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Investigating Electron Beam Deflections by a Long Straight Wire
Carrying a Constant Current Using Direct Action, Emission-Based

and Field Theory Approaches of Electrodynamics

Ray T. Smith and Simon Maher*

Abstract—Results are presented for the transverse deflection of an electron beam by a long, straight
wire carrying direct current. The experimental deflections are compared with three calculation methods
based on the Lorentz force law (field theory) and both the Weber (direct action) and Ritz (emission)
force formulae. The Lorentz force calculation is the conventional approach expressed in terms of electric
and magnetic field components. By contrast the force formulae of Weber and Ritz do not contain
any field vectors relating to E or B. The Weber force is based on direct action whereas the Ritz force
expression is based on an emission/ballistic principle and is formulated in terms of a dimensionless
constant, λ. The experimental beam deflections are for low speed (non-relativistic) electrons. Good
agreement between experiment and theory is demonstrated for each approach. In fact, for the case of
an infinitely long wire, all three calculation methods give identical results. Finally, the three approaches
are contrasted when applied to the case of high speed electrons.

1. INTRODUCTION

Previous work [1] has demonstrated agreement between Lorentzian and Weberian approaches for the
case of electron beam deflections when directed orthogonally across a direct current carrying solenoid.
A more fundamental case to be investigated is that of a long straight wire carrying direct current.
In terms of field theory, calculation of beam deflections is in terms of the well-known Lorentz force,
F = e(E + v ×B) where B is the magnetic flux density across the beam, v is beam velocity and E is
the static electric field. In general, the Lorentz force accurately predicts the force exerted on a charged
particle and is considered as foundational to classical electrodynamics. However, it has been noted by
O’Rahilly [2, pp. 561] that, “the two particular cases here combined are quite incompatible. In one case
we have charges at rest, in the other charges are moving; they cannot both be stationary and moving”.
By contrast, Weber and Ritz formulations deal only with relative velocities and accelerations between
charges. Both formulations reduce to Coulomb’s static force law for zero velocity.

It is of interest to note that Weber-Ritz formulations of electrodynamics have their origin in the
work of Gauss [2, pp. 524–525]. As early as 1835, Gauss had commented: “Two elements of electricity
in relative motion repel or attract one another differently when in motion and when in relative rest [3].”
He based this view on non-instantaneous ballistic transmission. However it was Wilhelm Weber who
first developed Gauss’s idea by correlating both Faraday’s induction and Ampere’s electrodynamics
by means of the following two principles: (1) every action of a current element can be regarded as
compounded of the actions of a positive and equal negative electrical particle which simultaneously
traverse the same space element in opposite directions; (2) by this means the mutual action of two
current elements can be represented, with the assumption that like charges attract if they are moving
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in the same sense and unlike when moving in opposite directions. Weber proposed his second order
generalisation of Coulomb’s law in an electrodynamic inter-particle force formula, between point charges
e, e′ distance, r, apart, in the form,

F =
ee′

4πεo

r̂

r2

[
1 +

rr̈

c2
− ṙ2

2c2

]
(1)

Weber’s electrodynamics has received extensive coverage in the works of both Assis [4] and Wesley [5–7].
Here the idea of direct action is contrasted with the Maxwellian approach of contact action. One of the
main properties of the Weber force is that it obeys Newton’s third law (action and reaction) for any
state of motion of the charges. Moreover it implies conservation of linear and angular momentum.

Following Gauss, Ritz developed his emission theory of electrodynamics. An excellent review of
this work has been given in [8]. Although Ritz’s theory is generally not well known, it does receive
extensive coverage in the comprehensive work of O’Rahilly [2, pp. 549–622]. It seems, however, that
any objection to an emission theory of action tends to be based on optical considerations. In particular,
that light emitted from a source with velocity, u, combines with the velocity of light, c, by the typical
vector addition (c + u) or (c − u). Implicit in such an assumption, is that light behaves as ‘crude
bullet like particles’ whereas Ritz explains the emission in terms of fictitious, infinitely small, virtual
‘particles’, all animated with the same radial velocity relative to the origin, where “the particles are
simply a concrete representation of kinematic and geometric data” [9]. In any case, Ritz’s approach
stands as a theory of electrodynamics irrespective of any objections to its applications in optics.

2. THEORY: CALCULATION OF TRANSVERSE FORCE ON AN ELECTRON
BEAM BY A LONG STRAIGHT WIRE CARRYING DIRECT CURRENT

2.1. Field Theory Based on Lorentz Force

Figure 1 shows the current carrying wire lying along the x axis while the e beam travels parallel to
the z axis at speed ve and distance b above the axis. The beam is intercepted by the circular lines
of force, concentric with the axis of the wire. For an infinitely long wire, the deflecting magnetic field
at a distance z along the beam is given by, Bφ sinφ where Bφ is the tangential field at radius ρ and

Bφ = µ0I
2πρ = I

2πε0c2ρ
.

Since sinφ = z
ρ , the deflecting force at right angles to the beam is, Fx = eveBφ sinφ = eveI

2πε0c2
z

(b2+z2)
.

y

I

x

e beam

zz

Figure 1. e beam travelling parallel to z axis and crossed by magnetic field lines concentric with the
current carrying wire. The tangential magnetic field is shown at a point P along the e beam.
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Writing k2 = b2 + z2, the force in the x direction is given as,

Fx =
eveIz

2πε0c2
1

k2
(2)

2.2. Direct Action Based on Weber Force

In the Weber calculation the aim is to calculate the force, δFr between an element of moving charge
e′, located between x and x + δx at point Q on the wire and a point P on the e beam where PQ = r
(Fig. 2). The e beam, with velocity ve, is directed parallel to the z axis. P has coordinates (0, b, z) and
Q(x, 0, 0).

Figure 2. Geometry of Weber force between a current element on the wire and a point on the electron
beam.

The Weber force expression is now expressed in terms of relative velocities between charges. If
the charges have velocities, v, v′, where ur is the relative velocity along, r and u is the actual relative
velocity then, ṙ = ur = dr

dt = vr − v′r and u2 =
∑

(vx − v′x)
2. Also, ur =

∑
(vx − v′x)(

x−x′

r ) and

r̈ = d2r
dt2

= d
dt

∑
(vx − v′x)(

x−x′

r ) = (u
2−u2

r
r )(fr − f ′

r).

Substitution in Weber’s force expression (1), the elemental force, δFr along r between e and e′,
ignoring acceleration terms, is given as,

δFr (W ) =
ee′

4πε0r2

(
1 +

u2

c2
− 3

2

u2r
c2

)
(3)

where u is the actual relative velocity between e and e′, ur the relative velocity along r, and vd the
electron drift velocity. Then, since vd ≪ ve, u

2 = v2d + v2e
∼= v2e , ur = ve cos γ + vd cosα where cosα = x

r

and cos γ = z
r , it follows, u

2
r =

v2ez
2

r2
+ 2vevdxz

r2
and therefore Eq. (3) becomes,

δFr (W ) =
ee′

4πε0r2

(
1 +

v2e
c2

− 3

2c2

(
v2ez

2

r2
+

2vevdxz

r2

))
=

ee′

4πε0r2

[
1 +

v2e
c2

(
1− 3z2

2r2

)
− 3vevd

c2
xz

r2

]
Thus elemental force in the x direction = δFx = δFr cosα where,

δFx =
ee′

4πε0r2
x

r

[
1 +

v2e
c2

(
1− 3z2

2r2

)
− 3vevdxz

c2r2

]
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Now the positive ions (at rest) of the neutral current will exert an opposite force on e given by,

δFx =
ee′

4πε0r2
x

r

[
1 +

v2e
c2

(
1− 3z2

2r2

)]
So the net force on e along the x direction is,

δFx =
e, e′

4πε0r2

(
3vevdx

2z

c2r3

)
Given e′ = nAeδx and I = nAvde, where n = free electron density and A = wire cross-sectional area,
we obtain,

δFx =
eveIz

4πε0c2

(
3x2

r5

)
δx

at a given position, z, along the beam. So the deflecting force due to the complete wire length, 2L, and
carrying a steady current, I, at a distance z along the beam is,

Fx (W ) =
eveIz

2πε0c2

L∫
0

3
x2

r5
dx

Here, r2 = x2 + b2 + z2 and k2 = b2 + z2. Substituting x = k tan θ, the integral is evaluated as
1
k2

sin3(arctan(Lk )) which for an infinite straight wire (i.e., as L → ∞) becomes, 1
k2
. Finally,

Fx (W ) =
evIz

2πε0c2
=

eveIz

2πε0c2
1

k2
(4)

which is identical to the force expression of Eq. (2).

2.3. Emission Theory Based on Ritz Force

Following O’Rahilly’s development of Ritz’s electrodynamics [2], the x component of force between point
particles e, e′ distance r apart and moving without acceleration is given as:

δFx (R) =
ee′

4πε0r2

[(
1 +

(3− λ)

4

u2

c2
− 3 (1− λ)

4

u2r
c2

)
cosα− (1 + λ)

2

uxur
c2

]
(5)

Here λ is a constant to be determined by experiment. Clearly when λ = −1, the Ritz formula becomes
identical to the Weber force of Eq. (3). However, in general, the experimental data suggests a value
of λ = 3 in which case the second term of Eq. (5) containing the product of uxur becomes significant.
With the value λ = 3, the Ritz force becomes,

δFx (R) =
ee′

4πε0r2

[(
1 +

3

2

u2r
c2

)
cosα− 2

uxur
c2

]
Proceeding as in Section 2.2 with ux = vd, ur = ve cos γ + vd cosα, cosα = x

r , cos γ = z
r , uxur = vevd

z
r .

Finally, doubling up for both sides of the wire, we obtain the Ritz force as,

Fx (R) =
eveIz

2πε0c2

L∫
0

(
2

r3
− 3x2

r5

)
dx

In comparison with the Weber force, the Ritz formulation contains the additional integral, I2 =
L∫
0

2
r3
dx

and this is evaluated as, 2
k2
(sin(arctan(Lk ))) =

2
k2

when L → ∞. Since the second term of the integral

has the value − 1
k2

it follows that I1+ I2 =
2
k2

− 1
k2

= 1
k2

which is the same result as given by the Weber
formulation (i.e., when λ = −1) in Eq. (4) and the Lorentz force in Eq. (2).



Progress In Electromagnetics Research B, Vol. 75, 2017 83

3. EXPERIMENTAL INVESTIGATION

The experimental setup (Fig. 3) shows the general arrangement of the Teltron tube and long straight
wire AB carrying direct current. An important feature is the graticule which is angled to the beam
and provides visualisation of the beam over 10 cm horizontal travel. In any experiment, it was found
necessary to cancel any residual deflection of the beam (due to Earth’s magnetic field) by applying a
vertical electric field across the beam; in practice the magnitude of this was of the order of 0.5 kVm−1.
The e gun voltage (V ) was set at 2.00 kV providing a beam velocity of approx. 2.7× 107m/s. A range
of direct current magnitudes is passed through the wire (5.00, 10.00, . . . , 30.00A) and held constant
for several seconds during measurement. The copper wire (AB) has a diameter of 1mm and length
of 1metre. Several minutes is allowed to pass between each measurement to minimise error due to
residual thermal heating. The corresponding results and comparison of experiment and theory are now
presented.

Figure 3. Experimental arrangement for e beam deflection by long straight direct current carrying
wire (AB).

4. RESULTS AND COMPARISON OF EXPERIMENT AND THEORY

The standard parameters used in all calculations include: gun voltage = 2 kV yielding a beam speed

=
√

2ev
me

= 2.65 × 107m/s, I = 10.00A, electron charge, e = 1.6 × 10−19C, b = 0.02m. Assuming an

infinitely long wire all three methods of calculation give the x force component at a distance z along
the beam as, Fx = eveI

2πε0c2
z

b2+z2
.

Starting with Eq. (2), electron acceleration in the x direction, is = d2x
dt2

= Fx
me

= eveI
2πmeε0c2

z
b2+z2

.

For the standard data, K = eveI
2πmeε0c2

= 9.30× 1012(S.I.).

So velocity in the x direction at time, t, is vx(t) and setting z = vet gives,

vx (t) =
dx

dt
= K

tf∫
0

vet

v2e t
2 + b2

dt
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vx (t) =
K

2ve

[
ln

(
v2e t

2 + b2
)
− ln b2

]tf
0

where the beam time of flight is given by tf = 0.1
2.65×107

= 3.77 × 10−9 (s). The definite integral for the

maximum deflection in the x direction can then be calculated (by parts):

I1 =

3.77×10−9∫
0

ln
(
v2e t

2 + b2
)
− ln b2 dt = 1.72× 10−8 − 2

[
t− t

ve
arctan

(
tve
b

)]3.77×10−9

0

And with b = 0.02m, ve = 2.65 × 107m/s, then I1 = −2.27 × 10−8. Also, I2 = −[t ln b2]3.77×10−9

0 =

2.95× 10−8. So, (I1 + I2) = 6.8× 10−9 and finally, x(max) = 9.30×1012

2×2.65×107
× 6.8× 10−9 [m] = 1.2mm.

This deflection is for I = 10.00A and since x ∝ I this can be readily contrasted with experimental
data (Fig. 4).
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Figure 4. Experiment versus theory for e beam deflections by a long straight wire carrying direct
current.

5. HIGH SPEED ELECTRONS, KAUFMANN-BUCHERER EXPERIMENTS AND
RITZ’S THEORY

Regarding high speed (relativistic) electrons, the question arises as to whether it is the Ritz formulation
(λ = 3) or Weber (λ = −1) which agrees with experiment. In terms of established field theory, the

altered trajectory of high speed electrons require a correction factor, γ = (1− v2

c2
)−1/2 in order to agree

with experiment. This factor has received significant experimental verification in particle accelerator
experiments. We investigate whether the direct-action theories of Weber-Ritz can predict an electron
trajectory at high speed without invoking a correction factor directly. Therefore we follow O’Rahilly’s
adaptation of the Ritz formula for the case of electrons moving between charged metal plates [2, pp. 621].

The general expression for the force between two point charges e, e′ distance r apart in terms of
the dimensionless constant, λ, and ignoring acceleration terms is,

δFr (R) =
ee′

4πε0r2

([
1 +

(3− λ)

4

u2

c2
− 3 (1− λ)

4

u2r
c2

]
r̂ − (1 + λ)

2

uur
c2

)
(6)

where u is the actual relative velocity between e and e′, ur the relative velocity along r, and r̂ the unit
vector along r. The formula is first applied to the case of a point charge, e, moving with velocity, v, in
the x direction between two infinite plates (y = ±h) parallel to xz and charged to density ±σ (Fig. 5).
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Figure 5. Point charge, e, moving with velocity, v, between infinite charged metal plates, parallel to
the xz plane. Adapted from [2, pp. 813].

Given that, u = vx = v, vy = 0 and ur = −v cos θ cosα, then considering the y force component,
Eq. (6) becomes,

δFy (R) =
ee′

4πε0r2
sinα

[
1 +

(3− λ)

4

v2

c2
− 3 (1− λ)

4

v2

c2
cos2 θ cos2 α

]
where cosα = s

(h2+s2)1/2
, r2 = h2 + s2, sinα = h

(h2+s2)1/2
.

It follows that the force in the y direction is given as,

Fy (R) =
eσ

2πε0

 2π∫
0

dθ

∞∫
0

sds
h

(h2 + s2)3/2

[
1 +

(3− λ)

4

v2

c2
− 3 (1− λ)

4

v2

c2
cos2 θ

s2

(h2 + s2)

]
The s integrals are,

[I1] =

∞∫
0

hs

(h2 + s2)3/2
ds = 1 and [I2] =

∞∫
0

hs3

(h2 + s2)5/2 ds
=

2

3

Then,

Fy (R) =
eσ

2πε0

 2π∫
0

(
1 +

(3− λ)

4

v2

c2

)
dθ −

2π∫
0

(
(1− λ)

2

v2

c2
cos2 θ

)
dθ


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and,

Fy (R) =
eσ

ε0

[
1 +

(
(3− λ)

4
− (1− λ)

4

)
v2

c2

]
Finally,

Fy (R) =
eσ

ε0

[
1 +

v2

2c2

]
(7)

This may be re-written as, Fy(R) = Eeγ, where γ = (1 + v2

2c2
), corresponds to the Lorentz factor

(1 − v2

c2
)−1/2 to the second order and electric intensity, E, is = σ

ε0
. Note that Fy(R) does not depend

on the value of λ for this particular case; so it is clear the Weber formula (λ = −1), would give the
same Fy(R). Eq. (7) can now be applied to the crossed field experiments originating with Kaufmann-
Bucherer [10]. A typical Kaufmann-Bucherer experiment is illustrated in Fig. 6.

Figure 6. Illustration of the Kaufmann-Bucherer type cross-field experiment. The magnetic field is
directed into the paper.

When the electrical and magnetic forces balance, the electron will move in a straight line to pass
through the narrow gap between the capacitor plates and since the magnetic field is not changed by the
velocity of e, we have,

γEe = Bev or v =
γE

B

When e emerges between the plates it is subject only to the magnetic field, B, and describes a circular

trajectory with radius, R, where Bev = mv2

R .

Giving, R = mv
Be = γEm

B2e
= Em

B2e
(1 + v2

2c2
).

Again following O’Rahilly [2], the motion of an electron travelling at right angles to the plates
along the y axis is now considered. For this case (Fig. 7), given ur = v sin ∝ and uy = v, to obtain the
y force component Eq. (6) becomes,

δFy (R) =
ee′

4πε0r2
sinα

[
1 +

(3− λ)

4

v2

c2
− 3 (1− λ)

4

v2

c2
sin2 α− (1 + λ)

2

v2

c2

]
where sinα = h

(h2+s2)1/2
, r2 = h2 + s2 and e′ = σsdsdθ. The force on e due to both charged plates is
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then,

Fy =
2eσ

4πε0

 2π∫
0

dθ

∫ ∞

0

[(
1 +

(
3− λ

4

)
v2

c2

)
hs

(h2 + s2)3/2
− 3

4
(1− λ)

v2

c2
h3s

(h2 + s2)5/2

−(1 + λ)

2

v2

c2
hs

(h2 + s2)3/2

]
ds

]

=
eσ

2πε0

 2π∫
0

dθ

∫ ∞

0

[(
1 +

(
1− 3λ

4

)
v2

c2

)
hs

(h2 + s2)3/2
− 3

4
(1− λ)

v2

c2
h3s

(h2 + s2)5/2

]
ds


The s integrals are [I]1 =

∫∞
0

hs
(h2+s2)3/2

ds and [I]2 =
∫∞
0

h3s
(h2+s2)5/2

ds.

With the substitution s = h tanϕ, [I]1 = 1 and [I]2 =
1
3 .

Finally, Fy = eσ
ε0
(1− λ

2
v2

c2
) = eE(1− λ

2
v2

c2
) where E = σ

ε0
is the electric intensity between the plates.

Then applying Newton’s second law, mv dv
dy = Fy = Ee(1 − λ

2
v2

c2
) and rearranging, edV =

mvdv(1 + λ
2
v2

c2
) where E = dV

dy and V is the potential difference between the plates.

Integrating, eV = m
∫ v
0 v(1 + λ v2

2c2
)dv = m(v

2

2 + λv2

8 ).

Figure 7. Point charge e is moving along the y axis between two infinite plates at y = ±h.



88 Smith and Maher

Making,

eV = m
v2

2

(
1 + λ

v2

4c2

)
(8)

Now consider the analysis based on the modified Lorentz theory, m = m0γ where γ = (1 − v2

c2
)−1/2 =

1 + v2

2c2
to the second order.

Then,

eV =

v∫
o

d

dv
(γm0v)

Here, d
dv (γm0v) = m0

d
dv (v +

v3

2c2
) = m0(1 +

3
2
v2

c2
).

So,

eV = m0

∫
(v +

3

2

v3

c2
)dv.

Therefore,

eV = m0

(
v2

2
+

3

8

v4

c2

)
= m0

v2

2

(
1 +

3

4

v2

c2

)
(9)

It follows that when, λ = 3, (8) and (9) coincide as far as second order terms. For the case of electrons
travelling close to the speed of light, the second order approximation is clearly invalid; higher speeds
would require additional treatment (i.e., as v/c → 1).

6. CONCLUSION

In the deflection of electron beams by a long, straight wire carrying direct current, the electrodynamic
theories of both Weber and Ritz have been tested against the field-based approach of Maxwell-Lorentz.
For ‘non-relativistic’ beams all three theories give identical results which agree with experimental
observations. It is of interest that field theory, direct action and emission theories of electrodynamics,
each based on essentially different assumptions, give the same result.

In the case of high speed electrons, it is well known that electron trajectories must be corrected,

according to the Lorentz factor, γ = (1 − v2

c2
)−1/2. In typical crossed-field experiments for high speed

electrons, it is shown that Weber-Ritz provides the same result as the established theory. Recall that
crossed-field experiments involve transverse electron beam forces and in this case, Ritz’s theory indicates
that the force is independent of the value of λ. Interestingly, when an electron moves parallel to the
electric field, a distinction is made between Weber and Ritz. That is, the experimental data is satisfied
by a value of λ = 3 (Ritz), rather than λ = −1 (Weber). Assis [4, pp. 245] has commented that
when calculating the force from a closed circuit on a current element of another circuit, Ritz’s theory
yields the same result as Ampere or Grassmann, independent of λ. The general pattern of Ritz’s
electrodynamic theory suggests two distinct cases, one for metallic current elements and low speed
electrons (independent of λ) and the other for high speed electrons (λ = 3) [11].

In contrast to field-based theory, the direct action theories of Weber-Ritz can offer a more physical
insight into electrodynamics. Moreover direct-action is not opposed to the established field-based theory
originating with Maxwell-Lorentz, but rather it is complementary. It has been demonstrated [12] that
from Weber’s force formula, Faraday’s law, vector potential and mutual inductance can be derived
and that a significant degree of compatibility exists between Weber’s force and Maxwell’s equations.
It is uncertain whether direct-action theories can describe the variety of electromagnetic phenomena
as field theory. However, they have a number of advantageous features. For example they conform
to a philosophy of science consistent with Ockham’s principle that physical entities should not be
multiplied unnecessarily. In direct-action theories, electric and magnetic fields are not necessary;
there are only forces between electrical charges in relative motion. From a pedagogical perspective,
direct action formulations can provide a clearer understanding of certain phenomena. For example, the
forces between steady currents and motional electromagnetic induction are identified with the velocity
terms in the Weber force formula, while transformer induction is explained through the acceleration
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terms [13]. Finally, such an approach has potential advantages in a number of fields such as applied
electromagnetics [14], and charge particle dynamics [15, 16].
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