effect of AOT concentration added during precipitation on the recovery of 

bacteriocin at pH 4. The activity and concentration of the total protein in the 

original crude were about 2675.2±199.7 U/mL, and 53.9±0.1 mg/mL, 

respectively. 

The white precipitate obtained from the precipitation step earlier was treated with acetone containing 

0.99 mM of NaCl to extract the bacteriocin from the protein-surfactant complex. The bacteriocin 

precipitate was then redissolved in 20 mM phosphate buffer, pH 7.0. In this part of the work, the 

examination of the recovery performance as a function of the AOT concentration, and the pH of the 

initial fermentation broth employed in the precipitation stage was performed. As the concentration of 

AOT was increased from 2.89 mM, the level of activity recovery increased correspondingly until it 

reached about 86.3%, at a concentration of 11.58 mM. Such an increasing trend was in accordance 

with the amount of bacteriocin’s activity removal during the precipitation step (Figure 5.2). 

Nevertheless, beyond a concentration of 11.58 mM the level of recovery began to decline rather than 

remained stationary as encountered in the curve of bacteriocin’s activity removal earlier. Although it 

was obvious that this reflected the excessive binding of AOT molecules on the neutral AOT-

bacteriocin complex, at this point it was unclear what the main cause of this phenomenon was: (1) 

inactivation/denaturation of the bacteriocin that resulted in the resolubilisation of the precipitate, or; 

(2) the high degree of AOT binding that prevented the release (recovery) of the bacteriocin from the 

AOT-bacteriocin complex. 
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For the first situation, as the analysis of bacteriocin’s activity removal (Figure 5.1) was done through 

a mass balance, the determination cannot discriminate between the removal of activity by 

precipitation or inactivation of bacteriocin at higher AOT concentrations, and thus the result might 

erroneously include the latter case. In comparison with the earlier studies (Chapter 3 and 4) where a 

single protein solution was used, it was almost impossible to determine if any inactive bacteriocin 

with structural changes was present in solution after the precipitation step in this study, due to the 

complex nature of the initial broth. In spite of that, more protein was precipitated as the amount of 

AOT added was increased. Thus, if the denatured/inactive form of bacteriocin was present in solution, 

overall protein reduction in the broth will likely be ‘masking’ its presence. Besides, based on previous 

experience with protein inactivation (resolubilisation) in surfactant precipitation, i.e. the study of 

precipitation of lysozyme by AOT (Cheng and Stuckey, 2012), the resolubilisation of lysozyme 

occurred at a molar ratio of R>23 in a stepwise fashion, as shown in the precipitation curve as a 

function R (AOT to lysozyme), in other words, the fractions of activity could supposedly still be 

detected in the remaining sample after precipitation at the earlier stage of the inactivation if it 

occurred. However, such a trend was not observed in this work (Figure 5.1). 

Hence, it is postulated that the second reason might have contributed to the reduction effect in the 

recovery of the activity beyond the optimum AOT concentration. Possibly, this can be proven in the 

future if the recovery efficiency of the precipitated bacteriocin at higher AOT concentrations can be 

improved, so that is equal to the amount achieved at optimum concentration. 

In terms of protein recovery, higher amounts of protein were recovered as the concentration of AOT 

was increased, clearly because of the higher amount of protein precipitated. On the other hand, the 

opposite trend was obtained for the purification factor. Hence, the optimum concentration of AOT 

was chosen to be 11.57 mM, where the maximum recovery of activity was achieved (86.3%), and a 

purification factor of 53.8% was recorded. 

 

5.3.4 EFFECT OF PH ON ACTIVITY RECOVERY 
Figure 5.3 illustrates the activity recovery of the bacteriocin in conjunction with the amount of protein 

recovered (%) as a function of the pH of the initial broth. As the pH was adjusted from 2 to 4, an 

almost constant recovery of activity was obtained (88 to 86%), while the amount of protein recovered 

decreased from 2.6 to 1.6% with the same increment of pH. This was in accordance with the results 

from the precipitation stage where as the concentration of AOT increased, more protein was co-

precipitated with the target protein – bacteriocin, eventually affecting the purity of the recovered 

bacteriocin. No recovery was obtained at pH 5 and 6 as no precipitate was formed initially during the 

precipitation stage. From these results it was determined that pH 4 was the optimum pH, which was 
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the minimum threshold for precipitation to occur, and where the highest purity of bacteriocin was 

obtained. 

On the other hand, Table 5.2 documents the specific activity of the recovered bacteriocin at various 

pHs in conjunction with its original value at that particular pH. Notably, there was marked increase in 

the specific activity of the recovered bacteriocin as compared to their original values in the 

fermentation broth. This result was in agreement with the literature (Saint-Hubert et al., 2009; Sharma 

et al., 2011), which indicated that the specific activity of bacteriocin increased with an increase in 

product purity. For instance, for the recovery at pH 3 and 4, an increment factor (which also 

represented the purification factor) of about 44.1 and 53.8% was determined, respectively.  

While a satisfactory result (86% activity recovery) was obtained, complete recovery was not achieved, 

and it was believed that the recovery stage was the limiting factor rather than the precipitation step, as 

100% precipitation of bacteriocin was reached earlier. It is worth highlighting the fact that further 

improvement in the recovery efficiency could still be achieved through further optimization of the 

solvent recovery step (e.g. type of solvent, or concentration of salt in the solvent), as well as the use of 

counter-ionic surfactants to extract the precipitated bacteriocin molecule from the solid precipitate. 

 

 

Figure 5.3 Effect of pH of the initial fermentation broth on overall bacteriocin recovery. 

The concentration of AOT used was 11.57 mM. 
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Table 5.2 Specific activity of the recovered bacteriocin relative to its original value in the 

fermentation broth at pH 2 and 4. 

pH 
Specific Activity (U/mg) 

Final Product 

 

Initial 

2 1470.8 (± 63.9) 

 

44.1 (±2.0) 

3 2343.1 (± 275.7) 

 

53.1 (± 0.2) 

4 2878.9 (± 155.1) 

 

53.5 (± 0.2) 

 

 

5.3.5 REVERSE MICELLAR EXTRACTION OF BACTERIOCIN 
An attempt was also made in this work to use another surfactant-based purification method, reverse 

micellar extraction, to separate the same bacteriocin peptide from the broth so that a comparison could 

be made; the overall results of the work are shown in Figure 5.4. The effect of various parameters 

(pH, AOT concentration and NaCl concentration) employed during the forward extraction on overall 

recovery were examined. At low pH (2), rather than being incorporated into the micelles, the cationic 

bacteriocin molecule tended to interact with the AOT molecules, and formed a precipitate at the 

interface between the organic and aqueous phase. The selectivity of bacteriocin solubilisation by the 

reverse micelles escalated as the pH increased (Figure 5.4a), suggesting that a combination of 

electrostatic and hydrophobic interactions were involved during the uptake of bacteriocin molecules 

by the organic phase. Hence, unlike the surfactant precipitation performed earlier, pH 7 was chosen as 

the optimum pH point for this technique. 

In the plot of activity recovery against AOT concentration, an increasing trend was observed (Figure 

5.4b). However, the recovered bacteriocin at the concentration of 30 mM and above unexpectedly 

showed poor stability, as the inhibition zone formed in the agar well diffusion assay was gradually 

outgrown by the Listeria bacteria after a 1 day period. This implied that at higher AOT 

concentrations, the bacteriocin might have interacted hydrophobically with the surfactant that resulted 

in structural changes. It has been reported in the literature that the bacteriocin peptide has 

hydrophobic characteristics (Saint-Hubert et al., 2009; Lappe et al., 2012), and that feature was widely 

exploited for its purification by hydrophobic interaction chromatography and the use of a synthetic 

hydrophobic adsorbent, Amberlite®-XAD® (Zendo et al., 2005; Martin-Visscher et al., 2008; 

Masuda et al., 2011). In addition to that, the above assumption may well be supported as such a 

stability problem was not encountered in the earlier study of direct precipitation by AOT where the 

concentrations employed were at least one order of magnitude smaller than for reverse micellar 

extraction (for instance, for the 30 mM AOT concentration used in the reverse micelle system, only 
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about 0.015 mol AOT  interacting with 1 mg of protein in the sample for precipitation, rather than 

about 0.15 mol of AOT/mg protein for reverse micellar extraction). Lastly, in terms of salt (NaCl) 

concentration, the results suggested that the M17 broth has supplied the required electrolyte for the 

formation of reverse micelles, as further addition of salt seemed to reduce activity recovery. Overall, 

under the conditions specified above, an estimated activity recovery of 48% and a purification of 

about 20 was obtained for the reverse micellar extraction.  

Therefore, it was observed that the reverse micellar technique was relatively complicated and less 

efficient in purifying bacteriocin, due to the limitations of using high surfactant concentrations. This 

result was consistent with the work of Shin et al. (2004), who pointed that the use of surfactant in a 

reverse micellar extraction method to purify enzymes was less effective than the direct precipitation 

method. In addition, Abbasiliasi et al. (2014) has also reported that the purification of the same 

bacteriocin using a polymer–salt aqueous two-phase system (ATPS) consisting of polyethylene–

glycol (PEG) with sodium citrate resulted in an up to 8.43 fold concentration, with a yield of 81.18%. 

The optimum conditions of the ATPS were: 26.5% PEG (8000)/11% sodium citrate with a tie-line 

length of 46.38% (w/w), a volume ratio of 1.8, and 1.8% crude load at pH 7 without the presence of 

NaCl.  
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Figure 5.4 Overall result of the preliminary reverse micellar extraction of the bacteriocin 

from Pediococcus acidilactici Kp10. Effect of several experimental parameters 

employed during forward extraction: (a) Effect of pH on extraction efficiency of 

bacteriocin; AOT concentration used was 5 mM, 0 mM NaCl concentration, (b) 

Effect of AOT concentration on extraction efficiency of bacteriocin; at pH 7, 0 

mM NaCl concentration, (c) Effect of NaCl concentration on extraction 

efficiency of bacteriocin; pH 7, AOT concentration of 20 mM. Stripping solution 

used during backward extraction for all experiments was 20 mM phosphate 

buffer with 2 M KCl, pH 9 and the average protein concentration of crude 

protein was about 0.2 mg/mL. 

Hence, the proposed surfactant precipitation method was undoubtedly the more effective choice of 

separation techniques as compared to the above mentioned methods, an easier and cheaper alternative, 

not to mention that it is a well understood precipitation-based technique. Furthermore, the 

employment of a precipitation method (i.e. ammonium sulphate precipitation) in the initial stages of 
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the conventional purification scheme for bacteriocin was common, for concentration purposes, 

because normally many bacteriocins were not produced in high amounts by the producer strain 

(Pingitore, 2007; Sharma et al., 2011). From the work of the same researchers, only about 8 to 18.5% 

of activity recovery was achieved by that precipitation. It is predicted that it is very likely that the 

surfactant precipitation method can improve overall recovery, and also offers considerable potential to 

combine the initial concentration step with the primary capturing step.  

 

5.3.6 CONCLUSION 
The surfactant precipitation technique (using AOT) has been shown to be a very powerful and 

effective method to separate bacteriocin directly from its complex fermentation broth, resulted in an 

overall activity recovery of 86.3%, and a purification factor of about 53.8, as performed in just a 

single precipitation step with: 11.56 mM concentration of AOT, pH 4, precipitate recovery by acetone 

(0.99 mM NaCl) and a final recovery phase of 20 mM PBS, pH 7. It was also shown in this work that 

this separation performance was better than the results obtained by the other separation techniques 

(reverse micellar extraction, aqueous two-phase and possibly ammonium sulphate precipitation).  

As expected, pH had a marked influence on this technique; it was found that a certain degree of 

ionization/charge density must be acquired by the bacteriocin molecule in order to interact 

electrostatically with AOT before any precipitation can take place. This was illustrated by 

precipitation only starting to occur well below the hypothetical pI (8.5 and above). On the other hand, 

if the net positive charge threshold cannot be reached, bacteriocin tended to interact with AOT 

through unfavourable hydrophobic interactions, most probably altering its conformation and 

eventually inactivated it. Moreover, the dependence of recovered bacteriocin purity on the pH of the 

initial fermentation broth was also highlighted in this work. 

Finally, in terms of the effect of AOT concentration, the level of precipitation and therefore the 

activity recovery increased with increasing concentration until a particular optimum point (11.56 mM) 

was reached. Nevertheless, beyond this point the activity recovery reduced, presumably due to the 

extensive binding of more AOT molecules on the AOT-bacteriocin complex.  
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CHAPTER 6 CONCLUSION AND FUTURE 

WORK 
 

6.1 INTRODUCTION 
In this chapter, a summary of the research findings on a new alternative protein separation technique 

by surfactant precipitation was presented. The summary of the results obtained include: (1) 

Development of a surfactant precipitation method for low pI proteins based on cationic surfactants; 

(2) Feasibility of using a biocompatible surfactant - MES as a precipitating-ligand, and; (3) 

Application of the surfactant precipitation method to the purification of a target protein from a real 

complex fermentation broth sample. Recommendations for future work are presented at the end of this 

chapter. 

6.2 SUMMARY OF THE RESULTS 
 

6.2.1 DEVELOPMENT OF A SURFACTANT PRECIPITATION 

METHOD FOR LOW PI PROTEINS BASED ON CATIONIC 

SURFACTANTS 
 

In order to develop a cationic surfactant (TOMAC)-based direct precipitation technique, the 

effect of experimental factors (molar ratio of surfactant to protein, and pH) on performance was 

studied. 3 model proteins: BSA, α-amylase and trypsin inhibitor, all low pI proteins varying in size, 

were used in the cationic surfactant (TOMAC)-based precipitation study. It was discovered that all of 

these proteins were effectively precipitated by TOMAC. Rp had a direct influence on the precipitation 

level, and under the range examined for these proteins, a similar precipitation trend was observed in 

the sense that the level of precipitation increased with a rise in Rp up to a maximum level, followed by 

a plateau stage. 100% precipitation efficiency was achieved at a stoichiometric Rp of 1 to 50, 25 and 

7.7 (TOMAC:protein) respectively for BSA (pH 6.2), α-amylase (pH 6.0) and trypsin inhibitor (pH 

7.6), and therefore was designated as the optimum Rp. In terms of the effect of pH, the amount of 

protein precipitated increased correspondingly with an increase in distance between the proteins’ pI 

and the pH (towards the alkaline direction). Hence, it was shown that the electrostatic attraction 

between the cationic head group of TOMAC and the proteins’ anionic groups were the driving force 

for the precipitation. It should be mentioned that α-amylase was unusual in this respect, the maximum 
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level of precipitation achieved at pH 6.0 dropped to about 89% and 92%, as the pH was increased to 

7.6 and 9.19, respectively. By embracing the concept of binding isotherm shift with pH change and 

charge neutralisation in precipitation, it was predicted that this drop was a result of insufficient 

amounts of TOMAC monomer present to interact with the additional ionic binding sites. 

The recoverability of the precipitated proteins from their TOMAC-protein insoluble complex was the 

crucial factor that eventually determines the viability of this separation technique. Two means of 

recovery; solvent solubilisation and counter-ionic surfactant dimerisation were examined in the 

recovery of these proteins from their precipitate. The first objective in this recovery section was to 

evaluate the performance of different organic solvents in recovering the target protein from its 

surfactant-protein complex. It was found that BSA was not recoverable by either method, indicating 

that BSA had denatured after aggregation due to the strong interactions between the surfactant 

monomer and BSA.  

 

Beside the capability of solvent to extract the target protein from the precipitate, the outcome of 

solvent recovery also depended on the protein’s stability and solubility in the particular solvent used. 

Obviously, any solvent that has a detrimental effect on enzyme activity and causes denaturation is not 

the right choice for recovery. It is also evident that the higher the solubility of a target protein in a 

particular solvent, the greater the amount of protein lost during the recovery step, and eventually the 

lower the final recovery percentage is, as observed in the experimental results for trypsin inhibitor 

recovery by ethanol where more than 80% of the protein was detected in the solvent phase. In the case 

of α-amylase, the recovery by organic phase (ethanol and acetone) was very poor overall, and even 

the addition of salt, i.e. NaCl, up to a concentration of 0.9 mM did not change that. 

The next objective for the recovery study was to optimise the recovery of the target protein 

from its precipitate using the counter-ionic surfactant method. In contrast to solvent recovery, 

about 37% of α-amylase was recovered by using an anionic surfactant, AOT (at Rr = 0.5), proving that 

the poor recovery by solvent extraction was not due to the denatured state of α-amylase after 

precipitation, but was rather down to the solvent’s properties. Moreover, the effectiveness of the 

counter-ionic surfactant recovery technique was further highlighted in the case of trypsin inhibitor, 

where 100% recovery was achieved at Rr = 2.0 (AOT to TOMAC). In conclusion, the counter-ionic 

surfactant recovery method offered the benefits of improved recovery, and possibly has less of a 

denaturing effect which can be especially useful for solvent sensitive proteins. However, one possible 

drawback for this type of recovery was the carry-over of surfactant at the end of the process. As a 

result, an additional separation unit may be required to remove the surfactant residue. 
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Not only is the final recovery yield important, it also matters that the structural integrity and the 

bioactivity of the recovered proteins is relatively intact. Therefore, to examine the structural 

integrity of the protein recovered that was subjected to the surfactant precipitation method, the 

CD determination and enzymes’ activity (for α-amylase and trypsin inhibitor) of the final products 

were analysed. Based on the deconvolution of the CD spectra obtained, it was found that the 

secondary structure of these recovered proteins were not significantly different from their native 

structure. In addition, the recovered enzymes were fairly active with their substrate; RBB-starch for α-

amylase, and trypsin for trypsin inhibitor, and no change in the specific activity for both enzymes was 

observed compared to their original native structure. 

 

Finally, based on the experimental results obtained, it was clear that the cationic surfactant, 

TOMAC, has a more or less identical mechanism of protein precipitation to the anionic 

surfactant, AOT, as reported in literature.  

One of the matters of great interest in this work was to determine a universal and ubiquitous 

protein hydrophilicity/hydrophobicity parameter that can represent the overall efficiency of 

surfactant precipitation, and be used to predict its performance in precipitation in the future. 

By combining the experimental results of previous researchers with ours, it was found that among the 

parameters examined, hydrophobicity (determination based on retention coefficients of amino acid 

residues by HPLC) and size (molecular weight) exhibited a good correlation with overall protein 

recovery, and consequently the efficacy of surfactant precipitation for a specific protein. In other 

words, although this technique might encounter difficulties when trying to directly precipitate and 

recover a target protein with a high hydrophobicity and molecular weight, it can still be employed 

indirectly by way of removing the impurities and leaving the target protein in the solution at the end.  

 

6.2.2 FEASIBILITY OF USING A BIOCOMPATIBLE SURFACTANT - 

MES AS A PRECIPITATING-LIGAND. 
The current focus in the detergent industry is evolving towards the use of biocompatible surfactants 

which have the advantage of being environmental friendly and offering better detergency 

performance. Hence, the next objective was to study the feasibility of using a biosurfactant, MES, 

as a precipitating ligand for lysozyme with surfactant precipitation. From the results, it was found 

that the amount of MES (studied as the molar ratio of MES to lysozyme) and pH have a strong 

influence on performance. The amount precipitated was directly related to Rp up until Rp = 16, when 

100% precipitation was achieved, and the plateau stage was retained up to an Rp = 38. In terms of pH, 

the level of lysozyme precipitated reduced with increasing pH from pH 6.23 to 12 (where no 
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precipitation occurred), indicated that electrostatic interactions were the driving force behind 

precipitation. The optimum conditions for precipitation were chosen as Rp = 16 in 20 mM phosphate 

buffer, pH 6.2. Meanwhile, the precipitate was successfully recovered by either counter-ionic 

surfactant (83% at Rr = 1.5) or organic solvents (slightly less than 60%, but could possibly be 

improved with the addition of salt). In addition, most importantly, the activity and structural integrity 

of the protein recovered using both methods was maintained. Minimum carry-over of TOMAC was 

obtained under the counter-ionic recovery method employed (10.86%), not to mention the ease of 

removing the detergent completely by simply performing additional unit operation such as filtration 

right after the recovery step.  

In the literature, research on the surfactant precipitation method has focused mainly on the use of the 

anionic surfactant, AOT, with lysozyme as the model protein. Therefore, it was logical to compare 

the performance of MES to the conventional surfactant - AOT with a lysozyme precipitation. 

The optimum Rp (complete precipitation of lysozyme) for MES was similar to AOT precipitation, i.e. 

16. Meanwhile, in terms of the maximum recovery achieved, about 90% was recorded for MES with a 

counter-ionic surfactant, TOMAC, treatment at Rr = 2 (100% for AOT, at similar R). However, in 

comparison to AOT, MES exhibited minimum denaturing-causing hydrophobic interactions with the 

protein, particularly as evidenced during the precipitation stage at higher Rps, and when favourable 

electrostatic interactions did not exist (pH was above the pI of lysozyme). As a result, the reduction in 

the percentage precipitated at higher Rps (as encountered in AOT study at R>23), and unwanted 

destructive hydrophobic binding at pH 12 were not observed for MES. With these observations, 

taking into account that ionic interactions are more dominant than hydrophobic interactions for MES, 

it is clear that MES is a more selective precipitating ligand than AOT.  

As a conclusion, in conjunction with its environment-friendly features, the appeal of better economic 

value (due to fact that it is locally produced in Malaysia), and a comparable performance to AOT, the 

use of MES as a precipitating-ligand is another step towards improving this precipitation technique.  

 

6.2.3 APPLICATION OF THE SURFACTANT PRECIPITATION 

METHOD TO THE PURIFICATION OF A TARGET PROTEIN 

FROM A REAL COMPLEX FERMENTATION BROTH  

 

Since the potential and functionality of the surfactant precipitation method has been demonstrated 

early on in this work for a single protein in buffer, there is obviously a need to test this method in a 
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real complex sample i.e. fermentation broth. With this in mind, the next objective was to develop a 

separation method based on the surfactant precipitation technique for bacteriocin from lactic 

acid bacteria, Pediococcus acidilactici Kp10 using AOT.  

The bacteriocin was successfully purified by about 53.8 fold with 86.3% activity recovery under the 

following optimum conditions: 11.56 mM concentration of AOT, initial broth pH of 4, precipitate 

recovery by acetone (0.99 mM NaCl) and a final recovery phase of 20 mM PBS, pH 7. It was found 

that acquiring a certain degree of positive ionization for the bacteriocin molecule was the prerequisite 

for precipitation to occur using anionic AOT. This was illustrated by the experimental result where 

bacteriocin only began to precipitate at pH 4, although it has an estimated pI of 8 to 9. On the other 

hand, at a pH>4 it was postulated that bacteriocin interacted with AOT through unfavourable 

hydrophobic interactions which eventually inactivated it, and this was based on the activity analysis of 

the non-precipitating bacteriocin. Thus, it was clear that pH had a marked influence on the 

precipitation process.  

In addition, activity removal during the precipitation stage and the concentration of AOT had a near 

direct relationship with their increment up to a concentration of 11.56 mM, where complete removal 

was achieved. In terms of its effect on overall activity recovery, a decreasing effect was observed 

beyond the optimum concentration. The activity recovery gradually decreased from 86.3% at 11.56 

mM, to about 50.1% at 43.2 mM. This can be explained by the extensive binding of the AOT to the 

neutral AOT-bacteriocin, which seems to hinder the release of bacteriocin into solution, and thus the 

recovery. 

The technique of surfactant precipitation evolved out of another surfactant-based method, reverse 

micellar extraction. The newer method mainly has the edge over the other in terms of the 

concentration of surfactant employed, which can be at least 1 order of magnitude smaller. In order to 

have a bigger picture, the last objective of this work was to compare the performance of the 

surfactant precipitation method to another surfactant based separation technique, reverse 

micellar extraction. Under the determined conditions (AOT concentration of 20 mM, pH 7, no NaCl 

addition), only about 48% activity recovery was achieved with an estimated purification factor of 20. 

Based on this result, the partitioning of the bacteriocin into the micelles clearly occurred through a 

different mechanism (pH 7 rather than at pH 4 as in precipitation method), and it was suggested that a 

combination of electrostatic and hydrophobic interactions was involved. An attempt to improve the 

result through an increase in AOT concentration was unsuccessful as it was found out that bacteriocin 

was sensitive to the amount of AOT used. Although a higher recovery was achieved at a concentration 

of 30 mM and above, the stability of the recovered bacteriocin was greatly reduced as indicated by the 

agar well diffusion assay. Considering that weak electrostatic interactions were present at pH 7 (as it 

was determined earlier that no precipitation occurred at this pH), and the fact that bacteriocin was a 
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similar amphiphilic molecule like the surfactant, it was postulated that a higher degree of hydrophobic 

interaction between AOT and the bacteriocin peptide might have contributed to this result.  

From these observations, it was concluded that the proposed surfactant precipitation technique was a 

more effective means of recovery of the protein. It should be mentioned that even though the extent of 

the purification work done was not comprehensive, and there is still room for improvement (e.g. 

optimisation on the recovery efficiency by solvent and counter-ionic surfactant recovery), it was 

nonetheless a ground-breaking effort on the real application of the surfactant precipitation technique 

to the purification of a target protein from fermentation broth.  

In summary, the technique of protein separation by surfactant precipitation epitomises what a 

desirable alternative bioseparation technique should be – simple, cheap as it is locally produced 

(MES), environmentally friendly (in the example of MES), and most importantly, an effective 

mainstream purification method. 

 

6.3 FUTURE WORK: 
1. In order to simplify the overall process, the bacteriocin precipitate was recovered only by 

treatment with acetone followed by dissolution of the final precipitate with a fresh buffer. 

Hence, a lot of room is still available for further study in terms of the optimisation on the 

recovery efficiency. Further work can be continued to complete the bacteriocin 

purification work, for instance by looking into the type of solvent and range of NaCl 

concentrations employed, recovery through the means of a counter-ionic surfactant, the 

possibility of performing an additional cycle of precipitation/recovery, and lastly by 

addressing the issue of surfactant carry-over which might be encountered. 

2. The application of MES as a precipitant for a target protein from a real fermentation broth 

was examined after it was successfully applied to a single protein model system. In a complex 

sample, the degree of recovery in terms of overall yield and process selectivity in the presence 

of impurities such as the medium constituents and other hydrophobic proteins expressed by 

the host cell could pose real problems for this precipitation technique. If necessary, the extent 

of this work could also be extended to include an additional unit operation in the overall 

purification scheme to address the issue of surfactant carry-over. 

3. There were claims in the literature that the shorter the alkyl chain of the surfactant, the lower 

the denaturing effect or structural changes during its interaction with a protein. Based on this 

hypothesis, it might be interesting to examine this situation with a different surfactant. For 

example, DTAB (dodecyl trimethyl ammonium bromide), another type of cationic 
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surfactant with a stronger charge density and shorter non-polar chain, may possibly 

improve this technique.  

4. The concept of adding a co-precipitant (e.g. PEG, titanium oxide) to the system with an 

aim to shielding the non-polar group of the surfactant i.e. known to be unfolding-causing, and 

strengthen the ionic force of the surfactant head group should be examined. 

5. Up to this point, the structural integrity of the final product (i.e. separated protein) was 

examined based on secondary structure assessment using circular dichroism. However, it was 

reported that the protein might undergo tertiary structure changes after interacting with 

surfactant while maintaining their secondary structure. Hence, this research area could be 

looked into, for example through the application of NMR spectroscopy. 

6. Important characteristics of protein precipitates are the particle size distribution, density 

and mechanical strength. It was highlighted in the literature that protein precipitates that are 

small in size and low in density can lead to filtration or centrifugation problems, and can 

result in excessive bulk volumes of the final dried precipitate. Thus, a study should be carried 

out to investigate the significance of protein precipitate characteristics, and the influence of 

operating conditions on this characteristic. 

7. As far as the application of this technique is concerned, it uses need to be expanded to other 

proteins, to establish the viability of this separation technique. 
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