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Abstract

Approximating the tail probability of a sum of heavy-tailed random variables is a diffi-
cult problem. In this review we exhibit the challenges of approximating such probabilities
and concentrate on a rare event simulation methodology capable of delivering the most re-
liable results: Conditional Monte Carlo. To provide a better flavor of this topic we further
specialize on two algorithms which were specifically designed for tackling this problem: the
Asmussen-Binswanger estimator and the Asmussen-Kroese estimator. We extend the appli-
cability of these estimators to the non-independent case and prove their efficiencies.
Keywords: Rare-event simulation, conditional Monte Carlo, heavy-tails, efficiency, non-
independent.
MSC: 60E05, 90-04.

1 Introduction

The term rare event is used to designate all those events whose probabilities are small, yet
non-negligible and characterized by the difficulty of its calculation. Often, these rare events
are extremely important in applications; for instance, consider the consequences of a natural
disaster for an insurance company, or an economic crisis for a financial institution or the sudden
arrival of huge number of jobs to a server as it often occurs in a web server. Many of the
probability models employed for dealing with these problems contain multiple random variables
(not necessarily independent) and the quantities of interest are given in terms of transformations
such as sums, products or extremes. In consequence, the explicit calculation of a distribution
of interest is often non-trivial and one must rely on approximation methods. Among these, the
Monte Carlo method is considered to be one the most reliable, specially in cases where analytical
approximations are not available.

In this review we mainly focus on the Monte Carlo method for approximating rare event prob-
abilities, but we also discuss asymptotic approximations; the reason for this is that the imple-
mentation of efficient Monte Carlo estimators often requires to draw elements from asymptotic
theory. In particular, we specialize on tail probabilities of a sum of random variables

P(Sn > x), x→∞.

When the involved random variables are light tailed, the approximation of such probabilities
is dealt via Large Deviations theory. Notwithstanding, certain phenomena are better modeled
with heavy-tailed distributions. However, the approximation of rare event probabilities in the
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presence of heavy tails is often more involved and it has been considered a challenging problem
among the applied probability community. The reason for this is that most classical methods
require that the domain of convergence of the moment generating function contains an open
set including the origin —a condition which is not satisfied by heavy-tailed random variables as
these are characterized by the non-existence of their moment generating functions for positive
values of the argument. Therefore, new methods have been called for tackling this problem,
and as a result we have seen in the last fifteen years a very intense research activity devoted to
Rare Event Simulation. In this review, we focus on the methodology called Conditional Monte
Carlo, which has provided some of the most powerful and efficient estimators so far. Some of
our contributions employ this technique [1–3]. Here we include some results which have not
been previously published in peer-review journals. These are the generalizations of the so called
Asmussen-Binswanger and Assmusen-Kroese estimators for the case of independent but non-
identical random variables. These extensions are accompanied by their corresponding proofs of
efficiency.

This paper is structured as follows. In section 2 we provide a discussion on independent heavy-
tailed random variables. This theory is now at an advanced level and well-understood. Several
alternative definitions for heavy tails are reviewed and their relations and main properties are
studied. In particular, we pay attention to the rich class of subexponential distributions and we
discuss how its defining property provides a useful insight into the occurrence of large values of
a sum —a characteristic behavior known as the principle of the single big jump. Moreover, it
has been recognized that the subexponential property goes beyond the independent case and it
is now an area of active research. One of the main contributions of this author is in this front.
The main result in [4] states that a sum of lognormals possesses the subexponential property
even when the involved random variables are correlated via a Gaussian dependence structure.

A general overview of Monte Carlo methods is provided in Section 3 with a particular emphasis
in the area known as Rare Event Simulation. The notions of rare event and efficient estimator are
formalized here in order to provide the proper framework for analyzing Monte Carlo estimators for
rare event probabilities. We discuss the classical tools such as importance sampling, exponential
change of measure and conditional Monte Carlo. We discuss briefly the limitations of some
standard methods when applied in a heavy-tailed setting. Section 4 is devoted exclusively to
the approximation of tail probabilities of sums of heavy-tailed random variables; a recount of
available methods is given there followed by a more detailed exposition on a set of estimators
based on the Conditional Monte Carlo; these are known as the Asmussen-Binswanger [5] and
the Asmussen-Kroese [6]. In particular, we provide extensions to the non-independent case and
prove the efficiency of these estimators. We stress the fact that Theorems 4.1–4.3 are original
contributions and their efficiency proofs can be found in the Appendix in Section 6. Finally,
Section 5 contains some concluding remarks.

2 Heavy Tails

The term heavy-tailed phenomena [7], is often used to refer to real world phenomena where
record values are characterized by its extreme behavior. Examples of this type of phenomena
are abundant in insurance; for instance, consider the two record costliest (adjusted for inflation)
hurricanes striking the United States during the period 1900-2010: Katrina (2005) and Andrew
(1992) with damage costs of $105,840 and $45,561 respectively [8]. Both records have extreme
values but the most striking feature is that the damage cost of hurricane Katrina more than
doubles the damage cost of hurricane Andrew! Further examples occur in Finance and Telecom-
munications where economic losses or system breakdowns due to large data file sizes or long
transmission lengths are of great concern.

The examples above sketch the huge relevance of heavy-tailed phenomena and stress the impor-
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tance of having the right probabilistic distributions for modeling their behavior. In the rest of
this section we will provide alternative definitions which lead to several classes of heavy-tailed
distributions and will study their properties. In particular, we will pay attention to the distinc-
tive behavior of convolutions of certain types of heavy-tailed distributions known as the principle
of the single big jump. We also establish some contrasts with respect to light tailed distribu-
tions, which typically comprehend most of the classical models in probability and statistics. Our
exposition follows closely [9] but we also draw elements from [10] and [11].

We say that a random variable X has a (right) heavy-tailed distribution if

E[eθX ] =∞, ∀θ > 0.

Foss, Korshunov and Zachary [9] employ the term exponential moment to refer to the quantity
E[eθX ]. Adopting this terminology, we say that X has a heavy-tailed distribution if it fails to
have a positive exponential moment. In contrast, if a distribution with unbounded right support
has a finite positive exponential moment, then we say that it has a light-tailed distribution.
Further to this, we can easily verify that light-tailed distributions have moments of every order
while a random variable with an infinite moment of any order will necessarily have a heavy-tailed
distribution. The converse of the last statement is false in general; the classical example is that
of a lognormal random variable which has finite moments of every order but it fails to have a
positive exponential moment, and in consequence classifies as a heavy-tailed distribution.

In the definition above it is implicit that a right heavy-tailed distribution should have an un-
bounded right support. In fact, the defining property of a heavy-tailed distribution is inherently
related to the rate of decay of its tail probability F (x) := 1 − F (x). Therefore, it is natural to
obtain equivalent definitions of a heavy-tailed distribution in terms of its tail probability or its
hazard rate function. In particular, we define the hazard function Λ(x) as

Λ(x) := − logF (x).

Moreover, if the tail probability F of a distribution is differentiable, then we define the hazard rate
function λ(x) := Λ′(x). Hazard (rate) functions arise in a wide variety of applications in survival
analysis and reliability where it is known under alternative names such as survival or failure
(rate) functions. In addition, we say that an arbitrary nonnegative function f is heavy-tailed iff

lim sup
x→∞

f(x)

e−θx
=∞, ∀θ > 0.

Thus a function is heavy-tailed if it decays slower than an exponential function. The following
theorem (cf. [9, Theorem 2.6]) ties together the properties of the tail and the hazard functions
of a heavy-tailed distribution and provides alternative definitions.

Theorem 2.1. Let F be a distribution function with unbounded right support. The following are
equivalent:

1. F is a heavy-tailed distribution.

2. F is a heavy-tailed function.

3. lim infx→∞ Λ(x)x−1 = 0.

These definitions provide practical means for testing the heaviness of any given distribution.
Classical examples of heavy-tailed distributions include the subfamily of regularly varying dis-
tributions (including Pareto, Loggamma, Burr), Weibull distribution with parameter 0 < λ < 1,
Cauchy and Lognormal. On the other hand, the exponential, gamma and normal random vari-
ables are examples of light-tailed distributions. In fact, from the definition of a heavy-tailed
function it follows that an exponential transformation of a light-tailed random variable might
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yield to a heavy-tailed random variable. In particular, the Pareto, loggamma and lognormal
are the respective heavy-tailed distributions obtained from an exponential transformation of the
exponential, gamma and normal distributions.

The class of heavy-tailed distributions as defined above is too general for deriving useful prop-
erties. However, by adding some regularity conditions one can obtain tractable subclasses of
heavy-tailed distributions which posses attractive properties, yet remain general enough. One of
such subclasses is that of long tailed distributions. This subclass is denoted L and defined by
the following property. A distribution F ∈ L iff

lim
x→∞

F (x+ y)

F (x)
= 1, ∀y ∈ R.

An analogue definition exists for a general function f which is ultimately positive and posses the
property listed above; in such case we say that f is a long-tailed function. The following result
[9, Lemma 2.17] provides the connection between heavy and long tailed distributions.

Lemma 2.2. If f is a long-tailed function then

lim
x→∞

f(x)

e−θx
=∞, ∀θ ≥ 0.

In consequence, a long-tailed distribution F is necessarily heavy-tailed, but the converse is not
always true. The reference [9] provides a counterexample of a heavy-tailed distribution which
fails to be long-tailed. By adding the smoothness condition which defines the class of long-tailed
distributions, we gain some useful properties in exchange of some generality. In particular, it
is possible to prove that the class of long-tailed functions is closed under linear transformations
(mixtures), products, maxima, minima, and convolutions. Moreover, the convolution of a long-
tailed distribution with an arbitrary distribution is long-tailed.

A very useful characterization of long-tailed distributions is via their insensitiveness with respect
to a function h. More precisely, we say that a function f is h-insensitive [9] iff

sup
|y|≤h(x)

|f(x+ y)− f(x)| = o(f(x)), x→∞,

uniformly in |y| ≤ h(x). If the function f is monotone, then h-insensitivity reduces to having
f(x+h(x)) ∼ f(x) as x→∞. Clearly, a long-tailed function is insensitive with respect a constant
function. However, this property can be strengthened as shown in the following Lemma:

Lemma 2.3. If F is a long-tailed distribution, then there exists a function h(x)→∞ such that
F is an h-insensitive function.

For instance, if F is regularly varying then it is o(x)-insensitive, while the lognormal is o(x/logx)-
insensitive and the heavy-tailed Weibull with parameter λ ∈ (0, 1) is o(x1−λ)-insensitive. Next,
we discuss briefly the relationship between long-tailed distributions, integrated tails and the mean
excess function. If a distribution function is such that

∫∞
0
F (x) dx <∞, then we can define the

integrated tail distribution of F as

F I(x) := min

{
1,

∫ ∞
x

F (t) dt

}
.

The mean excess function can be defined for a distribution having a finite first moment as

e(x) := E[X − x|X > x].

That is, the mean excess function is the expected value of the excess of a random variable over a
given x, provided that it has exceeded this threshold value. The mean excess function is related
to the integrated tail distribution via the relation e(x) = F I(x)/F (x). Moreover, the following
lemma [9, Lemma 2.25] provides a useful characterization of long-tailed distributions in terms of
mean-excess functions.
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Lemma 2.4. The integrated tail distribution FI is long-tailed iff its associated mean excess
function is such that e(x)→∞.

In applications, the mean excess function is often used to diagnose the presence of heavy-tails.
However, the previous lemma shows that if e(u) → ∞ we can only verify that the integrated
tail distribution is long-tailed but we cannot say anything about the heaviness of the original
distribution F . In fact, one can construct a counterexample of a light tailed distribution whose
mean excess function goes to infinity. This is a case of a more general fact which says that
if F is an absolutely continuous distribution, then its density f is a heavy-tailed function but
the converse is false in general; that is, if a density function f is heavy-tailed, its distribution
function is not necessarily heavy-tailed. In consequence, the mean excess function of a heavy-
tailed function should increase to infinity as we let the threshold value x→∞, but it is not an
absolutely reliable tool to diagnose a heavy tail because a distribution with mean excess function
going to infinity is not necessarily heavy-tailed. Counterexamples for all these cases can be found
in [9].

Convolutions of certain regular and nonnegative heavy-tailed distributions have a unique property
which set them apart from light-tailed distributions: the principle of the single big jump. This
property is extremely useful and most of the heavy-tailed distributions used in practice possess
it; in fact, the family of distributions defined by this property forms a proper subclass of long-
tailed distributions. To define it we concentrate exclusively on distributions with nonnegative
values, but point out that some of the subclasses of heavy-tailed distributions defined below can
be generalized to distributions supported over the reals.

We start with the following elementary property of a convolution which holds for all nonnegative
distributions F with unbounded right support. Let F ∗n the n-fold convolution of F and F ∗n its
corresponding tail distribution, then

lim inf
x→∞

F ∗n(x)

F (x)
≥ n, ∀n ∈ N.

The following theorem [9, Theorem 2.12] provides a sufficient condition for the liminf above to
be equal to n. In fact, this will provide a very useful insight into the characteristic behavior of
the convolution of a heavy-tailed distributions:

Theorem 2.5. Let F be a nonnegative heavy-tailed distribution. Then

lim inf
x→∞

F ∗n(x)

F (x)
= n, ∀n ∈ N. (1)

The corresponding lim inf of most light-tailed nonnegative distributions like the exponential and
gamma will be infinite. Hence, it is tempting to use the theorem above as an alternative definition
of heavy-tails, but it turns out this is not possible as one can construct a light tailed nonnegative
distribution for which the liminf of the ratio of convolutions as defined above is equal to n. A
counterexample can be found in [9]. However, we can strengthen the condition above to obtain
a subclass of long-tailed distributions: subexponential distributions, This subclass was originally
introduced by Chistyakov in 1964 [12]. We say that a nonnegative distribution F belongs to the
class of subexponential distributions, denoted S, if it possesses the subexponential property ; that
is, the tail probability of the n-fold convolution of F is asymptotically equivalent to n times the
tail probability F . More precisely,

lim
x→∞

F ∗n(x)

F (x)
= n, ∀n ∈ N. (2)

Therefore, a heavy-tailed distribution requires and additional regularity condition to be subex-
ponential. That condition is the existence of the limit (2). Moreover, it is possible to prove that
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that subexponential distributions form a proper subclass of long-tailed distributions. That is,
any subexponential distribution is long-tailed but not every long-tailed distribution will neces-
sarily be subexponential. For a counterexample see [9]. Curiously, the name subexponential was
originally employed to refer to the class of distributions satisfying limx→∞ F (x)eλx < ∞, but
nowadays it is employed in the more restrictive sense described above. Subexponentiality is a
property of the tail exclusively; however, it has a very interesting implication for the tail of an
n-convolution —a characteristic which often goes under the name of the principle of the single
big jump. Let us start by noting that the distribution of the maximum Mn of n arbitrary i.i.d.
random variables (not necessarily subexponential) is given by Fn(u). Hence

P(Mn > x) = 1−Fn(x) = 1− (1−F (x))n = 1−
n∑
k=0

(−1)k
(
n
k

)
F
n−k

(x) = F (x)
(
n+ O(F (x))

)
.

In consequence, the tail probability of the maximum is asymptotically equivalent to the tail
probability of the convolution, namely P(Mn > x) ∼ P(Sn > x), where Sn := X1 + · · · + Xn.
Since the X ′is are nonnegative, then {Mn > x} ⊂ {Sn > x} and the conclusion above can be
written in a conditional form as

lim
u→∞

P(Mn > u)

P(Sn > u)
= lim
u→∞

P(Mn > u|Sn > u) = 1.

This expression is very appealing as it says that the if the sum becomes large it is only likely due
to the contribution of a single random variable. This behavior is completely opposite to that of
lighted tails where the only likely way that a sum of i.i.d. random variables becomes large is as a
consequence of several moderately large but otherwise proportionally sized contributions of two
or more random variables. Hence, it turns out that distributions within the class S should be ap-
propriate for modeling those phenomena which show some stability through time but eventually
are shocked by an extreme event. Subexponential distributions inherit the properties of long-
tailed distributions but also possess many of their own; for instance, the class of subexponential
distributions is closed under maxima, minima, mixtures, convolutions and random translations.
Also, most of the heavy-tailed distributions used in practice are subexponential such as the
Pareto, loggamma, Burr, Weibull and Lognormal. Also, in the case of nonnegative distributions,
there exists an upper bound for the expression F ∗n(x)/F (x). Such bound goes under the name
of Kesten’s bound [9, Theorem 3.34], and it is described in the following Theorem:

Theorem 2.6. Let F be a subexponential distribution. Then, for every ε > 0 there exists a
constant c such that for all x ≥ 0 and all n ≥ 1 it holds that

F ∗n(x)

F (x)
≤ c(1 + ε)n.

Notice that the subexponential property is given for nonnegative, independent and identically
distributed random variables, thus it would be desirable to extend this definition to more general
sets of random variables and investigate more general conditions under which the principle of
the single big jump holds. First we concentrate on distributions supported on the whole real line
where it turns out that the defining property (2), which from now on we call subexponential-type
property, is no longer a tail property. For instance, if we consider a distribution supported all
over the reals which fulfills the subexponential-type property, then the distribution F+(x) :=
F (x)Ix≥0 will not necessarily be subexponential and the principle of the single big jump does
not hold anymore; this argument motivates the following alternative definition. We say that
a distribution F is whole-line subexponential if F+ is subexponential. Alternatively, one could
obtain an equivalent definition by consider the distribution G(x) = P(X ≤ x|X ≥ 0) instead
of F+. The following theorem [9, Lemma 3.4 and Theorem 3.6] summarize two alternative
equivalent definitions which provide useful insights into the class of whole-line subexponential
distributions.

Theorem 2.7. The following assertions are equivalent:
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1. F is whole-line subexponential.

2. F is long-tailed and it possesses the subexponential-type property.

3. F is long-tailed and there exists a function h(x) → ∞ for which F is h-insensitive and
such that for any two independent random variables X1, X2 ∼ F it holds that

P(X1 +X2 > x,X1 > h(x), X2 > h(x)) = o(F (x)), x→∞.

This theorem says that for a distribution to be whole-line subexponential it is not enough to
just have the subexponential-type property but we also require a long-tail. Clearly, whole-line
subexponential distributions form a proper subclass of long-tailed and heavy-tailed distributions.
Moreover, the third part of the theorem above shows that the principle of the single big jump
holds as it says that it is unlikely to observe a large value of the sum as a consequence of two
(or more) random variables taking moderately large values.

The following Lemma generalizes the principle of the single big jump to independent but non-
identically distributed random variables [9, Corollary 3.18].

Lemma 2.8. Let F be a whole-line subexponential distribution and F1, . . . , Fn be a collection of
distributions such that limx→∞ F (x)/F i(x) = ci ≥ 0. Then it holds that

lim
x→∞

F1 ∗ F2 ∗ · · · ∗ Fn(x)

F (x)
=

n∑
i=1

ci.

If limx→∞ F1(x)/F2(x) = c > 0, then we say that F1 and F2 are tail equivalent. It is straightfor-
ward to prove that if F2 is tail equivalent to a long-tailed distribution, then F2 is long tailed as
well.

The last subclass of heavy-tailed distributions that we will discuss are the subfamilies of distri-
butions with regularly varying tails with index α, denoted R(α), and defined as the family of
nonnegative random variables whose tail probability can be written as F (x) = L(x)x−α with
x, α > 0, and L(x) is a slowly varying function. That is, L(x) is a measurable function satisfying

lim
x→∞

L(tx)

L(x)
= 1, ∀t ∈ (0,∞).

In particular, it holds that F is regularly varying distribution iff

lim
x→∞

F (tx)

F (x)
= t−α, ∀t ∈ (0,∞).

The class Rα is often understood as those distributions with a tail behavior similar to a power
function with exponent α while the slowly varying function L(x) acts as a perturbation factor.
This class has been largely studied under the more general theory of regularly varying functions
[cf. 13]. Many authors consider that regularly varying is a synonym of heavy-tails [7]; moreover,
this subfamily play fundamental roles in the theory of fluctuations of sums and extremes of
independent random variables. The Pareto, Burr, α-stable and loggamma are typical examples
of regularly varying distributions. The theory of regularly varying distributions is quite extensive,
so we decide to omit most of it but we enunciate a few properties. One of the most remarkable
results is Karamata’s theorem which is as follows: Let L ∈ R0 be bounded in [x0,∞) and α > 1.
Then ∫ ∞

x

L(t)

tα
dt =

L(x)

(α− 1)xα−1
(1 + o(1)) x→∞.

This result says that the integrated tail of a regularly varying function with index α > 1 will
be regularly varying with index α − 1. Even more, it says that the slowly varying function is
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preserved after the integration. Using Karamata’s Theorem it is easy to verify that the mean
excess function e(u) of a regularly varying goes to infinity as u→∞. Similarly, all the moments
of order large than the index α of a regularly varying distribution are infinite while those of
smaller order than α are finite. It is trivially seen that the tail probability decays slower than the
exponential and it is also provable that a regularly varying distribution satisfies the characteristic
property of subexponential distributions. Hence, the class R inherits all the properties of the
class S.

3 Rare Event Simulation

As discussed in the previous section, most of the heavy-tailed distributions used in practice
belong to the class of whole-line subexponential distribution. Therefore, the subexponential
type-property can be used to approximate the tail probability of a sum of heavy-tailed random
variables. Such approximation is very precise in the asymptotic regions of the tail distribution;
however, this approximation can loose some precision for moderately large values. Hence, it is
desirable to obtain sharper approximations and a natural choice is to recourse to the Monte Carlo
method. The elementary version for calculating the tail probability px := P(X1 + · · ·+Xn > x)
is the so called Crude Monte Carlo and consists in simulating R identical copies of the random
vector (X1, . . . , Xn), say {(X1,r, . . . , Xn,r), r = 1, 2, . . . }; calculating the sums Sr := X1,r + · · ·+
Xn,r; defining the (Bernoulli) random variables Wr,x := I(Sr > x) and returning the arithmetic
average

p̂x,R :=
1

R

R∑
r=1

Wr,x.

The law of large numbers implies that for a fixed x, the sequence of random variables p̂x,R
converges to px as R → ∞. Moreover, since the random variables {Wr : r = 1, 2, . . . } have
bounded variance, the Central Limit Theorem implies that a measure for the random error is
the margin of error of the Crude Monte Carlo estimator

me(p̂x,R) :=

√
px(1− px)

R
.

This formula exhibits the natural trade-off between precision and computational effort that is
required for obtaining an estimate. While in theory we could attain any desirable level of precision
by simply increasing the number of replications, in is not so uncommon to end up with very long
running times which make unfeasible to attain a certain desired precision. In fact, the crude
version of the Monte Carlo is fated to deliver poor approximations when used to estimate rare
event probabilities. More precisely, we say that an indexed family of events {Ax : x ∈ R} is a
sequence of rare events if px := P(Ax) → 0 as x → ∞. Crude Monte Carlo is considered to
deliver poor estimates for rare event probabilities because the asymptotic order of the margin
of error is larger than the asymptotic order of the probability of interest as the events becomes
rarer. For instance, the relative error of the Crude Monte Carlo estimator goes to infinity as the
event becomes rarer:

lim
x→∞

me(p̂x,R)

px
= lim
px→0

√
1− px
pxR

=∞.

This implies that the number of replications needed to achieve certain relative precision grows
to infinity as the event becomes rarer. This discussion makes obvious the two following facts. 1)
The margin of error is not an appropriate precision measure for rare event simulation; instead, we
should look at the relative error as defined above (or equivalently to the coefficient of variation
defined as the square of the margin of error). 2) We need to turn our attention to alternative
collections of Monte Carlo estimators requiring a finite number of replications for achieving
certain relative precisions no matter how rare the event is.
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3.1 Efficiency criteria in rare event simulation

First we discuss the efficiency criteria employed in rare event simulation. In a rare event frame-
work, we say that a Monte Carlo estimator p̃x,R is strongly efficient or has bounded relative error
if the (single-replicate) estimator has the following property

lim sup
x→∞

Varp̃x,1
p2x

<∞.

This efficiency property says that the number of replications required to estimate px with certain
fixed relative precision remains bounded as px → 0. However, it is often difficult to construct
such estimators and/or prove that the limsup above remains bounded. For that reason it is
common to employ an alternative weaker criterion denominated logarithmic efficiency. This is
defined as

lim sup
x→∞

Varp̃x,1

p2−εx

= 0, ∀ε > 0.

This criterion implies that the number of replications needed for achieving certain relative pre-
cision grows at most at rate of order | log(px)|. From a practical point of view, there is no
substantial difference between these two criteria, but as mentioned before it is often much eas-
ier to prove logarithmic efficiency not only because it is a weaker criterion but also due to the
equivalent definition given in the following result.

Lemma 3.1. An estimator p̃x is logarithmically efficient iff

lim inf
x→∞

∣∣ logVar p̃x
∣∣∣∣ log px

∣∣ ≥ 1.

The condition given in the previous Lemma often arises in Large Deviation theory, but are now
standard in Rare-Event simulation. The proof of this Lemma is standard but to the best of the
author’s knowledge, it has seldom appeared in the rare event simulation literature. For sake of
completeness, we provide an alternative proof.

Proof of Lemma 3.1. Let us first assume that

lim inf
x→∞

| logVar p̃x,1|
2 | log px|

≥ 1

Then for all ε > 0 there exists x0 such that the inequality on the left hand side on the following
display holds for all x ≥ x0

| logVar p̃x,1|
2 | log px|

> 1− ε/2 ⇐⇒ Var p̃x,1

p2−εx

< 1.

The inequality on the right hand side above is obtained by simple algebraic manipulations of the
inequality in the left hand side. Taking lim sup we obtain

lim sup
x→∞

Var p̃x,1

p2−εx

< 1.

The last inequality holds for all ε > 0, hence the the limsup is necessarily smaller or equal to 0.
The converse is proved in a similar way. Let us assume

lim sup
x→∞

Varp̃x,1

p2−εx

= 0, ∀ε > 0.

Hence, for all 0 < δ < 1 there exist x0 such that for all x ≥ x0 the inequality on the left hand
side of the following display holds

Varp̃x,1

p2−εx

< c ⇒
∣∣∣ logVarp̃x,1

2 | log px|

∣∣∣ > ∣∣∣ log c

| log px|
− 2− ε

2

∣∣∣
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The inequality on the right hand side follows from standard algebraic manipulations. Taking
lim inf on both sides we obtain that

lim inf
x→∞

| logVar p̃x,1|
2 | log px|

> 1− ε/2, ⇐⇒ lim inf
x→∞

| logVar p̃x,1|
2 | log px|

≥ 1.

This completes the proof.

A stronger efficiency concept is achievable and has been proven for several algorithms in the
recent literature. This criterion goes under several different names such as asymptotically zero
relative error or vanishing relative error, and it is defined as follows. We say that an estimator
p̂x,1 has asymptotically zero relative error iff

lim sup
x→∞

Varp̃x,1
p2x

= 0.

This criterion is stronger than bounded relative error. In fact, when an estimator has asymptot-
ically zero relative error, it can theoretically produce a variance reduction such that the number
of replications necessary to attain certain precision is of order O(px) as x → ∞. That means
that ultimately the number of replications needed for achieving certain relative precision will
continue to decrease as the event becomes rarer until it will be necessary to have a single replica-
tion. In addition, there exist, on one hand, efficiency criteria which are weaker than logarithmic
efficiency. More precisely, for a fixed value δ > 0 we say that an estimator ẑ(x) is δ-efficient if

lim sup
u→∞

Varẑ(u)

z2−δ(u)
<∞.

This definition fills the gap between logarithmic efficiency and Crude Monte Carlo efficiency and
it is often used to describe the improvement over Crude Monte Carlo. On the other hand, there
are stronger efficiency concepts which take care of the moments of higher order of an estimator.
These go under the name bounded relative error of order k [14].

Before we move on, we would like to remark that proving that a candidate estimator satisfies
any of the efficiency properties listed above is often a very difficult problem. The reason for
this is that the variance of an estimator (appearing on the numerator of the efficiency criteria
discussed) is often unknown and one has to find an upper bound of the second moment of the
estimator which is tight enough so it remains asymptotically bounded by the appropriate power
of the first moment.

3.2 Variance reduction techniques

One of the the most important practical tasks in rare-event simulation is to propose estimators
for a given sequence of rare events which may satisfy any of the efficiency properties discussed
in the previous section. In a more general framework, the set of techniques employed used
to produce estimators which improve the performance of the Crude Monte Carlo estimator go
under the name of variance reduction methods (c.f. [15]). More precisely, a variance reduction
method is an algorithm that modifies an existing estimator (or constructs a new one) in such
a way that the resulting estimator remains unbiased and (hopefully) produces a reduction in
variance when compared to Crude Monte Carlo. Among the most notorious variance reduction
methods one could list Importance Sampling, Control Variates, Stratification, Conditional Monte
Carlo, Antithetic sampling. In addition, variance reduction methods can be divided in static
and adaptive. In a static method, every step of the algorithm is conducted independent of the
outcome; in contrast, the evolution of an adaptive algorithm depends on previous outcomes of
the algorithm.
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While most of these methods are potentially able to produce smaller variances than Crude
Monte Carlo, not all of these are well suited for rare event simulation. The main reason is that
the demand of variance reduction in the presence of rare events is huge. As discussed in the
previous section, one requires a variance which is of much lower order than the one provided by
Crude Monte Carlo. Moreover, the quality of these methods is often assessed not only based on
the variance reduction itself but also in the amount of computational resources consumed, the
theoretical work required and the implementation effort invested.

Among the most powerful methods mentioned above, the most effective ones for rare event
simulation are Importance Sampling and Conditional Monte Carlo. We discuss briefly these
two methods, but before doing so we point that this review is dedicated to static algorithms;
however, it is worth mentioning that adaptive techniques have attracted a considerable amount
of attention in recent years due to its effectiveness [cf. 16, 17].

Let us start with Importance Sampling. Assume that all the random variables of interest are de-
fined on a probability space (Ω,F ,P). This method relies on the existence of a Radon-Nykodym
derivative of the original measure with respect to an alternative probability measure: the im-
portance sampling distribution. More precisely, suppose that we are interested in estimating
E[h(W )] where W is a random variable defined on (Ω,F ,P) and E is the expectation operator
under the measure P. If Q is an absolutely continuous measure with respect to P, then it holds
that

E[g(W )] = EQ[Lg(W )],

where EQ is the expectation operator under the measure Q and L := dP/dQ is the Radon-
Nykodym derivative of P with respect to Q (the last also goes under the name of likelihood
ratio in the stochastic simulation literature). In particular, if the measures P and Q are abso-
lutely continuous, then the Radon-Nykodym derivative/likelihood ratio is simply the ratio of the
corresponding density functions.

The main idea of importance sampling is that if W is simulated according to the measure Q,
then the random variable Lh(W ) has an expected value which is equal to E[h(W )], hence it is
an unbiased estimator of the quantity of interest. The variance of the estimator is clearly altered
as the second moment is given by

EQ[L2h2(W )] = E[Lh(W )].

Observe that importance sampling does not always produce variance reduction as the expressions
above are not necessarily bounded by the second moment of the estimator under the original
measure. In fact, one can end up with an increased or even an infinite variance if one chooses
the wrong importance sampling distribution. To the best of the author’s knowledge there does
not exist a generaliz methodology for choosing an appropriate importance sampling (there is
however, a large number of strategies that can suggest good importance sampling distributions);
most of the time the selection is based on the experience of the simulator or other additional
information about the quantity of interest.

P(A) = E[IA(X)] = EQ[L;A] = P(A)

However, when the focus is in estimating probabilities, there exists a distribution with zero
variance, which is simply the original distribution restricted to the event of interest, that is
Q(dx) := IA(x)/P(A)P(dx). Clearly the Radon-Nykodym derivative/likelihood ratio is given by
L := P(A)IA(·). Thus we have

EQ[L;A] = LEQ[I(A)] = P(A).

while for the second moment of the estimator we obtain that

EQ[L2;A] = P2(A)EQ[IA] = P2(A).
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From the last expression it follows that this estimator has variance 0. At first sight, this obser-
vation might appear of no practical use as the implementation of the zero variance estimator is
unfeasible since it requires the knowledge of the unknown probability of interest P(A). However,
the zero variance distribution is of great theoretical interest as one can obtain partial informa-
tion about it an serve as the ideal model when choosing an appropriate distribution; that is
a distribution which is as “close” as possible to the zero variance distribution. Intuitively, we
would like to choose a distribution in such way that the “important” event A is sampled with
higher frequency with respect to the original distribution. However, there is a natural trade-off
in the final value of the variance for the new estimator because if we increase the frequency of
any subset it would also increase the values of its likelihood ratios. Therefore, the selection of the
importance sampling requires a conscious analysis. In fact, a considerable amount of research
effort in rare event simulation has been devoted to approximating the zero variance distribution.
One of the most prominent cases is that of the Cross-Entropy method, which consists of an it-
erative method which selects an ”optimal” distribution from a parametric family by minimizing
the Kullback-Leibler distance with respect to the zero variance distribution. Another prominent
case is that of Exponential Change of Measure or Exponential Twisting where the importance
sampling distribution is selected from the so called exponential family generated by the original
distribution. The later technique will be discussed in some detail in the following section.

The second variance reduction technique that will be discussed here is Conditional Monte Carlo.
This is perhaps the most general variance reduction technique and the one requiring more theo-
retical effort. The intuitive idea behind it is that the variance of a given estimator can be reduced
by extracting the variability coming from known information. If we add a little bit more of rigor
to this idea we simply end up with conditional expectation. Let us consider again a random
variable W defined on a probability space (Ω,F ,P), h an arbitrary function and G a simulatable
sub-σ-algebra of F . Then

E[g(W )] = E[E[g(W )|G]],

and in consequence E[g(W )|G] is an unbiased estimator of the quantity of interest E[g(W )]. This
estimator is unbiased and, in most practical cases one could easily verify the conditions of the
Rao-Blackwell Theorem; in such case, there variance is always smaller or equal than the one of
the original estimator. The implementation of this algorithm is more involved when compared
to other variance reduction methods as it requires two critical steps, 1) simulating from G and
2) computing explicitly the random variable E[g(W )|G]. Obviously it is also desired that the
resulting estimator provides a substantial variance reduction, and for achieving that, the sub-σ-
algebra G should contain as much information about the occurrence of the event of interest.

Most of the estimators discussed in this paper rely on Conditional Monte Carlo method. A
variety of examples will be provided in the following section to help clarifying the use of this
method.

4 Main Results

We will be interested in the tail probabilities of a sum of random variables. More precisely,

P(X1 + · · ·+XN > u),

where X1, X2, . . . is a sequence of random variables and N is possibly random (most algorithms
condition on the random number N and then employ a method for simulating the tail probability
for a fixed number of random variables). The case of independent and light-tailed random vari-
ables is well understood via the theory of Large Deviations. Moreover, in terms of Monte Carlo
simulation, the standard variance reduction method is Importance Sampling with an exponen-
tial change of measure. That consists in selecting an importance sampling distribution from a
family of probability measures consisting of the normalized measures Fθ(dx) := eθxF (dx) for all
possible values of θ in the domain of convergence Θ := {θ : E[eθX ] <∞, X ∼ F}. For estimating
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P(X1 + · · · + Xn > u) where the Xi’s are nonnegative and independent random variable with
common distribution F , the importance sampling distribution and its associated parameter θ
are chosen in such way that Eθ[X] = u. From our discussion of light and heavy tails it follows
that such parameter always exists in the light-tailed case for all values of u. This selection is
asymptotically optimal as Large Deviations results can be used to prove that it converges to the
zero variance importance sampling [18–21]. Moreover, it is known that in the light-tailed case,
an exponential change of measure delivers a logarithmically efficient estimator.

However, in the heavy-tailed case the domain of convergence Θ is reduced to the set of non
positive values of θ, and therefore we only hope to find a solution of Eθ[X] = u when u ≤ E[X];
hence, it is clear that it is not possible to implement an optimal exponential change of measure for
large values of u. The (nowadays considered) seminal paper [22] presented a number of examples
which further exhibited the inherent difficulty in designing good estimators for probabilities of
rare events involving heavy-tailed random variables and the challenges of demonstrating their
efficiencies. This paper triggered an intense research activity devoted to rare event simulation
of heavy-tailed random variables; during the last fifteen years we have seen a wide variety of
new developments including estimators for ad hoc applications, novel simulation methodologies
targeting rare events and theoretical advances which allowed to simplify some efficiency proofs.
As a result, the literature is quite vast. In the following we list a few notorious early works in the
area which exemplify the main ideas that one could find in this expanding area of research. A
prevalent idea in most of these works is the exploitation of the principle of the single large jump,
either by proposing importance sampling distributions which increase the frequency of single big
jumps or conditioning in such a way that the conditional probability of a single big jump can be
explicitly calculated.

The first logarithmic efficient algorithm was proposed in [5] for the regularly varying case. This
is a Conditional Monte Carlo estimator and based on order statistics. The reference [22] proposes
a variant of the latter estimator and proves logarithmic efficiency for regularly varying and the
lognormal case. A conditional algorithm, similar to that of [5] was proposed in [6]. That algorithm
exploits a symmetry relation of random variables which are i.i.d. and the conditioning involves
the lower order statistic. It is proved that this estimator has the stronger bounded relative error
efficiency property in the regularly case and it is numerically superior to many similar algorithms.
It was later proved in [23] that it also achieves bounded relative error in the lognormal case. An
independent proof was provided in [1] and reported in [24]; an extension of this is given in
Theorem 4.3 in this review. The performance of this algorithm has been improved over time but
it continues to be used as a benchmark of performance for similar algorithms. On the importance
sampling front, [25] developed a novel methodology where an importance sampling distribution
is selected according to a criteria involving the hazard rate function; accordingly, this method is
called hazard rate twisting. Early examples of adaptive algorithms include [17] which proposed
a state-dependent algorithm for the regularly varying case having bounded relative error. Also
[16] proposed a state-dependent algorithm in a queueing context and proved that their estimator
has vanishing relative error when applied to a GI/G/1 queue for a large class of heavy-tailed
distributions.

Here, we will concentrate in the conditional algorithms proposed in [5] and [6]. At the end
of this section we include some extended results. Moreover, several algorithms studied in this
dissertation build on these early ideas.

4.1 Conditional Monte Carlo Methods Based on Order Statistics

In this subsection we discuss the algorithms designed by [5] and [6]. As mentioned previously, this
algorithms exploit the principle of the single big jump by using order statistics. The idea is neat
and simple as one can calculate explicitly the probability that the maximum alone is responsible
for the large value of the sum by conditioning on the remaining order statistics. Although the
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algorithms in [5] and [6] are both based on this idea, they differ in the way of conditioning.
The original idea appeared in [5] but the modified version in [6] provided a more efficient and
easier to implement algorithm. We complement these ideas by providing extensions with the
corresponding proofs of efficiency. Let us first start with the Asmussen-Binswanger estimator:

Asmussen-Binswanger estimator We assume that {X1, . . . , Xn} is a collection of i.i.d.
heavy-tailed random variables. The idea is to simulate the first n − 1 order statistics out of
n. The procedure is simple as we just simulate X1, . . . , Xn and discard the largest one. The
clever idea here is that we can now calculate explicitly the conditional probability of the rare
event {Sn ≥ u} given the order statistics. This comes out as the following random variable

P
(
Sn > x

∣∣X(1), . . . , X(n−1)
)

=
F ((x− S(n−1)) ∨X(n−1))

F (X(n−1))
,

where S(n−1) = X(1) + · · · + X(n−1). This algorithm is logarithmic efficient in the regularly
varying [26] and the lognormal case [5]. However, we can easily drop the identically distributed
assumption. When simulating the order statistics, we just need to keep track of the (random)
index of the largest random variable, say K. The conditioning will deliver instead

P
(
Sn > x

∣∣X(1), . . . , X(n−1)
)

=
FK
(
X(n−1) ∨ (x− Sn−1)

)
FK
(
X(n−1)

) , (3)

where Fk(·) is the distribution function of the k-th random variable. Clearly, the random variable
above is unbiased. Moreover, we prove that it has logarithmic efficiency when all random variables
are independent lognormals but not necessarily identically distributed.

Theorem 4.1. Let X1, .., Xn be independent lognormal random variables. Then the estimator
(3) is logarithmic efficient.

The proof of this theorem is slightly technical and relegated to the appendix. This result can
be further extended to the case where the random variable with the heaviest tails is lognormal.
The proof of this follows trivially by comparison of the tail asymptotics.

Asmussen-Kroese estimator. A slight tweak in the Asmussen-Binswanger estimator can
result in a dramatic variance reduction. The main observation of [6] is that the algorithm above
still has a large variability due to the fact that there is a significant large probability of having
a big jump among the first n − 1 order statistics. This probability is dramatically reduced
by considering a symmetry argument. The idea is to calculate the probability of the event
{Sn > x,Xk = Mn} for k = 1, . . . , n and where Mn = max{Xi : i = 1, . . . , n}. By symmetry we
obtain

P(Sn > x) = nP(Sn > x,Xd = Mn). (4)

Conditioning on F = σ(X1, . . . , Xd−1) and noting that

nP(Sd > x,Xd = Md|X1, . . . , Xn−1) = nF (Mn−1 ∨ (x− Sn−1))

This algorithm has bounded relative error in the regularly varying case [6] and the lognormal
[1, 23]. Moreover, the identically distributed assumption can be dropped by substituting the
symmetric argument with

P(Sn > x) =

n∑
k=1

P(Sn > x,Xk = Mn).

This idea was empirically explored in our technical report [1]. An obvious approach consists
in estimating individually each of the terms in the summation above. The resulting estimator
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has good efficiency properties but requires more computational effort. The following alternative
approach delivers much better results. The strategy described can be seen as an hybrid between
conditional Monte Carlo and importance sampling where the importance sampling distribution
is a mixture. Let pk := P(Xk = Md), the probability that Xk takes the largest value among the
Xi’s and qk a discrete probability measure supported over. Hence {1, 2, . . . , n},

P(Sn > x) =

n∑
k=1

P(Sn > x|Xk = Mn)pk
qk
qk

=

n∑
k=1

P(Sn > x,Xk = Mn)

qk
qk

= E
[
I(Sn > x,XK = Mn)

qK

]
.

where K is distributed according to qk. Further if we condition with respect to the sub-σ-algebra
F = σ(K,X1, . . . , XK−1, XK+1, . . . , Xn) we obtain

P(Sn > x) = E
[
FK(M−K ∨ (x− S−K))

qK

∣∣F], (5)

where Fk is the distribution of the k-th random variable and M−k and S−k are defined as the
maximum and sum of the Xi’s without considering the k-th random variable. The convenient
election of the qk’s should deliver a significant variance reduction. Intuitively, this should be
minimized if we choose q∗k := P (Xk = Mn|Sn > u). That is, the probability that the k-
th random variable is largest conditioned to the rare event. However, this probability is not
available beyond the independent case. Our suggestion is to use

qk(u) =
P(Xk > u)∑n
i=1 P(Xi > u)

.

Empirically, we have verified that this proposal approaches the value of the pk’s as u → ∞.
Hence, it is conjectured that asymptotically these are equivalent. Moreover, this estimator

FK(M−K ∨ (x− S−K))

pK
(6)

delivers excellent numerical results with lower computational effort. Efficiency proofs for non-
identical and independent random variables in the lognormal and regularly varying cases are
given in the next two Theorems and their proofs can be found in the appendix.

Theorem 4.2. Let X1, X2, . . . , Xn be independent lognormal random variables, K a discrete
random variable supported over {1, . . . , n}. Then (6) is an unbiased estimator of P(Sn > x) with
bounded relative error.

Theorem 4.3. Let X1, X2, . . . , Xn be independent regularly varying random variables with in-
dexes αi respectively, K a discrete random variable supported over {1, . . . , n}. Then (6) is an
unbiased estimator of P(Sn > x) with bounded relative error.

5 Conclusions

Calculating the tail probability of a sum of random variables is a fundamental problem in ap-
plied probability. In particular, having sharp approximations of these tail probabilities is of
key importance in several disciplines. While in the most common cases this problem is tackled
with standard methods, it turns out that it is very challenging to deal with random variables
which posses heavy tails. This was the perfect excuse to provide a review on the standard
theory of heavy-tails and subexponentiality; we studied the alternative definitions for heavy-
tails and provided a glimpse of their main properties. In particular, we paid attention to the
subexponential-type property which is characterized for the principle of the single big jump. One
of my main contributions to this area was to demonstrate that this behavior goes beyond the
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independent case by proving that a collection of correlated lognormals posses the subexponential-
type property. This result provides an asymptotic equivalent expression for the tail probability
of a sum of correlated lognormals which can be used as an approximation of the real probability.

However, in most applications it is desired to have a better precision. Some of the most precise
and reliable methods to obtain approximations is via the Monte Carlo method. In particular, the
subarea known as Rare-event simulation is devoted to develop the methodologies for delivering
sharp approximations. The second part of this review is dedicated to these aspects. We dis-
cussed the main techniques and introduced the efficiency concepts used to assess the theoretical
performance of estimators for rare event probabilities. This area of research is quite extensive.
However, for this review I decided to focus on Conditional Monte Carlo for independent but not
necessarily identically distributed random variables. The original estimators are now considered
standard for the i.i.d. case but nevertheless we were able to extend these results by dropping the
identically distributed assumption. The efficiency proofs in Theorems 4.1, 4.2 and 4.3 appear in
my Phd thesis but otherwise this is unpublished material.

6 Appendix: Proofs

Proof of Theorem 4.1. In order to characterize the dominant tail behavior we define

σ2 = max
1≤k≤d

σ2
k, µ = max

k:σ2
k=σ

2
µk,

and let F be the distribution of a lognormal random variable with parameters µ and σ. Note
that the index K is a discrete random variable supported over {1, . . . , d}, so we can simplify our
proof using the following inequality

E
[
ẑ2AB

]
= E

[F 2

K

(
X(d−1) ∨ (u− Sd−1)

)
F

2

K

(
X(d−1)

) ]
≤

d∑
k=1

E
[F 2

k

(
X(d−1) ∨ (u− Sd−1)

)
F

2

k

(
X(d−1)

) ]
.

The idea is to obtain an asymptotic upper bound for the expectation for a fixed k. Then we
break this expectation in two pieces as follows

E
[
F k

2(
(u− S(d−1)) ∨X(d−1)

)
F k

2
(X(d−1))

]
= E

[
F

2

k

(
(u− S(d−1)) ∨X(d−1)

)
F

2

k

(
X(d−1)

) ;X(d−1) <
u

d

]

+ E
[
F k

2
((u− S(d−1)) ∨X(d−1))

F k
2
(X(d−1))

;X(d−1) >
u

d

]
.

The quotient inside the second expectation is always smaller than 1, so we can bound the whole
expectation with P

(
X(d−1) > u/d

)
. For the first expectation, it will be useful to note that if

X(d−1) < u/d then the following inequalities hold

u− S(d−1) ≥ u− (d− 1)X(d−1) ≥ u− d− 1

d
u = u/d ≥ X(d−1).

This implies that in the event {X(d−1) < u/d}, the following inequality holds true as well

F k
(
(u− S(d−1)) ∨X(d−1)

)
≤ F k(u/d).

Inserting these bounds in the expectations we arrive at the following upper bound

E
[

F
2

k(u/d)

F
2

k(X(d−1))
;X(d−1) <

u

d

]
+ P

(
X(d−1) > u/d

)
. (7)
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We concentrate on the expectation in the last term. Since X(n−1) < u/d we can apply Lemma 6.1
to get a bound for the quotient in the first expectation to obtain

cE
[

F
2
(u/d)

F
2
(X(d−1))

;X(d−1) <
u

d

]
= c F

2
(u/d)E

[
1

F
2
(X(d−1))

;X(d−1) <
u

d

]
,

where c is a constant (recall that F was defined as the distribution with the dominant tail).
Letting F(d−1) and f(d−1) be the distribution and density functions of X(d−1) respectively, we
rewrite this expectation in integral form and use partial integration to obtain

u/d∫
0

f(d−1)(y)

F
2
(y)

dy = −
F (d−1)(y)

F
2
(y)

∣∣∣∣u/d
0

+ 2

u/d∫
0

F (d−1)(y)f(y)

F
3
(y)

dy

= 1−
F (d−1)(u/2)

F
2
(u/2)

+ 2

u/d∫
0

F (d−1)(y)

F
2
(y)

f(y)

F (y)
dy.

We get a new upper bound by just ignoring the negative term. For dealing with integral it will
be useful to note that

F (d−1)(t)

F
2
(t)

≤
∑
i 6=j F i(t)F j(t)

F
2
(t)

= O(1), (0,∞). (8)

This is true since the F has the heaviest tail so it dominates all F k’s, and the quotient remains
bounded as y → ∞. Trivially, the same holds true as y → 0. Then, by a continuity argument
this quotient remains bounded all over (0,∞) by a constant, say c1 > 0. We use this to obtain
a new upper bound

1 + c1

∫ u/d

0

f(t)

F (t)
dy = 1− c1 logF (u/d).

Inserting this new bound in (7) we have obtained a new bound for Eẑ2AB(u) which has the
following shape

c F
2
(u/d)

[
1− c1 logF (u/d)

]
+ F (d−1)(u/d) ≤ c2 F

2
(u/d)

[
1− c1 logF (u/d)

]
,

where the last inequality was obtained by using the argument (8). So, to prove logarithmic
efficiency we need

lim
u→∞

EẑAB(u)

P2−ε(Sd > u)
≤ lim
u→∞

c2 F
2
(u/d)

[
1− c1 logF (u/d)

]
F

2−ε
(u)

= 0.

Using Mill’s ratio and some basic calculus it is provable that the last limit is zero for all ε > 0.
By doing this the proof is complete.

Lemma 6.1. Let F1 and F2 lognormal distributions such that F2 has a heavier tail than F1.
Then, there exists c ∈ R such that for all y ≤ x it holds that

F 1(x)

F 1(y)
≤ cF 2(x)

F 2(y)
.

Proof. Let λ1(x), λ2(x) the corresponding failure rate functions of the lognormal distributions
F1 and F2. First we will prove that there exist constants c1 > 0 and y0 > 0 such that the
following inequality is true

−λ1(t) ≤ −λ2(t) + c1I[0,y0](t).
For proving this, we will start from the inequality

[λ1(t)− λ2(t)]+ = λ1(t)− λ2(t) + [λ2(t)− λ1(t)] I{t:λ1(t)<λ2(t)}(t)

≤ λ1(t)− λ2(t) + λ2(t) I{t:λ1(t)<λ2(t)}(t),
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from where it follows that

−λ1(t) ≤ −λ2(t) + λ(t)I{t:λ1(t)<λ2(t)}(t).

Since λ2(t) is real-valued on closed intervals of the type [0, y0] it remains bounded in there by
continuity. So, it is just necessary to prove that {t : λ1(t) < λ2(t)} ⊆ [0, y0] for some y0 ∈ R+.
We consider the two possible cases in which F 1 has heavier tail than F 2. In the first of them we
consider σ1 < σ2. So we use the tail asymptotic expression for λ(x) to obtain

lim
x→∞

λ1(x)

λ2(x)
= lim
x→∞

log x/xσ2
1

log x/xσ2
2

=
σ2
2

σ2
1

> 1,

from where the conclusion follows easily. The second case comes when σ1 = σ2 and µ1 < µ2.
For proving that λ2(x) ≤ λ1(x) we will just check that λ(x, µ) is a decreasing of function of µ.
The derivative is given as

d

dµ
λ(x, µ) =

log x− µ
σ2

f(x, µ)F (x, µ)− f(x, µ)

∞∫
x

log t− µ
σ2

f(t, µ)dt

F
2
(t, µ)

=

log xf(x, µ)F (x, µ)− f(x, µ)

∞∫
x

log tf(t, µ)dt

σ2F
2
(t, µ)

.

The last expression is verified to be negative from the observation

∞∫
x

log tf(t, µ)dt > log x

∞∫
x

f(t, µ)dt = log xF (x).

Then we just use this intermediate result to prove that

F 1(x)

F 1(y)
= exp

{
−

x∫
y

λ1(t)dt

}
≤ exp

{
−

x∫
y

λ2(t)dt+

x∫
y

c1I[0,y0](t)dt
}

≤ exp

{
−

x∫
y

λ2(t)dt+

y0∫
0

c1dt

}

= exp

{
log

F 2(x)

F 2(y)
+ c2

}
= c

F 2(x)

F 2(y)
.

Proof of Theorem 4.2. Recall that the condition for asymptotic bounded relative error is equiv-
alent to

lim
u→∞

E[ẑ2AK(u)]

P(Sd > u)
<∞.

By subexponentiality we have that P(Xk > u) = O(P(Sn > u)) for all k. Using this relation and
the fact that all pi’s are all larger than 0 it will be enough to prove that

lim sup
u→∞

F
2

k(M−k ∨ (u− S−k))

P2(Xk > u)
<∞ k = 1, . . . , d.

The idea will be to provide an upper bound where we get rid of the random variable S−k since
its distribution is unknown to us. For doing so, we divide the sample space in two events, namely
A1 = {M−k ≤ u/2d} and A2 = {M−k > u/2d}, and note that in A1 the following relations hold

u− S−k ≥ u− nM−k ≥ u− u/2 = u/2 > u/2d ≥M−k.
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Using this we can obtain an upper bound in terms of Md only

E[F
2

k(M−k ∨ (u− S−k))]

F
2

k(u)
≤ E

[
F

2

k(u− nM−k)

F
2

k(u)
;M−k < u/2d

]
+ E

[
F

2

k(M−k)

F
2

k(u)
;M−k > u/2d

]
.

So, with a simple change of variables we can rewrite this expression in integral form as follows

u/2∫
0

F
2

k(u− y)

F
2

k(u)
fM−k

(y/d)dy +

∞∫
u/2d

F
2

k(y)

F
2

k(u)
fM−k

(y)dy.

The advantage of this bound is that the density of M−k is known to us. In fact, this density
is always smaller than the sum of the individual densities as can be seen from the following
expression

fM−k
(·) =

∑
i 6=k

fi(·)
∏
j 6=i,k

Fj(·) ≤
d∑
i=1

fi(·).

Inserting this new bound and taking the sum out of the integral we arrive to the conclusion that
the estimator will have bounded relative error if

lim sup
u→∞

u/2∫
0

F
2

k(u− y)

F
2

k(u)
fi(y/d)dy +

∞∫
u/2d

F
2

k(y)

F
2

k(u)
fi(y)dy <∞, i, k = 1, . . . , d. (9)

We prove separately that each of this two integrals remain bounded as u→∞. The first integral
remains bounded due to Lemma 6.2. The second one is the easy since it can be evaluated directly
using L’Hopital Theorem,

lim
u→∞

∞∫
u/2d

F
2

k(y)fi(y)dy

F
2

k(u)
= lim
u→∞

F
2

k(u/2d)fi(u/2d)

4dF k(u)fk(u)
→ 0.

This limit can be easily verified using Mill’s ratio. Putting together these results the result
follows immediately.

Lemma 6.2. Under the hypothesis of the Theorem 4.2 it holds that

lim
u→∞

u/2∫
0

F
2

k(u− y)

F
2

k(u)
fi(y/d)dy <∞.

Proof. Consider F k(u) = exp
{
−
∫ u
0
λ(t)dt

}
, where λ(t) is the failure rate of the lognormal dis-

tribution and by standard subexponential theory we know that λ(t) is asymptotically equivalent

to log(u)
σ2u . By choosing c > 1

σ

2
we obtain that c log tt is an asymptotic upper bound for λ(t), then

F k(u− y)

F k(u)
= exp

{ u∫
u−y

λ(t)dt

}
< exp

{
c log u

u∫
u−y

1

t
dt

}
= exp

{
c log u(log u− log(u− y))

}
.

Using a first order Taylor expansion of log(·) around (u − y) and the fact that it is a concave
function we have that log u < log(u− y) + y

u−y , so the last expression is bounded by

exp

{
c
y log u

u− y

}
.

Take u > 1. Our claim is that the set
{
y : log(2y) > y log u

u−y
}

= (g(u), u/2) for some function

g(u)→ 1/2. This is true since both functions are increasing and equal when y = u/2, but log(2y)
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is concave and y log u
y−u is convex proving that there exists a smaller root than u/2. Next we verify

that for any value y0 > 1/2 there exists a value u0 such that for all u > u0 the inequality
log(2y0) > y0 log u

u−y0 is fulfilled and therefore g(u) < y0. We use this to get

u/2∫
y0

F
2

k(u− y)

F
2

k(u)
fi(y/d)dy <

∞∫
y0

c1 exp{c log y}fi(y/d)dy =

∞∫
y0

c2 y
cfi(y/d)dy.

Since all the moments of a lognormal rancom variable are bounded we can conclude that the
last expression is also bounded. For y ∈ (0, y0) we simply use the fact that a lognormal random
variable belongs to the class L, so we obtain

y0∫
0

F
2

k(u− y)

F
2

k(u)
fi(y/d)dy <

F
2

k(u− y0)

F
2

k(u)
→ 1.

Proof of Theorem 4.3. Note that in the proof of Theorem 4.2 we did not make use of the hypoth-
esis about the distribution up to (9). Hence, we can retake the proof from there so it remains to
prove that the same holds for regularly varying distributions. That is

u/2∫
0

F
2

k(u− y)

F
2

k(u)
fi(y/d)dy +

∞∫
u/2d

F
2

k(y)

F
2

k(u)
fi(y)dy <∞,

where Fk is a regular varying distribution function with index αk and fi are densities of regularly
varying random variables with indexes αi. The first integral can be easy bounded with

F
2

k(u/2)

F
2

k(u)
= 2−2αk + o(1) u→∞.

For the second one we can use L’Hopital rule to obtain

F
2

k(u/2d)

F
2

k(u)
fi(u/2d) = (2d)2αkfi(u/2d) = o(1).

Putting together these two expressions we complete the proof.
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