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Abstract— An object detection algorithm by using multiple cameras is proposed. The 

information fusion is based on homography mapping of the foreground information from 
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transmit and project foreground bitmaps, it approximates each foreground silhouette with a 

polygon and projects the polygon vertices only. In addition, an alternative approach to 

estimating the homographies for multiple parallel planes is presented. It is based on the 

observed pedestrians and does not resort to vanishing point estimation. The ability of this 

algorithm to remove cast shadows in moving object detection is also investigated. The results 

on open video datasets are demonstrated. 
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1. INTRODUCTION 

Multi-camera video surveillance is receiving more and more attention in the computer 

vision community. By analyzing information from multiple cameras, it is possible to monitor 

activities across large or spatially distributed regions such as public transportation systems. 

Although this approach requires more dedicated cameras, it increases the overall field-of-view, 

minimizes the effects of dynamic occlusion, enables the localization of targets in 3-D space, and 

improves the accuracy and robustness of estimation owing to information fusion. 

1.1  Multi-Camera Information Fusion 

The existing multi-camera surveillance systems can be categorized according to the levels 

of information fusion for the purpose of detection and tracking. The first category starts tracking 

with a single camera view and switches to another camera when the system predicts that the 

current camera will no longer have a good view [1] [2]. As there is limited information 

exchange between the cameras, such systems have low-level information fusion. The second 

category of the multiview methods makes measurements, extracts features and/or even tracks 

targets in each individual camera view; the measurements, features and/or tracks from multiple 

cameras are then integrated to obtain the global estimates [3−6]. Although these methods 

attempt to resolve dynamic occlusion, they are still vulnerable to occlusion. The reason is that 

the measurements and features are extracted from the individual camera views. This premature 

is vulnerable to occlusion and grouping. These systems are of intermediate-level information 

fusion. In recent years the third category of multiview methods has emerged, in which the 

individual cameras no longer extract features but provide foreground bitmap information to the 

fusion centre. The objects are detected as the visual hull intersections of these foreground 
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bitmaps from multiple views [7−10]. In [9] homography mapping is used to combine 

foreground likelihood images from different views to resolve occlusions and determine regions 

on the ground plane that are occupied by people. The ground plane was later extended to a set of 

planes parallel to, but at some heights off, the ground plane to reduce false positives and missed 

detections [11] [12]. Their work achieves good results in moderately crowded scenes. The third 

category fully utilizes the visual cues from multiple cameras and has high-level information 

fusion. This paper will focus on the approaches in this category. 

1.2 The Problems 

1) The Burden in Transmission and Homography Mapping 

Although the methods in the third category are robust in coping with occlusion, the costs of 

mapping foreground images to a reference image are twofold: it brings about a challenging 

requirement on the bandwidth of multi-camera networks, if the foreground detection and 

multiview foreground fusion are carried out by different computers; the pixel-wise 

homographic transformations at image level, for multiple cameras and multiple parallel planes, 

are very time consuming and dissuades any cheap real-time implementation.  

2) Homography Estimation for Multiple Planes 

In the recent approaches in the third category, the homography based foreground mapping 

is induced not only by a single reference plane (e.g. the ground plane) but also by a set of 

imaginary planes parallel to the reference plane along the normal direction. In [11], the 

estimation of the multi-plane homographies is based on the vanishing point of the normal 

direction. The vanishing point was computed by detecting vertical line segments in the scene 

and finding their intersection in a RANSAC framework. However, in many video surveillance 

scenarios there are limited vertical line segments which are robustly detectable, sufficiently 

long and well distributed across the whole images. In addition, it was reported that vanishing 
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point estimation by parallel line intersection is not precise enough and is very sensitive to small 

pixel noise [13]. In [12] four vertical poles were placed in the scene, each of which has four 

landmark points at known heights. The image coordinate of any point along a pole and at a 

specific height can be calculated from the image projections of the four landmarks. Then the 

homography for a parallel plane at that height can be estimated from the four points, each of 

which is on a different pole but at that specific height. This method is restricted in the number of 

landmark points (the number of poles) for homography estimation and needs pole installation.   

1.3 The Contributions 

This paper stems from the third-category approaches in that the homography mapping for a 

set of parallel planes has been used to fuse the foreground information from multiple camera 

views. The contributions of this paper are as follows:  

1). Real-Time Transmission and Homography Mapping of Foregrounds  

To accelerate the transmission and projection of the foreground information to a reference 

image, it is reasonable to focus on foreground regions. However, to warp the foreground regions 

in a camera view to the reference image, one has to apply the inverse homography to each pixel 

in the reference image; if it is mapped in a foreground region in that camera view, then it is 

labeled as a foreground pixel in the reference image. This process is still an image-level 

homography mapping. As a remedy, we approximate the contour of each foreground region 

with a polygon. The vertices of the polygon are projected into the reference image through 

homography mapping. Then the foreground region is rebuilt by filling the polygon projected in 

the reference image. This greatly saves the network bandwidth and accelerates the processing  

by avoiding the image-level homographic transformation.   
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2)  An Alternative Approach to Estimation of Multi-Plane Homographies 

In this paper, the homography estimation for a set of parallel planes at different heights is 

based on the observed pedestrians. The image coordinates of the feet and the tops of heads of 

selected pedestrians in each camera view are collected during a training stage. If the cameras are 

not mounted so high as comparable to their distances to the pedestrians, the image coordinate of 

any point along the principal axis of a person and at a specific height can be approximated by 

linear interpolation between those of the feet and the top of head. Then the homography for the 

parallel plane at that height can be estimated from the interpolated landmarks at that height. 

This approach is robust in that the number of available landmarks from moving pedestrians is 

very large. This approach is different from the algorithms in [14] [15], which extract the 

vanishing point by estimating the intersection of the principal axes of walking pedestrians.   

3) Cast-Shadow Removal Using Multi-Plane Homographies 

Cast shadows due to moving objects have been one of the major challenges in detection and 

tracking for video surveillance. In this paper, the homography mapping based on multiple 

parallel planes has been used to detect objects with cast shadows. As the cast shadows are only 

located on the ground plane, they will not appear as foreground regions in the multi-plane 

detection results. In contrast, the existing algorithms [16] [17] using the ground-plane 

homography only cannot discriminate the pedestrians’ feet from their cast shadows, because all 

these regions touch the ground.  

The remainder of this paper is organized as follows. In Section 2 the algorithms for the 

foreground extraction and the polygon approximation in each camera view are introduced. In 

Section 3 the alternative approach to estimating the homographies for a set of parallel planes is 

described. In Section 4 the rebuilding and fusion of the projected foreground regions in the 

reference image are introduced. Section 5 discusses how to use the multi-plane homographic 

constraints to remove cast shadows in moving-object detection. The experimental results on  
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open video datasets are given in Section 6, followed by the conclusions.   

2 FOREGROUND POLYGONS 

The foreground detection in each camera view is conducted by using an image differencing 

operation. To ease the transmission and homography mapping of the foreground information, 

each foreground region is represented by a polygon which approximates the contour of that 

region. 

2.1 Foreground Region Detection 

The image differencing operation for foreground detection compares each incoming frame 

with an adaptive background image and classifies those pixels of significant variation into 

foregrounds. The probability of observing values I at a pixel is modeled by a mixture of 

Gaussians [18]: 
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kω  is the weight reflecting the prior probability that the i-th distribution accounts 

for the data.  As each pixel process is a non-stationary process and to apply the EM algorithm to 

each pixel is very time consuming, an on-line K-means approximation is used to update the 

model. At time k, every new pixel value is checked against the Gaussian distributions in a 

mixture model. For a matched distribution, the pixel measurement is incorporated in the 

estimate of that distribution and the weight is increased: 
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where ρ  controls the background updating rate and )1,0(∈ρ . For unmatched distributions, 

their estimates remain the same but the weights are decreased. If none of the existing 
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distributions matches the current pixel value, either a new distribution is created, or the least 

probable distribution for the background is replaced. The distribution(s), Bi , with the greatest 

weight is (are) identified as the a priori background model for the next frame. At time k, the set 

of foreground pixels identified is: 

{ }),(5.2),(),(:),( )(
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kkk −− >−= σµI                       (3) 

where ),( cr  is the pixel coordinate. The foreground pixel map is then transformed into a 

foreground region map Mk by connected component analysis, which is followed by a 

morphological closing operation to bridge splitting body parts and a size filter to remove false 

alarms.  

2.2 Polygon Approximation of Foreground Regions 

Once the foreground regions have been identified in a camera view, each foreground region 

is represented by a polygon which approximates the contour of that region. Suppose the original 

contour is an ordered set of N points { }NpppC ,, ,11 K= . The problem is to find a subset of 

these contour points that can represent the contour well. The Douglas-Peucker (DP) method [19] 

has been used for the polygon approximation (see Fig. 1). It starts with the original contour and 

picks up two extreme points which are the most distant from each other: 

( )ji
Nji

ppdistnm ,maxarg,
],1[, ∈

=                                                  (4) 

These two points are connected with a line, which divides the original contour into two 

segments. For each of these segments, say segment { }nmm pppC ,, ,1 K+=′ , it is searched to find 

the point farthest from the line just drawn. That point is added to the approximation if its 

distance to the line is over a pre-determined value ε that controls the accuracy of the 

approximation:  
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Then segment C′  is split at point qp  and the process is recursively applied to the two resultant 

smaller segments until all the contour points are within distance ε  to the edges of the polygon. 

This algorithm can be applied to either convex or concave contours. Moreover, it produces 

simplification with a hierarchical structure, in which the top layer represents the dominant 

shape properties and the bottom layer describes the fine details. The most time consuming part 

of the Douglas-Peucker algorithm is the evaluation of the distances between contour points to 

line segments. Its worst case running time is O(N
2
) where N is the number of contour points. An 

improvement for speeding up the Douglas-Peucker algorithm, making it a O(N log N) time 

algorithm in the worst case, can be found in [20]. Fig. 2 shows some examples of the polygon 

approximation. 

3 HOMOGRAPHIC MAPPING 

Planar homography is a special relationship defined by a 3×3 transformation matrix 

between a pair of captured images of the same plane with a degree of overlapping: 
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Let ),( yx  and ),( yx ′′ be a pair of correspondence points on this plane in the two image 

views. T]1[ yx=x  and T]1''[' yx=x are the homogeneous coordinates. They can be 

associated with H: 

Hxx ='                                                                  (7) 

The homography matrix H with eight unknowns can be recovered from at least four pairs of 

corresponding points in the two image views. The more pairs of the corresponding points, the 
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better estimation H obtained. In addition, the estimated homography matrix performs better if 

these points are homogenously distributed.  

When a foreground region in one image view is projected to a top view by homography 

mapping based on the ground plane, it will be observed as the intersection of the foreground 

visual hull and the ground plane, like a cast shadow when the camera were replaced with a light 

source (see Fig. 3). When the foreground regions for the same object are projected to the top 

view from multiple camera views, the projected foreground regions will intersect in the 

locations where the object touches the ground plane, e.g. at the feet of the object. The 

homography mapping based on the ground plane can be extended to a set of imaginary planes 

parallel to the ground plane and at different heights. For such a plane at the height of a person’s 

waist, the projected foreground regions from multiple image views will intersect at the waist of 

that person in the top view (see Fig. 3). If such intersection patches by using multiple parallel 

planes are logically ANDed, the result is similar to the projection of the person’s 3D volume on 

the ground plane.  

The estimation of the homographic transformation matrices, from each camera view to the 

top view, for a set of parallel planes is divided into three steps, as described in subsections 

3.1−3.3. 

3.1 Estimation of the Ground-Plane Homography 

The PETS’2001 dataset [21] was used here, in which the synchronized sequences from two 

camera views are provided. We used the Google satellite image [22] for the same site as the 

top-view image and manually selected a set of static landmark pairs on the ground plane in each 

camera view and the top view. Then the homography matrix H0 for the ground plane was 

estimated.  
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3.2 Homography Estimation for the Top-of-Head Plane 

A graphical interface was used to browse the video sequence of each camera view and 

collect the image coordinates fx  for the feet and hx  for the top of head of each selected 

pedestrian (see Fig. 4). Although an automatic tool may be developed by extracting the 

principal axes of the observed pedestrians, it is not trivial to reliably identify the outliers such as 

vehicles, pedestrian groups, cyclists, people with a pram or luggage, children, etc. The 

corresponding image coordinates in the top view can be estimated from those of the feet and the 

ground-plane homography: 

ff xHx 0=′                                                                (8) 

By assuming that the selected persons stand upright on the ground and have similar heights, 

their tops of heads are located on the same plane parallel to the ground plane and at the average 

height h of the selected pedestrians. Any minor violation to this assumption can be filtered out 

in the homography estimation process which finds an optimal solution to fit a large amount of 

data. Suppose the homography for the top-of-head plane is Hh , then the top of head of each 

selected pedestrian is mapped to the top view image at: 

hhh xHx =′                                                               (9) 

Due to fh '' xx ≅  for the selected pedestrians, the homography Hh for the plane at the average 

height of the selected pedestrians can be estimated from a large number of ( )hh xx ,′  pairs.  

3.3 Homography Estimation for Multiple Parallel Planes 

If the camera is not mounted so high as comparable to its distance to the targets, the image 

coordinate of a point along the principal axis of the same person and at a specific height 'h  can 

be approximated by linear interpolation between those of the feet and the top of head: 

( )( ) ( ) ( )hhhhhhh hfh ,0',''' ∈∀+−= xxx                                 (10) 
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The homography matrix 'hH  for the parallel plane at height 'h  can be estimated from a 

large number of interpolated landmarks 'hx  at that height and the corresponding top-view 

points ''hx  by bearing in mind ffh xHxx 0' '' =≅ . This approach is robust in that the number of 

landmark measurements from moving pedestrians is very large. It does not desire many vertical 

line segments in the scene to estimate vanishing points in the normal direction as in [11]. At the 

same time, it is not restricted in the small number of available landmark pairs and does not need 

pole installation as in [12].   

Fig. 5 is used to verify the homography estimation. Fig. 5(a) shows the framelets of a small 

number of foreground regions overlaid on the background image for one of the two camera 

views and at their original locations. There is no building line segment available in this scenario. 

Fig. 5(b) is the Google satellite image for the same site and used as the reference image. The feet 

of the pedestrians in Fig. 5(a) were manually localized and the image coordinates are then 

mapped to the top view. As the projections of the feet, waist and top of head for the same person 

coincide in the top view, the back projection of the foot position from the top view to Fig. 5(a) 

corresponds to a point along the principal axis of that person. If the back projection is based on 

the homography for the top-of-head plane, it is the top of head in Fig. 5(a). If the back projection 

is based on the homography for the parallel plane at half the average height of the pedestrians, it 

is the midpoint of that person in Fig. 5(a). Such calculated tops of heads and midpoints are 

labeled in Fig. 5(a).   

The homography estimation for multiple parallel planes, as described above, is a good 

approximation when the cameras are not mounted very high. Another algorithm has been 

developed for homography estimation, which satisfies the cross-ratio invariance in the 

projective geometry and removes the assumption as above. The first two stages in this algorithm 

are the same with those in 3.1 and 3.2. The third stage is described in subsection 3.4. 
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3.4 Alternative Homography Estimation for Multiple Parallel Planes 

Given the homography estimates H0 for the ground plane and Hh for the top-of-head plane, 

for any point 'x  in the top view, we can calculate its corresponding points fx  on the ground 

plane and hx  on the top-of-head plane in a camera view. The line connecting fx  and hx  will 

point at the vanishing point v of the normal direction. Multiple such derived lines corresponding 

to different locations in the top view will ideally intersect at v. The vanishing point v can be 

estimated by minimizing the sum of its squared distances to all these lines. Then the 

homography induced by a parallel plane is given as in [11]: 

[ ]( ) [ ]








+
−+= × v0Iv0HH γ

γ
γ |

1

1
| 330i                                           (11) 

where γ is a scalar multiple proportional to the height of that parallel plane and 0 is a 3×2 zero 

matrix. The homography Hh of the top-of-head plane, which is initially estimated in subsection 

3.2, will be updated by using (11). Fig. 6(a) illustrates the lines used to estimate the vanishing 

point in normal direction. The crosses on each line are the intersection points with the ground 

plane and the top-of-head plane. This result is actually based on subsection 3.2 and on the other 

hand reflects the accuracy of this approach when compared with the noisy landmarks in Fig. 4. 

Fig. 6(b) illustrates the accuracy of the multi-plane homography estimation described in this 

subsection, in the same way as Fig. 5(a). 

4  FUSION OF FOREGROUND POLYGONS 

Once the homography matrices for the set of parallel planes are ready, instead of applying 

homographic transformations to the foreground images, we only need to project the vertices of 

the foreground polygons to the reference image. The foreground regions are then rebuilt by 

filling the internal area of each polygon with a fixed value.  
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4.1 Filling of Foreground Polygons 

In filling the projected polygons, we have to decide whether a given pixel in the top view 

image lies inside, outside, or on the boundary of a polygon. This is the point-in-polygon 

problem in computational geometry. In this paper the ray casting algorithm [23] has been used, 

in which the number of times that a ray (say in horizontal direction) starting from the given 

point intersects the edges of the polygon is counted (see Fig. 7(a)). If the point in question is not 

on the boundary of the polygon, it is outside if the number of intersections is an even number; it 

is inside if this number is odd. However, a vertex of the polygon may fall on the ray or one side 

of the polygon may lie entirely on the ray (see Fig. 7(b)). To avoid duplicate counts of the edge 

crossing, if the intersection point is a vertex of a polygon side being tested, then the intersection 

is counted only if the second vertex of the side lies below the ray. The time to test one point 

against a polygon with L sides or L+1 vertices is O(L). This algorithm can be applied to either 

convex or concave polygons. 

4.2 Fusion of Foreground Regions 

Suppose that the foreground region map for camera view c is Mc and the homographic 

transformation matrix, from camera view c to the top view T, for parallel plane p is Tc

p

,
H , then 

the rebuilt foreground region map, projected from camera view c according to the homography 

for plane p, is denoted by: 

( )cTc

p

pc

T MM ,,
H=                                                          (12) 

For a specific plane p, the fusion of the foregrounds in the top view is carried out by overlaying 

the foreground region maps from all the camera views: 

∑= c

pc

T

p

T MM ,                                                         (13) 

The highlights in p

TM  correspond to the intersection patches of the moving objects with plane p 

and are denoted by: 
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Ic

pc

T

p

T MI ,=                                                        (14) 

For the ground plane, the intersection patches are in locations where the moving objects touch 

the ground. Fusion of the foreground information can be further carried out by overlaying the 

foreground region maps projected to the top view according to the homographies for all the 

parallel planes: 

∑ ∑∑ ==
p c

pc

Tp

p

TT MMM ,
                                             (15) 

The highlights in TM  are like the projection of the 3D volumes of the moving objects on the 

ground plane and are denoted by: 

I II p c

pc

Tp

p

TT MII ,==                                                (16) 

In the implementation as above, the objects in the overlapping field of views (FOVs) will 

be favoured, because they receive foreground votes from multiple cameras. The objects visible 

in only a single camera view may be lost, if a global threshold is applied to the foreground 

fusion image. As an alternative solution, the pixel values can be doubled or the threshold can be 

halved within the regions which are visible in only one of the two camera views. Suppose that 

the FOVs projected from the two cameras to the top view are represented by binary masks F1 

and F2 respectively, the FOV visible to only a single camera is the pixel-wise exclusive-OR of 

F1 and F2:  

F = F1 ⊕ F2                                                           (17) 

5   A CASE STUDY IN CAST-SHADOW REMOVAL 

Cast shadows due to moving objects have been one of the major challenges in detection 

and tracking for video surveillance. They are often misclassified as foregrounds, which distort 

the object shapes and cause adjacent objects to “merge” with each other. This brings difficulties 
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to tracking, because the observations for the individual objects in a group of merged objects 

cannot be readily extracted [24].  

There exist some algorithms in detecting shadows from image sequences. The 

photometric approach has been widely used for shadow detection, which assumes that cast 

shadows reduce luminance values while maintaining chromaticity values of the background 

pixels. However, it is found that part of real foreground regions may satisfy this definition and 

be missed in the detection. In addition, the cast shadows in outdoor scenes are bluish, due to the 

scattered light by the sky, rather than maintain the chromaticity values of the background [25]. 

Good surveys in monoview cast shadow detection and removal can be found in [26] [27].  

Multiple cameras have been employed to remove or detect cast shadows. Although this 

approach requires more dedicated cameras, it improves the accuracy and robustness of the 

detection owing to information fusion. Onoguchi [16] proposed a method by using two camera 

views and assuming that moving objects are standing on the ground plane. Then one camera 

view is warped to the other by a homographic transformation based on the ground plane. The 

pixel values in one camera view and the warped image from the other camera view are 

compared. If the pixel values from these two images are highly correlated, then the underlying 

pixel is determined as the background or a background appearance change such as a cast 

shadow. In [17] Lanza et al extracted the change mask image in each of multiple view images by 

using a background subtraction algorithm. The change mask images are projected to a virtual 

top view image by homographic transformations. The intersections of these projected change 

masks from multiple views correspond to the ground plane locations of people as well as their 

cast shadows. Then the intersection regions are warped back to and subtracted from the 

single-view change masks. However, these two approaches remove not only the shadows but 

also the pedestrians’ feet, because all these regions touch the ground.  

To solve this problem, the homography mapping induced by multiple parallel planes is 
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used to detect objects with cast shadows. As the cast shadows are only located on the ground 

plane, they will not intersect any parallel plane off the ground and thus disappear in the 

detection using multi-plane homographies. In contrast, the torso of a pedestrian will intersect all 

these parallel planes. Therefore, the feet can be discriminated from the cast shadow of the same 

person.  

The intersection patches for the ground plane and those for the multiple planes are warped 

back to the single camera views, according to the ground-plane homography: 

( ) ( )010

,

0,

TTc

T

c IM
−

= H                                                       (18) 

( ) ( )TTc

T

c IM
10

,

−
= H                                                       (19) 

The former is subtracted from the single-view change masks by a set difference operation so as 

to remove cast shadows: 

0,T

ccc MMD −=                                                         (20) 

However, the feet of the objects are also lost in this process. This is compensated by adding the 

back-warped multi-plane intersection patches. These intersection patches are dilated by a 

square structure element B beforehand, because they reflect the narrowest sections of the 

moving objects in the logical AND operation:   

( )BMDF T

ccc ⊕= U                                                   (21) 

 

6   RESULTS 

The new algorithm has been tested over a range of video sequences which contain 

significant dynamic occlusion and scene activity. Both qualitative and quantitative evaluations 

have been carried out by using the PETS’2001 dataset, in which the original sequences were 

spatially sub-sampled to half-PAL (384×288 pixels). The top view image is of 500×500 pixels.  
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6.1 Performance Evaluations 

We have compared the polygon projection and the bitmap projection in the results and 

processing speeds. Fig. 8 shows some examples of the polygon projection and the bitmap 

projection, in which the pre-determined distance ε  for polygon approximation was set to 1 pixel. 

It is found that they are very close to each other. For more accurate results, this distance ε  can be 

set to sub-pixels.  

In testing the processing speeds, we run the polygon projection and the bitmap projection 

on a single PC with Intel Core 2 Duo CPUs of 2.66 GHz. Both the implementations include (1) 

the foreground detection in two camera views and (2) the projection and fusion of foreground 

information from the two camera views. Then the time spent for processing each frame from 

one camera view was obtained by taking the average (see Table 1). Usually in a video 

surveillance network part 1 is executed by individual clients and part 2 is executed by a central 

server. Part 1 is not related to the improvement in the new algorithm. It was implemented using 

either the running average algorithm or the Gaussian Mixture Model algorithm. The running 

average algorithm takes 15.6 ms and the Gaussian Mixture Model takes 65.0 ms to process one 

frame for one camera. Therefore, the former is more appropriate for real-time applications. Part 

2 was implemented using either the bitmap projection method or the polygon projection method. 

The polygon projection method is further divided into four stages: polygon approximation, 

vertex projection, polygon filling and foreground addition to the top view image. Since our 

implementations in [28], great efforts have been made to optimize the code and accelerate the 

bitmap projection method. The bitmap projection takes 108.5 ms and the polygon projection 

takes 8.5 ms to process one frame for one camera. Therefore, the latter is 12.8 times faster than 

the former. 
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Foreground Detection 
Running Average (ms) Gaussian Mixture Model (ms) 

15.6 65.0 

Foreground Projection 

and Fusion 

Bitmap Projection (ms) Polygon Projection (ms) 

108.5 

Polygon Approximation 4.5 

Vertex Projection 0.1 

Polygon Filling 2.3 

Foreground Addition 1.6 

Sub-Total 8.5 

 

Table 1: The times for running different algorithms for one camera. 

 

Although the bitmap projection method seems not slow, it still dissuade any cheap 

real-time implementation. The computational burden in fusing foreground visual hulls lies in 

the homography mapping for multiple cameras and multiple parallel planes. The more cameras 

and more planes, the more accurate and more robust for the object localization. As an example, 

four camera views and ten parallel planes were used in [11]. For an implementation with 

moderate use of resources, suppose two camera views and four parallel planes are being used. 

Then the bitmap projection will take 868 ms (1.15 fps) and the polygon projection will take 68 

ms (14.7 fps) to process one frame. Therefore, it is a great boost in computational speeds. To 

further accelerate the polygon projection, the algorithm for speeding up the Douglas-Peucker 

algorithm in [20] can be used.    

6.2 Experimental Results in Dynamic Occlusion 

Fig. 9 illustrates the results of the algorithm in the case of dynamic occlusion. The original 

images from the two camera views of Dataset 1 are in Figs. 9(a) and 9(c), which are overlaid 

with the foreground polygons. The polygons are represented in green, while the vertices are in 
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red. The detected foreground regions in the two camera views are in Figs. 9(b) and 9(d). Fig. 9(e) 

is the fusion of the foreground polygons in the top view by using the ground-plane homography. 

The grey regions represent foreground regions observed by a single camera, while the black 

regions are those observed by both camera views and correspond to the feet of the pedestrian or 

the bottom of the vehicle. The rectangular region on the left is the projection of the vehicle on 

the top of camera view 2.  

The homography mapping for four parallel planes has been applied to the same sequences. 

The four planes are at 0% (the ground plane), 25%, 50% and 75% of the average height of the 

pedestrians, respectively. Fig. 9(f) is the fusion of the foreground polygons in the top view by 

using the four-plane homographies, in which the darkest regions represent the locations of the 

pedestrian and the vehicle. Fig. 9(g) is the overlay of the detection result (in red) on a synthetic 

top-view image, which was generated by warping and fusing the two camera views. Although 

the pedestrian is occluded by the vehicle in one camera view, they are well separated by fusion 

of the foreground regions. For the vehicle on the left of the top-view image, it is within the 

regions visible to camera view 2 only and thus a halved threshold is applied. The detected 

foreground region clearly corresponds to the bottom of that vehicle.   

6.3 Experimental Results in Cast Shadows 

Fig. 10 illustrates the results of the algorithm in the presence of cast shadows. The original 

images from the two camera views of Dataset 3 are in Figs. 10(a) and 10(d), which are overlaid 

with the foreground polygons. The foreground regions in the two camera views are in Figs. 10(b) 

and 10(e). Fig. 10(g) is the fusion of the foreground polygons in the top view by using the 

ground-plane homography. The grey regions represent foregrounds observed by a single camera, 

while the black regions are those observed by both camera views, corresponding to the feet and 

cast shadows of the pedestrians. Fig. 10(g) results from the scheme in which the regions covered 
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by both camera views are favoured; otherwise, the whole foreground region of the pedestrian 

who is visible only in camera view 2 will be thought as touching the ground. The detection 

results by using the ground-plane homography are warped back to Figs. 10(b) and 10(e), which 

are shown in black. The feet and the cast shadows are identified together as the location of the 

pedestrians, which leads to inaccurate object localization. The pedestrian visible to a single 

camera is lost in the detection. 

The homography mapping for four parallel planes has been applied to the same sequences. 

The four planes are at 0% (the ground plane), 25%, 50% and 75% of the average height of the 

pedestrians, respectively. Fig. 10(h) is the fusion of the foreground polygons in the top view by 

using the four-plane homography mapping. Fig. 10(i) is the synthetic top view overlaid with the 

detection result in red. The intersection regions are relatively big, which is caused by the similar 

viewing angles of the two cameras. Figs. 10(h) and 10(i) result from the scheme in which the 

regions visible to a single camera have the pixel values doubled. The pedestrian on the 

bottom-right corner is correctly detected. The detection results by using the multi-plane 

homographies are warped back to Figs. 10(c) and 10(f), which are shown in black. Only the feet 

of the pedestrians are detected and the pedestrian visible to only one camera view is also 

detected. 

Fig. 11 illustrates the results of applying the algorithm to the campus sequences [29]. Only 

two of the three camera views were used. The homography mapping is based on five parallel 

planes: the ground plane and planes at 10%, 20%, 30%, 40% of the average height of the 

pedestrians. These planes are at relatively lower heights, because the cameras were mounted at 

the average height of the pedestrians. Fig. 11(a) is a virtual top view by warping and fusing the 

two camera views. The original images are shown in Figs. 11(b) and 11(c).  The single-view 

change masks are shown in Figs. 11(d) and 11(e). They are projected and intersect in the top 

view with the ground-plane homography, as shown in Fig. 11(f). Warping the intersection 
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patches back to the single views leads to Figs. 11(g) and 11(h). The change masks by removing 

ground-plane appearance changes are shown in Figs. 11(i) and 11(j), in which the feet are lost. 

The intersection of change masks with multi-plane homographies is shown in Fig. 11(k). 

Warping the multi-plane intersection patches back to the single views leads to Figs. 11(l) and 

11(m). The final foregrounds are in Figs. 11(n) and 11(o), in which the cast shadows disappear 

but the feet remain. 

7   CONCLUSIONS 

We have proposed an efficient object detection algorithm by using multiple cameras. This 

work is based on multi-plane homography mapping of the foreground polygons from multiple 

cameras. The experimental results have shown that this algorithm can run in real time and 

generate results similar to those by mapping foreground bitmaps. In addition, we have proposed 

an approach to estimating the homographies induced by multiple planes parallel to the ground 

plane. This method is based on the pedestrians in the video sequences. This algorithm can 

effectively eliminate cast shadows from moving object detection. 
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Figure 1: The polygon approximation for a foreground region.   
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(a)                                     (b)                                    (c)                                     (d) 

    
(e)                                     (f)                                     (g)                                     (h) 

 

 

 

Figure 2: The foreground regions detected in the individual camera views (left) and the 

corresponding foreground polygons (right). The black points are the vertices.     
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Figure 3:  Homography mapping with multiple planes. 
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Figure 4. A GUI interface to collect the image coordinates of the feet and tops-of-heads of 

selected pedestrians in video sequences.   
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(a)                                                                 (b) 

 

 

Figure 5. The verification of homography estimation for multiple parallel planes: (a) an 

individual camera view and (b) the top view from Google maps. The feet of the pedestrians in 

(a) are manually localized and projected to (b) through the ground-plane homography. Then 

they are back projected to (a) through homography induced by planar planes parallel to the 

ground plane.   
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(a)                                                                       (b) 

 

 

Figure 6. (a) The imaginary lines used to calculate the vanishing point in vertical direction.  

(b) The verification of multi-plane homography estimation in the same way as in Fig. 4.   
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                         (a)                                                                  (b)   

 

Figure 7: The ray casting algorithm to decide whether a given point is inside a polygon: 

(a) when the ray crosses the edges, and (b) when the ray crosses a vertex or lie on an 

edge. 
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Figure 8: The top-view foreground regions by using bitmap projection (top) and 

by using polygon projection (bottom).  
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                  (a)                                      (b)                                     (c)                                     (d) 

   
                         (e)                                                    (f)                                                    (g) 
 

 

Figure 9: (a)(c) The original images in two camera views with foreground polygons overlaid, (b)(d) the 

foreground regions in two camera views, (e) fusion of the foreground polygons in the top view using 

ground-plane homography, (f) fusion of the foreground polygons using multi-plane homography, and (g) 

the synthetic top view overlaid with the detection results from (f).     
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(a)                                                   (b)                                                   (c) 

   
                         (d)                                                   (e)                                                    (f) 

   
(g)                                                  (h)                                                   (i) 

 

 

Figure 10. (a)(d) The two camera views with foreground polygons overlaid, (b)(e) the foreground regions 

overlaid with the warped detection results (in black) by using ground-plane homography, (c)(f) the 

foreground regions overlaid with the warped detection results (in black) by using multi-plane 

homography, (g) fusion of the foreground polygons by using ground-plane homography, (h) fusion of the 

foreground polygons by using multi-plane homography, and (i) the synthetic top view overlaid with the 

detection results from (h).   
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                        (a)                                                 (f)                                                  (k) 

      
           (b)                     (d)                       (g)                      (i)                       (l)                       (n) 

      
           (c)                      (e)                       (h)                      (j)                      (m)                     (o)      
 

 

 

Figure 11: Cast shadow removal with the three rows corresponding to a virtual top view and the two 

camera views: (a) the virtual top view, (b)(c) original images, (d)(e) single-view change masks, (f) 

change mask intersection using ground-plane homographies, (g)(h) intersections in (f) warped back to 

single views, (i)(j) change masks with ground-plane appearance changes removed, (k) change mask 

intersection using multiple-plane homographies, (l)(m) intersections in (k) warped back to single 

views, and (n)(o) final foregrounds.  


