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Crystalline materials that combine electrical polarization and magnetization could be 

advantageous in applications such as information storage, but these properties are 

usually considered to have incompatible chemical bonding and electronic requirements. 

Recent theoretical work on perovskite materials suggested a route for combining both 

properties in these materials. We used crystal chemistry to engineer specific atomic 

displacements in a perovskite, (CaxSr1-x)1.15Tb1.85Fe2O7  that change its symmetry and 

simultaneously generate electrical polarization and magnetization. The two resulting 

properties are magnetoelectrically coupled as they arise from the same displacements. 
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For many technical applications, crystalline solids must combine distinct properties. For 

example, in thermoelectrics, thermal and electronic conductivity need to be optimized 

simultaneously (1). This level of structure-property composition control is particularly 

difficult when the properties have antagonistic chemical requirements. For example, the 

synthesis of a single phase combining electrical polarization P and spontaneous 

magnetization M is hard because of the distinct electronic structure requirements for the main 

mechanisms producing each property (2) e.g., the closed-shell d0
 Ti4+

 and s2
 Pb2+

 cations, 

which produce polarization in the ferroelectric perovskite oxide PbZr1-xTixO3,  do not have the 

unpaired electrons needed for magnetization (3). Efficiently combining these two long-range 

orders could be useful for multiferroic or magnetoelectric information storage, which could 

overcome the drawbacks of ferroelectric memory (slow writing) and magnetic random access 

memory (high power density) and opens the possibility of four-state memory (4, 5) with 

reduced energy consumption. It is possible to combine these ground states by making 

composites over a range of length scales between phases which individually have the 

chemistry and thus properties required (6, 7), or by lowering spatial symmetry through the 

onset of magnetic order at low temperatures (8). We use chemical control of the crystal 

structure of a single phase material to generate atomic displacements that produce both 

properties simultaneously in a coupled manner above room temperature. 

The chemical incompatibility between P and M arises when the ferroelectricity is driven by a 

classical gamma point instability (9). Recent theoretical work (10, 11) has identified that 

specific zone-boundary octahedral tilts in an ABO3 perovskite block coupled to translational 

symmetry breaking [from A site order in 1:1 perovskite heterostructures or the shearing of 

adjacent even-numbered (ABO3)n blocks by the interposed AO rock salt layer of the 

(AO)(ABO3)n Ruddlesden-Popper (RP) structure (12)] can generate hybrid improper 

ferroelectricity (HIF) without requiring classical zone-center displacements. The polarization 

in an HIF arises from noncancellation of the antiferrodistortive displacements associated with 

the tilt at the interfaces between structural blocks. This structure produces an improper 

ferroelectric, as the primary order parameter is the zone boundary octahedral tilting. HIF is 

rare because the required structural features are difficult to attain e.g., via artificial cation 

order in thin-film heterostructures (13) or in appropriately tilted bulk n = 2 RP phases, of 

which there are only three known examples: the nonmagnetic phases Ca3Ti2O7(14), which has 

switchable polarization (15), and Ca3Ru2O7 (16) and the low-temperature magnetically 

ordered phase Ca3Mn2O7 (17). 

The objective of this study is to combine both polarization and magnetization at room 

temperature (RT) in a bulk n = 2 RP oxide through control of composition to generate the 

required octahedral tilts in a system with a strongly magnetic B-site sublattice. For a 

magnetically ordered oxide insulator operating via superexchange, this requirement can be 

met by selection of Fe3+
 as the B site cation because of the good orbital energy match with 

oxide, enhancing the exchange constant J, and the large S = 5/2 spin of the d5
 cations in a 

mean-field approximation to the magnetic ordering temperature Tord ≈ zJS(S+1)/kB (where z 

is the number of nearest neighbor cations and kB is Boltzmann’s constant). Fe3+-O2--Fe3+
  

interactions are dominantly antiferromagnetic (AFM) when driven by conventional 

superexchange alone, but antisymmetric exchange between two Fe3+
  cations without an 

inversion center between them can create canted spontaneous magnetization via the 

Dzyaloshinskii-Moriya mechanism, as in the weak ferromagnet -Fe2O3 (18, 19). Imposing 

the correct combination of octahedral tilts on an Fe3+
 -based material could simultaneously 

generate spontaneous magnetization and polarization at RT. 

The Fe3+  n = 2 RP phases BaLa2Fe2O7 and SrLa2Fe2O7 are untilted and adopt the nonpolar 

space group I4/mmm (Fig. 1). They order antiferromagnetically below 545  (21) and 535 K 



(22), respectively, demonstrating that Fe-based n = 2 RP oxides offer high-temperature 

magnetic ordering. Chemical substitutions are required to produce the three coupled 

octahedral tilts of the polar (a-a-c+)/(a-a-c+) tilt system. Here a-a- signifies out-of-phase tilts of 

equal magnitude about orthogonal axes in the basal plane, and c+  signifies an in-phase 

rotation of different magnitude about the stacking axis, with the brackets referring to the two 

(ABO3)2 blocks within the unit cell (Fig. 1). Introduction of a smaller lanthanide (Ln) cation 

induces rotation of the octahedral network to reduce the A site coordination number e.g., 

SrTb2Fe2O7 was reported as a uniquely distorted n = 2 RP phase (23) which exhibits a Néel 

temperature (TN) of 542 K (24), but reinvestigation of this compound by density functional 

theory (DFT) calculations predicts a conventional single octahedral rotation in the nonpolar 

(a-b0c0)/(b0a-c0) tilt scheme (Fig. 1). The synthetically accessible phase was Sr1.1Tb1.9Fe2O7 

(fig. S1, S2 and (25)), and its refined crystal structure (Fig. 2A) adopts the tilt scheme 

predicted by DFT. The generation of a polar structure requires two further tilts to yield the (a-

a-c+)/(a-a-c+) tilt system, but this is not accessible with any Sr/Ln combination within the 

stability limits of the n = 2 RP structure (25).  

Tilting in perovskites is driven by the need to compensate for under-bonding caused by 

reduction of the A site cation size, so we performed DFT calculations to evaluate the 

potential effect of substituting Ca2+
 for Sr2+

 in SrTb2Fe2O7 to afford CaTb2Fe2O7. The 

calculations show that Ca2+
 is underbonded with less than three tilts [see bond valence sums 

(BVSs) in calculated structures, Table 1], so introduction of Ca2+
 should drive polarization by 

inducing a third (c+) tilt. However, the calculations also indicate that it may be necessary to 

compensate the loss of bonding at Fe3+
 to stabilize the polar A21am structure (Fig. 1), which 

must be done without destroying the magnetism. The Tb3+ 
 BVS is satisfied with one tilt but, 

unlike the Fe3+
 BVS, it is not substantially affected by the key third (c+) tilt. 

We next explored the synthesis of three-tilt polar n = 2 RP phases. CaTb2Fe2O7 itself could 

not be synthesized (because of phase separation to the n = 1 RP phase plus perovskite) but 

additional tilts were induced in the series (Sr1-yCay)1.15Tb1.85Fe2O7 for 0.55 ≤ y < 0.65 (fig. 

S3). Neutron powder diffraction (NPD) measurements (fig. S6 and S7), which are highly 

sensitive to oxygen displacements, showed that these materials exhibited the two a- tilts 

shown in Fig. 1 plus a disordered c+
 tilt (26), validating the synthetic strategy of introducing 

this in-phase tilt by Ca2+ substitution (Fig. 2B). The disordered nature of the c+
 tilt produced 

nonpolar Amam symmetry at room temperature. The Amam crystal structure was unchanged 

on cooling to 40 K. The magnetic ordering exhibited by this series was purely 

antiferromagnetic and persisted to high temperatures, e.g., the y = 0.60 member 

(Ca0.60Sr0.40)1.15Tb1.85Fe2O7 has a TN of 525 K (fig. S7 and S13). 

The presence of the disordered third tilt suggests that the Amam structure in the (Sr1-

yCay)1.15Tb1.85Fe2O7 series is near the target polar instability. Further substitution of Ca2+ into 

this series is not possible beyond y = 0.65 (fig. S3), so a different route was needed to order 

the c+
 tilt and access the polar structure. We coupled the further substitution of Ca2+ for Sr2+ 

with the replacement of Fe3+
 (r = 0.645Å) with Ti4+

 (r = 0.605Å) (27) to stabilize the structure 

by compensating for the under-bonding at the B site that the third tilt brings (Table 1). We 

synthesized two series of solid solutions between purely AFM [1-x](CaySr1-y)1.15Tb1.85Fe2O7 

(“CSTF” with y = 0.60 or 0.563) and nonmagnetic [x]Ca3Ti2O7 (“CTO”, which adopts the 

polar three-tilt structure), which formed stable n = 2 RP phases across the range 0.0 ≤ x ≤ 
0.30. Examination of the variation of the lattice parameters with x at RT showed a well-

defined minimum and gradient change in the c/b ratio at x = 0.13 for both the y = 0.60 series 

(Fig. 2E) and the y = 0.563 series (fig. S22), suggesting that a compositionally-driven 

structural phase transition occurred. Refinement of NPD data (fig. S4) shows that at and 

beyond this minimum, the materials with x > 0.13 adopt the targeted polar A21am RT 



structure because of the onset of an ordered c+
 tilt, described by the X2+

 distortion mode (Fig. 

2E inset and fig. S11) and accompanied by a marked increase in the intensity of the (313) 

nuclear reflection (Fig. 2F). The refined polar RT structure of x = 0.20, y = 0.60 with the (a-a-

c+)/(a-a-c+) tilt system is shown in Fig. 2C, alongside the polarization arising from the three 

tilts (Fig. 2D) which is amplified by the observed A-site cation ordering because the smaller 

and more highly charged Tb3+
 cations preferentially occupy the lower coordination number 

A-sites in the rock salt layer (table S1 and S2). The RT NPD refinement of x = 0.17, y = 0.60, 

which is polar and weakly ferromagnetic up to 315 K, is shown in fig. S10. For 0.05 ≤ x ≤ 
0.13, the ordering of the c+

 tilt occurs on cooling from room temperature, with the structural 

transition temperature Tc+ signaled by the same minimum in c/b (fig. S16 and S20). 

All of the materials (0.0 ≤ x ≤ 0.30) in both the (Ca0.60Sr0.40)1.15Tb1.85Fe2O7 (y = 0.60)- and 

(Ca0.563Sr0.437)1.15Tb1.85Fe2O7 (y = 0.563)-based series order magnetically. The magnetic 

structure was directly affected by the chemically-induced polar c+ tilt. Materials adopting the 

nonpolar Amam crystal structure display AFM order in magnetic space group PBnnm, which 

has point symmetry mmm1' (Fig. 3A and fig. S12). This magnetic symmetry forbids weak 

ferromagnetism (28) confirmed by the observation of linear M(H) isotherms for phases 

adopting this structure (Fig. 3E and fig. S21). The transition into the polar A21am crystal 

structure driven by the c+ tilt changed the magnetic structure, signaled by the appearance of 

the strong (102) magnetic Bragg reflection (Fig. 3C). The tilt drove reorientation of the spins 

by 180° between the two perovskite blocks in the unit cell, affording magnetic space group 

A21'a'm (Fig. 3A and fig. S12). The point symmetry 2'm'm now permitted weak 

ferromagnetic (WFM) canting of the Fe3+
 moments in these polar materials (28), 

demonstrated by nonlinear, hysteretic M(H) isotherms for phases adopting this magnetic 

structure (Fig. 3E and fig. S21). The onset of weak ferromagnetism in the dc magnetization 

measurements coincided with the appearance of the A21'a'm magnetic structure (Fig. 3B for y 

= 0.60, and fig. S23 and S24 for y = 0.563). The Bragg scattering signaling long-range bulk 

magnetic order in the polar A21am crystal structure was accompanied simultaneously by a 

sharp increase in M(T) because of the spin canting (Fig. 3D). These observations both show 

that the observed magnetization was determined by the bulk magnetic structure of the n = 2 

RP phase: the weak ferromagnetism was produced by canting of the moments in the polar 

structure due to the c+
 tilt. For compositions with 0.13 < x < 0.20, y = 0.60, the two magnetic 

structures co-exist at room temperature, with the canted magnetic structure becoming 

dominant when x > 0.15 (Fig. 3B). 

We plot TN, Tc+, and temperature dependence of the magnetic structures determined by 

neutron diffraction (fig. S13 – 16) together with the magnetization onset temperatures (Twfm 

and Tmax) from dc M(T) scans (fig. S17 – 19) to produce the phase diagram in Fig. 4A, which 

demonstrates the interplay between c+
 tilt, magnetization and magnetic structure. The 

structural and magnetic properties of the y = 0.563 series are consistent with those of the y = 

0.60 series (fig. S22 – 24). TN decreased with x from 525 K in x = 0.0, y = 0.60, as 

nonmagnetic Ti4+ 
 substitutes for Fe3+, while Tc+ increased because of the higher Ca2+ content 

to 693 K for x = 0.30, y = 0.60. These opposing trends produced four regions in the phase 

diagram, with the nature of the magnetic order controlled by the tilt: nonpolar AFM or polar 

WFM ground states are accessible, but there is no polar AFM state. The coexistence of weak 

ferromagnetism and polarization can persist to 330 K in the y = 0.60 series, with nonzero 

remanent magnetic moments above RT for the polar compositions between 0.13 < x < 0.20 

(Fig. 4B). The c+
 tilt thus produces both structurally-detectable electrical polarization and 

spontaneous magnetization at RT for the compositions 0.13 < x < 0.20, y = 0.60. 

The parent composition x = 0.0, y = 0.60 is located in the nonpolar AFM region of Fig. 4A 

and does not show linear magnetoelectric (ME) coupling (fig. S28), consistent with the 



magnetic and crystal symmetries determined above (28). The symmetry of the WFM polar 

structure region permits linear ME coupling (ME susceptibility = 0M/E (25, 28)) which 

was observed in pellets of both series in this region of the phase diagram (fig. S28 for y = 

0.60 and fig. S29, S30 for y = 0.563). ME experiments were conducted at 60 and 100 K, thus 

avoiding artifacts caused by leakage currents (fig. S27). A linear ME coupling was exhibited 

by all x ≠ 0 compositions in the polar WFM region of the phase diagram (Fig. 4C). NPD 

refinements and M(H) loops at the ME measurement temperatures show that these 

compositions all exhibited the same polar crystal structures and canted magnetic structures as 

found at RT (fig. S22, S23 and S25). The size of the ME coupling increased with the 

magnitude of the c+
 tilt despite the complex composition-dependence of the saturated Fe 

moment: at 60 K the competition between increased canting and dilution of the Fe sublattice 

produces a maximum saturated moment at x ≈ 0.13 (fig. S26), while the maximum α was 

observed at x = 0.30 where the c+
 tilt amplitude is greatest (Fig. 4C). This increase in α with 

x shows that the enhanced tilt (Tc+ increased with x), which induced both polarization and 

magnetization, overcame the reduced strength of the magnetic exchange (TN decreased with 

x) and controlled the ME coupling, in accordance with the x dependence of the structural and 

magnetic phase boundaries seen in Fig. 4A. 

A single set of cooperative atomic motions (the c+
 tilt) was imposed by designed chemical 

substitution into the parent n = 2 Ruddlesden-Popper A3B2O7 structure to produce RT 

polarization and magnetization simultaneously. As these two often antagonistic order 

parameters both arise from the chemically-driven tilting of the oxygen network, ensuring that 

the resulting polarization is large enough to be structurally detectable, their coupling is 

observed in the ME response, although the magnetization arises from the Fe 3d electrons 

whereas the polarization is produced by relative displacement of all of the constituent ions. 

Ferroelectric switching of the polarization will require higher electric fields than we access 

here, enabled by ceramic engineering to minimize loss (29). Using a strongly magnetic B site 

sublattice along with the A site composition to control the tilt structure, we synthesized 

materials that are both polar and weakly ferromagnetic at up to 330 K over a range of 

compositions, revealing the potential of crystal-chemically driven symmetry control to 

generate multiple coupled functions. 



 



Fig. 1. Crystal chemical engineering of octahedral tilts in the n = 2 RP structure. Lowest-

energy crystal structures and space group symmetries obtained by DFT calculations are 

shown for the previously reported compounds BaLa2Fe2O7 and SrTb2Fe2O7, and the 

hypothetical compound CaTb2Fe2O7 where two candidate structures are shown. Reducing the 

A site cation size from BaLa2Fe2O7 to SrTb2Fe2O7 introduces a single tilt. DFT calculations 

predict that reducing the A site cation size further to form CaTb2Fe2O7 would produce a 

polar structure in space group A21am with three tilts, which is found to be lower in energy 

than the zero, one or two tilt structures shown. Tilt axes are shown with arrows, and are 

labelled according to Glazer notation (20), along with the space-group symbol of the 

resulting structure. Alkaline earth atoms are shown in green, lanthanides in purple and FeO6 

octahedra in brown. 

 

Fig. 2. The onset of an ordered c+ tilt as a function of composition in the system [1-x](CaySr1-

y)1.15Tb1.85Fe2O7-[x]Ca3Ti2O7, y = 0.563 and 0.60 (A) Refined crystal structure of Sr1.1Tb1.9-

Fe2O7 from NPD, which exhibits a single (a-b0c0)/(b0a-c0) tilt in space group P42/mnm, 

projected along [110] and [001] with atoms plotted as 99% probability ellipsoids and FeO6 

plotted as solid octahedra. (B) Refined structure of x = 0.10, y = 0.60 from NPD, a non-polar 

two-plus-disordered-third tilt system (a-a-c<0>)/(a-a-c<0>) in space group Amam. The 

disordered c+ tilt, indicated as c<0>, can be described using either anisotropic displacement 

parameters highly elongated along the in-plane directions orthogonal to the tilt axis (used 

here for simple comparison with the other materials shown) or with the split site model 

shown in fig. S5A. (C) Refined structure of x = 0.20, y = 0.60 which adopts a polar three-tilt 

system (a-a-c+)/(a-a-c+) in space group A21am, (D) Layer-by layer polarisation of A21am x = 

0.20, y = 0.60, calculated from the refined structure in (C), showing a net polarisation along 

the a-axis (AE = alkaline earth oxide, TM = transition metal oxide, Ln = lanthanide oxide). 

(E) c/b ratio plotted as a function of composition for series y = 0.60 in the range 0.0 ≤ x ≤ 

0.30 at room temperature, with schematic illustration of the ordered c+ tilt onset shown inset, 

(F) NPD data showing the emergence of the (313) nuclear Bragg reflection as polarity 



increases in the series y = 0.563 - the intensity of this reflection cannot be fitted in Amam 

(fig. S8).   

 

Fig. 3. Simultaneous magnetic spin-reorientation transition and onset of weak 

ferromagnetism at the transition to a polar crystal structure as a function of composition. (A) 

The PBnnm and A21'a'm magnetic structures, with the magnetic Fe3+ sublattice illustrated as 

blue/pink arrows. The transition from the PBnnm to the A21'a'm magnetic structure occurs 

with retention of the G-type ordering within the perovskite blocks, but changes the ordering 

between the blocks (see also fig. S12), to allow spin canting and magnetoelectric (ME) 

coupling in the polar materials.  (B)  Refined antiferromagnetically ordered (staggered)  Fe 

moment (25) in each magnetic structure from NPD, and canted moment from M(H) loops at 

300 K, plotted versus composition at room temperature for series 0.0 ≤ x ≤ 0.30, y = 0.60, 

showing the onset of the spin-canted A21'a'm structure at x = 0.13. (C) Contour plot 

constructed from 10 room temperature NPD patterns in the compositional range 0.10 ≤ x ≤ 

0.20, y = 0.60 (GEM diffractometer, 2θ = 35° detector bank) showing the magnetic 

transitions from the AFM (PBnnm) structure to the WFM (A21'a'm) structure to paramagnetic 

(PM) with increasing x. The magnetic peaks are labelled with their hkl indices to distinguish 

them from the nuclear Bragg peaks persisting throughout the composition range. (D) M(T) 

data and refined staggered Fe moment from NPD for the polar phase x = 0.18, y = 0.60, 

showing the onset of WFM at TN = 310 K, as indicated by a sharp increase in 

thermoremanent magnetization (TRM), splitting of the field-cooled (FC) and zero-field 

cooled (ZFC) data and the appearance of magnetic Bragg peaks from the A21'a'm magnetic 

structure in the NPD patterns. (E) M(H) loops at the magnetoelectric measurement 

temperature (60 K) for samples of x = 0.13, 0.20 (y = 0.563), with linear contribution 



subtracted (fig. S25), and non-subtracted data with an applied scale factor of 0.12 plotted for 

x = 0.0, y = 0.563. 

 

Fig. 4. Phase diagram of the series 0.0 ≤ x ≤ 0.30, y = 0.60 and the occurrence of 

magnetoelectric (ME) coupling in the polar/weak ferromagnetic region (A) Structural-

magnetic phase diagram showing dependence of crystal structure (polarity), magnetic 

structure and magnetisation on composition and temperature in the series [1-x] (CaySr1-

y)1.15Tb1.85Fe2O7-[x]Ca3Ti2O7 with y = 0.60. Red triangles = TN from NPD (fig. S13 – S15); 

blue inverted triangles = Tc+ from c/b ratio plots (fig. S14); black circles = Twfm (onset WFM) 

from divergence of field-cooled and zero-field cooled M(T) plots (fig. S16 – S18); open 

circles = Tmax from maxima in |∂M(T)/∂T| plots (fig. S17 – S19); black squares = Tb3+ 

magnetic ordering from NPD; open squares = Tb3+ magnetic ordering from M(T) plots. Four 

distinct regions are marked by colour blocks which correspond to paramagnetic (PM)/non-

polar (white); PM/polar (green); A21am/WFM/polar (orange); and PBnnm/AFM/non-polar 

(blue). Insets show the polar-nonpolar transition at 450 K by the temperature dependence of 

the lattice parameters (c/b ratio) and the ratio of Rwp values for Amam and A21am models, 

and the presence of WFM at 300 K by M(H) loop, for x = 0.17 (marked with a black arrow 

on the x-axis). (B) Cross-section of the phase diagram (A) at 300 K: saturated magnetic 

moment per Fe from M(H) loops (fig. S21, black squares, with solid line as a guide to the 

eye) plotted with calculated polarisation of the refined crystal structure from NPD (open 

circles, with dashed line as a guide to the eye) showing the simultaneous emergence of 

magnetisation and polarisation as x increases, with regions colored to correspond with those 

mapped in (A). (C) Linear ME susceptibility α vs composition at 60 and 100 K for the series 

0.0 ≤ x ≤ 0.30, y = 0.563, showing that the ME coupling increases with polarisation. 

 

 

Table 1. The energies of the relaxed structures of CaTb2Fe2O7 with polar and non-polar tilt 

schemes. Energies are calculated by DFT, and quoted relative to the calculated energy in the 

polar A21am structure.  

   



Tilt Scheme 
Relative Energy 

(eV / Formula Unit) 

BVS 

(Fe) 

BVS 

(Ca) 

BVS 

(Tb) 

(a-a-c+)/(a-a-c+) 0 2.80 1.80 3.02 

(a-a-c0)/(a-a-c0) 0.17 2.99 1.58 2.94 

(a-b0c0)/(b0a-c0) 0.10 2.99 1.47 2.99 

(a0a0a0)/(a0a0a0) 0.95 3.34 1.16 2.71 
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