
K-Means Clustering Using Homomorphic
Encryption and an Updatable Distance Matrix:

Secure Third Party Data Clustering with
Limited Data Owner Interaction

Nawal Almutairi, Frans Coenen, and Keith Dures

Department of Computer Science, University of Liverpool, UK
{n.m.almutairi,coenen,dures}@liverpool.ac.uk

Abstract. Third party data analysis raises data privacy preservation
concerns, therefore raising questions as to whether such outsourcing is vi-
able. Cryptography allows a level of data confidentiality. Although some
cryptography algorithms, such as Homomorphic Encryption (HE), allow
a limited amount of data manipulation, the disadvantage is that encryp-
tion precludes any form of sophisticated analysis. For this to be achieved
the encrypted data needs to coupled with additional information to fa-
cilitate third party analysis. This paper proposes a mechanism for secure
k-means clustering that uses HE and the concept of an Updatable Dis-
tance Matrix (UDM). The mechanism is fully described and analysed.
The reported evaluation shows that the proposed mechanism produces
identical clustering results as when “standard” k-means is applied, but
in a secure manner. The proposed mechanism thus allows the applica-
tion of clustering algorithms to encrypted data while preserving both
correctness and data privacy.

Keywords: Homomorphic Encryption, k-means clustering, Privacy pre-
serving data mining, Secure k-means clustering

1 Introduction

Data mining techniques have been exploited to improve quality of service and
guide decision makers with respect to many application domains. However, the
exponential growth in data availability often makes in-house data analysis im-
practical and expensive. This has fuelled the idea of Data Mining as a Service
(DMaaS); third parity analysis using cloud computing facilities [3]. This also
opens the door to collaborative data mining where a number of data owners
pool their data so as to gain some (for example commercial) mutual advan-
tage. Although DMaaS reduces the cost of managing and analysing data, and
facilitates collaborative data mining, it introduces several challenges, the most
significant of which is data privacy preservation. Hence the research domain
of Privacy Preserving Data Mining (PPDM) [1, 9, 16]. The typical approach to
PPDM is to use some form of data transformation, applied either to the entire

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/82985136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Nawal Almutairi, Frans Coenen, Keith Dures

data set (for example data perturbation) or selective sensitive data attributes
(for example value anonymisation) [4]. In perturbation, individual attributes are
distorted or randomised by adding noise, whereas data anonymity relies on mod-
ifying the data by replacing sensitive values with proxy values or removing the
values all together. However, although perturbed data may look quite different
from the original data, an adversary may take advantage of properties such as
correlations and patterns in the original data to identify the real values [16]. It
has also been observed that data cannot be 100% anonymised [2]. In addition
the anonymisation/perturbation of data may adversely effect the quality of the
analysis [1, 16].

Data privacy and security can be substantially guaranteed when data is en-
crypted. However, standard forms of encryption do not support data mining
activities, which typically require the comparison of records to determine their
similarity (or otherwise). Several encryption schemes have been developed to
enforce privacy and confidentiality while at the same time supporting some ma-
nipulation of encrypted data. Searchable Encryption (SE) [17] is an example
of an encryption scheme that preserve data privacy while supporting different
kinds of search operations over encrypted data. However, such search capabilities
still do not readily support data mining activities. One potential solution is Ho-
momorphic Encryption (HE), a family of emerging encryption mechanism that
supports a limited number of simple mathematical computations. The precise
nature of the mathematical capabilities supported by HE schemes is dependent
on the nature of the adopted scheme. However, there is no HE scheme that pro-
vides all the mathematical operations that we might want so as to perform data
mining activities; for example the similarity calculation operations required in
the case of data clustering [12, 15]. The solutions that have been proposed to
date all entail a significant element of data owner participation so that oper-
ations not supported by the selected HE mechanism can be conducted using
unencrypted data by the data owner. The degree of data owner participation
is such that the only reason for using a third party is to support cooperative
data mining. For example in the context of k-means cooperative clustering, as
described in [7] and [13], local cluster centroids are shared on each iteration so
that global centroids can be calculated on each k-means iteration, the majority
of the work is conducted by the data owners. In the case of a single data owner
there seems little point in conducting third party k-means clustering if most of
the work needs to be conducted by the data owner. The challenge is therefore
to limit the amount of data owner participation.

Given the above, this paper presents a k-means clustering mechanism that
limits interaction with data owners by using the concept of an Updatable Distance
Matrix (UDM). More specifically the idea is that data is stored, using third party
storage, in an encrypted form, together with an associated UDM. The data owner
can then request the data to be clustered, specifying the number of clusters k,
as required. For the clustering to operate correctly the UDM matrix needs to be
updated on each iteration of the k-means algorithm. To do this the differences
between the centroids of iteration i and i−1 are calculated in encrypted form and

Secure k-Means Clustering Using HE and a UDM 3

returned to the data owner for decryption, after which the decrypted differences
(as real numbers) are returned to the third party in the form of a Shift Matrix
(SM) which is then used to update the UDM ready for iteration i; this is the only
data owner participation that is required. Using this mechanism, as will be made
clear in the paper, the amount of data owner participation is significantly reduced
(by a factor of n, where n is the number of records in the dataset). Furthermore,
although the idea is presented using the well known k-means clustering algorithm
[12], it can, with some adjustment, be extend to encompass alternative clustering
mechanisms. It should also be noted that the nature of the encryption used is
Liu’s scheme [10], which supports addition and subtraction of cypher texts, and
division and multiplication of cypher texts by real numbers.

The rest of this paper is organised as follows, in Section 2 a review of related
work is presented. Section 3 provides the fundamental background concerning
standard k-means clustering and Liu’s Homomorphic Encryption scheme. Sec-
tion 4 explains the UDM concept as proposed in this paper. The next section,
Section 5, presents the proposed Secure k-means cluster over the homomorphi-
cally encrypted data founded on the UDM concept introduced in the previous
section. Method and results of experimenting the proposed algorithm have been
discussed in section 6. Finally, section 7 concludes the paper with some ideas
concerning future work to improve proposed mechanism.

2 Related Work

The main challenge of third party (k-means) data privacy preserving cluster-
ing using encryption is that, although the HE schemes used support a range of
arithmetic operations that can be applied to cypher-data, there are some oper-
ations that are not supported. Mechanisms have been developed to address this
challenge. These can be categorised as featuring either Multi-Parity Computa-
tion (MPC) or Partial Third-party Computation (PTC). Both feature significant
data owner participation.

MPC is only applicable where the desired clustering is to be undertaken with
respect to data belonging to two or more data owners. The basic idea is that
the majority of the processing is conducted in-house by the data owners, only
the centroids are shared on each k-means iteration [6]. Examples can be found
in [13] and [7]. In [13] the data owners, on each k-means iterations, generate
local clusters using their individual datasets. Each party then calculates the
“centroid” of their local cluster, encrypts this and shares the encrypted centroid
with the other owners. In [7] a similar mechanism is proposed except that only
one of the users calculates the global centroids and then shares this. Using MPC
data confidentiality is preserved since data is stored locally and is not shared
with other parities. However, data owners are expected to do much of the work
and are thus required to have the expertise and resource to carry out the desired
clustering.

Using PTC most of the processing is conducted by a third party, but with
recourse to the data owner (or owners) for the similarity calculations required as

4 Nawal Almutairi, Frans Coenen, Keith Dures

the k-means clustering proceeds. A disadvantage is thus that typically a great
many of such calculations will be required. Using PTC data is encoded using
some form of HE and sent to a third party where the homomorphic properties of
the encryption are used to manipulate the data so far as possible (centroid cal-
culation, data aggregation, and so). For example in [5] a PTC setting is used to
cluster data belonging to social network users into k clusters. The data is passed
to a “Semi Honest” third party where the clustering is performed, whilst simi-
larity is determined with reference to randomly selected users. The mechanism
proposed in this paper falls into the second category, but seeks to significantly
minimise the interaction with the data owner(s).

There has also been work directed at incorporating the idea of order preser-
vation into homomorphic encryption schemes to support secure k-means cluster-
ing. One example can be found in [11] where the authors describe a mechanism
whereby partial order preservation can be included in Liu’s encryption scheme
[10]. Using this mechanism the third party uses dynamic trap-doors that are
calculated on each iteration to convert cypher-text to order preserving text1.
However, data owner participation is still significant because the trapdoors need
to be recalculated on each iteration. Liu’s scheme as used in [11], is also the
encryption scheme adopted with respect to the work presented in this paper,
because of its particular homomorphic properties; it is therefore discussed in
further detail in Sub-section 3.2.

3 Preliminaries

Before considering the proposed secure k-means third party clustering mecha-
nism and the proposed UDM concept, some preliminaries are presented in this
section. Firstly, although the k-means algorithm is well understood [12], for com-
pleteness it is briefly presented in Sub-section 3.1. Liu’s homomorphic encryption
scheme [10] is then described in Section 3.2.

3.1 K-Means clustering

K-means is an iterative clustering algorithm where n data items are grouped
into k clusters [12]; k is specified by the user. Each cluster is represented by
its centroid. On the first iteration the first k records are usually used as the
centroids. The remaining records are then assigned to clusters according to the
shortest “distance” from each record to each centroid. At the end of the first
iteration the centroids are recalculated; this is typically, but not necessarily,
done using the mean values of the attribute values for the records present in
each cluster. The algorithm then again assigns the records to the clusters and
continues in this iterative manner until the centroids become fixed.

1 A “trapdoor” in this context is a function that can be simply computed on one direc-
tion but is difficult to compute in the reverse direction without additional knowledge;
the concept is widely used in cryptography.

Secure k-Means Clustering Using HE and a UDM 5

Algorithm 1 Encrypt(v, K(m))

1: procedure Encrypt(v,K(m))
2: Uniformly generate m arbitrarily real random numbers r1,, rm
3: Declare E as a real value array of m elements

4: e1 = k1 ∗ t1 ∗ v + s1 ∗ rm + k1 ∗ (r1 − rm−1)
5: for i = 2 to m− 1 do
6: ei = ki ∗ ti ∗ v + si ∗ rm + ki ∗ (ri − ri−1)
7: end for
8: em = (km + sm + tm) ∗ rm
9: Exit with E

10: end procedure

Algorithm 2 Decrypt(E, K(m))

1: procedure Decrypt(E,K(m))
2: T =

∑m−1
i=1 ti

3: S = em/(km + sm + tm)
4: v = (

∑m−1
i=1 (ei − S ∗ si)/ki)/T

5: Exit with v
6: end procedure

3.2 Liu’s Homomorphic Encryption Scheme

As noted above, the adopted encryption scheme with respect to the work pre-
sented in this paper was Liu’s homomorphic scheme [10]. Using Liu’s scheme
each data attribute value is encrypted to m sub-cyphers E = {e1, e2, . . . , em}
where m is the public key (m ≥ 3) and K(m) is a list of secret keys. K(m) =
[(k1, s1, t1), . . . , (km, sm, tm)] where ki, si and ti are real numbers. The se-
cret values satisfy the following conditions: (i) ki 6= 0 (1 ≤ i ≤ m − 1), (ii)
km + sm + tm 6= 0 and (iii) there exists only one i (1 ≤ i ≤ m) such that ti 6= 0
(this last so as to preserve a partial ordering of the data). Algorithm 1 shows
the pseudo code for the Encrypt(v, k(m)) encryption function that converts a
real value v to a set of sub-cyphers E = {e1, . . . , em}. Given a set of sub-cyphers
E = {e1, . . . , em} and the key k(m) Algorithm 2 gives the pseudo code for the
Decrypt(E, k(m)) decryption function to return the value v.

Liu’s scheme has both security and homomorphic properties. In terms of se-
curity, the scheme is probabilistic, therefore it produces different cypher-texts for
the same plain-text each time it is applied even when using the same secret key.
This feature makes the scheme semantically secure and guards against “Chosen
Plain-text Attacks” (CPAs) because if E = {e1, . . . , em} is a cypher-text which
encrypts v1 or v2, the adversary will not know which one E encrypts. The ho-
momorphic properties of the scheme support addition and subtraction of cypher
texts, and multiplication and division of cypher texts with a real number c.

6 Nawal Almutairi, Frans Coenen, Keith Dures

E + E′ = {e1 + e′1, . . . , em + e′m} = v + v′

E − E′ = E + (E′ ×−1) = {e1 + (e′1 ×−1), . . . , em + (e′m ×−1)} = v − v′

c× E = {c× e1, . . . , c× em} = c× v
c÷ E = {c÷ e1, . . . , c÷ em} = c÷ v

In the context of k-means clustering, as will become clear, addition is required for
summing the attribute values of records in a cluster and division to consequently
arrive at a centroid for the cluster. Subtraction is required to determine the
difference between the centroids arrived at on iteration i with those from iteration
i− 1.

4 The Updatable Distance Matrix Concept

Liu’s scheme, described in Section 3.2, transfers plain-texts values randomly to
cypher-texts, hence any ordering that might feature in the plain-text data is
not transferred to the cypher-texts. Therefore, cypher-texts cannot be directly
compared and hence k-means clustering cannot be directly applied. The propose
idea is to guide the k-means clustering using what we refer to as an Updatable
Distance Matrix (UDM) that holds the distances between attribute values in
records with the corresponding attribute values in every other record. A UDM
is thus a 3D matrix with the first two dimensions corresponding to the records
in the data set and the third to the set of attributes that feature in the dataset.
Thus, more formerly, given a data set D = {r1, r2, . . . rn} where each record rx
is a feature vector comprised a set of values {vx1

, vx2
, . . . vxm

} (each value corre-
sponding to an attribute in the set of attributes A = {a1, a2, . . . , am} featured
in the data set), the associated UDM U will be comprises of a set of elements
u[x,y,z] where x and y indicates the record numbers (x < n and y < n), and z
the attribute number (z < m). Given an element u[x,y,z] ∈ U the value held will
then be calculated using:

vxz
∼ vyz

(1)

Note that where x ≡ y the UDM values will equate to 0. Note also that UDMs are
symmetric about there leading diagonal, and hence only the 3D leading triangle
needs to be considered.

The UDM for a particular dataset is generated by the data owner and sent
to the third party data miner together with the encrypted data set. The owner
can then request a clustering specifying k. On start up the first k records are
used as the centroids; then, as the k-means algorithm progresses, the centroids
are updated. However, it is not necessary for the UDM to be sent back to the
data owner as in the case of other PTC approaches, such as that described in
[5]. It is only necessary for differences between the newly identified centroids C ′

on iteration i and the centroids C from iteration i−1 to be returned to the data
owner so that offsets, referred to as shift values, can be calculated and stored

Secure k-Means Clustering Using HE and a UDM 7

in a Shift value Matrix (SM) S, to be returned to the third party data miner
who can then update the UDM U to generate an updated version of the UDM
U′ (U′ = U + S). The process whereby the proposed UDM concept, together
with the use of SMs, is utilised in the context of secure k-means clustering is
discussed in further detail in the following section.

5 Secure k-means Clustering Using the UDM Concept

This section presents the proposed UDM based on secure k-means clustering
process. The process has two parts, a data preparation part and a clustering
part. The first is conducted by the data owner and is detailed in Sub-section 5.1,
while the second is conducted by the third party and is detailed in Sub-section
5.2. Note that the proposed process delegates some of the processing to the data
owners, but this is limited to the generation of SMs and is significantly less than
in the case of more conventional PTC approaches such as that presented in [5].

5.1 Data Owner Process

Data sets are prepared for outsourcing by generating a UDM and translating
the raw data into a suitable encrypted format. The pseudo code for the process
is given in Algorithm 3. The input to the algorithm is a dataset D, a set of
attributes A that are featured in D and the number of required sub-cyphers m,
the later required for Liu’s encryption scheme adopted with respect to the work
presented in this paper. Note that k-means clustering works only on numerical
(or pseudo numerical) data, because similarity measurements are central to the
operation of the mechanism. Therefore categorical (or labelled) data needs to
be replaced with discrete integers values before any further processing can be
conducted, this is done in line 2 of the algorithm. A list of secret keys K(m)
is then defined (line 3). The processed data set is then encrypted to form a
cypher data set D′ using Algorithm 1 (lines 5 to 7). Next the desired UDM,
U, is dimensioned (line 8) and populated (lines 9 to 15); recall from Section 4
that vxz

is the value of the zth attribute in the feature vector describing the xth
record in the dataset, while vyz is the value of the zth attribute in the feature
vector describing the yth record in the dataset. On completion (line 16) the
process returns the encrypted data set D′ and the generated UDM U ready to
be sent to the third party data miner.

5.2 Third Party Process

The secure k-means clustering is conducted by the third party data miner follow-
ing a processes very similar to the traditional k-means algorithm as described
in Sub-section 3.1. The pseudo code presented in Algorithm 4 describes this
process. The input is the encrypted data set D′, the UDM U (previously sub-
mitted to the third party) and the number of desired clusters k. We commence
by dimensioning the set of clusters C = {C1, C2, . . . , Ck} and assigning the first

8 Nawal Almutairi, Frans Coenen, Keith Dures

Algorithm 3 Data encryption and UD matrix generation

1: procedure OutsourceData(D,A,m)
2: ProcessedData = Dataset D converted to numeric data set where necessary
3: K(m) = LiuScheme(m)
4: D′ = ∅
5: for all r ∈ ProcessedData do
6: D′ = D′ ∪ Encrypt(r,K(m)) (Algorithm 1)
7: end for
8: U = Empty UDM dimensioned according to |D|, |D| and |A|
9: for x = 1 to x = |ProcessedData| do

10: for y = x to y = |ProcessedData| do
11: for z = 1 to z = |A| do
12: u[x,y,z] = vxz ∼ vyz (u[x,y,z] ∈ U)
13: end for
14: end for
15: end for
16: return D′ and U
17: end procedure

k encrypted records from D′ to it (lines 2 and 3). We then define a second
set Cent = {c1, c2, . . . , ck} to hold the current centroids (line 4). Next the re-
mainder of D′ is processed and assigned to clusters using the populateClusters
sub-process (line 5) given at the end of the algorithm. Records are assigned to
clusters according to the similarity between the record and centroids as calcu-
lated using the UDM U as follows (where rx is record x ∈ D, and ry is record
y ∈ D representing cluster centroid y (1 ≤ y ≤ k):

sim(U, rx, ry) =

z=|A|∑
z=1

U[x,y,z] (2)

We then calculate the new centroids (line 6). Next we enter into a loop (lines 7
to 14) which repeats until Cent and Cent′ are the same. At the start of each
iteration we create an encrypted SM S′ (line 8). However, to update U we need
real values, the content therefore needs to be decrypted. This can only be done
by the owner (line 9). Note that (not shown in the algorithm) when updating
U we only need to update the records in the second dimension representing
cluster centroids. With the new centroids we again assign all records to C using
the populateClusters sub-process (line 12) in the same manner as before. We
continue in this manner till the process terminates.

6 Evaluation

The evaluation of the proposed method is presented in this section using ten
datasets from the UCI data repository [8]. Table 1 gives some statistical infor-
mation concerning these data sets. The Data sets have integer, real and categor-
ical attribute types. The number of classes in each case was used as the value

Secure k-Means Clustering Using HE and a UDM 9

Algorithm 4 Secure k-means clustering algorithm

1: procedure secure k-means(D′, U, k)
2: C = Set of k empty clusters
3: Select first k records in D′ and assign to C (one per cluster)
4: Cent = Set of first K records in D′ (the k cluster centroids)
5: C = populateClusters(k + 1,U, C,D′, Cent)
6: Cent′ = CalculateCentroids(C)
7: while Cent 6= Cent′ do
8: S′ = SM obtained from comparing Cent and Cent′

9: S = S′ decrypted by data owner
10: U = U + S
11: C = Set of k empty clusters
12: C = populateClusters(1,U, C,D′, Cent′)
13: Cent = Cent′

14: Cent′ = CalculateCentroids(C)
15: end while
16: Exit with C
17: end procedure
18: procedure populateClusters(x,U,C,D′,Cent)
19: id = null
20: for x = x to x = |D′| do
21: for y = 1 to y = |C| do
22: sim = sim(U, rx, cy,) where rx ∈ D′ and cy ∈ Cent (Equation 2)
23: id = cluster identifier with lowest sim value so far
24: end for
25: Cid = Cid ∪ rx (Cid ∈ C)
26: end for
27: return C
28: end procedure

for k and the class column omitted from the data set. The proposed process
was implemented using the Java object oriented programming language. Cluster
configuration correctness was measures by comparing the results obtained with
results obtained using standard (unencrypted) k-means clustering. The metric
used was the Silhouette Coefficient (Sil. Coef.) [14] calculated using Equation 3
where a(xj) describes the cohesion between each record xj and the other records
in the same cluster, whilst b(xj) describes the separation between each record xj

and records in other clusters. The Silhouette coefficient is a real number between
−1 and 1 where the closer the coefficient is to 1 the better the clustering. We
were also interested in overall runtime, the time to complete the clustering.

OverallSil =

∑k
i=1

∑j=|ci
j=1 Sil(xj)

|Ci|

k

Sil(xj) =
b(xj)− a(xj)

max(a(xj), b(xj))

(3)

10 Nawal Almutairi, Frans Coenen, Keith Dures

Datasets
Num. Num. Num. Attributes

Records Attributes Clusters Description

Banknote Authent. 1372 4 2 Real
Breast Cancer 198 33 2 Real
Breast Tissue 106 9 6 Integer and real
Lung Cancer 32 56 3 Integer
Blood Transfusion 748 4 2 Integer
Cardiotocography 2126 36 3 Integer and real
Chronic-kidney 400 24 2 Categorical, int. and real
Iris 150 4 3 Categorical, int. and real
Pima Disease 768 8 2 Integer and real
Seeds 210 7 3 Integer and real

Table 1. Statistical information for the data sets used in the evaluation

Datasets
Secure k-means Standard k-means

Runtime Num. Sil. Runtime Num. Sil.
(Mili. Secs.) Iterations Coef. (Mili. Secs.) Iterations Coef.

Banknote Authent. 87 17 0.207 58 17 0.207
Breast Cancer 31 9 0.020 11 9 0.020
Breast Tissue 26 19 0.787 19 19 0.787
Lung Cancer 17 9 0.645 3 9 0.645
Blood Transfusion 27 13 0.370 19 13 0.370
Cardiotocography 333 25 0.065 216 25 0.065
Chronic-kidney 29 9 0.009 14 9 0.009
Iris 14 15 0.836 9 15 0.836
Pima Disease 30 9 0.000 19 9 0.000
Seeds 10 7 0.706 9 7 0.706

Table 2. Execution time for secure k-means clustering

The results are presented in Table 2, the runtime is the time to complete the
clustering excluding encryption and UDM generation. From the table it can be
seen firstly that the cluster configurations produced using the proposed secure
k-means clustering were identical to those produced using standard k-means
clustering as evidenced by the Silhouette Coefficients produced (columns 4 and
7 in the table) which were identical in all cases. Thus it can be concluded that the
homomorphic properties used to calculate the centroids and distances between
centroids do not effect the accuracy of the clustering. In terms of run time the
same number of iterations were required with respect to each dataset, although
from the table it can be seen that the bigger the dataset the more iterations
are required. The overall run time required for the secure k-means approach
to produce the desired cluster configurations, as expected, was longer than in
the case of standard k-means clustering. Inspection of the table indicates that
this was not significant. The runtime required by the data owner to calculate
a UDM and encrypt the data did not add a significant overhead. Even for the
largest data set, Cardiotocography, the time to create the UDM was 912ms. and
to encrypt the data was 25ms. Note that the time complexity for generating an
initial UDM will be in the order of O(|D|×|C|×k). The time to decrypt a SM, on
each iteration, will be negligible. However, it should be noted that with respect
to the experiments reported here the data owner and third party were both

Secure k-Means Clustering Using HE and a UDM 11

Fig. 1. Time required by data owner to decrypt shift (distance) between two centroids

hosted on the same machine, thus there was no “message passing” overhead; in
“real life” the data owner and third party will be hosted on separate machines,
time for message passing would add to the run time although not significantly
so. Figure 1 shows two plots. The first plots each data set against overall runtime
for the secure k-means clustering and number of iterations, the second against
overall runtime and |A|. The plots confirm, that although not necessarily linear,
the run time increases with the number of iterations and attributes.

7 Conclusion

In this paper a secure k-means clustering mechanism has been described that
uses the concept of an Updatable Distance Matrix (UDM). The advantage of-
fered is that, unlike comparable secure k-means clustering mechanisms from the
literature, data owner participation is negligible, restricted to decrypting a Shift
Matrix (SM) on each iteration. The presented evaluation demonstrates that the
encryption and processing does not adversely effect the quality of the clusters
produced, they are the same as when k-means is applied in a standard manner.
The processing time, as was to be expected, is greater but not significantly so. In
an ideal situation the data owners should be able to package their data so that
it is secure, send it to a third party for storage and analysis, and receive analysis
results when required without the need for any further communication whilst
the analysis is taking place. However, given that at present, there is no suitable
encryption scheme that will support all the necessary mathematical operations
for this to happen, the proposed mechanism significantly reduces the amount

12 Nawal Almutairi, Frans Coenen, Keith Dures

of data owner participation required. For future work the authors intend to in-
vestigate the utility of the UDM concept with respect to alternative clustering
algorithms, and other data mining techniques (such as classification and pattern
mining techniques).

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIG-
MOD Rec., 29(2):439–450, May 2000.

2. Scott Berinato. Theres no such thing as anonymous data. Harvard Business
Review, February, 2015.

3. T. Chen, J. Chen, and B. Zhou. A system for parallel data mining service on cloud.
In 2012 Second International Conference on Cloud and Green Computing, pages
329–330, November 2012.

4. Hitesh Chhinkaniwala and Sanjay Garg. Privacy preserving data mining tech-
niques: Challenges and issues. In Proceedings of International Conference on Com-
puter Science & Information Technology, CSlT, page 609, July 2011.

5. Zekeriya Erkin, Thijs Veugen, Tomas Toft, and Reginald L Lagendijk. Privacy-
preserving user clustering in a social network. In 2009 First IEEE International
Workshop on Information Forensics and Security (WIFS), pages 96–100. IEEE,
December 2009.

6. Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press, 2009.

7. Somesh Jha, Luis Kruger, and Patrick McDaniel. Privacy preserving clustering. In
European Symposium on Research in Computer Security, pages 397–417. Springer,
September 2005.

8. M. Lichman. UCI machine learning repository, 2013.
9. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. Journal of

cryptology, 15(3):177–206, June 2002.
10. Dongxi Liu. Homomorphic encrypton for database querying, December 2013.
11. Dongxi Liu, Elisa Bertino, and Xun Yi. Privacy of outsourced k-means cluster-

ing. In Proceedings of the 9th ACM symposium on Information, computer and
communications security, pages 123–134. ACM, June 2014.

12. James MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the fifth Berkeley symposium on mathematical statis-
tics and probability, pages 281–297. Oakland, CA, USA., June 1967.

13. Deepti Mittal, Damandeep Kaur, and Ashish Aggarwal. Secure data mining in
cloud using homomorphic encryption. In Cloud Computing in Emerging Markets
(CCEM), 2014 IEEE International Conference on, pages 1–7. IEEE, October 2014.

14. Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
November 1987.

15. Meena Dilip Singh, P Radha Krishna, and Ashutosh Saxena. A privacy preserving
jaccard similarity function for mining encrypted data. In TENCON 2009-2009
IEEE Region 10 Conference, pages 1–4. IEEE, January 2009.

16. Jaideep Vaidya, Christopher W Clifton, and Yu Michael Zhu. Privacy preserving
data mining, volume 19. Springer Science & Business Media, 2006.

17. Yang Yang and MA Maode. Semantic searchable encryption scheme based on
lattice in quantum-era. Journal of Information Science & Engineering, 32(2):425–
438, March 2016.

