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Data Visualization with Structural Control of
Global Cohort and Local Data Neighborhoods

Tingting Mu, Member, IEEE , John Y. Goulermas, Senior Member, IEEE , Sophia Ananiadou

Abstract—A typical objective of data visualization is to generate low-dimensional plots that maximally convey the information within
the data. The visualization output should help the user to not only identify the local neighborhood structure of individual samples, but
also obtain a global view of the relative positioning and separation between cohorts. Here, we propose a very novel visualization
framework designed to satisfy these needs. By incorporating additional cohort positioning and discriminative constraints into local
neighbor preservation models through the use of computed cohort prototypes, effective control over the arrangements and proximities
of data cohorts can be obtained. We introduce various embedding and projection algorithms based on objective functions addressing
the different visualization requirements. Their underlying models are optimized effectively using matrix manifold procedures to
incorporate the problem constraints. Additionally, to facilitate large-scale applications, a matrix decomposition based model is also
proposed to accelerate the computation. The improved capabilities of the new methods are demonstrated using various state-of-the-art
dimensionality reduction algorithms. We present many qualitative and quantitative comparisons, on both synthetic problems and
real-world tasks of complex text and image data, that show notable improvements over existing techniques.

Index Terms—Cohort visualization, cohort separability, manifold optimization, dimensionality reduction, embedding generation.
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1 INTRODUCTION

Data visualization relies on the creation of effective visual
representations of the given datasets, in order to facilitate
the viewers’ understanding of the underlying data structure
based on their cognitive and perceptual skills. Amongst
different data visualisation schemes, the simplest and most
popular one, is plotting high-dimensional objects in lower-
dimensional spaces [1], or generating low-dimensional rep-
resentations of objects from their link information (usually
represented as knowledge graphs) [2]. Over the past few
decades, a large amount of data and signal processing tech-
niques have been developed to generate low-dimensional
data representations, and these can also be employed for
the creation of meaningful plots [3], [4].

Classic dimensionality reduction approaches highlight
the global data characteristics in the reduced space. For
instance, principal component analysis (PCA) [5] maximizes
the data variance along dominant data projections, and in-
dependent component analysis [6] maximizes the statistical
independence. Canonical correlation analysis [7], which has
recently been applied to learn low-dimensional representa-
tions for words [8], seeks dominant directions maximizing
the correlation between two data matrices.

Subsequent work on manifold learning, such as locally
linear embedding (LLE) [9], Isomap [10] and Laplacian
eigenmaps (LE) [11], examine the local character of the
data and rely on the observation that high-dimensional
patterns most frequently lie on low-dimensional manifolds.
Following this assumption, various effective strategies to
capture and visualize low-dimensional manifolds have been
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proposed. Examples include Riemannian manifold learning
[12], adaptive manifold learning [13], and different varia-
tions of spectral embeddings working on the discriminant,
ranking, semi-supervised and multi-output cases [14]–[17].

An alternative way to study the local character of data
is through modeling and preserving the joint/conditional
probability distribution of object pairs based on their intrin-
sic neighboring structures. Examples of relevant methods
include stochastic neighbor embedding (SNE) [18], neighbor
retrieval visualizer [19], t-distributed SNE (t-SNE) [20]. Ex-
amples of their supervised extensions include neighborhood
component analysis (NCA) [21] based on linear projections,
its convex version of maximally collapsing metric learning
(MCML) [22], as well as the supervised variations of t-SNE
[23]. Another way is through maximum variance unfolding
(MVU), which maximizes the overall variance of the embed-
ding while preserving the local distances between the neigh-
boring samples [24], [25]. Its extension, the colored MVU
(CMVU) [26], learns the low-dimensional representation
from not only the local properties of the data, but also the
side information, such as class labels. Other example works
which combine multiple types of information characterizing
the objects from different views include [27]–[29]. These
encode such multi-view information in the reduced space,
to highlight more reliably the local data structure and/or
enhance class separabilities.

A different path for visualization is through the use of
neural networks, for which recent advances in deep learning
have enabled systems with deep architectures to generate
low-dimensional representations of objects with improved
generalization [30], [31]. Example works include those at-
tempting to preserve the local character of the data and (or)
to minimize an approximated nearest-neighbor type classi-
fication loss through a neural network based mapping func-
tion, such as the deep semi-supervised embedding [32] and
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TABLE 1
Visualization of Cora publications using different techniques. For the supervised visualization, different values of the shrinking factor � are used,

and the three nearest neighbor classes of the “genetic algorithms” class are highlighted. Different classes correspond to different shadings.
Method Unsupervised Supervised, � = 0.7 Supervised, � = 0.5 Supervised, � = 0.1
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the deep supervised t-distributed embedding [33]. When
objects are represented by a knowledge graph where link
information between objects is made available, their low-
dimensional representations can be learned by embedding-
driven relational learning algorithms that aim at deriving
object embeddings that infer link validities [2], [34].

The primary focus of this work is the visualization of
high-dimensional objects. As discussed earlier, some tech-
niques aim at highlighting the global data statistics, while
some at preserving the local data character (e.g., the neigh-
borhoods formed between objects), and/or enhancing the
cohort separability (e.g., the separation achievable between
different object classes). Despite the success of these meth-
ods, they do not necessarily pay attention to additional fac-
tors that can further improve and enrich the expressiveness
of the visualized output.

To exemplify this, we make use of the Cora document
collection [35] (described in Section 4.3), where the objective
is to display the documents as two-dimensional points
and demonstrate their distribution according to their word
content. The classical dimensionality reduction algorithms
SNE and normalized spectral embedding (NSE) [36], the
popular data visualization algorithm t-SNE, as well as their
supervised versions1 are compared. Table 1 contains the
visualization output of the methods and reports their intra-
class neighbor preservation (Sn) and the class separation
(Ss) scores (both explained in Appendix G). It can be seen
that, all methods exhibit reasonably good local neighbor

1. Following the same setup as in [20], PCA firstly reduces the
dimensionality to 30. Then, a Gaussian kernel is employed to convert
the Euclidean distance matrix of the reduced data to a joint probability
matrix P. The width of the kernel is computed by setting the perplexity
measure to 30, which is a smooth approximation of the effective
neighbor number. NSE employs P as its weight matrix from which
the Laplacian is computed. The supervised versions of SNE, NSE and
t-SNE are realized by following the simple linearly supervised distance
transformation used in [23], which shrinks the distances between the
intra-class objects by a factor of 0 < � < 1 when computing P.

preservation and their supervised versions offer excellent
control of class separabilities. However, the locations of the
data classes in the reduced space are rather arbitrary, and
as a result, the relevant positions and proximity profiles
between the mapped classes do not follow any pattern. For
example, the neighbor classes of the “genetic algorithms”
document class varies arbitrarily across the methods.

To produce a meaningful visualization, the relative posi-
tions between object cohorts2 are expected to convey impor-
tant information to the viewers, instead of being recovered
arbitrarily. For example, in corpus topic visualization, doc-
uments related to the “breast cancer” topic are expected to
be closer to documents related to “lung cancer”, rather than
the “cardiovascular” topic. Depending on the application,
there often exist different types of information sources that
can imply closeness relationships between cohorts, but these
are frequently ignored in the process. For example, in the
simplest case, the high-dimensional pattern representations
themselves can be used to directly estimate similarities
between object cohorts. Alternative options are to utilize
some domain-specific measures and information sources
external to the original data representations. With respect to
the Cora corpus, for example, a citation network is available
between the documents, from which the cross-citation rates
between two classes of documents can be computed, and
subsequently be used to control the relative positions and
closeness between the classes.

One avenue for advancing data visualization and aug-
menting the utility of the presented information to the
users, is to seek new algorithm designs with much better
control over cohort arrangement. The work presented here,
proceeds in this spirit and proposes various novel designs

2. Here, we extend the concept of data classes to data cohorts,
to allow the inclusion of more general pattern structures, such as
data clusters located by a clustering algorithm, or pattern groupings
resulting from auxiliary information.
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that, in addition to preserving the local data characteristics
and maintaining cohort separability, they effectively control
the proximity profiles between cohorts.

The principal characteristics of the presented work in-
clude the following. To achieve controllable cohort posi-
tioning and localization, we propose to use a set of cohort
prototypes to underpin the access to the proximity profiles
between cohorts. A set of multi-objective models are con-
structed by incorporating additional cohort positioning and
discriminative constraints into local neighbor preservation,
through the use of these prototypes. These cohort proto-
types can be generated from either the input data itself
or external information, according to the viewers’ interests.
Two types of models are developed; the embedding models
that directly compute the low-dimensional representations,
and the projection ones that learn projection-based mapping
functions. To enforce independency between the recovered
dimensions in the target space, full rank constraints are
applied to the embeddings, while orthogonality constraints
are applied to the projections. The resulting constrained
problems are solved by applying a very effective strategy
that converts the constrained optimization problem to an
unconstrained one over a matrix manifold by approximat-
ing the geometric structure of that manifold. To accelerate
the projection-based algorithms, an alternative projection
model is also proposed by introducing an auxiliary rep-
resentation of the cohort prototypes that results in a very
fast one-step eigen-decomposition of a small-sized matrix.
In the experiments, we examine the proposed visualization
strategy using different datasets and different visualization
tasks, and compare with various representative classical and
state-of-the-art visualization algorithms.

2 MOTIVATION

In the context of data visualization, there has not been
a unified description of what objective a dimensionality
reduction algorithm should achieve. As summarized in Sec-
tion 1, the primary focus of the state of the art is to capture
the local data character based on local neighbor preservation
(e.g., SNE, t-SNE, LLE), or to maintain separation between
classes via enhancing between-class scatter (e.g., Fisher cri-
terion related approaches), or repositioning inter- and intra-
class nearest neighbors (e.g., NCA and its equivalent convex
version MCML), or to achieve both (e.g., supervised t-SNE,
some deep embedding models). Although by doing so, a
global view of cohort arrangement is naturally derived, the
problem is that the generated cohort layouts cannot always
be trusted as they can become arbitrary and unpredictable
when the underlying cohort structures are complex.

We elaborate on this issue by analyzing connections
between sample neighbor preservation, cohort separation
and cohort localization. Preserving local neighbors of in-
dividual samples can naturally preserve in the new space
those data cohorts or fractions of cohorts that contain more
and stronger neighbor pairs. This can subsequently result
in effective separation among cohorts with strong division.
However, cohorts with weak division can be lost (e.g., by
being merged with other cohorts) or broken into fractions in
the new space. Alternatively, supervised algorithms attempt
to preserve each data class in the new space as a whole and

TABLE 2
Illustration of twenty Cora clusters. The first row illustrates the

visualized publications with different clusters highlighted by different
shadings. The second row illustrates the neighbor adjacency graph

between clusters. Edges in solid, dotted and dashed lines indicate true
positive, false positive and false negative pairs of neighboring clusters

in the new space, respectively, compared to the original space.
SNE t-SNE Supervised t-SNE, � = 0.7
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maintain separation between the classes. It is very important
to note that neither preserving local neighbors for individual
samples, nor maintaining (or enhancing) separation for co-
horts can induce full control of the relevant positioning and
cohort localization. This is because, given a local neighbor
graph between samples and their inherent cohort division,
inter-cohort neighbor links are more sparse and possess
smaller similarity weights than intra-cohort links. These
small and sparse weights can be effective for the algorithm
to place some cohorts (or their fractions) away from each
other, but not effective enough to control how far away3.
Therefore, different visualization algorithms can often result
in different and unpredictable cohort neighbor adjacencies.

We demonstrated in Table 1 the arbitrary positioning
of the pre-defined data classes in the visualized space for
various techniques using the Cora document collection.
Here, we provide another demonstration in Table 2 to show
the arbitrary positioning of unsupervised clusters for SNE,
t-SNE and its supervised version using the same documents,
which are grouped to twenty clusters using spectral cluster-
ing [37]. The two neighbor adjacency graphs between the
clusters, constructed in the original and visualized spaces,
are compared in the second row of Table 2, while its first
row illustrates the embedded documents. The edges are
constructed by identifying two effective neighbors for each
targeted cohort. The incorrect neighbor links in the visual-
ized space are highlighted in dashed and dotted lines.

To further investigate the changes in local neighbor-
hoods, cohort separation and positioning between the new
and original spaces, Table 3 provides another example us-
ing different 3-dimensional patterns divided into groups of
similar sizes. The 2-dimensional embeddings are computed
by SNE, t-SNE and LLE with the effective neighbor number
(or its approximation by perplexity) set to 30. All the algo-
rithms perform well in terms of local neighbor preservation

3. The algorithm can compromise the between-cohort proximities
(or proximities between data patches from different cohorts) to give
priority to follow more accurately the stronger and denser links (with
higher weights) between neighbor samples from the same cohort.
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TABLE 3
Visualization of 3D data points in 2D space using unsupervised techniques. Data partitions are highlighted using different shadings.

Datasets Original SNE t-SNE LLE
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TABLE 4
Visualization of 3D data points in 2D space using supervised

techniques. Data partitions are highlighted using different shadings.
Supervised SNE, � = 0.1 Supervised t-SNE, � = 0.1
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as indicated by the high neighbor preservation score S
n

.
For the simpler Swiss roll data, group separation can be
well maintained and some algorithms can even match the
original group positioning, e.g., LLE. However, for the more
complex Cylinder datasets, none of the algorithms in Table
3 is capable of maintaining both good group separation and
reasonable group positioning. By generating visualizations
with the supervised versions of SNE and t-SNE in Table 4
for Cylinder2, group separation does improve, but group
positioning is again arbitrary. As demonstrated via Tables
1-4, we see that existing works can produce undesirable
cohort layouts. This is because they prioritize local neighbor
preservation and cohort separation, and these can lead to
compromised cohort positioning due to the sparse and
weak inter-cohort links. So far, there is no existing work
studying how to produce a visualization output with control
in simultaneously and effectively capturing all three aspects.
To improve and enrich the expressiveness of the visualized
output, we will define a multi-objective visualization and
propose a set of strategies, referred to as cohort visualization
with cohort arrangement control (COVA), by incorporating
additional cohort positioning and discriminative constraints
that enhance local neighbor preservation through the use of
computed cohort prototypes.

3 PROPOSED METHODS

The notation for the data input is as follows. We are
given a set of data samples denoted by D = �x

i

∈ d�l
i=1

with x

i

= [x
i1, xi2, . . . , x

id

]T being the ith sample, X =[x1,x2, . . . ,x
l

]T the entire l × d feature matrix, and k the
reduced (target or visualization) space of typical dimension-
ality k = 2 or 3. The integer vector y = [y1, y2, . . . , y

l

]T
is used to store the information of cohort memberships,
with y

i

∈ {1, 2, . . . , c} indicating the cohort index of the
ith sample, and c the total number of existing cohorts. An
equivalent cohort membership representation is the l × c
binary matrix Y = [y

ij

] with each element y
ij

set to one if
and only if the ith sample belongs to the jth cohort. Finally,
the sample cardinality of ith cohort is denoted by n

i

.
Regarding data cohorts, one type could be the assigned

clusters computed from the feature matrix X using a clus-
tering algorithm [38]. The objective would be to visually
display the cluster structures to the users [39]. Another
type of data cohorts could be the predefined data classes
relevant to a classification problem [21], [40]. Sometimes, the
cohort label information can be partially available. In this
case, membership of the unlabeled samples can be predicted
from the labeled ones by employing a simple classifier, e.g.,
k-nearest neighbor (KNN), where the labeled samples are
used for training.

3.1 COVA Embeddings

The low-dimensional representations or embedding {z
i

}l
i=1

in the visualization space k (or equivalently the l × k
embedding matrix Z = [z

ij

]) are to be computed for all d-
dimensional data samples x

i

. A visualization model that
preserves in the target space the local neighboring pattern
between the samples typically relies on the l × l similarity
weight matrix W = [w

ij

] that controls the neighboring
adjacency structure of the underlying similarity graph of
the samples {x

i

}l
i=1. It can be sparsely constructed using a
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nearest neighbor search, and the actual weights w
ij

can be
computed using any predefined similarity measure, such as
the Gaussian kernel, cosine similarity, etc. Neighbor preser-
vation through W can be achieved by minimizing either an
accumulated weighted error [37], according to

min{zi}li=1
O(L)dist = 1

2

l�
i=1

l�
j=1

w
ij

�z
i

− z
j

�22, (1)

or an accumulated Kullback-Leibler (KL) divergence based
on Student t-distribution [20], as

min{zi}li=1
O(L)KL =

l�
i=1�j≠ips(wij

) log p
s

(w
ij

)
p
s

��1 + �z
i

− z
j

�22�−1�
, (2)

where �⋅�2 denotes the L2-norm. The normalization function
p
s

(⋅) is set to convert the input similarity weight to either
a joint probability p(i, j) by p

s

(w
ij

) = wij∑l
s=1∑t≠s wst

, or to
a conditional probability p(i�j) by p

s

(w
ij

) = wij∑l
s=1 wsj

. The
same normalization is applied to the estimated similarity
weights. Both formulations attempt to transmit the neigh-
borhood information contained in W to the embedding
space reflected by the Euclidean distances between samples.
Since the similarity weight between a sample and itself does
not contribute to the neighboring patterns based on the
above formulations, the diagonal elements of the matrix W
are set to zero. By encoding the cohort label information
Y within the weight matrix W, e.g., by shrinking the inter-
cohort similarity using the factor 0 < � < 1 [23], such that

W←W ○ (YYT ) + �W ○ (1 − YYT ), (3)

where ○ denotes the Hadamard multiplication, the separa-
tion between cohorts can be enhanced.

As discussed in Sections 1 and 2, however, the coop-
eration between Eqs.(1,2) and Eq.(3) does not impose ef-
fective control over the proximity profile between the data
cohorts in the target space. Therefore, we propose to restrict
the cohort distribution of the samples mapped in k. An
effective way to achieve this, is to construct a set of k-
dimensional vectors {�

i

}c
i=1. Specifically, for each ith data

cohort, �
i

= [�
i1, �i2, . . . ,�

ik

]T is defined in the target space
and referred to as a cohort prototype. These prototypes are
constructed in a way to encode information reflecting the
underlying closeness between the cohorts, and are gathered
in a c × k prototype matrix ⌥ = [�

ij

]. We then use each
prototype to tie the data samples with their correspond-
ing cohort to control the relevant positioning of cohorts,
and simultaneously, to boost the inter-cohort separabilities.
The benefit of this strategy, is that it effectively delegates
the comparatively complex control of groups of samples
to the simpler problem of controlling a small set of low-
dimensional prototypes.

3.1.1 Cohort Prototype Generation
We formulate the cohort prototype vectors {�

i

}c
i=1 such that

their pairwise distances reflect the relevance and proximities
between their corresponding cohorts. Assuming a c × c
dissimilarity matrix D = [d

ij

] (similarities can be converted
to dissimilarities) is constructed for the c cohorts, it can
be subjected to a reconstruction technique to obtain the
c cohort prototypes that encapsulate most of the relevant

information content contained within D. Specifically, mul-
tidimensional scaling [41], [42] can be employed to obtain
the sought ⌥ by taking D as the input. Focusing on the
neighboring patterns between cohorts, stochastic, manifold
or ordinal embedding techniques can be used to preserve
the cohort neighborhood structure of D (Appendix H.7
contains an empirical comparison of such methods). The
key question that remains, is how to capture the proximity
information between cohorts in order to construct D.

The most straightforward way is to compute d
ij

directly
from the original data X, so that the generated prototypes
reflect the inherent cohort proximities in the original space.
This can either be based on sample pair relations

d
ij

= 1

n
i

n
j

�
ys=i,yt=j

d (x
s

,x
t

) , (4)

or on relations between the cohort centers, such as

d
ij

= d��
1

n
i

�
ys=i

x

s

,
1

n
j

�
yt=j

x

t

�
� . (5)

The dissimilarity measure d(⋅, ⋅) between two patterns, can
be the Euclidean distance, or a dissimilarity quantity con-
verted from the cosine similarity, a Gaussian or polynomial
kernel, etc. Another way to compute d

ij

is based on the
weight matrix W generated for local neighbor preservation.
The averaged similarity is used to obtain d

ij

as

d
ij

← 1

n
i

n
j

�
ys=i,yt=j

w
st

, (6)

which reflects density of neighbor links between samples
from two cohorts.

More generally, the users are free to define their own
cohort proximity structure according to the application at
hand, which may not necessarily be under the control of the
original data X. Some more direct domain-specific measures
and information resources external to the original data can
be used. For example, when visualizing articles based on
their word content (e.g., using a bag-of-word model to
construct X), proximity between article cohorts can be com-
puted externally based on their cross-citation rates. Letting
⇥ = [✓

ij

] denote a binary citation matrix between articles,
where each binary weight ✓

ij

indicates whether one article
is cited by the other, one possible cohort similarity measure
can be based on the density of citation links between two ar-
ticle cohorts, e.g., computed by 0.5

ni+nj
∑

yp=i∑yq=j ✓pq + ✓qp.
Another example is that, when visualizing images based
on their pixel content (e.g., using a convolutional neural
network (CNN) to construct X), proximity between image
cohorts can be computed externally by examining the image
captions. For instance, by treating the collection of image
captions from each cohort as a document and modeling the
documents using a bag-of-word model, proximity between
two cohorts can be computed as the cosine similarity be-
tween their two document vectors.

3.1.2 Cohort Arrangement Control
Since the prototypes communicate the cohort geometry,
we control the relevant positioning and localization of the
cohorts by co-locating the data samples together with the
cohort prototypes {�

i

}c
i=1 in the joint visualization space



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE, 2017 6

k. To enable data samples mapped in k to be distributed
proximately to the particular prototype that represents the
cohort of the sample, a sum of penalized distances between
prototypes and associated embedded samples can be mini-
mized, according to

min{zi}li=1
O(C)dist =

l�
i=1

c�
j=1

r
ij

�z
i

− �
j

�22 , (7)

where r
ij

quantizes the degree of confidence that the ith
sample belongs to the jth cohort, stored in the l × c matrix
R = [r

ij

]. Alternatively, an accumulated KL divergence can
be minimized, given as

min{zi}li=1
O
(C)
KL =

l�
i=1

c�
j=1

rij

∑l
s=1∑c

t=1 rst
log

rij∑l
s=1∑c

t=1 rst

�1+�zi−�j�22�−1
∑l

s=1∑c
t=1�1+�zs−�t�22�−1

.

(8)
As in Eq.(2), the Student’s t-distribution with a single degree
of freedom, e.g., �1 + �z

s

− �
j

�22�−1, is used to compute the
confidence degree based on the Euclidean distance between
a sample and the cohort prototype in the target space.
Compared to the Gaussian function exp

�− �z
s

− �
j

�22�, it
has longer tails and it drops less rapidly as the distance
increases, leading thus, to a reduced sensitivity to scale
changes for points far apart [20].

The template confidence r
ij

to be matched in the target
space can be computed by examining the proximity between
the ith sample and the centroid of the jth cohort in the
original space, such that

r
ij

= r �x
i

, 1
nj
�

ys=j xs

� , (9)

where r(⋅, ⋅) is set as a similarity measure. It can also be
computed as the averaged adjacency weights in W between
the ith sample and samples from the jth cohort, given as

r
ij

= �������
1

nj−1 ∑s≠i,ys=j wis

, if y
i

= j,
1
nj
∑

ys=j wis

, otherwise. (10)

The above formulations of r
ij

push data samples that are
closer to a cohort center in the original space to stay closer
to its corresponding cohort prototype in the target space. To
enhance cohort separation, the links between a data sample
and prototypes can be adjusted based on the following
rescaling process

R← � L(R ○ Y, [1 − �p,1]) + L(R ○ (1 − Y), [0,�p]), if �p ≠ 0,
R ○ Y, if �p = 0,

(11)
where 0 ≤ �

p

� 1 and L(⋅, [a, b]) is a mapping function
that linearly rescales elements in the input matrix to a given
interval [a, b]. When �

p

= 0, cohort separation is maximally
enforced by simply cutting the links between a data sample
and its irrelevant prototypes by fixing r

ij

to zero when y
i

≠
j. An alternative for computing the confidence degree is to
formulate r

ij

as a probability, according to

r
ij

= � p (s
ij

) , if y
i

= j,
�
p

, otherwise. (12)

Between samples and their irrelevant cohorts, r
ij

is set as
a small value 0 ≤ �

p

� 1 to equally push the samples to
stay away. Between a sample and its own cohort, r

ij

is

obtained using a probability function p (⋅) estimated from
the similarity set {s

tj

}nj

t=1 with s
tj

computed by Eq.(9) or
Eq.(10). The normal distribution can be assumed, with mean
and standard deviation directly estimated from {s

tj

}nj

t=1.
When the sample size n

j

is small, a Student’s t-distribution
can be used to obtain p (s

ij

). More complex alternatives,
such as mixture models or kernel density estimators can also
be used to estimate p(s

ij

). Compared to Eqs.(9,10), Eq.(12)
changes the driving force for drawing samples to cohort
prototypes. It drives data samples distributed in a denser
area within a cohort to move closer to the cohort prototypes.

As a result of minimizing the sum of either the penalized
distance errors in Eq.(7) or the KL divergence in Eq.(8),
the data samples would form clusters in k around the
locations indicated by the cohort prototypes determined by
matrix ⌥. Cohort separation is at the same time realized
by setting weak links between the data samples and the
prototypes of the other cohorts. The use of small positive
values for r

ij

when y
i

≠ j, e.g. being controlled by �
p

= 0.1,
is usually favored over zeros for regularization purposes,
which is particularly effective when KL divergence is used
to formulate the objective.

3.1.3 Bi-objective COVA Model Construction
The different objectives correspond to different intuitive
rules between data patterns and cohort prototypes. Eqs.(1,2)
correspond to the rule that enables the original samples
and their embedded counterparts in the target space to
have accordant (dis)similarity characteristics (rule 1). And
Eqs.(7,8) correspond to the rule of enabling the distances
between data samples and prototypes in k to reflect the
membership associations between samples and cohorts (rule
2). In order to simultaneously control cohort arrangement,
maintain cohort separations and preserve the local data
geometry, the objectives in Eqs.(7,8) and Eqs.(1,2) can be
combined to a multiobjective formulation. To maintain a
comparable scale for distances between samples and pro-
totypes and to avoid inflation/deflation of the objectives
caused by the number of distances examined, the weights
w

ij

and r
ij

are normalized to wij∑l
s=1∑t≠s wst

and rij∑l
s=1∑c

t=1 rst
,

respectively, before being used; this normalizes W and R
to unity sum. The minimizing objective can, for example, be
then formulated as ↵O(C)dist +(1−↵)O(L)dist , where the parameter
↵∈[0,1] balances the two rules.

We now make several comments on the rule-specific
objectives. The satisfaction of the two rules can be achieved
with any of the four possible combinations of the two pairs
of objectives (or of ones based on alternative rule-specific
objectives constructed from similar arguments). This is ad-
vocated by the fact that the constituent objectives act dif-
ferently in enforcing the rules. For instance, O(C)KL and O(L)KL
have softer error penalization properties than the squared
errors in O(C)dist and O(L)dist . Concerning the control of cohort
arrangement only, an extreme solution from minimizing
only O(C)dist , will force all the samples to be mapped to the
prototype of their cohort, that is z

i

= �
yi ,∀i. On the other

hand, minimizing only O(C)KL , will make �z
i

− �
j

�2 equal
or very close to a positive value determined by r

ij

. The
former solution does not distinguish between intra-cohort
samples, while the latter attempts to form certain intra-
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cohort distributions. This shows that O(C)dist is more forceful
than O(C)KL at highlighting cohort separability and creates
tighter cohorts. Another observation, is that local neighbor
preservation acts as a regularizer for cohort control, in the
sense that it protects from cohort over-concentration. Finally,
O(L)dist cannot be minimized on its own without incorporating
length constraints over z

i

, because of the trivial solutions.
However, combining with either objective O(C)dist or O(C)KL
makes this constraint unnecessary.

3.1.4 Model Optimization
The aforementioned bi-objective optimization can generate
the embedded patterns {z

i

}l
i=1. However, in order to obtain

independent coordinates in the k different axes, we require
Z to have linearly independent columns, by solving

min

Z∈ l×k
, rank(Z)=k↵O

(C) + (1 −↵)O(L), (13)

where O(C) and O(L) are any of the previously defined
rule-specific objectives. The feasible set in Eq.(13) includes
all the full-rank l × k matrices (we assume l > k), and it
is an open submanifold of the vector space l×k, referred
to as the noncompact Stiefel manifold l×k∗ . In Appendix
A we summarize the four rule-specific objective functions
O(C)dist (Z), O(L)dist (Z), O(C)KL (Z) and O(L)KL (Z) in matrix form
and include the calculations of their Euclidean gradients.

The model based on Eqs.(1,7) has the analytical solution

Z = [↵D(R) + (1 −↵)L(W) + ⇣I
l×l]−1 R⌥, (14)

where I
l×l is the l × l identity matrix, and the regularization

parameter 0 < ⇣ � 1 is used to handle matrix singularity.
We explain how to derive this solution in Appendix D. For
the other three objective term combinations, it is not possi-
ble to obtain analytical solutions due to the involvement
of Eqs.(2,8). Here, we show how to seek solutions using
iterative optimization relying on the Euclidean gradient.

Specifically, the constrained optimization can be con-
verted to an unconstrained one in a smooth search space
by working with certain manifold defined constructs, such
as representations of the tangent space, retraction mapping
and Riemannian gradient, facilitated by the rich geometric
structure of a manifold [43]. Given an objective function
f(x) imposed over the manifold M , the tangent space,
denoted by the composite notation T

x

M , provides a local
vector space approximation of the manifold M at x ∈ M ,
in which the tangent vector is defined as a generalized
notion of the directional derivative. A retraction mapping
R

x

M ∶ T
x

M → M is used to map updates in the tan-
gent space at x ∈ M onto the manifold. The composite
notation R

x

M is used to denote the retraction mapping
function, with R representing retraction, x indicating the
point location where the mapping is computed, and M the
corresponding manifold name. It can be viewed as moving
in the direction of a tangent vector whilst remaining on the
manifold. The Riemannian gradient represents the first or-
der information of the cost function on the manifold, and is
denoted by gradf(x). We denote the Euclidean gradient of
the cost function as Gradf(x), to be distinguished from the
Riemannian. Finally, to solve the optimization problem in
the form of min

x∈M f(x), many unconstrained optimization

approaches, such as gradient descent or Newton methods,
can be adapted to operate over the manifold. Taking the
gradient descent, as an example, the (i+1)th iteration update
can be implemented as

x
i+1 = RxiM ( −� gradf(x

i

) ) , (15)

where the scalar � > 0 controls the step size. The retraction
mapping R

xiM is computed at the current solution x
i

obtained in the ith iteration with an update determined by−� gradf(x
i

).
For the current problem, we work on the noncompact

Stiefel manifold using gradient descent, and this requires
to compute the Riemannian gradient and to determine the
retraction mapping. It can be shown (based on proposition
2.1 in [44]) that the tangent space TZM of the manifold
M = {Z � Z ∈ l×k, rank(Z) = k} at Z ∈ M , is actually
the entire vector space of l × k matrices (henceforth, we
replace the general notation x for a point on the manifold
with the sought embedding Z). Thus, given an arbitrary
matrix ⇠ ∈ l×k, its orthogonal projection onto TZM is
itself; this is denoted by PZ(⇠) = ⇠. Also, because the
noncompact Stiefel manifold is an embedded manifold of
the vector space, the Riemannian gradient of the cost func-
tion is the orthogonal projection of its Euclidean gradient
onto the tangent space at the input matrix [43]. This gives
gradf(Z) = PZ(Gradf(Z)) = Gradf(Z).

Computation of the retraction mapping RZiM(⇠) for
the noncompact Stiefel manifold l×k∗ can be equivalent
to the process of first moving away from Z

i

along the
direction of ⇠, which is set as ⇠ = −�gradf(x

i

) for gradient
descent, to get to the new point Z

i

+ ⇠, and then projecting
Z
i

+ ⇠ back to the manifold. To set RZiM(⇠), we employ a
projection based strategy [44], [45]. When Z

i

+ ⇠ is a full-
rank matrix, it is already on the manifold, and hence, there
is no need for further processing; that is RZiM(⇠) = Z

i

+ ⇠.
Subsequently, the gradient descent update of the embedding
matrix becomes Z

i+1 = Z
i

−�gradf(x
i

), which resembles the
standard gradient descent for unconstrained optimization.
When rank(Z

i

+⇠) < k, we project Z
i

+⇠ back to the manifold
at Z

i

, which is equivalent to seeking a full-rank matrix that
is close to Z

i

+⇠. To achieve this, a very small value ✏ can be
added to the zero singular values of Z

i

+ ⇠. These modified
singular values along with the singular vector matrices of
Z
i

+ ⇠ are used to reconstruct a full-rank matrix close to
Z
i

+ ⇠ to be the output of the retraction mapping.
Apart from the constraint of linearly indepen-

dent columns admitting a structure of the noncom-
pact Stiefel manifold, alternative constraints for opti-
mizing Z, could be the orthogonal feasible set M1 =�Z � Z ∈ l×k,ZT Z = I

k×k� [37], or a relaxed orthogonal one
M2 = �Z � Z ∈ l×k,ZT BZ = I

k×k� [46], where the diagonal
matrix B stores the scaling parameters. The first set M1

admits a structure of the Stiefel manifold and M2 the
generalized Stiefel manifold, of which the geometries are
discussed in [43], [47]. Compared to M and M2, M1 is
more restrictive, has lower expressive power and may create
somewhat peculiar embedding distributions. Compared to
M , M2 requires extra effort to tune the parameter matrix
B and performance improvement is not guaranteed. Thus,
in this work we choose the rank constraint to compute the
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COVA embeddings. An example is provided in Appendix C
to illustrate the effects of the feasible sets M , M1 and M2.

3.2 COVA Projections
It is often required to have a mapping � ∶ d → k, so
that the original dataset is processed in an out-of-sample ex-
tension fashion. This is needed, for example, when dealing
with incremental applications that respond to data growth,
in which instead of constantly recalculating the embedding
of the expanded set �XT

old,X
T

new�T , � can directly compute4

the embedded versions for the newly added samples Xnew.
We describe such a transformation for mapping data sam-
ples. It relies on mapping a d-dimensional sample x to a
(dis)similarity space, where every dimension constitutes a
relational measurement r(⋅, ⋅) between x and a prototype
sample. Given a set of ˜k ≤ l prototype samples {q

i

}k̃
i=1

selected from D = {x
i

}l
i=1, a ˜k-dimensional (dis)similarity

space can be induced by the mapping �

r

∶ d → k̃,
defined as�

r

(x) = �r (x,q1) , r (x,q2) , . . . , r �x,q
k̃

��T . The
mappings for the entire D can be collected in the l × ˜k
relation feature matrix F = [�

r

(x1), . . . ,�r

(x
l

)]T . This,
in turn, can support the introduction of a ˜k × k projection
matrix U = [u

ij

], which realizes the desired mapping �
as �(x) = UT

�

r

(x). The embedded patterns for all the
elements in D can then be obtained through the simple
projection Z = FU5.

3.2.1 Optimizing COVA Projections
Proceeding with solving the multiobjective optimization of
Section 3.1.3, we replace Z with FU and seek to identify
the projection matrix U. Similar to previous works [48], [49]
for projection-based embeddings, we enforce orthogonality
of the projection matrix. This requires us to optimize over
the feasible set M = �U � U ∈ k̃×k,UT U = I

k×k�, which
corresponds to the Stiefel manifold. We derive and sum-
marize the Euclidean gradients with respect to U for the
contributing objectives in Appendix A. In the projection
case, it is not possible to derive analytical solutions for all
the possible objective combinations (see Appendix D), and
instead we perform iterative optimization over the Stiefel
manifold.

4. When required, both old and new embedded patterns can be
optimized together, with �ZT

old,�(Xnew)T �T employed as the initializer,
where � is applied row-wise to its data matrix input.

5. Compared to embedding models, projection ones learn parametric
mapping functions with fixed formulations to connect the original and
new spaces. Therefore, they offer less freedom in generating the em-
bedded patterns than the embedding models which directly learn the
embedding coordinates. To enhance the cohort control of a projection
model, one effective way is compact information in X based on the
cohorts. For instance, a similarity matrix S can be computed between
data samples and a set of representative samples from different cohorts.
By applying an h-nearest neighbor search to S, the averaged similarity
value between a sample and its neighbor representatives from the ith
cohort can be used as its ith compacted feature. This results in an l × c
cohort-based feature matrix Xc = S̃YpM−1, where S̃ = S ○N(S, h) and
each element of the matrix N(S, h) = [�ij] is a binary neighborhood
indicator, set to one if sample xi is in the h-nearest neighbors (based on
S) of the jth representative or vice-versa. M is a c × c diagonal matrix
storing in its diagonal the number of sample prototypes from each class,
and Yp denotes the cohort label matrix of the representative samples.
Subsequently, another level of nonlinear transformation �r is applied
to Xc to obtain F and then the embedded pattern is obtained by FU.

Given an arbitrary matrix ⇠ ∈ k̃×k, its projection onto
the tangent space TUM of the Stiefel manifold at U ∈M is

PU(⇠) = �I
k̃×k̃ −UUT �⇠ +U skew�UT

⇠� , (16)

where skew(X) = X−XT

2 . Because the Stiefel manifold is
an embedded manifold of the vector space, the Rieman-
nian gradient is the orthogonal projection of its Euclidean
gradient onto the tangent space, which gives gradf(U) =
PU(Gradf(U)). Given the tangent vector ⇠U ∈ TUM , the
retraction mapping can either be defined through QR de-
composition, such that

RUM(⇠U) = qf(U + ⇠U), (17)

where qf(⋅) denotes the Q factor of the input matrix, or
through polar decomposition, such that

RUM(⇠U) = (U + ⇠U)�I
k×k + ⇠TU⇠U� 1

2 . (18)

A detailed description of the Stiefel manifold and its
properties, as well as the derivations of Eqs.(16,17,18) are
provided in Appendix B. For the application of gradient
descent, the projection matrix can be updated according to

U
i+1 = RUiM (−�PUi (Gradf(U

i

))) , (19)

where f(⋅) is the bi-objective term ↵O(C) + (1 −↵)O(L).
3.2.2 Eigen-COVA Model
All the above projection models are optimized iteratively.
In this section, we propose a very efficient projection model
with analytical solution, which relies primarily on the two
distance-based objectives O(C)dist and O(L)dist .

We firstly create a projection to map the cohort proto-
types �

i

to some auxiliary representations e

i

in k, that
have to preserve accurately the prototype distribution in ⌥.
To do this, we define a mapping  ∶ k → k as

e

i

=  (�
i

) = VT

�

i

, for i = 1, . . . , c, (20)

where V = [v
ij

] is the k × k projection matrix. If the
embedded prototypes {e

i

}c
i=1 are collected within a c × k

embedding matrix E = [e
ij

], then the overall projection can
be expressed as E = ⌥V. Using this, we can substitute
the prototypes �

i

in O(C)dist of Eq.(7) with their auxiliary
representations, and the modified objective becomes

O
(C)
dist = tr� � Z

E �
T

L�� 0n×n R
RT 0c×c �� � Z

E � � , (21)

and needs to be optimized over both Z and E.
As mentioned above, we must require that {e

i

}c
i=1 pre-

serve the original cohort proximity information. The intro-
duction of the new mapping necessitates the use of a third
objective, enforced by maximizing the following distance-
based score

Oaux = 1

2

c�
i=1

c�
j=1
��

i

−�
j

�2 �e
i

−e
j

�22 = tr�ET L(W
�

)E� , (22)

where W
�

= �w(�)
ij

� is a c×c weight matrix, having elements

w(�)
ij

= ��
i

− �
j

�2. Its maximization implies, that the further
apart two prototypes �

i

and �
j

are, the more distant their
representations e

i

and e

j

should be forced to be by the
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stronger weighting term ��
i

− �
j

�2. In cooperation with
O(C)dist , the maximization of Eq.(22) additionally manages
to regulate cohort closeness and between-cohort sample
scatter.

For the eigen-COVA model, we optimize a multiobjec-
tive function expressed as

↵⌘O(C)dist + (1 −↵)O(L)dist −↵(1 − ⌘)Oaux, (23)

where the parameters 0 < ↵,⌘ < 1 regulate the strengths
of the constituent rules. Specifically, ↵ controls the trade-
off between the local neighbor preservation and the global
cohort control, whereas ⌘ controls the trade-off between
cohort proximity and sample separation. It is now possible,
after incorporating the projections Z = FU and E = ⌥V, to
rewrite this optimization more compactly as

min

P∈ �k̃+k�×k
f(P) = tr�PT OeigP� , (24)

subject to scale and orthogonality constraints, with the ma-
trix P = �UT ,VT �T containing the two sought projection
matrices. The symmetric (˜k + k) × (˜k + k) matrix

Oeig = O1 + ↵⌘TT L�� 0
l×l R

W
�

RT 0
c×c �� T (25)

aggregates the entire problem information and the two
user-defined weights ↵ and ⌘, where L(⋅) denotes the
Laplacian matrix of a square matrix input. The defini-
tion of Oeig depends on the (l + c) × (˜k + k) matrix T =
� F 0

l×k
0
c×k̃ ⌥

�, and the symmetric (˜k + k) × (˜k + k) matrix

O1 = � (1 −↵)FT L(W)F 0
k̃×k

0
k×k̃ −↵(1 − ⌘)⌥T L(W

�

)⌥ �.
The solution of Eq.(24), accompanied by the constraint

PT P = I
k×k, is straightforward through the eigenvectors

of Oeig that correspond to the smallest k eigenvalues. The
first ˜k rows of P store the sample projections U, while the
remaining rows the auxiliary projections V of the cohort
prototypes. The existence of multiple projections is war-
ranted by the symmetry of Oeig, which makes P orthogonal.
Nevertheless, these eigenvectors cannot give orthogonal U
and V, since PT P = UT U + VT V = I

k×k. Therefore, we
employ an orthogonalization procedure typically used in
sequential projection pursuit algorithms [50], to compute the
solution in k steps. In each step, only one eigenvector of Oeig
corresponding to the smallest eigenvalue is needed (this can
be done using, for example, the inverse power method).
In each subsequent step, the contribution of the previously
found projection is removed from the original data samples
and prototypes. Specifically, if for the tth step, we denote
by F(t) and ⌥(t) the matrices of the data samples and
prototypes, respectively, we can use the update rule F(t+1) =
F(t) �I

k̃×k̃ − u(t)u(t)T
u(t)Tu(t) � and C(t+1) = C(t) �I

k×k − v(t)v(t)T
v(t)T v(t) �

with the initializations F(1)=F and C(1)=C from the original
problem data. This procedure projects all the samples on
the orthogonal complement of the k-dimensional subspace
of k̃ spanned by the basis {u(t)}k

t=1, and similarly for
the prototypes. In this way, the geometric characteristics
of the embedded samples and prototypes associated with
each dimension, can potentially capture separate aspects of

the data that enhance the exploratory value of the resulting
visualization. The optimization involves k updates of the
projection vectors. Each update relies on the computation of
the (˜k + k) × (˜k + k) matrix Oeig and of a single eigenvector.

3.3 Model Implementation Details
The specific COVA embedding models (Section 3.1) are
referred to as COVA-E1 (using O(C)dist , O(L)dist ), COVA-E2 (using
O(C)KL , O(L)KL ), COVA-E3 (using O(C)dist , O(L)KL ) and COVA-E4
(using O(C)KL , O(L)dist ), where the employed objectives are the
ones which correspond to the O(C) and O(L) terms in
Eq.(13). Similarly, for the COVA projection models (Section
3.2.1), we define the corresponding COVA-P1, COVA-P2,
COVA-P3 and COVA-P4 models. The COVA-E1 and eigen-
COVA models possess analytical solutions, while the other
versions (E2-4 and P1-4) are optimized iteratively using
gradient descent with standard line search. Compared to
existing visualization techniques that usually possess com-
putational complexity quadratic to the sample size [20],
the increased complexity of COVA is only linear to the
sample size. A detailed complexity analysis is provided in
Appendix E.

To visualize large datasets, [20] proposes an effective
strategy by displaying only a random subset of the samples
but utilizing information gathered from the entire dataset,
which we adopt for large-scale COVA visualizations. For
P1-P4, their gradient computation is more expensive com-
pared to the embedding models. In order to speed them
up, we apply stochastic gradient descent through gradient
estimations from a sample subset [21], instead of using the
entire dataset. Parallel and multi-core executions could also
be used to facilitate futher accelerations. When optimizing
E2-4, a rank examination of the updated matrix Z

i

+ ⇠,
whose size is l × k, is performed in each iteration, and this
introduces an extra cost of O(lk2). Given its small column
size (k = 2,3), it is unlikely that a rank deficient embedding
matrix is obtained in every iteration. Thus, we perform
retraction mapping every a fixed number (e.g., N

c

= 10)
of iterations instead of every single iteration, leading to re-
duced computational cost (here, N

c

is referred to as the rank
checking condition number). To facilitate practitioners in the
field, we present pseudo-code of the proposed algorithms
together with initialization guidelines in Appendix F.

4 EXPERIMENTAL ANALYSIS AND RESULTS
We compare the different versions of COVA with various
popular and state-of-the-art visualization and representa-
tion learning methods. These include the unsupervised em-
bedding methods LLE [9], SNE, t-SNE, local linear coordina-
tion (LLC) [51], Isomap [10] and the unsupervised embed-
dings computed from the Laplacian matrix defined in local
discriminant models and global integration (LDMGI) [16],
the semi-supervised deep embedding [32], the supervised
t-SNE embedding (S-t-SNE) [23], the supervised projection
methods linear discriminant analysis (LDA) [52], NCA [21]
and MCML [22], as well as the recently developed multi-
modal manifold analysis (MMA) [29]6. Results evaluation

6. MMA represents a multi-view strategy relying on mixing multiple
types of data proximities, and we use it here as a supervised embedding
tool to mix the neighboring and class-based proximities.
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(c) t-SNE, Sn = 91.9%
Fig. 1. Illustration of COVA-E1 and t-SNE embeddings for the 2D
synthetic Sinusoid data. The used cohort prototypes for COVA-E1 are
marked in (a) as solid circles.

is based on qualitative visual comparisons and quantitative
analyses based on cohort separation (Ss), cohort positioning
(Sc or S(r)c ) and sample neighbor preservation (Sn) scores as
described in Appendix G. To compute Sn, ̄ is set to the 90%
of the size of the smallest cohort. For illustration purposes,
we restrict the visualizations to k = 2 dimensions.

4.1 Demonstration with Synthetic Data
First, we provide a simple demonstration using 2D synthetic
data containing the sinusoidal shape shown in Fig.1(a). We
employ 2D data as it is straightforward to perform a visual
comparison of the original and reorganized cohort position-
ings in the two corresponding spaces of equal dimensional-
ity. The mean sample from each cohort is used as its cohort
prototype (marked in Fig.1(a) with a solid circle); further
implementation details are provided in Appendix H.1. The
visualization output of COVA-E1 with ↵ = 0.1 is displayed
in Fig.1(b). It can be seen that COVA can effectively control
the cohort locations through the use of predefined proto-
types. The output from applying t-SNE to the same data is
displayed in Fig.1(c). Although it offers a good S

n

score, the
visualized cohort structure is different from the original one,
where two cohorts split into fragments as indicated by the
solid and dashed boxes of Fig.1(c).

Tables 3, 4 show that embedding methods, such as LLE,
SNE and t-SNE (and their supervised versions), do not
reflect well the original cohort structure for some example
3D synthetic datasets. Here, we use COVA to visualize the
Cylinder2 dataset as shown in the last row of Table 3.
To generate 2D cohort prototypes from the 3D input data
points, t-SNE is applied to a Gaussian similarity matrix
computed between the cohort centers. These prototypes,
which are displayed in Fig.2(a), reveal intrinsic patterns
of the original cohort arrangements and guide COVA to
produce cohort structure closer to the original structure.
Example output of E2 and E3 with ↵ = 0.6 is displayed in
Figs.2(b),2(c), with the output of other COVA models shown
in Appendix H.1 (see Fig.H.4).

As evidenced by Fig.1(c) and Tables 3,4, preserving only
individual sample neighbors in the embedded space does
not guarantee a reliable global arrangement of data cohorts.
Compared to LLE, SNE and t-SNE that are specialized at
neighbor preservation, COVA can sometimes violate certain
sample neighbor links, but gains control over the global
cohort structure (see Figs.1,2). By doing so, the benefit is
that the distances between visualized cohorts start to carry
meaningful information rather than being arbitrary, and the
overall expressiveness of the visualized output is improved.
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Fig. 2. Illustration of COVA-E2 and COVA-E3 embeddings computed for
Cylinder2 data. (a) The computed prototypes.

Appendix H.1 displays additional results obtained with
different settings of cohort prototypes and another 2D syn-
thetic data, as well as comparative analysis between differ-
ent versions of COVA models (see Tables H.1,2) and analysis
of COVA parameters (see Figs.H.2,3).

4.2 Scene Image Visualization
We process 36,500 scene images from the Places2 image
database [53], belonging to 365 unique scene classes, each
containing 100 images. Every image is represented by
4,096 features extracted by a convolutional neural network
(CNN). A 36,500 × 36,500 local neighbor adjacency matrix W
is constructed by identifying 30 effective neighbors for each
image based on Gaussian similarity, where the Gaussian
kernel width is uniquely decided for each image based on a
fixed perplexity of 30 by following the same approach as in
[20]. Each scene class is treated as a cohort, and the cohort
membership matrix R is computed by Eqs.(10,11).

In the following experiments, images from targeted
scene classes are visualized. Cohort prototypes are com-
puted directly from the input data to display the scene
class structure as it exists in the original space. The cohort
distance matrix D is computed from W via Eq.(6), based
on which t-SNE is used to compute the feature vectors
of the cohort prototypes. The relative positioning of these
prototypes reflects the local neighboring relations between
scene classes, and S(r)c is used to evaluate the preservation
of such class neighbor structure in the new space.

4.2.1 Embedding based Visualization
Images from 30 randomly selected classes are displayed
with COVA weight set to ↵ = 0.6. Class neighbor preser-
vation is illustrated in Fig.3, where the computed cohort
prototypes preserve 60.4% of the original class neighbor
links, while COVA embeddings preserve over 90% of the
neighbor links indicated by the prototypes, and t-SNE only
preserves 30.8% of the original class neighbor links.

Figs.3(e),3(f) display the different class arrangements
from COVA-E2 and t-SNE. The prototypes approximate
the original link structure7 and enable COVA to offer class
arrangement much closer to the original space than t-SNE.

We further investigate how cohort prototypes influence
COVA by replacing a random subset of the generated
prototypes with random patterns. The change of COVA

7. When aggressively reducing feature dimension from 4,096 to 2
having a high number of classes, it is challenging to generate 2D
prototypes to perfectly reflect all the original neighbor links between
classes. Depending on the complexity of the class structure, cohort
prototypes approximate such structure with varying accuracy level.
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(a) prototypes vs. orig-
inal, 60.4%

(b) t-SNE vs. original,
30.8%

(c) COVA-E2 vs. origi-
nal, 58.3%

(d) COVA-E2 vs. pro-
totypes, 90.9%
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(e) COVA-E2
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(f) t-SNE

Fig. 3. (a)-(d): Illustration of class neighbor preservation (two effective
neighbors are identified). For each method pair “X vs. Y”, edges in solid,
dotted and dashed lines indicate true positive, false positive and false
negative neighbor links of X compared to Y. Link preservation accuracies
are shown in percentages. (e): COVA-E2 output, where the prototypes
are shown as “�”. (f): t-SNE output. Different cohorts are numbered and
correspond to different shadings.
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(d) COVA-E4
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(e) COVA-E1, 0%
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(f) COVA-E1, 33.3%
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(g) COVA-E1, 100%

Fig. 4. (a)-(d): Performance change for COVA embedding models for
varying percentages of random prototypes using Places2 images. (e)-
(g): Visualization output of COVA-E1 generated by using 0%, 33.3%
and 100% random prototypes, where the prototypes are shown as “�”.
Different cohorts are numbered and correspond to different shadings.

performance versus varying percentages (from 0% to 100%)
of random prototypes is shown in Figs.4(a)-4(d). The em-
bedded images of COVA-E1 together with the used cohort
prototypes are illustrated in Figs.4(e)-4(g). The figures show
a matching arrangement between the cohorts and their cor-
responding prototypes, indicating robust cohort positioning
control of COVA. When all the prototypes are generated ran-
domly, there is a drop in the S(r)c score. Cohort separation is
related to the distribution of the used prototypes. Therefore,
S
s

varies without a fixed pattern which matches the ran-
dom characteristic of those replaced prototypes. Figs.4(a)-
4(d) show that, no matter how many random prototypes
are included, local neighbor preservation performance for
individual samples is stable. In general, cohort prototypes
affect the global arrangement of cohorts more than the
local arrangement of individual samples as indicated by the
varying S(r)

c

and S
s

scores.
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(b) E4, Ss = 50%
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(c) S-t-SNE, Ss = 42%
Fig. 5. (a): Performance change for COVA-E4 and S-t-SNE for varying
percentages of labeled samples using Places2 images. (b): COVA-E4
output, where the prototypes are shown as “�”. (c): S-t-SNE output. Both
(b) and (c) are generated with 5% images labeled.

Another experiment is conducted to study how COVA
performs when only part of the samples are labeled. In each
trial, n

l

out of 100 images from each class are treated as
labeled samples, where n

l

∈ {5,10 ∶ 10 ∶ 90}. Class mem-
bership of the unlabeled samples is predicted by a KNN
classifier trained with the labeled ones. Fig.5(a) compares
the performance changes against varying number of labeled
images for COVA-E4 and S-t-SNE (� = 0.7), and results of
other COVA embedding models are shown in Appendix H.2
(see Fig.H.5). In addition to S(r)

c

computed by comparing
with the gold standard cohort prototypes generated using
all the images from each class based on their ground truth
labels, S′(r)

c

is computed by comparing with the input pro-
totypes generated using only the n

l

labeled images for each
class. In general, COVA is able to form desired cohort ar-
rangement matching the given cohort prototypes indicated
by reasonably good S′(r)

c

. However, the cohort separation
and positioning information can become less reliable when
fewer labeled samples are available, and this results in lower
S
s

and S(r)
c

. S-t-SNE is very strong at enhancing cohort
separation, indicated by its high S

s

score computed using
all the input labels (including the predicted ones for the un-
labeled images). However, it can result in overfitting when
there are few labeled samples available, e.g., being informed
by the wrongly predicted labels. This is exemplified by
Figs.5(b),5(c), where S-t-SNE generates cohorts with more
mixed shadings, indicating more misplaced images from
other classes, than COVA, given 5% labeled images.

In previous experiments, the COVA weight is fixed to
↵ = 0.6. We investigate how ↵ affects COVA by varying
it between 0 and 1. Performance changes are displayed
in Figs.6(a)-6(d) for different versions of COVA, where t-
SNE performance is displayed as a baseline. By increasing
↵, stronger cohort positioning and separation control is
enforced, resulting in increased S(r)

c

and S
s

scores, which
is however associated with a decreased S

n

score. This delin-
eates the trade-off between local neighbor and global cohort
control. Compared to t-SNE, there is a mild drop in the S

n

score of COVA. This is reasonable as COVA is designed to
simultaneously achieve multiple objectives and cannot offer
the highest scores for all measures. The output of COVA-E3
with different values of ↵ is shown in Figs.6(e)-6(g). Lower ↵
leads to less concentrated sample distributions within each
cohort. In general, ↵ should depend on whether a more
spread-out scatter plot with less accurate cohort location
control is preferred by the user over one with denser and
more tightly controlled cohorts.
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(e) COVA-E3, ↵ = 0.1
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(f) COVA-E3, ↵ = 0.6
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(g) COVA-E3, ↵ = 0.9
Fig. 6. (a)-(d): Performance change for the COVA embedding models by
varying ↵ from 0.1 to 0.9 using Places2 images. (e)-(g): Visualization
output of COVA-E3 with ↵=0.1, 0.6, and 0.9.

4.2.2 Projection based Visualization

In addition to visualization, we study out-of-sample exten-
sion for projection models by splitting the studied images
from each class to training and test sets. The compared
models project the same relation features F computed by
a Gaussian kernel with all the training samples used as the
sample prototypes. Results are demonstrated with ↵=0.9.
The effects of COVA weights ↵ and ⌘ (for eigen-COVA) are
investigated in Appendix H.2 (see Fig.H.8).

We examine COVA projections against varying number
of displayed scene classes, using 30% of images from each
class for training and the remaining ones to test. Similar
changing patterns are observed for multiple COVA projec-
tion models. Taking P1, P2 and eigen-COVA as examples,
Figs.7(a)-7(c) display their performance change, where the
performance of NCA is used as the baseline. As the class
number increases, S

s

and S(r)
c

drop for both COVA and
NCA. This shows that it becomes harder for projection mod-
els to control effectively the arrangement of higher num-
ber of classes. Local neighbor preservation is not affected
though, as indicated by stable S

n

score. Example output
of COVA-P1 and NCA is displayed in Figs.7(e),7(f),7(h),7(i).
Overall, COVA provides similar local sample neighbor con-
trol to NCA, but much better cohort control. Cohort control
of COVA projections can be improved by using compacted
features with combined cohort information (see Footnote
5). By using all the training samples as the representative
samples and copying the corresponding elements from W
to ˜S for compact feature generation, Fig.8 demonstrates the
improved cohort arrangement using COVA-P1 and eigen-
COVA, showing better match to the used cohort prototypes.

Appendix H.2 contains additional results. These in-
clude visual comparisons between COVA and other exist-
ing methods in addition to t-SNE, S-t-SNE and NCA (see
Figs.H.6,H.7.(a)), and results of the more challenging task of
visualizing 8,000 images from 80 scene classes using COVA
and t-SNE (see Fig.H.8). We observe how COVA projection
methods perform given different values of COVA weights
↵ and ⌘ (see Fig.H.9) and varying number of training sam-
ples (see Fig.H.10). We also provide an overall quantitative
comparison between COVA and existing methods in terms
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(d) 10 used prototypes
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(f) NCA, c = 10
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(g) 30 used prototypes
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(h) P1, c = 30
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(i) NCA, c = 30
Fig. 7. (a)-(c): Performance change for the COVA projection models by
varying class number from 5 to 30 using Places2 images. Example
output is illustrated for c=10, 30, including (d),(g) displaying the used
COVA cohort prototypes, (e),(h) COVA-P1 output, and (f),(i) NCA output.

of S
n

, S(r)
c

and S
s

(see Table H.3) and computational time
comparisons between COVA and representative state-of-
the-art methods (see Fig.H.11).

4.3 Publication Visualization with External Citations
We visualize 2,708 scientific publications from the Cora
collection [35], classified into one of the seven predefined
classes of “case based”, “genetic algorithms”, “neural net-
works”, “probabilistic methods”, “reinforcement learning”,
“rule learning” and “theory”. Each publication is described
by a binary word vector indicating the presence of 1,433
unique words. Additionally, citation link information be-
tween the publications is available, stored as a 2,708×2,708
binary matrix. Closeness between cohorts is computed ex-
ternally from the citation links, as explained in Section
3.1.1, based on which cohort prototypes are computed us-
ing t-SNE so that their relative positioning approximates
the citation strength between two publication cohorts. The
generated cohort prototypes are displayed in Fig.9(a).
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Fig. 8. Improved cohort arrangement exemplified by P1 and eigen-
COVA for different class numbers. Cohort prototypes are shown as “�”.
Different cohorts are numbered and correspond to different shadings.
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Fig. 9. COVA visualization for the Cora publications. Cohort locations
are controlled by the citation information. Different cohorts correspond to
different shadings. Centroids of the neighboring classes are connected
with solid lines and connection mismatches are shown with dotted lines.

Both word content and citation information is used to
derive enriched and compacted features for representing the
documents; further details are provided in Appendix H.3.
Euclidean distances are used to compute the local neighbor
weight matrix W by identifying 50 effective neighbors. The
cohort membership matrix is computed via Eq.(12). Around
15% of the samples are randomly chosen to be the ˜k sam-
ple prototypes for computing relation features. Given the
simpler cohort structure of seven classes (compared to the
thirty of Places2), there is a chance for COVA to preserve the
exact cohort locations as indicated by the prototypes, and
therefore S

c

is used to measure cohort positioning quality.
Fig.9 displays the COVA output from E1, E2, P1, P4

and eigen-COVA with ↵=0.9 and ⌘=0.92. The output of
other COVA models8 are shown in Appendix H.3 (see
Fig.H.11). It is shown that the overall relative locations and
proximities between the embedded cohorts match the distri-
bution of the cohort prototypes. We connect the centroid of
each class with its two undirected nearest (using Euclidean
distances) neighboring classes. The between-class neighbor
structure from each model can be directly compared with
the between-prototype structure in Fig.9(a). It can be seen,
that models E1 and P4 achieve a perfect match between the
linked neighbors of the prototypes and the cohorts, while
the remaining models achieve near perfect matches with
only few mismatched links. The visualisation output of ex-
isting algorithms is shown in Appendix H.3 (see Fig.H.12),
where the cohort locations and the closeness levels differ
notably amongst them.

In Appendix H.3, we additionally examine the effect of
↵ using COVA-E1 (see Fig.H.14), and show the quantita-
tive performance comparison between COVA and existing
methods for visualizing the seven publication cases (Table
H.3). We also study the same task, as illustrated in Table
2, to visualize unsupervised publication clusters by COVA
without relying on external information (see Figs.H.15,16).

8. The focus here is to compare the visualization output under the
same testing environment, and thus, projection techniques are exam-
ined in the same setup as embedding ones without training-test split.

4.4 Additional Experiments
Additional experiments on visualizing different types of
data objects, such as clinical trials, Flickr images and dis-
tributed semantic word vectors, are provided in Appendices
H.4-H.6. Different methods that can be used to generate co-
hort prototypes are compared in Appendix H.7. A summary
guide for the use of COVA is provided in Appendix H.8.

5 CONCLUSION

This work raised a critical issue of the current data visu-
alization practices for high-dimensional data, with regard
to their use of algorithms that generate low-dimensional
representations of the data, since such methods only focus
on preserving the local neighborhoods of the data patterns
and maintaining or enhancing the separability between data
cohorts. This results in obtaining patterns with the relevant
positions and proximities between cohorts varying arbitrar-
ily. We proposed a set of models, that can directly utilize
information sources, such as the high-dimensional data
itself or external domain-specific information, to administer
control of the neighborhood structure in both data samples
locally and cohort arrangements globally, via incorporating
cohort prototypes as landmarks. For the introduced models,
we also provided the mechanisms to optimize them and
obtain the low-dimensional target patterns under a set of
problem constraints using matrix manifold techniques. A
very efficient projection model based on matrix decompo-
sition was also proposed for large-scale applications. The
notable effectiveness and improvement of the proposed
algorithms over many existing methods for the purposes
of visualization, was demonstrated both qualitatively and
numerically using multiple synthetic and complex real-
world text and image datasets.
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APPENDIX A: DERIVING EUCLIDEAN GRADIENT
We summarize in the first column of Table A.1 the four

rule-specific objective functions O(C)
dist

(Z), O(L)
dist

(Z), O(C)
KL

(Z)
and O(L)

KL

(Z) after removing constant terms and rewriting

them in matrix notation. The second column of Table A.1

includes the calculations for all their Euclidean gradients

with respect to the embeddings, while Table A.2 with

respect to the projections. New notations needed in the

calculation include the following The l × c matrix T = [tij]
with tij = �1 + �zi − �j�22�−1. The l × l matrix Q = [qij] with

zero diagonal elements and off-diagonal ones computed

by qij = �1 + �zi − zj�22�−1. A diagonal matrix D(⋅) with

its elements corresponding to the row sums of the matrix

input. The log(⋅) function is applied to a matrix element-

wise. 0m×n is the m × n matrix with zero elements, and

1n the n-length constant column vector of ones. In the

following, we explain how to derive Euclidean gradient

for COVA embeddings and projections given the four rule-

specific objective functions.

A.1 OBJECTIVES O
(C)
DIST AND O

(L)
DIST

The objective O(C)
dist

can be expressed in matrix notation, as

O(C)
dist

= l�
i=1

c�
j=1

rij (zi − �j)T (zi − �j)
= l�
i=1

c�
j=1

rij �zT
i zi − 2zT

i �j + �T
j �j�

= l�
i=1
�
�

c�
j=1

rij
�
�zT

i zi − 2 l�
j=1

c�
j=1

rijz
T
i �j + c�

j=1
� l�
i=1

rij��T
j �j

=tr�ZT D(R)Z� − 2tr�ZT R⌥� + tr�⌥T D�RT �⌥� .
(A.1)

After removing the last constant term, the resulting for-

mulation is reported in Table A.1. Its Euclidean gradients

with respect to embeddings and projections are derived

by following the first-order and second-order derivative of

matrix trace, given as

@tr

�XT A�
@X

= A, (A.2)

@tr

�XT AX�
@X

= AX +AT X, (A.3)

where X denotes the variable matrix and A a constant

matrix. For embeddings, we have

Grad O(C)
dist

(Z) = @O(C)
dist

(Z)
@Z

= 2D(R)Z − 2R⌥. (A.4)

For projections, the objective function (with the constant

term removed) becomes

O
(C)
dist

(FU) = tr

�UT FT D(R)FU� − 2tr

�UT FT R⌥� , (A.5)

and its gradient is given as

Grad O(C)
dist

(U) = @O(C)
dist

(U)
@U

= 2FT D(R)FU−2FT R⌥. (A.6)

Replacing {�j}cj=1 with {zj}lj=1 and rij with wij , O(L)
dist

(Z),
Grad O(L)

dist

(Z) and Grad O(L)
dist

(U) in matrix notation can be

derived by following the same procedure.

A.2 OBJECTIVE O
(C)
KL

In the case of O(C)
KL

, with R = [rij] normalized to unit

element sum, it can be written as

O(C)
KL

= l�
i=1

c�
j=1

rij log
rij

p (zi�j)
= l�
i=1

c�
j=1

rij log rij − l�
i=1

c�
j=1

rij log p (zi�j) , (A.7)

of which the first constant term does not affect the optimiza-

tion. By focusing on the second term only, we have

O(C)
KL

= − l�
i=1

c�
j=1

rij log
���

�
1 + �zi − �j�22�−1

∑l
s=1∑c

t=1 �1 + �zs − �t�22�−1
���

= − 1T
l �R ○ log�T�1T

l T1c�−1��1c, (A.8)

where the two vectors 1l and 1c are used to realize the sum

operations ∑l
i=1∑c

j=1(⋅).
To assist the gradient calculation for O(C)

KL

, we introduce

four auxiliary variables dij = �zi − �j�2, tij = �1 + d2ij�−1,
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Table A.1
Rule-specific objective functions and their Euclidean gradients for computing COVA embeddings.

Objective function (with constant term removed): Euclidean gradient:

O(C)
dist

(Z) = tr�ZT D(R)Z� − 2tr�ZT R⌥�
Grad O(C)

dist

(Z) = 2D(R)Z − 2R⌥

O(L)
dist

(Z) = tr�ZT L(W)Z�
Grad O(L)

dist

(Z) = 2L(W)Z
O(C)

KL

(Z) = −1T
l �R ○ log�T�1T

l T1c�−1��1c
Grad O(C)

KL

(Z) = 2D(H)Z − 2H⌥, where H = �R − T �1T
l T1c�−1� ○ T

O(L)
KL

(Z) = −1T
l N1l, where N = �1T

l W1l�−1 W ○ log��1T
l Q1l�−1 Q� Grad O

(L)
KL

(Z) = 4L(G)Z, where G = ��1T
l W1l�−1 W − �1T

l Q1l�−1 Q� ○Q

Table A.2
Euclidean gradients of the rule-specific objectives for computing COVA

projections (H, G, D(⋅) and L(⋅) are as defined for Table A.1).

Grad O
(C)
dist

(U) = 2FT D(R)FU − 2FT R⌥

Grad O
(L)
dist

(U) = 2FT L(W)FU

Grad O
(C)
KL

(U) = 2∑l
i=1∑c

j=1 hij ��r(xi)�T
r (xi)U −�r(xi)�T

j �
Grad O

(L)
KL

(U) = 4 �FT D(G)F −∑l
i=1∑j≠i gij�r(xi)�T

r (xj)�U

U = ∑l
i=1∑c

j=1 tij and ⌫ij = tijU−1, and re-express O(C)
KL

by

utilizing ∑l
i=1∑c

j=1 rij = 1. This gives

O(C)
KL

= − l�
i=1

c�
j=1

rij log � tij
U
�

= − l�
i=1

c�
j=1

rij log tij + logU ��
l�

i=1
c�

j=1
rij
�
�

= − l�
i=1

c�
j=1

rij log tij + logU. (A.9)

It is straightforward to compute

@dij
@zi

= zi − �j

dij
, (A.10)

@tij
@dij

= −2dijt2ij , (A.11)

@ log tij
@dij

= 1

tij

@tij
@dij

= −2dijtij , (A.12)

@ logU

@dij
= U−1 l�

s=1
c�

h=1
@tsh
@dij

= U−1 @tij
@dij

= −2dij⌫ijtij . (A.13)

By utilizing Eqs.(A.9,A.12,A.13), we have

@O(C)
KL

@dij
= − l�

s=1
c�

h=1
rsh

@ log tsh
@dij

+ @ logU

@dij

= − rij @ log tij
@dij

+ @ logU

@dij= 2 (rij − ⌫ij)dijtij . (A.14)

Since the embedding vector zi affects O(C)
KL

through{dij}cj=1, we obtain the following gradient formulation

based on Eqs.(A.10,A.14)

@O(C)
KL

@zi
= c�
j=1

@O(C)
KL

@dij

@dij
@zi

= c�
j=1

2 (rij − ⌫ij) tij(zi − �j). (A.15)

Letting hij = (rij − ⌫ij) tij , which corresponds to the ij-th

element of the matrix H = �R − T �1T
l T1c�−1� ○ T, we have

@O(C)
KL

@zi
= c�

j=1
2hij(zi − �j) = 2��

c�
j=1

hij
�
�zi − 2

c�
j=1

hij�j ,

(A.16)

resulting in the following gradient in matrix notation

Grad O(C)
KL

(Z) = @O(C)
KL

@Z
= 2D(H)Z − 2H⌥. (A.17)

To compute the gradient of O(C)
KL

with respect to the

projection matrix utilizing zi = UT
�r(xi), we start from

the auxiliary variable dij , which is

dij =�UT
�r(xi) − �j�2

= �tr�UT
�r(xi)�T

r (xi)U� − 2tr�UT
�r(xi)�T

j � + �T
j �j� 12 .

(A.18)

Assisted by Eqs.(A.2,A.3), we have

@dij
@U

= 1

dij
��r(xi)�T

r (xi)U −�r(xi)�T
j � . (A.19)

Utilizing Eqs.(A.9,A.11), we have

@O(C)
KL

@U
= − l�

i=1
c�

j=1
rij

@ log tij
@U

+ @ logU

@U

= − l�
i=1

c�
j=1

rij
tij

@tij
@U
+ 1

U

l�
i=1

c�
j=1

@tij
@U

= − l�
i=1

c�
j=1
�rij
tij
− 1

U
� @tij
@dij

@dij
@U

= 2 l�
i=1

c�
j=1
�rij
tij
− 1

U
�dijt2ij @dij@U

= 2 l�
i=1

c�
j=1
(rij − ⌫ij)dijtij @dij

@U
. (A.20)

By incorporating Eq.(A.19) into Eq.(A.20) and using hij =(rij − ⌫ij) tij , the final gradient can be computed by

@O(C)
KL

@U
= 2 l�

i=1
c�

j=1
hij ��r(xi)�T

r (xi)U −�r(xi)�T
j � .

(A.21)

A.3 OBJECTIVE O
(L)
KL

Working with W = [wij] normalized to unit element sum,

the following equivalent version of O(L)
KL

with constant term

removed is used, given as

O
(L)
KL

= − l�
i=1�j≠iwij log

�
1 + �zi − zj�22�−1

∑l
s=1∑t≠s �1 + �zs − zt�22�−1 . (A.22)



3

Letting the zero-diagonal matrix Q store

�
1 + �zi − zj�22�−1

in its off-diagonals, O(L)
KL

can be expressed in matrix nota-

tions as

O(L)
KL

= −1T
l ��1T

l W1l�−1 W ○ log��1T
l Q1l�−1 Q��1l,

(A.23)

where 0 × log 0 = 0 is defined to deal with the zero diag-

onals of W and Q. To derive the Euclidean gradient O(L)
KL

,

four auxiliary variables

˜dij = �zi − zj�2, qij = �1 + ˜d2ij�−1,

U = ∑l
i=1∑j≠i qij and ⌫ij = qijU−1 are introduced. Utilizing

∑l
i=1∑j≠iwij = 1, we have

O(L)
KL

= − l�
i=1�j≠iwij log �qij

U
�

= − l�
i=1�j≠iwij log qij + logU l�

i=1�j≠iwij

= − l�
i=1�j≠iwij log qij + logU. (A.24)

It is straightforward to derive the following

@ ˜dij
@zi

= @ ˜dji
@zi

= zi − zj
˜dij

, (A.25)

@qij

@ ˜dij
= −2 ˜dijq2ij , (A.26)

@ log qij

@ ˜dij
= 1

qij

@qij

@ ˜dij
= −2 ˜dijqij , (A.27)

Euclidean gradient of the first term of Eq.(A.24), denoted

by T1, can be obtained by utilizing Eqs.(A.25,A.27) and the

symmetry of wij , qij and

˜dij , as

@T1

@zi
= − l�

s=1�t≠swst
@ log qst
@zi

= − ��wij
@ log qij

@ ˜dij

@ ˜dij
@zi

+wji
@ log qji

@ ˜dji

@ ˜dji
@zi

�
�

= (2wijqij + 2wjiqji)(zi − zj)
= 4wijqij(zi − zj). (A.28)

Euclidean gradient of the second term of Eq.(A.24) can be

obtained by utilizing Eqs.(A.25,A.26) and the symmetry of

⌫ij , qij and

˜dij , as

@ logU

@zi
= 1
U

l�
s=1�t≠s

@qst
@zi

= 1

U

�
�
@qij

@ ˜dij

@ ˜dij
@zi

+ @qji

@ ˜dji

@ ˜dji
@zi

�
�

= − �2 ˜dij⌫ijqij + 2 ˜djivjiqji� @ ˜dij
@zi= − 4⌫ijqij(zi − zj). (A.29)

Combining Eqs.(A.28,A.29), we get

@O(L)
KL

@zi
= @T1

@zi
+ @ logU

@zi
= 4(wij − ⌫ij)qij(zi − zj). (A.30)

Letting gij = (wij − ⌫ij)qij = �wij − qijU−1� qij , the gradient

formulation can be simplified as

@O(L)
KL

@zi
= 4gij(zi − zj). (A.31)

To derive the equivalent matrix version of

Eq.(A.31), we first store {gij}li,j=1 in the matrix

G = ��1T
l W1l�−1 W − �1T

l Q1l�−1 Q� ○ Q. It is obvious

that Eq.(A.31) is also the gradient of

O = 2 l�
i=1�j≠i gij�zi − zj�

2
2 = 2tr�ZT L(G)Z� , (A.32)

where L(G) is the Laplacian matrix of G. Since

@O(L)
KL

@zi
= @O

@zi
⇒ @O(L)

KL

@Z
= @O

@Z
, (A.33)

we can simply obtain

Grad O(L)
KL

(Z) = @O(L)
KL

@Z
= @O

@Z
= 4L(G)Z. (A.34)

To compute the Euclidean gradient of O(L)
KL

with respect

to the projection matrix, we start from

˜dij =�UT
�r(xi) −UT

�r(xj)�2
= �tr�UT

�r(xi)�T
r (xi)U� − 2tr�UT

�r(xi)�T
r (xj)U�

+tr�UT
�r(xj)�T

r (xj)U�� 12 , (A.35)

Based on Eqs.(A.2,A.3), we have

@ ˜dij
@U

= 1

˜dij
�
�r(xi)�T

r (xi) +�r(xj)�T
r (xj) −�r(xi)�T

r (xj)�U.

(A.36)

Utilizing Eqs.(A.24,A.26), we have

@O(L)
KL

@U
= − l�

i=1�j≠iwij
@ log qij
@U

+ @ logU

@U

= − l�
i=1�j≠i

wij

qij

@qij
@U
+ 1

U

l�
i=1�j≠i

@qij
@U

= − l�
i=1�j≠i�

wij

qij
− 1

U
� @qij
@ ˜dij

@ ˜dij
@U

= 2 l�
i=1�j≠i�

wij

qij
− 1

U
� ˜dijq

2
ij
@ ˜dij
@U

= 2 l�
i=1�j≠i (wij − ⌫ij) ˜dijqij @ ˜dij

@U
= 2 l�

i=1�j≠i ˜dijgij
@ ˜dij
@U

.

(A.37)

As shown in Eq.(A.36),

@d̃
ij

@U contains three terms including

T (1)ij = ˜d−1ij �r(xi)�T
r (xi)U, (A.38)

T (2)ij = ˜d−1ij �r(xj)�T
r (xj)U, (A.39)

T (3)ij = − 2 ˜d−1ij �r(xi)�T
r (xj)U. (A.40)

The first term contributes to

@O(L)
KL

@U by

�
�
@O(L)

KL

@U
�
�
1

=2 l�
i=1�j≠i ˜dijgijT

(1)
ij

=2��
l�

i=1
�
�

l�
j=1

gij
�
��r(xi)�T

r (xi)��U

=2FT D(G)FU, (A.41)
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the second term by

�
�
@O(L)

KL

@U
�
�
2

=2 l�
i=1�j≠i ˜dijgijT

(2)
ij

=2��
l�

j=1
� l�
i=1

gij��r(xj)�T
r (xj)��U

=2FT D(G)FU. (A.42)

and the last term by

�
�
@O(L)

KL

@U
�
�
3

=2 l�
i=1�j≠i ˜dijgijT

(3)
ij

= − 4��
l�

i=1�j≠i gij�r(xi)�T
r (xi)��U. (A.43)

The final Euclidean gradient of O(L)
KL

with respect to the

projection matrix is thus given by

@O(L)
KL

@U
=��

@O(L)
KL

@U
�
�
1

+ ��
@O(L)

KL

@U
�
�
2

+ ��
@O(L)

KL

@U
�
�
3

=4��FT D(G)F − 4��
l�

i=1�j≠i gij�r(xi)�T
r (xi)��

�
�U.

(A.44)

APPENDIX B: STIEFEL MANIFOLD

The set of

˜k × k matrices is denoted as the Stiefel manifold

M = �U � U ∈ k̃×k,UT U = Ik×k� , (B.1)

which is an embedded manifold of the vector space

k̃×k
with the dimension

˜kk − 1
2k(k + 1). In the task of dimen-

sionality reduction, we always have

˜k ≥ k. We provide

below a property summary of Stiefel manifold and show

how to derive several manifold defined constructs that are

related to our work. More details on optimization on matrix

manifold can be found in [1].

The tangent vector of a manifold M at the point U ∈M is

defined as a mapping ⇠U ∶ FU(M) → from a collection of

smooth real-valued functions FU(M) to . Each function

f ∈ FU(M) is defined on a neighborhood of U in the

manifold. Definition of the mapping ⇠U(f) relies on the

existence of a curve that lies within the manifold and starts

from U, denoted by u(t) ∈M with u(0) = U. When working

with an embedded manifold, we have

⇠U(f) = u̇(t)f = df(u(t))
dt

�
t=0 =D ¯f(U)[u′(0)], (B.2)

where

¯f is a real-valued function in a neighborhood of U
in the vector space

k̃×k
, and f is its restriction to the

manifold. Therefore, a tangent vector can be viewed as

a generalization of the notion of a directional derivative.

A natural correspondence can be established between a

tangent vector ⇠U and the

˜k × k matrix u′(0).
The Stiefel manifold satisfies the equation UT U = Ik×k.

Therefore, the curve that realizes the tangent vector ⇠U
at the point U ∈ M should satisfy uT (t)u(t) = Ik×k. By

differentiating both sides of the equation, it is

u′T (t)u(t) + uT (t)u′T (t) = 0k×k. (B.3)

Letting t = 0, this results in

⇠

T
U U +UT

⇠U = 0k×k. (B.4)

Given U ∈ M and its normalized orthogonal complement

U⊥ of size

˜k × (˜k − k) that satisfies UT⊥U = 0(k̃−k)×k and

UT⊥U⊥ = I(k̃−k)×(k̃−k), an arbitrary matrix ⇠ ∈ k̃×k
can be

represented as

⇠ = U⌦1 +U⊥⌦2, (B.5)

where ⌦1 ∈ k×k
and ⌦2 ∈ (k̃−k)×k

. In order to enable ⇠ to

be a tangent vector of the Stiefel manifold, Eq.(B.4) needs to

be satisfied, which results in

(U⌦1 +U⊥⌦2)T U +UT (U⌦1 +U⊥⌦2) = 0k×k
⇒ ⌦T

1 UT U +⌦T
2 UT⊥U +UT U⌦1 +UT U⊥⌦2 = 0k×k

⇒ ⌦T
1 +⌦1 = 0k×k. (B.6)

This indicates that the matrix ⌦1 should be skew-symmetric

in order to generate a tangent vector. Therefore, the tangent

space of the Stiefel manifold can be expressed as

TU⇠ = �U⌦1 +U⊥⌦2�⌦1 ∈ k×k
,⌦1 = −⌦T

1 ,⌦2 ∈ (k̃−k)×k� .
(B.7)

The projection of an arbitrary matrix ⇠ ∈ k̃×k
onto the

tangent space TU⇠ can be obtained by computing the closest

point in TU⇠ to ⇠, which is equivalent to finding the least

squared solution [2] of the following problem

min

⌦1∈ k×k,
⌦1=−⌦T

1

⌦2∈ (k̃−k)×k

O = �U⌦1 +U⊥⌦2 − ⇠�2F , (B.8)

where � ⋅ �F denotes the Frobenius norm. Utilizing UT U =
Ik×k, UT⊥U⊥ = I(k̃−k)×(k̃−k) and UT⊥U = 0(k̃−k)×k, the objective

function can be written as

O =tr �(U⌦1 +U⊥⌦2 − ⇠)T (U⌦1 +U⊥⌦2 − ⇠)�
=tr�⌦T

1 ⌦1� − 2tr�⌦T
1 UT

⇠�+
tr�⌦T

2 ⌦2� − 2tr�⌦T
2 UT⊥ ⇠� + tr�⇠T ⇠� . (B.9)

Since the matrix ⌦2 is unconstrained, its optimal solution

can be easily computed by setting

dO
d⌦2
= 0, which gives

dO

d⌦2
= 2⌦2 − 2UT⊥ ⇠ = 0, (B.10)

thus

⌦∗2 = UT⊥ ⇠. (B.11)

Differently, the matrix ⌦1 is constrained as a skew-

symmetric matrix. Therefore, we express it as ⌦1 =
1
2 �A −AT �

with A ∈ k̃×k
and incorporate this into Eq.(B.9)

so that A is optimized without any constraint. Euclidean

gradient of O with respect to A is given by

dO

dA
=1
4

dtr

��AT −A� �A −AT ��
dA

− dtr

��AT −A�UT
⇠

�
dA

=�A −AT � − �UT
⇠ − ⇠T U�

=2⌦1 − �UT
⇠ − ⇠T U� . (B.12)
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By setting the gradient

dO
dA to zero, it gives

⌦∗1 = 1

2

�UT
⇠ − ⇠T U� = skew�UT

⇠� . (B.13)

Finally, by incorporating Eqs.(B.11,B.13), the desired orthog-

onal projection onto the tangent space TU⇠ is given as

PU(⇠) =U⌦∗1 +U⊥⌦∗2
=U skew�UT

⇠� +U⊥UT⊥ ⇠
=U skew�UT

⇠� + �Ik̃×k̃ −UUT �⇠. (B.14)

The retraction mapping RUM ∶ TUM → U, which is a

mapping function from the tangent space to the manifold,

induces a curve u
⇠U ∶ t → RUM(t⇠U) capable of character-

izing a moving directed by the tangent vector ⇠U ∈ TUM
along the manifold. A retraction mapping needs to satisfy

the properties of (1) u
⇠U(0) = U so that the moving is

initiated at the point U in the manifold, and (2) u̇
⇠U(0) = ⇠U

so that the moving along this curve is in the direction of

⇠U. Every manifold that admits a Riemannian metric has a

retraction mapping defined by the Riemannian exponential

mapping, which however can be expensive to calculate in

some cases. For an embedded manifold, it is possible to turn

the computation of a retraction mapping into a procedure of

first moving away from U along the direction of ⇠U to arrive

at a new point U + ⇠U, and then projecting U + ⇠U back to

the manifold. Whether this procedure qualifies as a well-

defined retraction mapping is determined by how to project

U+⇠U, which meanwhile should also be computationally ef-

ficient. In the case of Stiefel manifold, the following function

qualifies as a retraction mapping [1]

RUM(⇠U) = ⇡1(�−1(U + ⇠U)), (B.15)

where ⇡1 ∶M ×N →M is a mapping function ⇡1(F,G) = F
that returns its first input component. The function � ∶
M ×N → k̃×k∗ is a diffeomorphism mapping �(F,G) = V,

where F belongs to the Stiefel manifold M , V ∈ k̃×k∗ is

from an open subset of the vector space

k̃×k
, G is from

an abstract manifold N such that dim(M) + dim(N) =
dim( k̃×k). There is a neutral element I ∈ N such that

�(F, I) = F.

Both QR factorization and polar decomposition result

in natural definitions of the mapping �. The QR factor-

ization of the input marix V ∈ k̃×k∗ is expressed as V =
qf(V)rf(V), where qf(V) is an orthogonal matrix (referred

to as the Q factor) belonging to M and rf(V) ∈ N is an

upper triangular matrix (referred to as the R factor). Given

�
QR

(qf(V), rf(V)) = V and letting V = U + ⇠U, the following

retraction mapping is obtained

1

RUM(⇠U) = ⇡1(�−1
QR

(U + ⇠U)) = qf(U + ⇠U), (B.16)

which is simply the Q factor of U + ⇠U. The polar de-

composition of an input matrix V ∈ k̃×k∗ is V = FG,

where G = �VT V� 1
2 ∈ N , and F = V �VT V�− 1

2
belonging

1. When updating the projection matrix U using gradient descent, by

controlling ⇠U through adjusting the step-size, it is always possible to

arrive at a new point U + ⇠U that is full rank and it thus belongs to an

open subset of the vector space

k̃×k
.

to the Stiefel manifold

2

. This defines a desired mapping

�
p

�V �VT V�− 1
2 , �VT V� 1

2 � = V. Utilizing the tangent vec-

tor condition in Eq.(B.4) and the manifold condition of

UT U = Ik×k, the following retraction mapping is obtained

RUM(⇠U) =⇡1(�−1p (U + ⇠U))
=(U + ⇠U)�(U + ⇠U)T (U + ⇠U)�− 1

2

=(U + ⇠U)�UT U + ⇠TU U +UT
⇠U + ⇠TU⇠U�− 1

2

=(U + ⇠U)�Ik×k + ⇠TU⇠U�− 1
2 . (B.17)

APPENDIX C: COMPARATIVE EXAMPLE OF EMBED-
DING CONSTRAINTS
We provide an example to illustrate the effect of the three

feasible sets M , M1 and M2, for the minimization of O(L)
KL

only, using the Cora dataset. In this simple case, the re-

sulting embedding just preserves the local character of the

samples in the target space. Specifically, cosine similarities

are used to construct the document proximities, and then

a 10-nearest neighbor search is applied to construct local

neighbor adjacency matrix. For M2, we use B = D(W),
to follow the traditional setup [3], [4], and we execute the

actual minimizations with the aid of the Manopt toolbox [5].

The computed 2-dimensional embeddings are displayed in

Fig.C.1. It can be seen that, for this example, M and M2

provide smoother and more spread out data distributions

than M1.

APPENDIX D: ANALYSIS OF COVA-E1, COVA-P1
The analytical solution of the COVA embedding model

based on Eqs.(1,6), referred to as COVA-E1 in the

manuscript, can be derived. Its minimizing objective func-

tion can be formulated as

O = ↵tr�ZT D(R)Z� − 2↵tr�ZT R⌥� + 2(1 −↵)ZT L(W)Z.
(D.1)

By setting its Euclidean gradient equal to zero, we have

↵D(R)Z −↵R⌥ + (1 −↵)L(W)Z = 0. (D.2)

This results in

Z = [↵D(R) + (1 −↵)L(W) + ⇣Il×l]−1 R⌥, (D.3)

where Il×l is the l × l identity matrix. The regularization pa-

rameter 0 < ⇣ � 1 is introduced to avoid matrix singularity,

and it is set to zero if the matrix ↵D(R) + (1 − ↵)L(W) is

invertible. The two matrices of R and ⌥ are naturally full

rank given independent cohorts, and thus the embedding

matrix Z is the multiplication of three full-rank matrices and

belongs to the noncompact Stiefel manifold.

Regarding to its projection version referred to as COVA-

P1 in the manuscript, the minimization objective function

can be expressed as

min

U∈ k̃×k,
UT U=I

k×k

O = ↵tr�UT FT D(R)FU� − 2↵tr�UT FT R⌥�

+ (1 −↵)tr�UT FT L(W)FU� . (D.4)

2. Letting V = W⌃PT
denote the singular value decomposition, we

have G = (VT V) 12 = P⌃PT
, F = V(VT V)− 1

2 =WPT
, FT F = Ik×k ∈M .
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Figure C.1. Visualizing Cora publications by minimizing O

(L)
KL , under the three different feasible sets M , M1 and M2.

By introducing a symmetric Lagrange multiplier matrix ⇥ ∈
k×k

, stationary values of the following Lagrange function

are sought

L = O + tr�⇥ �UT U − Ik×k�� . (D.5)

Its gradient with respect to U is given as

@L

@U
= 2FT [↵D(R) + (1 − ↵)L(W)]FU+U �⇥ +⇥T �−2↵FT R⌥.

(D.6)

Letting A1 = 2FT [↵D(R) + (1 −↵)L(W)]F and A2 =
2↵FT R⌥ and setting the gradient equal to zero, we have

A1U +U�⇥ +⇥T � = A2. (D.7)

This resembles a constrained version of Sylvester equation

by orthogonality. This, together with the undetermined

Lagrange multiplier matrix ⇥, does not leave us an easy

analytical solution. Alternatively, a gradient descent ap-

proach operating over the Stiefel manifold through the use

of Riemannian gradient and retraction mapping is used to

optimize the projection matrix.

APPENDIX E: COMPLEXITY ANALYSIS

Some COVA models require iterative embedding optimiza-

tion (E2-4), some iterative projection optimization (P1-4),

and some have analytical solutions (E1 and eigen-COVA).

The existing iterative embedding techniques (e.g., t-SNE

and SNE) usually have a computational complexity around

O(l2) and the existing iterative projection ones (e.g., NCA

and MCML) around O(l2d2). Compared to their equivalent

existing types, E2-4 and P1-4 have a moderately increased

complexity that is linear in the sample size. E1 has com-

parable complexity to many existing spectral embedding

techniques (e.g., LE and LLE), and eigen-COVA has a par-

ticularly low complexity due to its use of prototype and

projection based feature transformation. In the following,

we provide a detailed complexity analysis for different

COVA models based on their model input preparation and

optimization.

Construction of the neighbor adjacency matrix W is

a common process required by both COVA and typical

visualization techniques. Its computational complexity is of

O(l2) in the sample size l [6]. Additionally, COVA requires

to construct the cohort confidence matrix R and cohort

prototype matrix ⌥. The complexity for computing R is of

O(lc), and for ⌥ is quadratic (or cubic) in the cohort size

c depending on the used reconstruction technique. COVA

projection also requires to prepare a fourth input of relation

feature matrix F, which is of O(l˜k). Because c is in general

small and the sample prototype size

˜k can be set to a

reasonably small value, both O(lc) and O(l˜k) correspond

to computationally efficient operations that mainly depend

on the sample size l.
Operating on the prepared input, COVA-E1 and eigen-

COVA offer analytical formulations of the optimal solution.

Their complexity is dominated by computing the inverse

of an l × l matrix for COVA-E1, and computing a single

eigenvector for a total of k matrices of size (˜k + k) × (˜k + k)
for eigen-COVA. Therefore, the complexity of computing

COVA-E1 solution is of O(l2 log l), which is comparable

to those spectral embedding techniques based on eigen-

decomposition of a square matrix of sample size that is

O(l3). The complexity for computing the eigen-COVA solu-

tion is of O(k(˜k+k)3), as k decompositions are needed. This

is low because for visualization purposes k is typically 2 or

3 and the size of sample prototypes

˜k is usually reasonably

small.

The iterative COVA models perform gradient descent

optimization over a matrix manifold. Complexity for com-

puting their Euclidean gradient in each iteration is O(l2+la)
for E2-4, where a is c2 or ck depending on the employed

version, and also O(l2˜k + lb) for P1,4 and O(l2˜k2 + lb)
for P2,3, where b is the product between combinations of

k,

˜k, c depending on the model versions. Compared to

existing iterative embedding techniques, such as t-SNE and

SNE, which compute their gradient in each iteration with a

complexity of O(l2), the added complexity of E2-4 is linear

in the sample size, which is moderate due to the small

cohort size c and output dimensionality k. Compared to

existing iterative projection techniques, such as NCA and

MCML with a complexity of O(l2d2), the use of prototype

based relation features in P1-4 reduces the complexity when

˜k � d. When d and

˜k are of similar scale, the increased

complexity of P1,4 compared to existing ones becomes O(lb)
which is linear in the sample size.

In addition to the Euclidean gradient computation, op-

timization of E2-4 and P1-4 requires extra cost to convert

the Euclidean gradient to Riemannian gradient and also

extra cost to project the updated solution back to the mani-

fold through retraction mapping at each iteration. For E2-
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Table F.1
Pseudo-code of E2-4 models for learning COVA embeddings.

1) Input: l × d data matrix X, l × c cohort label matrix Y, output

dimension k, COVA parameter ↵, iteration number N , rank

checking condition number Nc.

2) Model input preparation:

a) Compute l × l weight matrix W and l × c cohort

confidence matrix R from X and Y.

b) Compute c × k cohort prototype matrix ⌥ from either

X or external information (Section 3.1.1).

3) Model initialization: Set embedding matrix Z0 according to a

chosen initialization scheme, and i = 0.

4) Model optimization: While i < N :

a) Compute Riemannian gradient gradO(Zi) that is

equal to Euclidean gradient GradO(Zi) (Table A.1).

b) Perform standard line search to find step size �.

c) Update embedding by

Zi+1 = � RZ
i

M ( −� gradO(Zi) ) if ⌧ = 1,−�gradO(Zi), otherwise,

where the control variable ⌧ ∈ {0,1} is set to perform

retraction mapping every Nc iteration and in the last

iteration.

d) Set i← i + 1.

5) Output: Return embedding matrix ZN .

4, the Euclidean and Riemannian gradients are equal in

the noncompact Stiefel manifold. Therefore, the increased

complexity is only caused by the retraction mapping, which

needs a singular value decomposition of the updated l × k
embedding matrix with a complexity of O(lk2). For P1-4,

the gradient conversion and retraction mapping are imple-

mented based on Eq.(B.14) and Eq.(B.16 or B.17), of which

the overall complexity is around O(˜k2k + ˜kk2 + k3) and it is

reasonably low due to the small values of

˜k and k.

APPENDIX F: PSEUDO-CODE

Among different COVA models, E1 has an analytical solu-

tion which can be directly computed by Eq.(15), E2-4 and P1-

4 are optimized iteratively by performing gradient descent

over a matrix manifold with standard line search, with

iterations terminating after reaching the maximum iteration

number or when the norm of the Riemannian gradient is

smaller than a predefined tolerance. The implementation of

P1-4 is based on stochastic gradient descent, which uses a

subset of data samples to estimate the gradient (so-called

batch training), to speed up the gradient computation.

Projections of eigen-COVA are computed based on eigen-

decomposition of small-size matrices and sequential orthog-

onalization procedure. We provide pseudo-code for E2-4 in

Table F.1, for P1-4 in Table F.2, and for eigen-COVA in Table

F.3.

With regard to the initialization for E2-4 and P1-4, apart

from a random initialization, we suggest two alternative

schemes for E2-E4. One is to start from the eigenvectors

of the Laplacian matrix of the local weights W, that cor-

respond to the smallest nonzero eigenvalues. These initial

embeddings preserve the local neighborhood structure in-

dicated by W. Subsequently, the gradient descent update

will modify the embedding to assume the desired global

cohort arrangement. Another option is to initially restrict the

Table F.2
Pseudo-code of P1-4 models for batch training COVA projections.

1) Input: l × d data matrix X, l × c cohort label matrix Y, proto-

type sample size

˜k, output dimension k, COVA parameter ↵,

iteration number N , batch size l
batch

, cycle number T .

2) Model input preparation:

a) Compute l × l weight matrix W and l × c cohort

confidence matrix R from X and Y.

b) Compute l× ˜k relation feature matrix F from X (and Y
if necessary).

c) Compute c × k cohort prototype matrix ⌥ from either

X or external information (Section 3.1.1).

3) Model initialization: Set projection matrix U0 according to a

chosen initialization scheme, and j = 1.

4) Model optimization:

1: while j ≤ T do
2: Shuffle all data samples and set l

used

= 0.

3: while l
used

< l do
4: Set i = 0, and extract sample batch with indices

I = l
used

+ 1 ∶min(l
used

+ l
batch

, l).
5: while i < N do
6: Batch estimation of GradO(Ui) (Table A.2).

7: Compute Riemannian gradient by Eq.(B.14):

gradO(Ui) = PU
i

(GradO(Ui)) .
8: Perform standard line search to find step size �.

9: Update projection by Eq.(B.16 or B.17):

Ui+1 = RU
i

M ( −� gradO(Ui) ) .
10: Set i← i + 1.

11: end while
12: Set U0 ← UN , l

used

← l
used

+ l
batch

.

13: end while
14: Proceed to the next training cycle, j ← j + 1.

15: end while
5) Output: Return projection matrix UN .

embedded patterns of all the samples from the ith cohort, to

coincide with its prototype ci. This is equivalent to forcing

all the original samples to gather at one fixed location deter-

mined by their cohort prototype. Subsequently, the descent

update will spread the patterns to assume the desired local

data structure. For P1-P4, apart from random initialization,

the optimization can also be initialized with the eigenvectors

of FT L(W)F corresponding to the smallest eigenvalues.

According to orthogonal locality preserving projection [7],

this initial solution linearly projects the relation features

F to an embedding space where the local neighborhood

structure in W is preserved. The gradient descent will then

gradually update the projection matrix, so that the desired

global cohort distribution is brought into consideration.

APPENDIX G: MEASURES FOR VISUALIZATION AS-
SESSMENT

To evaluate the visualization output with respect to the

cohort separation, cohort relevant positioning and sample

local neighboring patterns for improved visualization, we

make use of three score functions. The first one, denoted

by S
s

, measures the level of separability between cohorts

expected to be shown in the target space. One direct way

for quantifying this, is via the one-nearest-neighbor classi-

fication rate that examines the compatibility between the



8

Table F.3
Pseudo-code of eigen-COVA for computing COVA projections.

1) Input: l×d data matrix X, l×c cohort label matrix Y, prototype

sample size

˜k, output dimension k, COVA parameter ↵ and ⌘.

2) Model input preparation:

a) Compute l × l weight matrix W and l × c cohort

confidence matrix R from X and Y.

b) Compute l× ˜k relation feature matrix F from X (and Y
if necessary).

c) Compute c × k cohort prototype matrix ⌥ from either

X or external information (Section 3.1.1).

3) Projection Computation:

1: Set t = 1, F1 = F and ⌥1 =⌥.

2: while t ≤ k do
3: Compute matrix O

eig

using Ft and ⌥t by Eq.(25).

4: Compute O
eig

’s eigenvector p with smallest eigenvalue

p = � u

(t)
v

(t) � .
5: Update feature and cohort prototype matrices by

F(t+1) = F(t) ��Ik̃×k̃ − u

(t)
u

(t)T
u

(t)T
u

(t)
�
� ,

⌥(t+1) =⌥(t) ��Ik×k − v

(t)
v

(t)T
v

(t)T
v

(t)
�
� .

6: Set t← t + 1.

7: end while
4) Output: Return projection matrix U = �u(1), . . . ,u(k)�.

learned embedding and the cohort memberships. A higher

classification indicates a stronger separability between co-

horts.

The second score, denoted by S
c

, checks whether the

data samples from each cohort are distributed around the

location indicated by its cohort prototype. It relies on the

classification rate using the cohort prototypes {ci}ci=1 (or{ei}ci=1 for eigen-COVA) as the training set and the embed-

ded samples as the test set. A higher rate indicates that more

samples are distributed closer to the correct prototypes of

their own cohorts, as this demonstrates a better preservation

of the desired cohort arrangement.

Sometimes, when the data cohort structure of interest

is complex, it can be difficult for the algorithm to locate

a cohort in an exact position pointed by the prototype.

However, such an exact matching can be unnecessary as

long as a desired relevant positioning structure of cohorts

is maintained, which can be assessed by directly examining

the proximity profiles between cohorts. Let the two c × c

binary matrices �(v)c and �(d)c store the visualized and

desired neighbor adjacency links between cohorts, where

the ijth element indicates if the ith cohort is in the -nearest

neighbors of the jth cohort or vice-versa. An alternative

score

S(r)
c

= 1T
c ��(v)c ○�(d)c �1c

1T
c �

(d)
c 1c

(G.1)

can be computed. It represents the ratio between the number

of correctly preserved cohort neighbor links (�(v)c ○�(d)c ) in

the target space and the number of desired links �(d)c . For

instance, �(v)c can be constructed by comparing Euclidean

distances between the cohort centers in the target space, and

�(d)c by comparing Euclidean distances between the given

cohort prototypes. Between the two scores of S
c

and S(r)
c

,

S
c

examines the cohort arrangement by looking at the rele-

vant positioning between individual samples and the exact

cohort prototypes, while S(r)
c

does so in a more abstract

manner by looking at the average closeness between cohorts

and focusing on their neighboring relationships.

Finally, the local neighborhood of each individual data

sample is expected to be preserved. Since the relevant dis-

tances between cohorts are reorganized based on the pre-

defined cohort prototypes, it is not meaningful to consider

the inter-cohort neighbors when comparing the original and

embedded data. Only the local neighbor structure within

each cohort is examined. We use N(x,) to denote the

index set of the samples that are the  nearest intra-cohort

neighbors to x (excluding self) searched in the original

feature space. We then compare the compatibility between

the neighbors in the original and embedding spaces for each

data sample, by calculating the ratio

�N(x
i

,)�N(z
i

,)�
 . Its

average over all the data samples is

S
N

() = 1

l

l�
i=1
� N(xi,)�N(zi,) � . (G.2)

To make this score insensitive to local scales, we finally use

its average S
n

= 1
̄ ∑̄

=1 SN

(), over the multiple neighbor-

hood sizes (up to ̄ defined later).

APPENDIX H: ADDITIONAL EXPERIMENTATIONS
AND RESULTS

H.1 2D AND 3D SYNTHETIC DATA

When experimenting with synthetic datasets, Euclidean dis-

tances are used for all models to compute the local weight

matrix W, the cohort membership matrix R and the relation

feature matrix F. Specifically, the weight matrix is computed

as W = S ○N(S,50), where the similarity matrix S between

the samples is taken from the Euclidean by subtracting it

from its maximum matrix element, and the cohort mem-

bership matrix is computed via Eq.(12). For the projection

models, the relation features F are computed using

˜k=500

randomly chosen sample prototypes.

We demonstrate COVA’s capability of cohort control us-

ing the two 2D synthetic datasets Sinusoid and Compound

[8], plotted in Table H.1(a,i). The goal is to show that loca-

tions of data cohorts can be fully controlled by predefined

cohort prototypes through COVA. The distributions of the

predefined cohort prototypes are illustrated in Table H.2.

They are chosen to present cohort arrangements that are

very different from the original ones in order to demonstrate

the cohort control effectively. The COVA projection models

are demonstrated using P1, P4 and eigen-COVA, as we have

observed that P2 and P3 provide very similar performance

to P1 and P4 for both datasets. Performance is reported

by setting the parameter ↵ to a high value of 0.95, to

focus more on cohort arrangement than local neighborhood

preservation, and the parameter ⌘ for eigen-COVA only is

fixed to 0.8. In order to inspect the neighbor preservations,

we randomly choose several example points from different

cohorts and identify their four nearest neighbors using
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Table H.1
Illustration of the COVA models using the Sinusoid (top half) and Compound (bottom half) datasets. Cohort locations are controlled by the

manually defined prototypes shown in Table H.2. Different cohorts correspond to different shadings (and these also correspond to the Table H.2
prototypes). Example sample points randomly selected from different cohorts, together with their four nearest neighbors, are also highlighted in

both original and target spaces, using the same shading and marker (�, △, or �, etc.).
(a) Sinusoid (b) COVA-E1 (c) COVA-E2 (d) COVA-E3
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Euclidean distances in the original space. We finally mark

them in both the original and the target spaces as shown

Table H.1.

It can be seen from Table H.1 that, for these two datasets,

COVA models E1 and E3 provide more forceful control

of the cohort distribution than models E2 and E4, leading

to more exact matches towards the cohort arrangements

predefined in Table H.2, and tighter sample distributions

within each cohort. For instance, the points marked by �
and ▷ from the same circularly shaped cohort of Table

H.1(i), appear superimposed in the middle-right cohort of

Table H.1(j) generated by E1. This can be justified by the

relatively high value of ↵, which prioritizes rule 1 through

the objective O(1)
dist

used by both E1 and E3. The COVA

models E2 and E4, on the other hand, employ O(1)
KL

with

softer behavior for rule 1. Moreover, comparing E1 and E3,

as can be seen in Table H.1(d,l), E3 generates slightly less

concentrated cohorts than E1 in Table H.1(b,j). This is due

to E3 using KL divergence to build the objective O(2)
KL

for

the preservation of local neighborhoods. In general, from

the above observations and as discussed in Section 3.1.3, we

observe that the distance error objectives are more forceful

than the divergence ones in terms of data shaping control.

Although E1 and E3 create tighter sample distributions

within each cohort than E2, E2 possesses slightly higher Sc

score in the Sinusoid case (see Table H.2). This is caused by

several individual samples that are misplaced in a wrong

cohort around the boundary areas by the model. It can

be seen from Fig.H.1, that E1 and E3 generate more such

samples than E2, which consequently lower slightly their Sc

scores. When only focusing on the neighboring profiles of

the cohorts by using S(r)c to assess the cohort arrangement,

E1-3 possess the same score of S(r)c =100% (the effective

neighbor number is set as two). In this case, errors caused
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(c) COVA-E3

Figure H.1. Illustration of misplaced boundary points highlighted in boxes.

Table H.2
Comparison between the COVA models using the synthetic Sinusoid and Compound datasets, and the measures Sn, Sc and Ss. The first column

illustrates the corresponding 2D cohort prototypes explicitly created for the purpose of the demonstration.

Sinusoid COVA-E1 COVA-E2 COVA-E3 COVA-E4 COVA-P1 COVA-P4 Eigen-COVA
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S
n

70.1% 51.7% 59.3% 53.1% 94.2% 94.3% 85.1%

S
c

99.4% 99.8% 99.0% 98.1% 94.4% 94.4% 94.8%

S
s

99.4% 99.9% 99.3% 98.1% 94.3% 94.0% 94.4%

Compound COVA-E1 COVA-E2 COVA-E3 COVA-E4 COVA-P1 COVA-P4 Eigen-COVA
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39.0% 25.0% 32.1% 26.7% 58.9% 65.2% 41.9%

S
c

99.4% 75.4% 99.2% 69.9% 89.2% 65.6% 96.3%

S
s

99.6% 80.5% 99.3% 88.5% 88.1% 77.8% 96.7%

by a few misplaced individual samples are ignored.

As evidenced by the higher S
n

scores for both datasets in

Table H.2, all projection models provide better local neigh-

bor control then the embedding ones. Between the Sinusoid

and the Compound sets, it is more challenging to map the

Compound data, because its cohort structure in the original

space is less in tune with the structure of the predefined

prototypes. In this case, model P4 in Table H.1(o), fails to

produce the desired cohort arrangement, since it uses O(1)
KL

with less forceful cohort control. However, as seen in Table

H.1(f,g,h), for the simpler Sinusoid data, P4 is as successful

as the other projection models.

So far, we have fixed the COVA parameters to ↵=0.95,

and ⌘=0.8. To explore possible intrinsic trends on how these

parameters affect the visualization output, we experiment

with different values of ↵ (ranging from 0 to 1 with a step-

size of 0.1) for COVA-E2 and different value combinations

of (↵,⌘) (each ranging from 0.1 to 0.9 with a step-size of

0.1) for eigen-COVA using Sinusoid data. The changes in

the Sn, Sc and Ss scores versus different parameter settings

are plotted in Fig.H.2 and Fig.H.3, where we also display the

visualization output for several example parameter settings.

In the case of COVA-E2, similar observations are made to

those using Places2 and Cora data. As ↵ increases, stronger

cohort arrangement control is enforced, traded off by the

reduced local sample neighbor control. For the eigen-COVA

case with Sinusoid data, the performance is less sensitive to

↵ than to ⌘. As ⌘ increases, local neighbor control weakens.

Fig.H.4 displays more examples of COVA embeddings

computed for the 3D Cylinder2 dataset in addition to those

shown in Fig.2 of Section 4.1. The two figures together

suggest the order E1>E4>E3>E2 in terms of their cohort

control strength, which is slightly different from the 2D

synthetic data case. When the same setting of ↵=0.3 is used,

by moving from E3, E4 to E1, tighter cohorts are obtained.

In order to obtain equally tight cohorts as E1, E3 needs to

have its setting increased to ↵ = 0.6. Amongst all methods,

E2 generates the least tight cohorts when using the highest

↵. With regard to local neighbor preservation, E2 is the best

for this data.

H.2 PLACES2 IMAGES

In this Appendix, additional experiments and results using

Places2 images are presented. Fig.H.5 displays performance

changes of the three COVA embedding models E1-3 for

varying numbers of labeled images, where the performance

of S-t-SNE (� = 0.7) is used as the baseline. Similar obser-

vations to those based on Fig.5(a) in Section 4.2.1 can be

made. Fig.H.6 and Fig.H.7(a) visually compare the output

produced by various existing techniques. Contrary to ex-

isting methods generating arbitrary cohort layouts, COVA

produces output with more controllable cohort arrange-

ments. The two embedding techniques of COVA and t-SNE

are compared in Fig.H.8 in a more challenging task for

images from 80 different classes. There is some similarity

between the arrangements of some cohorts from t-SNE and

COVA; e.g., cohorts 3, 66 and 29 are positioned close to each

other by both. However, there is also significant difference
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Figure H.2. Changes of Sn, Sc and Ss scores versus different settings of Eigen-COVA weights ↵ and ⌘ evaluated using Sinusoid data. Several
examples of visualization are also demonstrated in (b) for different values of ⌘ with ↵ = 0.9, where the projected prototypes and the learned cohort
centers are marked by “�” and “○”, respectively.

Figure H.3. Changes of Sn, Sc and Ss scores versus different settings
of COVA weight ↵ using COVA-E2 for Sinusoid data. Several examples
of visualization output are also demonstrated for different parameters.

between their output; e.g., the three cohorts 59, 8 and 50

are placed by t-SNE in completely different positions from

those estimated from the original space (as indicated by the

prototypes).

We investigate the effect of ↵ and ⌘ for COVA projection

models. P1-P4 rely on a single parameter ↵, and they follow

very similar pattern when ↵ changes, for which the output

of P1 is illustrated in Fig.H.9(a) as an example. It can be seen

that its performance is much less sensitive to ↵ compared to

the embedding models shown in Fig.6, indicated by almost

zero change in S(r)c and Sn scores and a mild change in

Ss score. The effect of ↵ and ⌘ is jointly investigated for

eigen-COVA with results shown in Fig.H.9(b). Eigen-COVA

is less sensitive to ↵ than COVA embedding models E1-E4,

but is more sensitive to ↵ than P1-P4. Higher values of ↵
and ⌘ could lead to stronger cohort positioning control but

this can be associated with a slight drop in local neighbor

preservation score. When ⌘ is high, sometimes there can

exist some output with very low Ss score and peculiar

Table H.3
Numerical comparison of different algorithms and datasets based on

measures defined in Appendix G. Projection models are marked by (P).
For datasets with comparatively small number of data cohorts, Sn is
used, measuring an exact cohort match between individual samples

and the used prototypes. For datasets with larger cohort number, S(r)c
(shown as Scr for scene images) is used, measuring an approximated

neighbor match between cohorts.
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cohort shapes; an example is shown in Fig.H.9(d).

We observe how COVA projection methods perform

given varying number of training samples. The results are

shown in Figs.H.10(a),10(b) using P1 and P4 as examples

(other COVA models perform similarly), visualizing 10

randomly selected scene classes. Using 10% of the given
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Figure H.4. Illustration of COVA embeddings computed for Cylinder2 data.
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Figure H.5. Demonstration of performance change for COVA E1-3 and S-t-SNE against varying percentages of labeled samples using 30 classes
of Places2 images.

images for training, COVA-P4 output for the remaining

images are displayed in Fig.H.10(c). It can be seen from

Figs.H.10(a),10(b) that both cohort separation and position-

ing scores vary within a reasonable range, which implies

good generalization for COVA. The Sn score becomes higher

when there are more training images. This could be related

to the reduced number of image pairs being examined,

caused by increasing N
tr

and decreasing N
te

.

In the first row of Table H.3, we quantitatively compare

COVA and existing methods based on their Sn, S(r)c and

Ss scores. It is apparent that the existing methods do not

possess the ability to control cohort locations, as manifested

by the low S(r)c scores. It can be seen that the S
s

scores for

the COVA models are amongst the top within both the em-

bedding and projection categories. Meanwhile, the COVA

models also achieve reasonably good S
n

scores showing

good neighbor preservation. It has to be noted, that since

the COVA models are designed to simultaneously achieve

the three goals, it is not realistic that they offer the highest

scores for all three measures compared to those methods

that only focus on one or two objectives.

Finally, we empirically compare the computational times

between our implementations of COVA and existing imple-

mentations of three representative techniques of t-SNE, SNE

and NCA

3

. These three are considered to be the state-of-

the-art in the visualization field and cover both embedding

and projection techniques. Results are produced by running

MATLAB 2017a on a Mac with 4GHz Intel Core i7. COVA

projection models P1-4 are accelerated by stochastic gra-

dient estimation and partial parallel implementation using

the multiple cores. Fig.H.11 illustrates the resulting comput-

ing times for increasing number of samples (from 500 to

7,000) processing 4,096 data dimensions. It can be seen from

Fig.H.11(a) that eigen-COVA is extremely fast and t-SNE is

the second fastest. The three COVA models of E1, E2 and

P1 possess comparable computing time to SNE, while P2

and P4 are more time consuming. Compared to the existing

NCA implementation, all of the COVA implementations are

much faster. We have also run experiments for MCML using

its existing implementation, which however, is even slower

than NCA and therefore we do not include it in the figure.

H.3 CORA PUBLICATIONS

For the Cora dataset, we use the 2,708×1,433 binary matrix

˜X to store the word presences, the 2,708×2,708 binary matrix

⇥ = [✓ij] for the citation links, and the 2,708×7 binary

matrix Y as the class indicators. In order to have better data

3. Their implementations are downloaded from https://lvdmaaten.

github.io/drtoolbox, and the same for MCML.

https://lvdmaaten.github.io/drtoolbox
https://lvdmaaten.github.io/drtoolbox
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(a) COVA-E1 (↵ = 0.7)
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(b) COVA-E2 (↵ = 0.7)
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(c) COVA-E3 (↵ = 0.7)
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(d) COVA-E4 (↵ = 0.7)
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(e) Isomap
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(h) SNE
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(k) MCML
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(l) deep embedding

Figure H.6. Visual comparison between COVA and existing embedding methods using 30 classes of Places2 images. Different cohorts are
numbered and correspond to different shadings.
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Figure H.7. Visualization output generated by the eixsting unsupervised embedding method LDMGI for different datasets.

utilization, we enrich the word features with citation infor-

mation and compact them to derive the infused features.

Specifically, the 2,708×2,708 similarity matrix

˜S = S○N(S,30)
is constructed, with S computed from

˜X using cosine sim-

ilarities. The compacted word features

˜SYM−1
reflect the

frequency accumulation of the co-occurring words between

a publication and its neighbors from different classes. Simi-

larly, compacted citation features are computed as ⇥YM−1
,

reflecting the citation count accumulation between a publi-

cation and its cited ones from different classes. The com-

bined 14-dimensional features X = �˜SYM−1,⇥YM−1�
are

used as the algorithm input.

Fig.H.12 displays visualization output of other COVA

models in addition to those shown in Fig.9. These are

compared in Fig.H.13 with existing algorithms, where the

nearest neighboring classes of “genetic algorithms” (for

Cora) are highlighted for several representative methods,

such as in Figs.H.13(g),13(h). It can be seen that the co-

hort locations and the closeness levels differ substantially

amongst them. We investigate the effect of ↵ using COVA-

E1 as an example and demonstrate the results in Fig.H.14.

We observe similar patterns to Fig.6 generated using Places2
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(a) cohort prototypes
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(b) COVA-E1 (↵ = 0.6)
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(c) COVA-E2 (↵ = 0.6)
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(d) COVA-E3 (↵ = 0.6)
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(e) COVA-E4 (↵ = 0.6)
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(f) t-SNE

Figure H.8. Visualization of COVA and t-SNE embeddings for 8,000 Places2 images belonging to 80 classes. Different cohorts are numbered and
correspond to different shadings.
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(c) Eigen-COVA, ↵ = ⌘ = 0.9
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Figure H.9. (a),(b): Illustration of COVA-P1 and eigen-COVA performance change versus varying values of ↵ and ⌘ using ten classes of Places2
images. (c),(d): Demonstration of two example outputs of eigen-COVA, where the embedded samples are displayed together with the projected
prototypes (indicated by “�”). The example output (presenting a failure case) displayed in (b) is highlighted in (a) by a circle.

images. As ↵ increases from 0.1 to 0.95, S
n

decreases from

56.0% to 48.9%, while S
s

increases from 81.8% to 99.2%, and

S
c

from 74.1% to 99.1%, showing denser and more tightly

controlled cohorts. The second row of Table H.3 quantita-

tively compares COVA with existing methods in terms of

Sn, Sc and Ss scores, from which similar observations to

the first row based on Places2 images can be made.

In addition to visualizing supervised document classes

with between-class proximity externally determined based

on citation information, we perform another experiment of

using COVA to visualize unsupervised publication clusters.

This is the same task as that in Section 2 for the three existing

methods of t-SNE, SNE and S-t-SNE. Cohort prototypes

are generated by t-SNE, taking a between-cluster neighbor

adjacency graph as its input. This graph is constructed by

first computing the cosine similarity between the cluster

centers in the original word space, and then identifying

two effective neighbor clusters for each targeted cluster.

Parameter ↵ is set to 0.6 for COVA embeddings and 0.9

for projections, and ⌘ set to 0.9 for eigen-COVA. The word

vectors

˜X are used as the input for the embedding methods

and the compacted features

˜SYM−1
are used as input for the

projection methods. Fig.H.15 illustrates the cluster neigh-

bor preservation performance by COVA-E2. Compared to

Table 2 that shows the same cluster neighbor preservation

performance for existing methods, a much better match

to the original cluster neighbor structure is obtained by

COVA in Fig.H.15. Fig.H.16 collects the visualization output

produced by different versions of COVA, which all succeed

in drawing data cohorts close to their corresponding cohort

prototypes, indicated by the matching positions between the

learned cohort centers (marked by “○”) and the input cohort

prototypes (marked by “�”) .
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Figure H.10. (a)-(b): Performance change for COVA-P1 and COVA-P4 by varying the amount of training samples using Places2 images, where
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Figure H.11. Computational time comparison between COVA and existing methods.

H.4 CLINICAL TRIALS VISUALIZATION

This document set is retrieved from a clinical trials collection

[9], based on nine disease queries of “asthma”, “breast can-

cer”, “lung cancer”, “prostate cancer”, “leukemia”, “depres-

sion”, “schizophrenia”, “cardiovascular” and “HIV”. The

top 200 trials, most relevant to each disease are included

in the study. Each trial is characterized by the normalized

occurrence counts (tf-idf values) of a set of 23,275 words

and noun phrases. This results in a 1,800×23,275 real-valued

matrix

˜X, and a 1,800×9 binary disease cohort indicator

matrix Y. The aim for this visualization is to depict the

information within

˜X and Y, and highlight the connections

between trials and between diseases.

For the clinical trials dataset, to preprocess

˜X and Y, we

examine the disease relevance by measuring the word and

phrase co-occurrences between the clinical trials. This, for

example, can be computed as the cosine similarity between

the centroids of two disease cohorts in the word feature

space, forming a 9×9 between-disease similarity matrix with

the ijth element calculated as

� 1
n

i

∑
y

p

=i x̃p

�T � 1
n

j

∑
y

q

=j x̃q

�
� 1

n

i

∑
y

p

=i x̃p

�
2
� 1

n

j

∑
y

q

=j x̃q

�
2

.

This implies that more relevant diseases share more co-

occurred words and phrases in their clinical trials. The cor-

responding cohort prototypes generated from the similarity

matrix are displayed in Fig.17(a). Similar to the Cora setup,

the 1,800×9 compacted feature matrix X = ˜SYM−1
is used as

the input to all algorithms, where

˜S = S ○N(S,30) and S is

computed from

˜X using cosine similarities.

In all experiments, around 15% of the data samples are

randomly chosen to be the

˜k sample prototypes to compute

the relation features for the projection models. COVA results

are demonstrated with the setting of ↵=0.9 and ⌘=0.92. The

cohort membership matrix is computed by Eq.(12), and the

local weight matrix W is computed using Euclidean dis-

tances with 50 effective neighbors. Different COVA models

and existing methods are visually compared in Fig.H.18 and
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Figure H.12. COVA visualization for the Cora publications by E3, E4, P2 and P3. Cohort locations are controlled by the citation information. Different
cohorts correspond to different shadings. Centroids of the neighboring classes are connected with solid lines. Connection mismatches are shown
with dotted lines in different shadings.
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Figure H.13. Visualization output generated by existing algorithms for Cora publications. Different cohorts correspond to different shadings.

Fig.H.7(b). The four neighboring classes of “leukemia” are

highlighted by examining the class centroid distances in

the visualization output of COVA and some representative

existing methods. All COVA models identified the same

neighbors (HIV and the three cancer classes for breast,

lung and prostate), which match the closeness information

indicated by the class prototypes. It can be seen that the

cohort locations and the closeness levels differ substantially

amongst the existing methods. Additionally, “depression”

and “schizophrenia” are two diseases naturally more related

to each other than to other ones, and such a relation can be

directly inferred from the information content of their clin-

ical trials. However, for some methods, such as t-SNE and

SNE, these two classes are mapped quite apart from each

other. The third row of Table H.3 quantitatively compares

the COVA methods with the existing ones, indicating similar

patterns as observed for other datasets (see the quantitative

performance analysis in Appendix H.1 for Places2 images).

H.5 FLICKR IMAGE VISUALIZATION

In this experiment, we use the NUS-WIDE collection [10]

of 269,648 Flickr images related to 81 concepts and we

randomly select 200 images from each of the eight concepts

“snow”, “mountain”, “garden”, “flowers”, “tiger”, “bear”,
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Figure H.14. Comparison of different settings for the parameter ↵, using
COVA-E1 and the Cora dataset.

Table H.4
Illustration of sets of neighboring images identified by COVA-E2.

� ▷ ○ △

“cat” and “toy”. Each image is characterized by various

multi-view color and texture features, including a 64-D color

histogram, 144-D color correlogram, 225-D block-wise color

moments, 73-D edge direction histogram, 128-D wavelet

texture. All these image features are stored in a 1,600×834

matrix

˜X. Additionally, the content of each image described

by a set of English words is available. This gives a binary

word vector for each image, where each element indicates

the absence or presence of a word from a dictionary con-

sisting of 825 unique words. These vectors are stored in

a 1,600×825 binary matrix �. The visualization output is

to be generated from

˜X, � and the image concept labels.

Its aim is to preserve the local neighbor structure between

the images based on their color and texture characteristics,

maintain proximity between the image cohorts based on

their commonality of descriptive words, and also ensure a

certain degree of separation between different cohorts.

Similar to the document experimental setup, a 1,200×8

compacted feature matrix X = [S ○N(S,30)]YM−1
is com-

puted and used as the input features for all algorithms,

where S is the Euclidean distance matrix between images

calculated from the original 834 features. The relevance be-

tween image cohorts is defined by the common words used

to describe their members. Specifically, we first compute

a 1,600×1,600 similarity matrix ⇥ = [✓ij] from the word

features � using cosine similarities. A word-based relevance

score is then defined as

1
n
i

+n
j

∑y
p

=i∑y
q

=j ✓pq between the

ith and jth cohorts. The cohort prototypes generated from

this 8×8 relevance matrix are displayed in Fig.H.17(b). Other

settings for preparing W and R are the same as in the

previous document visualization experiments.

The visualization output of the COVA models (obtained

with ↵=⌘=0.86) and the existing algorithms are displayed

in Fig.H.19 and Fig.H.7(c). The last row of Table H.3 quan-

titatively compares their performance. It can be seen from

the figures that all the COVA models successfully maintain

a class arrangement matching the provided prototypes of

Fig.H.17(b). The COVA models show an advantage in cohort

location control, whereas the existing methods exhibit weak

control and more arbitrary cohort proximities. For exam-

ple, supervised t-SNE pushes the “flowers” and “garden”

classes far away, while Isomap, LLE and LLC do not show

to preserve separation between the classes. In terms of

performance, Table H.3 shows that COVA models provide

very good cohort separation (S
s

) and competitive neighbor

preservation (S
n

) within both the embedding and projection

method categories.

To take a closer look at the neighboring images identified

by COVA, we illustrate sets of example images in Tables

H.4 and H.5. For model E2, four example images are ran-

domly selected from different regions of the “bear” class

in Fig.H.19(b). Each example image (illustrated in the first

row of Table H.4) together with its two nearest neighboring

images (in the second and third table rows) are marked in

Fig.H.19(b) by �, ▷, ○, or △ (as indicated in the bottom row

of Table H.4).

For each of the remaining COVA models, given a class,

one example image belonging to this class (referred to as

friend) and one from another class (referred to as enemy) are

selected. In the different plots of Figs.H.19(a)-19(i) except for

the ones corresponding to P2 and P3, the friend image to-

gether with its two nearest neighboring images are marked

by �, while the enemy image with its own two neighbors are

marked by△. The same friend and enemy images of P1 and

P4 are marked in P3 and P2, respectively, to demonstrate the

slight difference between the local neighborhood structure

produced by different models. Such example images are

displayed in the columns of Table H.5 for different COVA

models and targeted classes, with the enemy images high-

lighted by red boxes. From Tables H.4 and H.5, it can be

seen, that within each neighboring set in a column, the

images share certain similarities in terms of either color,

or texture characteristics, or both, regardless on whether

they are from the same class. This demonstrates the ability

of the COVA models to reasonably preserve neighboring

relations between the images based on the different types of

contributing image features.

H.6 PUBMED AND PMC WORD VISUALIZATION

In this experiment, we visualize word vectors of d=400

dimensions learned from PubMed and PMC text collection

and their combination using the word2vec tool [11]. Each
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(a) original space vs. cohort prototypes, 81.0% (b) cohort prototypes vs. COVA, 87.0% (c) original space vs. COVA , 69.2%

Figure H.15. Illustration of cluster neighbor preservation (two effective neighbors are identified) for COVA-E2 using Cora publications. Given a
method pair of “X vs. Y”, edges in solid, dotted and dashed lines indicate true positive, false positive and false negative neighbor links of X
compared to Y. Link preservation accuracies are shown in percentages.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y

(a) COVA-E1

-3 -2 -1 0 1 2 3

x

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

1

2
3

45
6

78

9

10

11

12 13

14
15

16

17

18

19

20

(b) COVA-E2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y

(c) COVA-E3

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y

(d) COVA-E4

-4 -3 -2 -1 0 1 2

x

-3

-2

-1

0

1

2

3

y

(e) COVA-P1

-3 -2 -1 0 1 2 3 4

x

-4

-3

-2

-1

0

1

2

3

y

(f) COVA-P2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-3

-2

-1

0

1

2

3

y

(g) COVA-P3

-3 -2 -1 0 1 2 3 4

x

-4

-3

-2

-1

0

1

2

y

(h) COVA-P4

-4 -3 -2 -1 0 1 2 3

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

(i) Eigen-COVA

Figure H.16. Visualizing 20 clusters of Cora publications. The used cohort prototypes and learned cluster centers are marked by “�” and “○”,
respectively. Cluster IDs are displayed in (b).
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Figure H.17. Illustration of the used prototypes for the clinical trials and
Flickr image visualization.

vector represents the distributed semantics of the corre-

sponding word learned from its local context examined

over the text collection. Cosine similarities between these

vectors are expected to indicate certain semantic relatedness

between the corresponding words. We visualize n=6,500

(referred to as task 1) and n= 10,000 (task 2) words assigned

to c=10 and c=40 clusters, respectively. These clusters are

obtained by applying k-means clustering over cosine sim-

ilarities between the word vectors. Given the word vector

matrix

˜X, similar to previous experimental setup, a com-

pacted feature matrix X = [S ○N(S, h)]YM−1
(where h=50

is used for the large word set and h=30 for the other) is used

as the input of the visualization model, where S is computed

from word vectors stored in

˜X by cosine similarity.

We adopt two ways of computing proximity between

clusters. For task 1, it is based on the word content of a

selected collection of PubMed documents. Letting the ijth

element of the matrix � denote the presence of the ith word

in a jth document, a similarity matrix Sd between words can

be derived by computing cosine similarities over the rows of

�, examining the number of common documents containing

each word pair. After applying a 30-nearest neighbor search,

the closeness between the word clusters can be computed

from Sd○N(Sd,30) using Eq.(6). The generated cohort proto-

types are displayed in Fig.H.20(a). For task 2, the proximity

between clusters is based on

˜X without utilizing the extra

information �. It computes the cosine similarity between the

cluster centers in the word space. The generated prototypes

are displayed in Fig.H.21.

To visualize the 6,500 words grouped into 10 clusters,

we run COVA with ↵=0.6 for the embedding models, and
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Table H.5
Illustration of sets of neighboring images identified by different COVA models. Enemy images are highlighted in red boxes.

COVA-E1, cat COVA-E3, flower COVA-E4, tiger COVA-P1/3, garden COVA-P2/4, mountain Eigen-COVA, snow

� △ � △ � △ � △ � △ � △

↵=0.95 for the projection models, and with ⌘=0.3 for eigen-

COVA. The cohort membership matrix is computed by

Eq.(12), and the local weight matrix W is computed using

Euclidean distances with 30 effective neighbors. COVA is

visually compared with two representative algorithms in

Fig.H.20. One is t-SNE that directly computes the embed-

ding coordinates and the other is deep embedding that

computes a feature mapping function using a neural net-

work. The Sn and Ss scores are reported in Fig.H.20, and

the cohort arrangements can be visually examined by com-

paring with Fig.H.20(a). E1, E3 and E4 models with ↵=0.6

offer similar output. We demonstrate COVA-E2 output with

↵=0.3 to show that, by reducing the COVA weight ↵, the

generated output can perform similarly good to t-SNE in

terms of local neighbor preservation, meanwhile maintain-

ing a good level of control over cohort positioning. It can

be seen from Fig.H.20(l) that the deep embedding model

shows separation between cohorts, but it performs poorly at

local neighbor preservation. Between the COVA projection

models, P1-P4 offer very similar performance, and eigen-

COVA is better than P1-P4 at local neighbor preservation,

while it is worse at cohort separation. Figs.H.20(f)-20(j) show

that eigen-COVA follows the cohort arrangement as guided

by the cohort prototypes, but not as well as P1-P4.

To visualize the 10,000 words grouped into 40 clusters,

we use COVA-E1,2 (↵=0.3), COVA-P1 (↵=0.95) and eigen-

COVA (↵,⌘=0.9) to demonstrate the results, and compare

with t-SNE in Fig.H.22. All the COVA models exhibit cohort

arrangement matching the prototypes. The cohort arrange-

ment of eigen-COVA is a rotated version of the given

prototypes, due to the use of linear projection to create

auxiliary representations of the cohort prototypes. COVA-

E2 and t-SNE show some similarity in the arrangement of

some cohorts (e.g., 10 and 37 are close in both plots), but

also significant difference (e.g., the proximities between 26

and 17, and between 25 and 15 are in disagreement).

H.7 COMPARISON OF COHORT PROTOTYPES

In previous experiments, t-SNE is used to generate cohort

prototypes that carry the desired structural information of

the cohort arrangement. Here, we compare several repre-

sentative alternative approaches for cohort prototype gener-

ation, including the classical manifold embedding method

LE, SNE that uses Gaussian distribution to estimate the

prototype relevance instead of the Student t-distribution as

used by t-SNE, as well as several more recent approaches

than t-SNE, such as structure preserving embedding (SPE)

[12], LDMGI, local ordinal embedding (LOE) [13] and kernel

manifold alignment

4

(KMA) [14]. The cohort neighborhood

structure approximated by prototypes is compared with the

original input structure. The correct and mistaken neighbor

links are highlighted in Fig.H.24 for 30 classes of scene

images and in Fig.H.23 for 20 clusters of Cora publications.

These are compared with the prototypes shown in Fig.3(a)

and Fig.H.15(a), which are generated by t-SNE with the

same input. It can be seen that for the two examined

datasets, SNE, t-SNE, LDMGI and LOE are the top perform-

ing approaches for preserving the desired neighbor prox-

imity structure between cohorts, where SNE performs best.

In Fig.H.25, we also demonstrate the COVA visualization

output obtained with SNE prototypes, using COVA-E1 and

COVA-E2 as example models.

H.8 SUMMARY

We firstly comment on the performance of COVA based on

all the conducted experiments of Section 4 and Appendix H,

and provide some general guidelines to users. Overall, the

embedding models possess stronger data shaping power

than the projection ones. E1 is the fastest embedding version

of COVA and it has an analytic solution. It can also be

optimized using gradient descent to avoid computing the

inverse of a matrix of sample size when processing a large

amount of samples. Due to its distance error based objec-

tive function, E1 provides the strongest cohort arrangement

control but with reduced local neighbor preservation for

individual samples. With the KL divergence based objective

function, E2 is usually the best at local neighbor preserva-

tion for individual samples, but demonstrates less control

at cohort arrangement and it is also the slowest embedding

COVA model. The users can choose between E1-E4 based on

data shaping and computing time preferences. Between P1-

P4, the four versions of these COVA projection models often

produce similar results, and P1 is the fastest. Eigen-COVA is

an extremely fast projection model (e.g., around a minute in

our implementation to process 10,000 samples). Comparing

against P1-P4, its performance varies depending on the used

data and also which score is deemed more important.

According to Eq.(13), the COVA weight ↵ can be viewed

as a trade off switch for E1-E4 and P1-P4 which, when

4. The KMA method is developed for domain adaptation to combine

information from multiple information sources. To apply it to the

generatation of cohort prototypes, we randomly divide the prototypes

into different groups to be used as different domains and seek a

common space to embed them.
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increased from 0 to 1, allows them to shift focus from local

samples to global cohorts. For eigen-COVA, according to

Eq.(23), the interaction between the two weights ↵ and ⌘
dictates the balance between the local and global aspects.

Empirical parameter analysis shows that P1-P4 are much

less sensitive to ↵ than E1-E4, and the user can just fix it

(e.g., to a typical value of 0.9) for P1-P4. Eigen-COVA is less

sensitive to ↵ than E1-E4, but more than P1-P4, and it can be

more sensitive to ⌘ than to ↵. In general, higher values of ↵
and ⌘ would result in stronger cohort arrangement control

and reduced local neighbor control.

We determine the COVA weights ↵, ⌘ by observing the

Sn, Sc (or S(r)c ) and Ss scores. In this way, the process of

achieving a desired balance between the three objectives of

local neighbor preservation, cohort positioning and separa-

tion control becomes a score-based selection procedure for

the weights. In the following, we show that this is equivalent

to searching amongst the Pareto optimal solutions for a

multi-objective optimization setup based on a preference

function.

A multi-objective optimization problem can be defined

as minx∈X (O1(x),O2(x), . . . ,On
o

(x)) , where X denotes

the feasible set of the problem and no the number of objec-

tives. Typically, there does not exist a feasible solution that

minimizes all the objectives simultaneously. Instead, Pareto

optimal solutions are examined which are those that cannot

be improved in any of the objectives without degrading

at least one of the remaining ones. Specifically, a feasible

point x∗ ∈ X is said to be Pareto optimal for a multi-

objective problem if there is no other point x ∈ X such

that Oi(x) < Oi(x∗) ∀i ∈ {1, . . . , no}. For simplicity, the

main COVA model in Eq.(13) is defined by scalarizing the

objectives as a weighted sum problem, but the model could

also be expressed as

min

Z∈ l×k, rank(Z)=k �O(C),O(L)� . (H.1)

Theorem. Given a fixed weight 0 < ↵ < 1, the

optimal solution Z∗ of the COVA embedding model

minZ∈ l×k, rank(Z)=k ↵O(C) + (1 − ↵)O(L) is a Pareto optimal

solution of the two-objective optimization in Eq.(H.1).

Proof. Suppose that Z∗ is not a Pareto optimal solution of

Eq.(H.1). Consequently, there exists a full-rank embedding

matrix Z ∈ l×k
, such that O(C)(Z) < O(C)(Z∗) and

O(L)(Z) < O(L)(Z∗). Given ↵ > 0, 1 − ↵ > 0, we have

↵O(C)(Z)+(1−↵)O(L)(Z) < ↵O(C)(Z∗)+(1−↵)O(L)(Z∗),
which contradicts the fact that Z∗ is the optimal solu-

tion.

The above observation can be applied similarly to

the COVA projection model minU∈ k̃×k,UT U=I
k×k ↵O

(C) +
(1 − ↵)O(L) expressed as the two-objective problem

minU∈ k̃×k,UT U=I
k×k �O(C),O(L)� and the eigen-COVA

model minU∈ k̃×k,UT U=I
k×k ↵⌘O

(C)
dist

+ (1 − ↵)O(L)
dist

−
↵(1 − ⌘)O

aux

expressed as the three-objective problem

minU∈ k̃×k,UT U=I
k×k �O(C)dist

,O(L)
dist

,−O
aux

�.
Based on the above, we can perform grid search to obtain

a set of Pareto optimal solutions associated with different

values of the weights, and then choose a setting that offers

a reasonable balance between the objectives according to

a preference function that incorporates user’s requirements

[15]. For COVA, a composition of the three scores of Sn,

Sc (or S(r)c ) and Ss is a natural choice of this preference

function. The Pareto optimal solution that possesses the

highest preference can be assumed to offer the best balance

between the multiple objectives.

As an alternative to the above preference driven grid

search, it is also possible to employ an ✏-constraint optimiza-

tion, which converts some objectives to bound constraints

[16]. Specifically, for the COVA embedding models, the local

neighbor preservation objective can be firstly optimized

individually as

min

Z∈ l×k, rank(Z)=kO
(L). (H.2)

If we denote by

ˆO(L) the best objective value found in

this step, then, the global cohort objective O(C) can be

minimized with the O(L) objective moved to the constraint

list, as

min

Z∈ l×k, rank(Z)=kO
(C), s.t. O(L) ≤ (1 + ✏) ˆO(L), (H.3)

where ✏ is a small positive relaxation factor or simply a

worsening percentage on the already known optimum. The

benefit of this strategy is that it may be more natural for

the user to specify the relaxation ✏ for achieving the desired

balance between objectives. Another alternative is to employ

the adaptive weighted sum method [17].
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Figure H.18. Visual comparison of different methods using clinical trials. Different cohorts correspond to different shadings.
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Figure H.19. Visual comparison of different methods using Flickr images. Different cohorts correspond to different shadings.
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(j) Eigen, (71.2%,62.8%)
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(k) t-SNE, (75.5%,77.8%)
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(l) Deep Embedding,(28.5%,49.3%)
Figure H.20. Visualizing 6,500 word vectors grouped into 10 clusters. Different cohorts correspond to different shadings. The top three words that
are closer to the cluster center are listed for each cluster around its prototype in (a). The score pair (Sn, Ss) is shown in percentages.
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Figure H.21. Illustration of used cohort prototypes. The top three words that are closer to the cluster center are listed for each cluster around its
prototype.
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(a) COVA-E1, (44.9%,94.3%)
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(b) COVA-P1, (40.7%,54.3%)
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(c) eigen-COVA, (34.7%,69.8%)
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(d) COVA-E2, (52.8%,72.1%)
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(e) t-SNE (59.3%,78.2%)
Figure H.22. Visualizing 10,000 word vectors grouped into 40 clusters. Different clusters are numbered and correspond to different shadings. The
score pair (Sn, Ss) is shown in percentages.
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(a) LE, 41.7% (b) SNE, 64.6% (c) LDMGI, 60.4%

(d) SPE, 37.5% (e) LOE, 56.3% (f) KMA, 25.0%

Figure H.23. Comparison of prototype generation approaches in terms of cohort neighbor preservation (two effective neighbors are identified)
using 30 classes of scene images. Edges in solid, dotted and dashed lines indicate true positive, false positive and false negative neighbor links
approximated by the generated prototypes compared to the desired ones. Link preservation accuracies are shown in percentages.

(a) LE, 61.5% (b) SNE, 92.3% (c) LDMGI, 80.8%

(d) SPE, 73.1% (e) LOE, 88.5% (f) KMA, 46.2%

Figure H.24. Comparison of prototype generation approaches in terms of cohort neighbor preservation (two effective neighbors are identified) using
20 clusters of Cora publications. Edges in solid, dotted and dashed lines indicate true positive, false positive and false negative neighbor links
approximated by the generated prototypes compared to the desired ones. Link preservation accuracies are shown in percentages.
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(a) COVA-E1 (scene images), ↵=0.1, (64.3%, 63.4%)
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(b) COVA-E2 (Cora publications), ↵=0.4, (43.2%, 83.3%)

Figure H.25. Examples of COVA embedding output obtained from using cohort prototypes generated by SNE. The score pair of (Sn, S
(r)
c ) is shown

in percentages.
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