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Abstract. We study a generalization of atomic selfish routing games
where each player may control multiple flows which she routes seeking
to minimize their aggregate cost. Such games emerge in various settings,
such as traffic routing in road networks by competing ride-sharing applica-
tions or packet routing in communication networks by competing service
providers who seek to optimize the quality of service of their customers.
We study the existence of pure Nash equilibria in the induced games
and we exhibit a separation from the single-commodity per player model
by proving that the Shapley value is the only cost-sharing method that
guarantees it. We also prove that the price of anarchy and price of stability
is no larger than in the single-commodity model for general cost-sharing
methods and general classes of convex cost functions. We close by giving
results on the existence of pure Nash equilibria of a splittable variant of
our model.

1 Introduction

Congestion games are a well-studied abstraction of a large collection of appli-
cations which includes several network routing games. Rosenthal proposed the
model [26, 27] and in the past 15 years, starting with [31], there has been a large
body of work in the area (e.g., [2, 4, 6, 7, 8, 10, 11, 13, 17, 18, 28]). Network
applications have been one of the main motivations behind the success of the
model and selfish routing is the paradigmatic example in the study of existence
and inefficiency of equilibrium solutions. A selfish routing game is played on
a directed graph G = (V,E). Each player i in the game is characterized by a
start vertex si, a destination vertex ti, and a flow size wi. Player i must select
an si-ti path that minimizes the sum of the edge costs along the path. The edge
costs are increasing functions of the total flow on them and there is a predefined
cost-sharing method that dictates how edge costs are distributed among each
edge’s users. The main assumption is that players reach a Nash equilibrium
and the system performance is typically measured by comparing the worst or
best Nash equilibrium to the optimal solution in terms of total cost. These
metrics are termed the price of anarchy (POA) and price of stability (POS),
respectively [3, 23]. Existence of a pure Nash equilibrium (PNE) and POA/POS
performance properties are very well understood for general cost-sharing methods
in the selfish routing model [12, 14, 21, 22, 30].

In this paper, we study a generalization of the selfish routing game, which we
term selfish routing with multi-commodity players. In this generalization, each
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player may control more than one flow in the network. Similar settings have been
studied before in the context of scheduling games [1], in the context of integer
splittable routing games [27, 33], and for a special case of our model (where
each commodity has the same flow size) in [10]. More specifically, player i is
described by a set of commodities Qi. Each commodity q has a starting vertex sq,
a destination vertex tq and a flow size wq. Each player i must pick how to
route the flows in Qi, each on a single path. Applications of our model include
routing in road networks where ride-sharing platforms operate and routing in
communication networks where connections are operated by service providers.
Consider the example of ride-sharing platforms. The game is played on the road
network and there is a continuous flow of rides using either platform between each
pair of nodes in the graph. The route that each car follows is dictated centrally
by the platform that seeks to optimize the aggregate travel time of its flows. In
the packet routing application, network connections are routed by competing
service providers. Each service provider wishes to optimize the quality of service
of their clients and hence routes connections seeking to minimize their aggregate
costs.

As a concrete example, consider a network with two nodes s, t, and two
parallel edges e1, e2, from s to t. The joint cost of each edge is given as C(x) = x2,
with x the total flow on the edge. The game has two players. Player 1 wishes to
route a flow of size 1 from s to t, while player 2 wishes to route two flows, each of
size 1, from s to t. Suppose the cost-sharing method dictates that each commodity
traveling through an edge pays an equal share of the joint cost. Player 2 has
three options: route both commodities on the same edge that player 1 is using,
route both commodities on the other edge, or route the two commodities on
different edges. The corresponding costs for player 2 would be 6, 4, and 3, which
establishes the latter option as the best response.

1.1 Our Results

In this work, we search for cost-sharing methods that guarantee the existence of
pure Nash equilibria in multi-commodity selfish routing games. We also focus
on the inefficiency of equilibria and we conduct a comprehensive study of the
POA/POS, i.e., the ratio of the total cost in the worst/best Nash equilibrium over
the optimal total cost. Our results hold for general cost functions and cost-sharing
methods and they also extend to general congestion games.

Regarding the existence of pure Nash equilibria, we show that applying the
Shapley value per edge, with the weight of a player on an edge being the sum
of the commodity sizes she places on the edge, results in a potential game and,
hence, guarantees the existence of a pure Nash equilibrium. On the contrary, we
show that weighted Shapley values may induce games such that no pure Nash
equilibrium exists, which exhibits a separation from the single-commodity case,
where each player controls only one commodity. Given that the class of weighted
Shapley values are the unique cost-sharing methods that guarantee pure Nash
equilibria in the single-commodity player model [15], our results suggest that
the Shapley value is essentially the unique anonymous cost-sharing method that
guarantees pure Nash equilibria in the multi-commodity player model.
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With respect to the inefficiency of equilibria, we prove upper bounds on the
POA that match the ones from the single-commodity per player model. Our
bounds work for general (convex) cost functions and for general cost sharing
methods satisfying the following natural assumptions [12], which we briefly discuss
afterwards and explain in more detail in Section 1.3:

1. Every cost function in the game is continuous, increasing and convex.
2. Cost-sharing is consistent when player sets generate costs in the same way.
3. For convex resource cost functions, the cost share of a player on a resource is

a convex function of her flow on the resource.

Assumption 1 is standard in congestion-type settings. For example, linear cost
functions have obvious applications in many network models, as do queueing
delay functions, while higher degree polynomials (such as quartic) have been
proposed as realistic models of road traffic [32]. With assumption 2, the cost
sharing method only charges players according to how they contribute in the total
cost and there is no other way of discrimination between them. Assumption 3 asks
that the curvature of the cost shares is consistent, i.e., given assumption 1, that
the share of a player on a resource is a convex function of her weight (otherwise,
we would get that the cost share of the player increases in a slower than convex
way but the total cost of the constant weight of players increases in a convex
way, which we view as unfair).

The POS is an interesting concept and it is very well motivated in cases
where the players can be started in an initial configuration or where a trusted
mediator can suggest a solution to the players. This suggests that the POS is
especially interesting in cases where a pure Nash equilibrium exists. Therefore,
on the POS side, we focus on the Shapley value, the only cost-sharing method
that guarantees existence of a pure Nash equilibrium in our setting. We prove
that the POS is equal to the POS of the single-commodity case for general classes
of cost functions.

Finally, we study an extension to the splittable model, where players may split
their commodities across different paths. In particular, we study the existence of
pure Nash equilibria in that setting and mention interesting open problems.

1.2 Related Work

Previous works in [20, 10, 27, 33] study settings that share similarities to multi-
commodity routing games. In [27], Rosenthal studies weighted routing games
where each player may split her integer flow size among different subflows of
integer size. Focusing on the proportional cost-sharing method (that charges each
player a cost proportional to her flow on an edge), he proves that there exist such
games with no PNE. In [33], the authors identify special cases where PNE exist
in Rosenthal’s model. Our approach differs from the work in [27] and [33]. We
study general multi-commodity players and not only players who control unit
flows with the same start vertex. In [20], it is shown that there exist games where
merging atomic players into a coalition (similarly into a multi-commodity player)
may degrade the quality of the induced PNE when proportional sharing is used.
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In a small contrast, we focus on worst-case metrics and show that the POA and
POS of multi-commodity player games is no worse than in the single-commodity
case, for general cost-sharing methods. Finally, in [10], the authors focus on
coalitions of atomic players in routing games (equivalent to multi-commodity
players) and mostly on the objective of minimizing the maximum cost. For the
sum of costs objective, which we consider in this paper, they prove that the
game always admits a pure Nash equilibrium under proportional cost-sharing
and quadratic edge cost functions. We provide more comprehensive results with
respect to the existence of pure Nash equilibria for general methods and general
classes of cost functions.

On the cost-sharing side, the authors in [15] characterize the class of (gener-
alized) weighted Shapley values as the only methods to guarantee existence of a
PNE when each player controls one commodity. We exhibit a separation from
this result by showing that weighted Shapley values do not guarantee pure Nash
equilibria existence in the multi-commodity extension. With respect to the POA
and POS of cost-sharing in routing games, [12] provides general tight bounds,
which, in this work, we generalize to the multi-commodity player model.

1.3 Preliminaries

In this section, we present the notation and preliminaries for our model in terms
of a general congestion game with multi-commodity players. In such a game, there
is a set Q of k commodities which are partitioned into n ≤ k non-empty and
disjoint subsets Q1, Q2, . . . Qn. Each set of commodities Qi, for i = 1, 2, . . . , n, is
controlled by an independent player. Denote N = {1, 2, . . . , n} the set of players.
The players in N share access to a set of resources E. Each resource e ∈ E
has a flow-dependent cost function Ce : R≥0 → R≥0. As stated in assumption 1
(section 1.1), we assume the cost functions of the game are drawn from a given
set C of allowable cost functions, such that every C ∈ C must be continuous,
increasing and convex. We also make the mild technical assumption that the set
C is closed under (i) scaling and (ii) dilation, meaning that if C(x) ∈ C, then (i)
C(a · x) ∈ C and also (ii) a · C(x) ∈ C, for every positive a.

Strategies. Each commodity q ∈ Q has a set of possible strategies Pq ⊆ 2E .
Associated with each commodity q is a weight wq, which has to be allocated to a
strategy in Pq. For a player i, a strategy Pi = (Pq)q∈Qi

defines the strategy for
each commodity q player i controls. An outcome P = (P1, P2, . . . , Pn) is a tuple
of strategies of the n players.

Load. For an outcome P , the flow f ie(P ) of a player i on resource e equals the
sum of the weights of all her commodities using e, i.e., f ie(P ) =

∑
q∈Qi,e∈Pq

wq.

The total flow on a resource e is given as fe(P ) =
∑
i∈N f

i
e(P ). We use xe(P )

for the set of players who assign positive flow on resource e on an outcome P .

Cost shares. The cost sharing method of the game determines how the flow-
dependent joint cost of a resource Ce(fe(P )) is divided among its users. Given
an outcome P , we write χie(P ) for the cost of player i on resource e, such
that

∑
i∈N χie(P ) = Ce(fe(P )). The cost of a player i, Xi(P ), is the sum of her
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costs on each resource, Xi(P ) =
∑
e∈E χie(P ). For any T ⊆ N , let fTe (P ) be the

vector of the flows that each player in T assigns to e. Then the cost share of
player i can also be defined as a function of the player’s identity, the resource’s
cost function and the vector of flows assigned to e, i.e., χie(P ) = ξ(i, fNe (P ), Ce).

In this paragraph we explain in more detail assumption 2 and 3 from Section
1.1, which are needed for our general POA results in Section 3. Assumption 2 states
that the cost-sharing method only charges players based on how they contribute
to the joint cost. More specifically, assume we scale the joint cost on a resource by
a positive factor β, i.e., C ′e(fe(P )) = β · Ce(fe(P )). Given that the same players
use this resource, the new cost shares of the players would be a scaled by factor β
version of their initial cost shares, i.e., ξ′(i, fNe (P ), Ce) = β · ξ(i, fNe (P ), Ce). This
is given by scaling and replication arguments. Last, we make the fairness-related
assumption 3 which states that the cost share of a player on a resource is a
convex function of her flow.

We now define a specific class of cost-sharing methods, which is important in
our analysis.

Weighted Shapley values. The weighted Shapley value defines how the cost
Ce(·) of resource e is distributed among the players using it. Given an ordering π
of N , let F<i,πe (P ) be the sum of flows of the players preceding i in π. Then the
marginal cost increase caused by player i is Ce(F

<i,π
e (P )+f ie(P ))−Ce(F<i,πe (P )).

For a given distribution Π over orderings, the cost share of player i on resource e
is Eπ∼Π [Ce(F

<i,π
e (P ) + f ie(P ))−Ce(F<i,πe (P ))]. For the weighted Shapley value,

the distribution over orderings is given by a sampling parameter λie(P ) for each
player i. The last player in the ordering is picked proportional to the sampling
parameters λie(P ). Then this process is repeated iteratively for the remaining
players.

As in [12], we study a parameterized class of weighted Shapley values defined
by a parameter γ. For this class, λie(P ) = f ie(P )

γ
for all players i and resources e.

For γ = 0, this reduces to the (standard) Shapley value, where we have a uniform
distribution over orderings.

Pure Nash equilibrium. We now proceed with the definition of our solution
concept. The pure Nash equilibrium (PNE) condition on an outcome P states
that for every player i it must be the case that

Xi(P ) ≤ Xi(P
′
i , P−i), for any other strategy P ′i . (1)

Social cost. The social cost in the game is given by the sum of the player costs,
i.e.,

SC(P ) =
∑
i∈N

Xi(P ) =
∑
i∈N

∑
e∈E

ξ(i, fNe (P ), Ce) =
∑
e∈E

Ce(fe(P )). (2)

Price of Anarchy and Price of Stability. Let Z be the set of outcomes
and ZN be the set of pure Nash equilibria outcomes of the game. Then the price
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of anarchy (POA) and the price of stability (POS) are defined as follows,

POA =
maxP∈ZN SC(P )

minP∈Z SC(P )
and POS =

minP∈ZN SC(P )

minP∈Z SC(P )
. (3)

The POA and POS for a class of games are defined as the largest such ratios
among all games in the class.

2 Existence of Pure Nash Equilibria

Our first result proves that applying the (standard) Shapley value (with respect
to the player flows f ie(P )) on each resource, induces a potential game. Recall
that, for the Shapley value cost-sharing, we have a uniform distribution over
orderings, i.e., we use the definition of weighted Shapley values in Section 1.3
with every sampling parameter equal to 1.

Theorem 1. Congestion games with multi-commodity players under Shapley
cost sharing are exact potential games.

Proof. Consider any ordering π of the players in N and let f≤i,πe (P ) denote the
vector that we get after truncating fNe (P ) by removing all entries for players that
succeed i in π. We prove that the following is a potential function of the game,

Φ(P ) =
∑
e∈E

∑
i∈N

ξ(i, f≤i,πe (P ), Ce). (4)

Hart and Mas-Colell [19] proved that (4) is independent of the ordering π in which
players are considered. Let P ′ = (P ′i , P−i). It suffices to show that Φ(P )− Φ(P ′)
equals the change in the cost of player i. Focus on a single resource e and let π
be one of the orderings that places the flow of player i, f ie(P ), in the last position.
Then, the potential on resource e loses a term equal to

ξ(i, f≤i,πe (P ), Ce) = ξ(i, fNe (P ), Ce)

and gains a term equal to

ξ(i, f≤i,πe (P ′i , P−i), Ce) = ξ(i, fNe (P ′i , P−i), Ce),

which is precisely the change in the cost of player i on e. Summing over all
edges gives the desirable Φ(P )− Φ(P ′) = Xi(P )−Xi(P

′), which completes the
proof. ut

One might expect that, similarly to standard congestion games, the same
potential function argument would apply under weighted Shapley values as well.
However, this is not the case.

Theorem 2. There is a congestion game with multi-commodity players admitting
no PNE for any weighted Shapley value defined by sampling weights of the
form f ie(P )γ with γ > 0 or γ < 0.
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Proof. We prove this theorem by showing two examples admitting no PNE, for
γ > 0 and γ < 0. Due to page limitations, we restrict to the description of the
instances. For the γ > 0 case: Consider two players, 1 and 2, who compete for two
parallel (meaning each commodity must pick exactly one of them) resources e,e′

with identical cost functions Ce(x) = Ce′(x) = x1+δ with δ > 0 and γ
δ a large

positive number ( note that for δ = 0, we have linear cost functions where in
this case we have an equilibrium. As soon as we deviate from linearity, we use
convexity to construct an example with no equilibrium). Player 1 controls a unit
commodity p ∈ Q1. Player 2 controls two commodities q, q′ ∈ Q2, with wq′ = 1
and wq = k, for k a very large number. Recall, that the sampling weight of a
player i on a resource e is given by λie = (f ie)

γ
. This means that smaller weights

are favoured when constructing the weighted Shapley ordering. In particular,
for k → ∞, if commodities p, q share the same resource, then the probability
that q goes last in the Shapley ordering becomes 1 and the cost of commodity q
would be (k + 1)d − 1.

We switch to the γ < 0 case: Consider players i = 1, 2, . . . , k, who compete for
two parallel resources e1, e2 with identical cost functions Ce1(x) = Ce2(x) = x3.
Player k controls two commodities p, q ∈ Qk with weights wp = k and wq = 1.
Each player i < k controls only one commodity ri ∈ Qi with wri = 1. The
sampling weight of a player i on a resource e is given by λie = (f ie)

γ
, for γ < 0.

ut
2.1 Alternative Cost-Sharing based on Commodity Weights

One might consider a different way of generalizing weighted Shapley values to
multi-commodity congestion games: Apply a weighted Shapley value on the
commodity weights by charging a player the sum of the weighted Shapley values
of the commodities controlled by her. These cost-sharing methods coincide when
all commodities have unit weights, which is equivalent to proportional cost-
sharing, i.e., every player pays a cost-share that is proportional to her flow on
any given resource. Below we use one such instance with unit commodities to
prove that applying a weighted Shapley value method on commodity weights
does not guarantee pure Nash equilibrium existence.

Our instance is based on an example in [10], where Fotakis et al. prove that
network unweighted congestion games with linear resource cost functions and
equal cardinality coalitions do not have the finite improvement property, therefore
they admit no potential function. Their example translates to a restricted setting
of our model where each player controls an equal number of unit commodities.
We strengthen their result by proving non-existence of pure Nash equilibria for
congestion games with multi-commodity players and cubic resource cost functions
(we construct even a network congestion game with no pure Nash equilibrium).

A similar example has already been given by Rosenthal [27]. However, Rosen-
thal’s example uses concave cost functions, which we disallow in our setting. In
contrast, our proof uses only convex functions.

Theorem 3. There is a congestion game with multi-commodity players and
cubic cost functions admitting no pure Nash equilibrium under weighted Shapley
sharing applied on commodity weights.
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3 The POA and POS of Multi-Commodity Games

In this section we prove that the POA and POS of multi-commodity congestion
games are no larger than those of their single-commodity counterparts, for any
cost-sharing method and class of cost functions satisfying the natural assumptions
in Section 1.3. Due to space limits, the POA proof is omitted. It follows along
the lines of the proof for the single-commodity per player model [12].

Theorem 4. The POA of multi-commodity congestion games under a cost-
sharing method ξ and with costs drawn from a given class of increasing and
convex cost functions C, such that ξ, C satisfy assumptions 1, 2, and 3, is equal
to the POA of single-commodity congestion games induced by ξ and C.

Theorem 5. The POS of Shapley value based multi-commodity congestion games
with costs drawn from a given class of increasing and convex cost functions C, is
equal to the corresponding POS of the single-commodity case.

Proof. We begin with the potential function of the game (4) and we prove the
following lemma which we use to prove the upper bound on POS. Briefly, the
lemma states the following. For any instance with N players and any strategy
profile, we can construct a new instance with N+1 players by splitting one player
in half into two new players. Then this can only reduce the potential value of the
game. More precisely, we do this by splitting in half the flow of each commodity
controlled by a player i on a resource creating two new commodities, which we
assign to the new players i′ and i′′.

Lemma 1. Consider an outcome P of the game and assume that on a resource
e, we substitute the total flow of a player i with the flows of two other players

i′,i′′ such that f i
′

e (P̂ ) = f i
′′

e (P̂ ) =
fi
e(P )
2 . Then we claim that

Φe(P ) ≥ Φ′e(P̂ ),

where Φ′e(P̂ ) is the potential value of resource e after the substitution.

Proof. First, rename the flows such that the substituted one f ie(P ) to have the
highest index. Assign indices i′ and i′′ to the new ones, with i < i′ < i′′ in
ordering π. Then, for any resource e, the new potential value equals to

Φ′e(P̂ ) =

i−1∑
j=1

ξ(j, f≤j,πe (P ), Ce) + ξ(i′, (f<i,πe (P ), f i
′

e (P̂ )), Ce) +

+ ξ(i′′, (f<i,πe (P ), f i
′

e (P̂ ),f i
′′

e (P̂ )), Ce).

Note that the contribution to the potential value of the players before player i is
the same as before the substitution. Therefore it is enough to show that

ξ(i, f<i,πe (P ), Ce) ≥ ξ(i′,(f<i,πe (P ), f i
′

e (P̂ )), Ce) +

+ ξ(i′′, (f<i,πe (P ), f i
′

e (P̂ ), f i
′′

e (P̂ )), Ce). (5)
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To simplify, in what follows call

ξ = ξ(i, fNe (P ), Ce),

ξ′ = ξ(i′, (f<i,πe (P ), f i
′

e (P̂ )), Ce),

ξ′′ = ξ(i′′, (f<i,πe (P ), f i
′

e (P̂ ), f i
′′

e (P̂ )), Ce).

Define as xie(π) the set of players preceding player i in π. Then, for every ordering

π and permutation τ i of set xie(π)∪{i}, define as F<i,π,τ
i

e (P ) the sum of players’
flows who precede i in both π and τ i. Let now |xe(P )| = r. By definition of
Shapley values, we get

ξ =
1

r!

∑
τ i

(
Ce

(
F<i,π,τ

i

e (P ) + f ie(P )
)
− Ce

(
F<i,π,τ

i

e (P ))
))

, (6)

ξ′ =
1

r!

∑
τ i

(
Ce

(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ )
)
− Ce

(
F<i,π,τ

i

e (P )
))

. (7)

For ξ′′, since the position of f i
′

e (P̂ ) in the ordering is unspecified, we give
an upper bound for this value as follows. For any permutation τ , let A(τ) be
the marginal cost increase caused by f i

′′

e (P̂ ) when she precedes f i
′

e (P̂ ) in π, and
B(τ) when she succeeds. That is

A(τ) = Ce

(
F<i,π,τ

i

e (P ) + f i
′′

e (P̂ )
)
− Ce

(
F<i,π,τ

i

e (P )
)
,

B(τ) = Ce

(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ ) + f i
′′

e (P̂ )
)
− Ce

(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ )
)
. (8)

Let now p equal the probability of f i
′

e (P̂ ) preceding f i
′′

e (P̂ ). Then, the definition
of the Shapley value gives

ξ′′ = (1− p) · 1

r!
·
∑
τ i

A(τ) + p · 1

r!
·
∑
τ i

B(τ). (9)

Due to convexity, A(τ) ≤ B(τ). Therefore, by substituting A(τ) with B(τ) in
definition (9), we get the following upper bound for ξ′′,

ξ′′ ≤ 1

r!

∑
τ i

B(τ). (10)

Towards proving inequality (5), we have

ξ′ + ξ′′
(7),(10)

≤ 1

r!

∑
τ i

Ce

(
F<i,π,τ

i

e (P ) + f i
′′

e (P̂ )
)
− Ce

(
F<i,π,τ

i

e (P )
)

+ Ce

(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ ) + f i
′′

e (P̂ )
)

− Ce
(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ )
)
.
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Since f i
′

e (P̂ ) = f i
′′

e (P̂ ) =
fi
e(P )
2 , we get

ξ′ + ξ′′ ≤ 1

r!

∑
τ i

(
Ce

(
F<i,π,τ

i

e (P ) + f ie(P )
)
− Ce

(
F<i,π,τ

i

e (P )
))

(6)
= ξ,

as desired. This completes Lemma’s 1 proof. ut

We now continue to the proof for the POS upper bound. By repeatedly
applying Lemma 1, we can break the total flow on each resource in flows of
infinitesimal size without increasing the value of the potential. This implies that

Φe(P ) ≥
∫ fe(P )

0

Ce(x)

x
dx. (11)

Now call P ∗ the optimal outcome and P = arg minP ′ Φ(P ′) the minimizer of the
potential function, which is, by definition, also a PNE. Then

SC(P ∗)
(4)

≥ Φ(P ∗)
Def.P
≥ Φ(P )

(11)

≥
∑
e∈E

∫ fe(P )

0

Ce(x)

x
dx

=

∑
e∈E

∫ fe(P )

0
Ce(x)
x dx∑

e∈E Ce(fe(P ))
· SC(P ) ≥ min

e∈E

∫ fe(P )

0
Ce(x)
x dx

Ce(fe(P ))
· SC(P ).

Rearranging yields the upper bound POS ≤ maxC∈C,x>0
C(x)∫ x

0
C(x′)

x′ dx′
, which com-

pletes the proof of Theorem 5.

Corollary 1 For polynomials with non-negative coefficients and degree at most d,
the POS of the Shapley value is at most d+ 1, which asymptotically matches the
lower bound of [7] for single commodity per player.

4 Splittable games

We conclude the paper with a discussion of interesting open problems on cost-
sharing in the splittable version [5, 9, 16, 20, 25, 29] of congestion games with
multi-commodity players and with some results. In the splittable version of such
games, the weight wq of a commodity q ∈ Q can be split among its strategies in Pq;
i.e., a fractional strategy of commodity q ∈ Q is a vector Pq = (wq,P )P∈Pq ∈ R|P

q|
≥0

with
∑
P∈Pq wq,P = wq. For the unsplittable version, vector Pq has only one

non-zero and equal to wq component, which is not necessarily the case for the
splittable games. For the single-commodity per player model, it is known that
the proportional sharing method, having players paying a cost share proportional
to their flows on each resource, guarantees existence of a pure Nash equilibrium.
Moreover, the POA of this simple cost-sharing method is well understood [29].

Understanding the POA of other cost-sharing methods both in the single-
and multi-commodity models is an interesting open question. Similarly, it is
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interesting to study questions pertaining to the existence of pure Nash equilibria
in such games, which we do next.

A result from Orda et al. [25] implies the existence of pure Nash equilibria
in the multi-commodity splittable model, if the cost share of a player on a
resource is a convex function of her flow on the resource. The result in [25] is
based on the Kakutani Fixed Point theorem. This immediately gives us existence
of pure Nash equilibria for the standard Shapley cost sharing. We strengthen
this result by showing that such games are exact potential games [24] and thus
best response dynamics converge to a pure Nash equilibrium. The proof of the
following theorems can be found in Appendix.

Theorem 6. Splittable congestion games with multi-commodity players under
Shapley cost sharing are exact potential games.

As soon as we deviate to the weighted Shapley value method, we prove that
they do not guarantee PNE existence. Our proof uses the fact that the cost shares
of the players are not necessarily convex anymore in this setting.

Theorem 7. For parameterised weighted Shapley values with (finite) parameter
γ, PNE are not guaranteed to exist for splittable congestion games with multi-
commodity players.

For γ = ∞, we can even construct a counter example that uses only single-
commodity players.

Theorem 8. For parameterised weighted Shapley values with parameter γ = +∞,
PNE are not guaranteed to exist even for single-commodity players.
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