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Abstract

This paper provides evidence on the usefulness of very high spatial resolution (VHR) imag-

ery in gathering socioeconomic information in urban settlements. We use land cover, spec-

tral, structure and texture features extracted from a Google Earth image of Liverpool (UK) to

evaluate their potential to predict Living Environment Deprivation at a small statistical area

level. We also contribute to the methodological literature on the estimation of socioeconomic

indices with remote-sensing data by introducing elements from modern machine learning. In

addition to classical approaches such as Ordinary Least Squares (OLS) regression and a

spatial lag model, we explore the potential of the Gradient Boost Regressor and Random

Forests to improve predictive performance and accuracy. In addition to novel predicting

methods, we also introduce tools for model interpretation and evaluation such as feature

importance and partial dependence plots, or cross-validation. Our results show that Ran-

dom Forest proved to be the best model with an R2 of around 0.54, followed by Gradient

Boost Regressor with 0.5. Both the spatial lag model and the OLS fall behind with signifi-

cantly lower performances of 0.43 and 0.3, respectively.

Introduction

The use of remote sensing data to gather socioeconomic information is based on the premise

that the physical appearance of a human settlement is a reflection of the society that created it

and on the assumption that people living in urban areas with similar physical housing condi-

tions have similar social and demographic characteristics [1, 2]. The number of studies that

address the usefulness of remote sensing imagery to estimate socioeconomic variables has

increased in recent years [3–9]. This trend is related to the increasing availability of commer-

cial satellite platforms and the decreasing costs of this kind of data [10, 11]. Remote sensing

imagery could be used as an alternative source of information in urban settings when survey

data is scarce or to update socioeconomic data for different dates than those of surveys or cen-

suses [7].
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Relationships between socioeconomic variables and remote sensing-derived variables have

been quantified in different cities around the world [9, 12–15]; however, local research is

always needed, as the particular conditions of each city must be taken into account to find use-

ful correlations [16], and findings for one city can be quite the opposite for another city, even

in the same country; e.g., the amount of vegetation is an indicator of urban decay in Detroit,

Michigan, while the same variable is positively correlated with income, house value and educa-

tional attainment in Denver, Colorado, and Phoenix, Arizona, among others [10, 17]. Accord-

ingly, the image-derived variables that best relate to a specific socioeconomic index can change

among different cities, but it is important to unveil those relationships to help identify patterns

that could be useful in different settings.

One of the most recurrent applications in this field is the measurement of poverty in urban

areas. According to [11] at least 87 works on this topic have been published in the last 15 years,

most of them focused on slum mapping or slum detection [18–21]. However, only a limited

number of works have focused on the usefulness of remote sensing imagery to quantitatively

estimate indices of urban poverty. [22] used reflectance data from Landsat imagery to estimate

a residential quality index in Sydney, Australia. [23] and [24] used land cover descriptors and

texture measures from medium to very high spatial resolution satellite imagery for predicting

the Slum Index as a function of remote sensing-derived variables in Accra, Ghana. [25] related

the percentage of areas with non-formal building standards, identified from Ikonos imagery,

with an Index of Multiple Deprivation at the ward level in Delhi. More recently, [7] used data

drawn from an RGB composition of a Quickbird scene with a spatial resolution of 0.60 m to

estimate the Slum index in Medellin, Colombia.

The quantification of an index over the whole area of a city, covering the most deprived

areas to the most affluent, would better inform urban planning policies than the mere identifi-

cation of slum pockets. According to [26], the repeat cycle and wide area coverage of remotely

sensed data provide a mean for monitoring urban processes to help in the analysis and response

by policy makers. If an approach to quantifying an index of urban quality based on remote sens-

ing is demonstrated to be possible and repeatable, it could be useful to identify urban places

that show a trend of decreasing quality and take action before they reach critical conditions.

In this paper, we use the Living Environment Deprivation (LED) index from the English

Indices of Deprivation for Liverpool Statistical Areas to explore the potential benefits of two

Machine Learning methods, Gradient Boost Regressor (GBR) and Random Forest (RF), that

are used to predict the LED index based on data entirely derived from images. We compare

the results with the outcomes of two classic econometric models –Ordinary Least Squares

regression (OLS) and a Spatial Lag model (SL) based on the generalized method of moments.

According to [27], there are two broad domains of neighborhood attributes that may be rele-

vant to public health: features of the physical environment and features of the social environ-

ment. Housing conditions and the surrounding environment characteristics have been found

to be associated with health status and overall quality of life [28]. Remote sensing data has

already been used to quantify urban quality of life indexes [22, 29–31]. We chose the LED

index because it measures the quality of the local environment, it is related to urban quality

of life concepts, and it is, at least partially, based on some aspects of the dwellings that are

reflected in the appearance of the urban settlement. The LED index is a suitable tool for

the characterization of the urban physical environment [32]. We use four sets of variables

extracted from a very high spatial resolution (VHR) image downloaded from Google Earth

(GE): a set of land cover features, a set of spectral features, a set of texture features, and a set of

structure features.

Most previous works on the relationship between remote sensing-derived variables and

deprivation indices use expensive commercial imagery with several spectral bands in the
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visible and near-infrared fractions of the electromagnetic spectrum [11, 33] as well as three-

dimensional data such as LIDAR [34]. However, many cities and local governments in both

the developed and developing countries do not have the resources to purchase full satellite

imagery or LIDAR data and restrict themselves to using RGB data for data extraction via inter-

pretation [35]. Google Earth (GE) imagery may be the only available source of aerial imagery

for small local governments. GE images are accessible to the public, albeit bound by their

terms of use, and their ability to provide useful information for policy making is worth testing

[36, 37]. Works similar to this have tested the relationship of image-derived variables with pov-

erty indices in cities of developing countries within the Tropical Zone (Accra, Ghana, and

Medellin, Colombia). Liverpool is an interesting case study because it is located in a developed

country but is home to some of the most deprived areas in the United Kingdom.

Methodologically, previous works focusing on the estimation of poverty indices from

remote sensing data used classic econometric approaches like correlation analysis, linear

regressions, and spatially adjusted regressions [7, 23–25]. Recent literature contributions have

explored the potential of machine learning to identify unstructured human settlements using

remotely sensed imagery. The applied techniques include neural networks [5, 38], random for-

est [6, 39], and support vector machine [39]. The main advantages of these approaches are

their usefulness in areas with poor survey coverage, their good prediction power and, as

stressed by [6], some versions of these models are capable of dealing with the non-linear rela-

tionships between poverty and environment.

With this paper we expect to contribute in two key aspects: First, we want to explore the

usefulness of a new and wide set of image-derived variables (spectral, texture and structure fea-

tures) that can be easily estimated and that can be a good complement of other most common

variables such as land cover types. In this context, machine learning techniques give us the pos-

sibility of including any number of variables without being concerned about multicollinearity

as well as to capture non-linear relationships. If successful, the approach tested here could be

standardized and automated given its flexibility and ease of implementation. Hence, it could

be useful to help monitor quality of life in cities over time and to quantify the changes in its

spatial pattern across the city between different dates even in cases with a limited budget. Sec-

ond, by using Liverpool as case study, we want to contribute new empirical evidence on the

understanding of some quantifiable aspects of the appareance of cities in developed countries

that relate to urban quality of life and other similar indices. Other comparable researches have

focused on North American cities [40–43]. The most important findings in these studies are

the high explanatory power of the presence of impervious surfaces (computed as the percent of

impervious surface cover) and the presence of vegetation (quantifyed as the percent of vegeta-

tion cover, or the mean Normalized Difference Vegetation Index, NDVI); and the evidence of

spatial instability of these relationships, which requires the use of spatial econometric tech-

niques such as the Geographically Weighted Regression.

The remainder of the paper is organized as follows. Section presents the study area, the

LED index, and the variables derived from the VHR image. Section 0.2 describes the two clas-

sic econometric models and the two machine learning methods compared in this study. The

results and subsequent discussion are presented in sections 0.6 and 0.8. Finally, section 0.8

presents the main conclusions.

Data

Our analysis is geographically focused on the British city of Liverpool. Liverpool is located in

the North West of England (see Fig 1) and is among its ten largest cities. Its exact position var-

ies depending on the city definition used. For example, if the built-up area definition is chosen,
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Liverpool is the sixth largest in the UK [44]. As of 2015, the Office of National Statistics esti-

mated just under 480,000 people were living within the boundary of the local authority. Liver-

pool has a historical trajectory that shapes its spatial structure and defines the way the city

looks today. According to the city profile by [45], “[it] pioneered many of the elements of the

modern industrial metropolis, only to deurbanise during a ruinous late 20th century decline,

halving its population.” The combination of such a changing and uneven landscape with its

Western European location make Liverpool a good candidate for our exercise. On the one

hand, we expect several historical layers of development, rise, and decline to be reflected in its

spatial structure and, hence, in the way the city looks from the sky. On the other hand, its loca-

tion in a developed country with a temperate latitude provides a very different testbed than

that usually featured in other studies of remote sensing-based measurement of socio-economic

characteristics.

Within Liverpool, we use the Lower Layer Super Output (or LSOA in its most common

acronym; [46]) geography. LSOA affords us spatial resolution while allowing us to connect our

satellite-derived measures with many additional datasets. Crucially, we are interested in the

Index of Multiple Deprivation (IMD, [32]), produced by the Department for Local Communi-

ties and Local Government. Within the IMD, we focus on the component that relates most to

the appearance of the landscape and, hence, is expected to be best captured by satellite imagery,

i.e., living environment.

0.1 Living Environment Deprivation

The LED index is one of the seven dimensions that compose the English Indices of Depriva-

tion, which includes income; employment; health and disability; education, skills and training;

crime; barriers to housing and services; and living environment. According to [32], the model

of multiple deprivation is based on the idea that (1) the separate dimensions of deprivation can

be recognized and measured separately, (2) these dimensions of deprivation are experienced

by individuals living in an area, and (3) an area-level measure of deprivation for each of the

dimensions can be calculated [32]. These indices are reported at the LSOA level for the entire

country and they allow the comparison of deprivation in one area relative to other areas, but

they cannot be treated as absolute measures of deprivation for each place.

The LED index measures the quality of the local environment in terms of the quality of

housing and the quality of the surrounding environment, and it is composed of four indica-

tors: housing in poor condition, houses without central heating, outdoor air quality, and road

traffic accidents [32]. The quality of the urban environment is an issue of fundamental concern

for citizens, researchers, and policy makers [47, 48]. Urban green spaces are linked to a range

of health metrics: urban vegetation provide benefits to people by improving air quality (oxygen

production and carbon sequestration), abatement of noise pollution, mitigation of the urban

heat island effect, and reduction of storm-water [49, 50]. Previous works have related urban

environmental problems with public health outcomes [27, 51]. Urban green spaces measures,

like the share of vegetation within an area and the distance to the closest green patch, are often

used in studies examining people’s physical health and behavior [52]. Lack of access to parks

and green spaces have been linked to mortality, higher rates of obesity, and mental issues [53].

According to [54], remotely sensed data can be used to detect and measure urban changes and

provide data for the analysis of the impacts of urbanization on the environment and human

health. We chose to test the relation of the LED index with LSOA descriptors extracted from

VHR imagery because this index is partially based on physical aspects of the dwelling units

that can be reflected in the appearance of the urban layout. Fig 1 shows the LED index in Liver-

pool at the LSOA level, classified in 5 intervals using the Quantile method. Values range from
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8.1 to 85.5, and the map shows a clear spatial pattern with higher values around the center of

the city and toward the north and west and lower values in the periphery.

0.2 Remote sensing derived variables

We downloaded the most updated (up to February 2016) GE images of Liverpool city with

enough zoom level to be similar to VHR imagery with sub-meter pixel size using a tool for

automatic downloading of image tiles from the Google Satellite Map web service (http://www.

allallsoft.com/gsmd); we then combined them into a single mosaic in geographic coordinates.

According to the data provider information, displayed in Google Earth, and the Google Earth

blog, these Liverpool VHR imagery were collected by Google itself in 4th April 2015. We pro-

jected the image mosaic onto the same coordinate system of the spatial database of deprivation

Fig 1. Location of Liverpool city and LED index values at LSOA level, shown over a Stamen Terrain

base map (base map tiles by Stamen Design, under a CC BY 3.0, data by OpenStreetMap, under CC

BY SA).

https://doi.org/10.1371/journal.pone.0176684.g001
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indices of Liverpool and obtained a georeferenced image with a pixel size of 70 cm. We used

that image as an input to calculate image-derived features or variables for the same spatial

units for which the LED index is reported (LSOA).

Previous studies have related intra-urban measures of deprivation with different types of

image-derived variables. The presence of impervious surfaces, the amount of vegetation, the

amount of bare soil, and the share of orange clay roofs within an area have been related to

intra-urban poverty indices in previous works [7, 23, 24]. Some texture measures [23, 51] and

spatial pattern descriptors [7, 51] have been tested as well. Moreover, several image texture

measures have been demonstrated to be useful for differentiating slum settlements from for-

mal settlements in several cities of developing countries around the world [20, 21, 55]. Vegeta-

tion proxies derived from remote sensing, like the mean NDVI, the Soil Adjusted Vegetation

Index (SAVI), the Leaf Area Index (LAI), or the fraction of vegetation cover within an area,

have been related to income and other socioeconomic variables in several American cities [12,

13, 29, 40, 56, 57].

A per-pixel classification of the scene is performed to calculate a set of land-cover variables

within LSOA polygons. Next, we used an automatic tool for image feature extraction at the

object level called FETEX 2.0 [58] to extract spectral, texture and structure features at the

LSOA level. FETEX, developed at the Geo-Environmental Cartography and Remote Sensing

Research Group (http://cgat.webs.upv.es), is a computer package for image, object-oriented

feature extraction [58]. We calculated three sets of variables using FETEX and the boundaries

of LSOA: a set of spectral features, a set of texture features and a set of structural features. Spec-

tral features convey information about color in each image RGB band, while texture and struc-

ture features inform about the spatial arrangement of the elements within the image using the

intensity values of the red band.

Land cover features

Land cover features describe the composition of the urban scene in terms of the amount of

basic land cover types: vegetation, soil, gray impervious surfaces (asphalt and industrial

roofing), orange impervious surfaces (clay tile roofs and similar), shadow and water. The

composition of the urban landscape has been related to urban quality of life in previous

works [22, 30, 31, 41, 56, 57]. Urban green spaces are considered as an important urban

amenity to improve air quality and to promote citizen’s physical activity [53, 59]. In general,

urban areas with a high share of vegetation coverage are expected to be associated with low

values of the LED index; while areas exhibiting a high fraction of (bare) soil coverage are

expected to be associated with higher values of the LED index. We used the red, green and

blue bands of the GE image as inputs to a supervised per-pixel classification in ENVI soft-

ware to differentiate these land cover classes using a maximum likelihood classifier. We

decided to use this classic method to maintain the image processing flow as less sophisti-

cated as possible, to introduce the machine learning algorithms only in the analysis of the

relationships of the LED index with the image-derived variables. The classification accuracy

was assessed using a point-based technique with a reference dataset of randomly selected

points. We collected a sample of on-screen ground truth points and divided it randomly

into two datasets: 80% as the classification training set and 20% as the validation set.

Table 1 shows the confusion matrix as well as the overall accuracy and the kappa coefficient

of the classification results.

The classified image at the pixel level was used to calculate the following aggregated land

cover variables at the LSOA level: the percentage of impervious surfaces (gray and orange),

the percentage of orange impervious surfaces, the percentage of impervious surfaces without
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orange surfaces, the fraction of orange surfaces over the impervious surfaces, the percentage

of vegetation, the percentage of soil, the percentage of shadows, and the percentage of water.

Spectral features

The spectral features are the summary statistics of pixel values inside objects; i.e., LSOA

boundaries in this study case. These features inform about the spectral response of objects,

which depends on land coverage types, state of vegetation, soil composition, building mate-

rials, etc. [58]. These features complement the information provided by the land cover fea-

tures, as they give a general measure of the color of the areas. For example, we expected

high LED index values to be more common in the areas with few vegetated spaces, which

usually present low mean spectral values in the green band. We selected the mean and stan-

dard deviation in each RGB band for this exercise. These features are easy to understand

and could convey more information about the spectral differences across the small areas of

the city than the other summary statistics for the intensity values of the image (minimum,

maximum, majority, range, and sum).

Texture features

Texture features characterize the spatial distribution of intensity values in the image and

provide information about contrast, uniformity, rugosity, etc. [58]. Texture measures

have been related to an inhabitability index in Recife and Campinas, Brazil [60] and to

identify urban slums in Hyderabad, India [21], and Casablanca, Morocco [20]. The kur-

tosis and skewness features are based on the histogram of the pixel values inside each

LSOA polygon. Classic image texture features, proposed by [61], are computed from the

Grey Level Co-occurrence Matrix (GLCM). The GLCM describes the co-occurrences of

the pixel values that are separated at a distance of one pixel inside the polygon, and it is

calculated considering the average value of four principal orientations, 0˚, 45˚, 90˚ and

135˚, to avoid the influence of the orientation of the elements inside the polygon [58].

These texture variables include uniformity, entropy, contrast, inverse difference

moment, covariance, variance, and correlation. The edgeness factor is another useful

feature that represents the density of edges present in a neighborhood, and the mean

and standard deviation of the edgeness factor are also computed within this set of texture

features in FETEX 2.0 [58]. We expect that texture features help in the estimation of

Table 1. Accuracy assessment of GE image classification results.

Ground truth Gray imp. surf. Soil Orange imp. surf. Vegetation Shadow Water Total

Classified as:

Gray imp. surf 5,241 73 278 80 32 0 5,884

Soil 422 740 200 15 0 0 1,377

Orange imp. surf. 65 6 1,696 17 0 0 1,784

Vegetation 156 10 49 3,684 168 0 4,067

Shadow 1,474 6 68 496 1,427 0 3,471

Water 12 0 0 208 34 885 1,139

Total 7,550 835 2,291 4,500 1,661 885 17,722

Producer’s accuracy (%) 71.80 88.62 74.03 81.87 85.91 100

User’s accuracy (%) 92.13 53.74 95.07 90.58 41.11 77.70

Overall classification accuracy (%) 78.17

Kappa value 0.71

https://doi.org/10.1371/journal.pone.0176684.t001
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LED index values by accounting for some aspects of the distribution of the elements

within the urban fabric. As an example, areas with high LED values are expected to be

associated with high values of mean edge density and entropy. This is because these fea-

tures account for the presence of different elements within the urban layout and this sit-

uation is more common in the areas that show small dwelling units and with few

homogeneous vegetated spaces or water bodies.

Structure features

Structure features provide information on the spatial arrangement of elements inside the

polygons in terms of randomness or regularity of the distribution of the elements [58, 62,

63]. Structure feature values indicative of high local heterogeneity and low regularity have

been associated with deprived urban areas in some countries [7]. We would expect that

these set of features could be useful to improve the image-based estimations of the LED

index for Liverpool. For the current analysis, we computed a set of structure features at the

LSOA level using FETEX 2.0 and the experimental semivariogram approach. According to

[58], the semivariogram quantifies the spatial associations of the values of a variable, mea-

sures the degree of spatial correlation between different pixels in an image, and is a suitable

tool for the characterization of regular patterns. FETEX 2.0 generates the experimental

semivariogram of each polygon by computing the mean of the semivariogram calculated in

six different directions, from 0˚ to 150˚, with step increments of 30˚. Then, each semivario-

gram curve is smoothed using a Gaussian filter to reduce measurement error [58]. Structure

features extracted from the semivariogram are based on the zonal analysis defined by a set

of singular points on the semivariogram, such as the first maximum, the first minimum,

and the second maximum [58, 62, 63]. Table 2 shows the complete list of remote sensing

variables used in our analysis.

Methods

The derived features are not particularly useful for explaining LED by themselves. They need

to be combined into a single model that creates predictions based on existing estimates. Con-

ceptually, this may be represented as:

LED ¼ f ðLC; SP;TX; STÞ ð1Þ

where f(�) is a function that combines information on land cover (LC), spectral (SP), texture

(TX), and structure (ST) from each area to produce a prediction of its LED index. This presents

one of the main methodological contributions of this paper. Following the existing literature

on the topic, we use standard methods such as (spatial) regression to produce a linear combi-

nation of several features into an estimate of the LED index. Unlike most studies in the litera-

ture, however, we extend traditional linear models and adopt a more modern approach of

prediction using machine learning techniques such as random forests and gradient boosting

regressions. The remainder of the section offers an overview of each of the approaches we use

to estimate Eq (1), and their relative advantages and disadvantages are addressed.

0.3 Baseline linear model

Our first approach, which serves as a benchmark, is to assume a linear combination to approx-

imate f(�). Mathematically, this implies that Eq (1) becomes:

LED ¼ aþ bLC þ gSP þ dTXþ zST þ � ð2Þ
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where α, β, γ, δ and z are (vectors of) parameters and � is an error term assumed to be i.i.d. fol-

lowing a Gaussian distribution.

This approach is simple to implement as it is straightforward to obtain estimates of the

parameters using Ordinary Least Squares (OLS); it has also been proven to be robust by a large

number of studies in the literature. It is also relatively easy to interpret: Because the units in

which the variables are expressed are known, the estimated coefficients provide information

about the marginal change in the outcome associated with a unit increase in each of the predic-

tors. However, its simplicity is also its most limiting factor. In a context where the priority is to

obtain good predictions, a linear model can be too simple. The predictive performance of

Table 2. Remote sensing derived variables and descriptions.

Group Variable name Description

Land

cover

p_imp_surf Percentage of impervious surface cover

p_ora_surf Percentage of orange impervious surface cover

p_i_s_wora Percentage of impervious surface without orange surface cover

f_or_imp_s Fraction of orange impervious surface over the impervious surface

p_veg Percentage of vegetation cover

p_soil Percentage of bare soil cover

p_shadow Percentage of shadow cover

p_b_water Percentage of water cover

Spectral MEAN1 Mean of band 1 intensity values (red color)

DEVST1 Standard deviation of band 1 intensity values

MEAN2 Mean of band 2 intensity values (green color)

DEVST2 Standard deviation of band 2 intensity values

MEAN3 Mean of band 3 intensity values (blue color)

DEVST3 Standard deviation of band 3 intensity values

Texture MEAN_EDG Mean of the edgeness factor

STDEV_EDG Standard deviation of the edgeness factor

UNIFOR GLCM uniformity

ENTROP GLCM entropy

CONTRAS GLCM contrast

IDM GLCM inverse difference moment

COVAR GLCM covariance

VARIAN GLCM variance

CORRELAC GLCM correlation

SKEWNESS Skewness value of the histogram

KURTOSIS Kurtosis value of the histogram

Structure RVF Ratio variance at first lag

RSF Ratio between semivariance values at second and first lag

FDO First derivative near the origin

SDT Second derivative at third lag

MFM Mean of the semivariogram values up to the first maximum

VMF Variance of the semivariogram values up to the first maximum

DMF Difference between the mean of the semivariogram values up to the first maximum

and the semivariance at first lag

RMM Ratio between the semivariance at first local maximum and the mean semivariogram

values up to this maximum

SDF Second order difference between first lag and first maximum

AFM Area between the semivariogram value in the firs lag and the semivariogram function

until the first maximum

https://doi.org/10.1371/journal.pone.0176684.t002
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linear models in cases where relationships are more complex (e.g., nonlinear) is usually rather

limited. Additionally, the technical mechanism used by OLS to compute estimates implies that

it is sensitive to multicollinearity and that sometimes it is necessary to drop some variables

from the set of predictors and thus potentially miss useful information at hand.

0.4 Spatial linear model

One way to improve the predictive performance of a linear model, while maintaining much of

its interpretability, may be to extend it to accommodate spatial autocorrelation. In cases where

the spatial nature of the data is relevant to the process being studied, formally including space

in the statistical framework used is likely to improve the accuracy of its predictions. In our

case, it is reasonable to expect that due to the inherent spatial variation of the LED index and

to data issues such as the modifiable areal unit problem [64, MAUP], an explicitly spatial

approach can prove beneficial.

In the analysis presented in this paper, we use one of the most common spatial econometric

models proposed by the literature to include spatial effects [65, 66]: the spatial lag model.

Mathematically, this model represents an extension of the baseline expression in Eq (2) that

introduces a spatially autoregressive term as an additional right-hand side variable:

LED ¼ aþ rW � LEDþ bLC þ gSP þ dTX þ zST þ � ð3Þ

whereW is aN ×N spatial weights matrix that encodes spatial relationships between the obser-

vations in the dataset (LSOA areas, in our case), ρ is the spatial autoregressive parameter, and

the rest of the model is as in Eq (2). We use the queen contiguity criterion to buildW, by

which two areas are neighbors if they share any amount of border. We also row-standardizeW
so that the termW × LED –the so-called spatial lag of LED– represents the average LED index

in the neighborhood of a given LSOA. Since the right-hand side of Eq (3) includes an endoge-

nous variable, the model violates one of the assumptions on which OLS estimation rests –

exogeneity– and hence rules the method out. Instead, the spatial econometric literature has

proposed several alternatives [66]. We adopt a modern GMM [67–70] approach and use

PySAL [71] to obtain estimates for the spatial lag model.

Predicted values of LED can be obtained using the reduced form of the model in Eq (3):

LÊD ¼ ðI � r̂WÞ� 1
ðâ þ b̂LC þ ĝSP þ d̂TX þ ẑSTÞ ð4Þ

which does not require any value of LED to obtain a prediction from the fitted model. The

expression above also serves to highlight a useful interpretation of the spatial lag model in this

context: Akin to the time series equivalent, the model can be understood as a spatial filter that

removes the effect of spatial autocorrelation that is ignored by the non-spatial counterpart in

Eq (2).

0.5 Random Forest (RF)

We compare the traditional and spatial linear models above with two modern approaches to

prediction that originated in the machine learning literature. Although there are several alter-

natives, we select the two we consider to be the most widely applied due to ease of use and

overall performance. The first algorithm we introduce is Random Forest (RF, [72]). RF builds

on other machine learning techniques, such as bagging (bootstrap aggregation), that aggregate

a series of models into a single prediction. The key advantage of RF over bagging is the intro-

duction of de-correlated trees, which significantly improves the variance of the prediction.

The algorithm underlying RF is composed of three main steps [73, Algorithm 15.1], and its

intuition is rather straightforward. The first one consists in generating a series of subsets of the
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full dataset using bootstrap. For each of such subsets, the next step grows a decision tree using a

random subsample of the variables in the dataset and produces a single outcome prediction. It

is this bit, the random sampling of the variables considered in each of the trees, that produces

much of the de-correlation between trees and provides RF with superior performance. In the

third step, the predictions are averaged over all of the trees. Like decision trees, RF is able to cap-

ture non-linear relationships, does not suffer from numerical constraints relating to multicolli-

nearity, and requires a minimal amount of manual tuning. Unlike single trees, the combination

of several, decorrelated, models inherent to RF provides a significant improvement in its accu-

racy and predictive performance without sacrificing ease of use. A more in-depth description of

the RF algorithm, its properties, and relative strengths and weaknesses is beyond the scope of

this section. The interested reader is referred to [73] for an excellent description of the method.

Once fitted, RF can be exploited in ways that go beyond the simple use of their predictions.

An additional device derived from RF (and other machine learning techniques such as gradi-

ent-boosted models; see below) is what is called “variable importance plot.” The main idea is

to measure the extent to which each of the variables used in the RF contributes to improve pre-

dictions of the outcome variable. This is achieved by measuring improvement in a pre-defined

criterion at each tree split where a variable is used. These improvements are then aggregated

over the tree and averaged across the different trees that make up the forest. In this context, we

use the residual sum of squares (RSS) as the importance criterion. That is, every time a variable

is used for a split in a tree, we determine how much the RSS improves and then record this

measure to construct the importance of that variable. Additionally, we can obtain a measure of

the variability of these scores across trees in a forest.

0.6 Gradient Boost Regressor (GBR)

The second machine learning algorithm that is included is a Gradient Boost Regressor (GBR).

Similar to the RF, it is an ensemble that combines the output of several models to produce a

single prediction for the outcome variable. Boosting is a technique that improves the perfor-

mance of an arbitrary predictive function, even if it produces weak predictions on its own [73,

74]. In this application, we use regression trees as the predicting function. Unlike RF, GBR

operates in a sequential way: Each tree depends on results calculated in the previous step. As a

result, the algorithm is not as parallelizable or scalable as the RF (where each tree can be run

independently from the rest) but shows positive implications for its predictive performance

and robustness.

The intuition of boosting algorithms is as follows: Using the entire dataset, fit the predicting

function and obtain a set of estimates; plug them into a “loss function” to calculate the error of

the model; use these errors (residuals), weighted with the previous ones, as the outcome to be

predicted in the following iteration. Repeat this process a number of times to obtain several

predictions. Average them using the same weights as those used for the adjustment. Given the

simplicity of GBR, there are very few parts that require manual tuning, much like RF; thus, it is

an almost automatic technique that is ideal for “off-the-shelf data mining applications” [73].

Additionally, the ability to specify different loss functions increases the robustness of the

method to the effects of outliers.

GBR also allows the ability to derive tools that enhance the interpretability of the models

estimated. In addition to importance plots, as with RF, we use in this context the so-called

“partial dependence plot” (PDP). This graphical device illustrates the marginal relationship

between a given (set of) variable(s) and the outcome or, in other words, its effect on the

response once those of the other variables have been discounted [73, 74]. PDPs display, for a

given value of the variable of interest, the average value of the predicting function combining
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such value with each of the values of the other variables. Although computationally intensive,

these plots make it possible to identify not only whether a variable influences the outcome at

all—positively, negatively, or in a non-linear way—but also to spot the values in which the

effects are stronger.

Results

We describe the main results according to the following precepts: model interpretation, to

cover the output of each of the models estimated; and model performance, to assess in detail

the relative advantages of each approach in predicting the LED index. Before we delve into

the model output, let us first describe the choices we made when adapting each model to our

dataset.

As described in Section, we derive a relatively large number of variables from the GE image.

Although different in their own way, some of them, particularly those relating to spectral, tex-

ture and structure, are substantially correlated. This creates problems of multicollinearity

when trying to fit all of them into a (spatial) regression model. For this reason, following simi-

lar studies (see [7] for an example of a similar approach), we use a dimensionality-reduction

step to preserve as much of the variation contained in the entire set of variables while eliminat-

ing collinearity. We perform a principal components analysis on all the spectral, texture and

structure variables and use the first four (rotated) factors as explanatory variables in the model.

Those factors have an eigenvalue above 1 and account for 90% of the total variance. The

rotated factor loadings are presented in Table 3; factor 1 (f1) captures all spectral variables and

those variables from the texture group related to the standard deviation of the edgeness factor

(DEVST_EDG), the covariance, variance and correlation of the GLCM, as well as the ratio var-

iance at first lag (RVF) from the set of structure variables. Factor 2 (f2) captures a selection of

texture and structure variables. The texture variables related to f2 indicate uniformity, rough-

ness, entropy and contrast as well as SKEWNESS and KURTOSIS, which provide another way

to characterize the homogeneity or heterogeneity of the urban layout [75]. The structure vari-

ables related to f2 (FDO, MFM, and DMF) provide information about the variability of image

values: FDO indicates the variability changes at short distances, MFM informs about the global

changes in the variability of the data, and DMF is directly related to the homogeneity of the

values of the image [62]. Factors 3 (f3) and 4 (f4) summarize the remaining structure variables.

Factor 3 captures the variables RSF, SDT, VFM, and RMM. According to [62], these structure

variables convey information about the changes in variability and homogeneity at short dis-

tances (RSF and SDT respectively) and about the global homogeneity (VFM) and total vari-

ability (RMM) inside each LSOA. Factor 4 (f4) for the most part captures information on the

structure variables SDF and AFM. SDF conveys information about homogeneity at short dis-

tances [62, 75]; it has been reported that its value increases as the homogeneity at short dis-

tances also increases for agricultural plots [63]; AFM provides another way to quantify the

variability of the data [62].

Multicollinearity, on the contrary, is not a problem for tree-based methods. For this reason,

we include all of the original spectral, texture and structure variables in the RF and GBR mod-

els. This allows the techniques to exploit all the variation and distill for themselves those that

are relevant and useful from those that are not. Finally, although largely automatic when com-

pared to similar approaches, the two machine learning methods we use require the tuning of a

small number of parameters. One is the number of trees that compose the RF. A larger number

potentially provides a more comprehensive and detailed pool of estimates that results in a

more accurate final ensemble estimate; however, more trees also imply a greater computational

burden. We grow both the RF and the GBR with 100 trees because, after several experiments
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using the mean squared error (MSE) as the performance metric, that number proved a good

balance between accuracy and computational feasibility. Additionally, the GBR makes it possi-

ble to specify the loss function and the learning rate at which the residuals are updated in

every iteration. We use the least absolute deviation loss function, following [73], who praise its

robustness. For the learning rate, we adopt a data-driven approach and find the value that min-

imizes MSE using 5-fold cross-validation (see below for a description of the technique), a stan-

dard technique in the machine learning field.

0.7 Model interpretation

Interpretation of linear models is usually performed by examining the sign, size and signifi-

cance of the estimated parameters. The main results for both the linear and spatial models are

displayed in Table 4. The models include the four extracted factors—f1, f2, f3 and f4—as well

as the percentages of the three land cover variables that prove most relevant: water (p_b_wa-
ter), shadow (p_shadow), and vegetation (p_veg). In addition, the spatial model in columns 3-4

also includes the spatial lag of the dependent variable (ρ). Both the standard and the spatial

model largely agree in the results: The third and fourth factors are significant, as are the pro-

portion of an area occupied by water and vegetation. Neither the second factor nor the

Table 3. Rotated factor loadings (orthogonal Varimax rotation) of image spectral, texture and structure variables.

Variable Factor 1 Factor 2 Factor 3 Factor 4

MEAN1 0.8936 0.346 0.002 -0.0633

DEVST1 0.8366 0.3036 0.3805 0.1993

MEAN2 0.9475 0.0755 -0.0178 0.0055

DEVST2 0.8094 0.3437 0.3938 0.2035

MEAN3 0.903 0.3533 0.0642 -0.0152

DEVST3 0.849 0.2793 0.3338 0.2287

MEAN_EDG 0.1691 0.963 -0.0661 0.0242

DEVST_EDG 0.6485 0.5929 0.0101 0.2671

UNIFOR -0.2777 -0.8503 0.0135 -0.0167

ENTROP 0.4904 0.8417 0.0832 0.0861

CONTRAS 0.3685 0.8944 -0.0159 0.1263

IDM -0.0082 -0.951 0.1062 0.0133

COVAR 0.8522 0.1433 0.4224 0.1904

VARIAN 0.8435 0.25 0.3923 0.1941

CORRELAC 0.5757 -0.5293 0.5393 0.2014

SKEWNESS 0.1689 -0.6333 0.1646 0.5480

KURTOSIS -0.1572 -0.6882 -0.0055 0.4423

RVF 0.6719 -0.4935 0.467 0.0325

RSF -0.1193 -0.308 0.7009 0.3285

FDO 0.3681 0.8646 0.1731 0.2296

SDT 0.2795 0.2227 0.7764 0.1445

MFM 0.5481 0.7048 0.2911 0.3145

VFM 0.3318 -0.078 0.895 0.0116

DMF 0.5817 0.5939 0.384 0.3641

RMM 0.3789 0.0888 0.7737 -0.3623

SDF -0.4438 -0.5395 -0.0032 -0.6643

AFM 0.5871 0.2946 0.043 0.6730

https://doi.org/10.1371/journal.pone.0176684.t003
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percentage of shadow seem to have significant explanatory power in predicting the level of

LED. We also tested alternative specifications that include a few more explanatory variables,

but we are not including them because they do not contribute fundamentally new insights,

and we believe the interesting comparison in this paper is between linear models and machine

learning approaches. Detailed results are, however, available from the authors.

Although results are comparable across models, some details do change when one intro-

duces spatial effects. The significance of variables changes only for the first factor that becomes

significant when the spatial effects are included. The size of the coefficients is smaller in the

spatial model. These changes are a known effect of ignoring positive spatial autocorrelation

when this is present and significant. In this case, some of the variation due to the spatial lag of

the variable is picked up by other correlated explanatory variables, causing them to display

inflated estimates. When the spatial effect is properly accounted for, as in the spatial lag model

in this case, this variation is absorbed by the spatial lag term, and the other coefficients display

a more conservative size. The presence of relevant spatial autocorrelation in our model is fur-

ther confirmed by the significance and large size of the spatial parameter (ρ).
Regarding the signs of the significant variables, which do not change between the classical

and the spatial model, larger proportions of water are associated with smaller deprivation, as is

the share of vegetation. Smaller values of f1 and f4 and larger values of f3 indicate larger depri-

vation, characterized by urban layout patterns with high heterogeneity in short distances, high

spatial regularity, few large homogeneous surfaces but high homogeneity at greater distances.

Because of their non-parametric nature, neither the RF nor the GBR can be interpreted in

similar terms as the models in Table 4. Instead, we use the feature importance plot and the

PDP to gain insight into the relevance and shape of the relationships between explanatory vari-

ables and the response. Fig 2 displays the importance scores computed from the RF for each of

the variables in the RF and GBR models (we only show the plot from RF because that from the

GBR is equivalent and does not bring any additional insight). The chart shows that most of the

predictive power is derived from just over four variables despite the fact that 35 were used. The

two most relevant ones are RSF, a structure variable that informs about the changes in variabil-

ity at short distances, and the share of vegetation (p_veg) in each area. These are followed by

the share of water (p_b_water) and RMM, another structure variable that indicates total vari-

ability in each area. The black lines in each bar represent a measure of dispersion of the score

across the trees that make up the forest. In some cases, these are substantial (e.g., the percent-

age of vegetation).

Table 4. Regression coefficients.

OLS GMM RF GBR

Coefficient P-Value Coefficient P-Value

CONSTANT 65.0581 0.0003 44.6907 0.0011

f1 -1.7557 0.3315 -3.0328 0.0264

f2 -2.6794 0.1764 -2.1430 0.1526

f3 3.2969 0.0003 2.0437 0.0036

f4 -2.0457 0.0209 -1.3078 0.0497

p_b_water -3.246 0.0000 -1.8888 0.0005

p_shadow -0.0983 0.7794 -0.3728 0.1599

p_veg -0.644 0.0075 -0.5402 0.0029

ρ 0.6504 0.0000

R2 0.3440 0.4327 0.9354 0.8320

https://doi.org/10.1371/journal.pone.0176684.t004
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To explore the relation between explanatory variables and the response, Fig 3 displays the

PDPs derived from the GBR for the four most important variables: RSF, the percentages of

vegetation and water, and RMM. On the horizontal axis is displayed the range of values the

variable takes, while the vertical axis presents the values of the partial dependence function.

The first three variables display an overall negative relationship with the response, while the

fourth one is positively associated. There are substantial differences between each of them: The

dependence function for RSF is almost flat until values around 1.39, when it drops sharply; the

case for vegetation is the opposite, as most of the drop is concentrated in lower values, until

20%; the link between the share of water and LED is much more nuanced and concentrates in

the lower and higher values; finally, RMM displays an almost positive linear relationship for

lower values, until 1.29, where it flattens out for the rest of the values.

To some extent, it could be argued that part of this information is also provided by the

regression model. The coefficients, significant in all cases, for both p_veg and p_b_water are

negative and significant, and as obtained in ancillary regressions not shown, those for RSF and

RMM are negative and positive, respectively (these regressions, which are available from the

Fig 2. Feature importance plot (Random Forest).

https://doi.org/10.1371/journal.pone.0176684.g002

Fig 3. Partial dependence plots for the four most relevant variables (Gradient Boost Regressor): RSF, percentage of vegetation

and water, and RMM.

https://doi.org/10.1371/journal.pone.0176684.g003
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authors, included both variables instead of the factors obtained in the factor analysis). How-

ever, the variable importance and the partial dependence plots allow us to extend these views

and exploit the additional flexibility and detail afforded by both the RF and GBR to obtain fur-

ther insights.

0.8 Model performance

Once we have a good idea of how the models produce predictions; what the variables are, and

which approach contributes most to generating the estimates of the LED index, we turn to the

question of how good these predictions are. Validation and performance are important steps

in any modeling exercise and, as such, have received considerable attention both in statistics

(e.g., [76]) and machine learning (e.g., [73]). How easy they are to measure and compare

depends on what the ultimate purpose of the exercise is. In our case, we are interested in

obtaining the best possible estimates of the LED index using only data derived from satellite

imagery. In other words, we want models that can produce predictions as accurately as possi-

ble, capturing as much proportion of the variation inherent in the data as possible. Ideally, we

want our models to not only be able to explain the response variable they have seen but also

other values that have not been presented to the model but are from the same generating pro-

cess. There are several measures that can assist us in this evaluation, such as the mean squared

error, or the R2. In the interest of comparing with other similar exercises in the literature (e.g.,

[7]), we opt for the coefficient of determination (R2), a popular index that measures the pro-

portion of variance in the response that is captured by the explanatory set of variables. We also

perform very similar comparisons using alternative measures such as (root) mean squared

errors, and the results and conclusions were virtually the same. They are not included in the

paper due to space constraints, but are available from the authors.

We approach the evaluation in two distinctive ways: One, we use the term “naive,” follow-

ing the standard procedure in many of the social science applications of regression; and sec-

ond, we use the term “honest” [77] based on cross-validation. In the naive assessment, we use

the model output obtained based on the entire dataset and calculate the R2 for each model.

This measures the ability of a model to capture the variation in data that the model already has

seen; hence, the naive adjective. The scores for each model can be found in the bottom row of

Table 4. There are two interesting elements that highlight the naive evaluation. First, it is the

stark contrast between the (spatial) linear model performance and that of the machine learning

techniques, which are substantially higher. In fact, it appears that using either RF or GBR, one

can predict around 88% of the variation in LED using only data from satellites. This would

point to a clear superiority of the latter over the former when it comes to predictive perfor-

mance, but as seen below in the honest approach, there are factors that preclude a comparison

in these terms. Second, focusing on the linear models, the inclusion of spatial effects in the

form of a spatial lag results in a substantially improved performance, from around 34% of the

variation explained to almost 44%.

However, our real interest in predictive performance usually relates to the ability of a model

to generate good predictions not using the same data used to fit the model but using new data

—observations that have not been used to fit the model in the first place. The gap between the

two is usually referred to as overfitting, and it is a common but serious problem in predictive

applications like the one we are undertaking. To avoid this situation, a typical approach is to

split the data into two parts and then use one to train the model, reserving the other one to test
its predictive performance. This is what, repeated a few times (folds), is called cross-validation

(CV); it is a much more robust way of evaluating the ability of a model to predict responses.
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We adopt a CV approach to evaluate the non-spatial linear model and the two machine

learning-based approaches, the RF and the GBR. In a spatial econometric model like the one

in Eq (3), CV is not directly applicable because CV implicitly assumes the independence of

each predicted value, while the spatial lag included in our model explicitly links observations

through the channel of spatial connectivity. We obtain cross-validated scores for R2, repeating

250 times the split-train-test procedure in each iteration. This yields 250 scores for each of the

three models. Fig 4 displays the density distribution of the scores for each of them. There are a

few interesting aspects to highlight. First, the median values for each model are lower than

their naive counterparts. This is particularly so in the case of the machine learning methods,

which go from 0.94 (RF) and 0.83 (GBR) to 0.54 and 0.50, respectively. The linear model

proves more robust to overfitting and only has a reduction of 0.04, from the naive 0.34 to 0.3

in the honest case. Second, the uncertainty behind the true R2 is smaller in the case of the RF

and GBR as compared to that of the OLS linear model. This can be seen in the greater disper-

sion of the blue curve when observed next to the red and green ones. Third, and most impor-

tantly, even accounting for the reduction due to CV, our honest, CV-based estimates of the R2

for each model clearly show the superiority of the machine learning methods over the linear

model when it comes to predicting the LED index in an area. Both of them can account for at

least half of the variation in the response, and the RF, our best performing model, even has a

median R2 of 0.54. This suggests that the flexibility of these techniques in incorporating com-

plex, non-linear relationships in the data provides them with an added predictive bonus when

compared to more traditional approaches such as linear models that rely on a pre-specified

functional form. Finally, it is worth highlighting these levels or predictive performance are well

in line with the literature, particularly the most recent one. To give a few points of comparison,

[5] obtain R2 scores between 0.37 and 0.75 depending on the specific measure of poverty they

are trying to predict and the country for which they obtain estimates; and [6] develop satellite-

Fig 4. Cross-validated R2 (median values in parenthesis).

https://doi.org/10.1371/journal.pone.0176684.g004
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derived predictions of a welfare index and environmental metrics, obtaining accuracy levels

between 31% and 61%.

Discussion

The first key message delivered by the exercise on Liverpool just presented is the ability of sat-

ellite imagery to explain and successfully predict to a reasonable level of accuracy living envi-

ronment deprivation. This result adds to a growing body of literature demonstrating the

usefulness of these sources of data to predict several conceptualizations of human deprivation

and urban quality of life (e.g., [5, 6, 10, 11, 23, 25, 78]).

We found two land cover variables with high predictive performance in all the tested

models: the land cover variables percentage of vegetation (p_veg) and percentage of water

(p_b_water). The negative relationship between the percentage of vegetation and the LED

index can be understood as an evidence of the positive relationship between vegetation cover

and socioeconomic conditions, which place our results in line with findings in other developed

countries that show the explanatory power of vegetation as a predictor of socioeconomic con-

ditions. Using different ways to quantify the presence of vegetation within an area, like the

NDVI, the vegetation fraction or share of coverage, the tree density or the leaf area index, the

results of previous works show positive and significant correlation between vegetation cover

and socioeconomic conditions in the following cities: Montreal, Toronto, and Vancouver [41,

79]; Boston, Massachusetts [43]; Terre Haute, Indiana [29]; and Athens-Clarke County, Geor-

gia [56]. However, [80] found almost the opposite: a significant and positive relationship

between increases in urban vegetation and factors associated with urban decay in Detroit,

Michigan. Other authors like [40], for the state of Massachusetts, and [42], for Philadelphia,

Pennsylvania, found small areas in which this relationship is negative, inside a more general

positive trend, providing evidence of spatial heterogeneities in the relationship between urban

greenness and socioeconomic conditions.

Urban green spaces and water bodies can be considered as urban amenities that have a

measurable impact in housing prices [49, 81–83], and also in urban quality of life [84]. The

negative and significant relationship between p_b_water and LED is in agreement with previ-

ous works that relate the presence of water bodies to better urban quality of life [47, 48, 78].

Other land cover variables such as the share of impervious surfaces and clay roofs, which

appear highly significant in cities like Medellin [7], do not show significant predictive power

in our analysis. The share of impervious surfaces is highly and negatively correlated with the

share of vegetation in Liverpool, hence the reduced complementary power of this feature when

using OLS and spatial adjusted regressions along with the share of vegetation. However, the

machine learning algorithms were able to capture the complementary effect of this variable to

predict LED index values. On the other hand, the percentage of orange impervious surface

cover, that indicates the presence of clay roofs, is a feature less indicative of wealth in devel-

oped countries because the presence of high rise expensive blocks that use new modern roofing

types.

Texture and structure variables also proved to be useful for LED index estimation in Liver-

pool. Both sets of variables help characterize the spatial pattern of the urban layout [7, 75, 85].

Spatial pattern descriptors have been used to identify slums from remote sensing imagery in

cities such as Campinas and Rio de Janeiro in Brazil [18, 86]; Cape Town, South Africa (Hof-

mann, 2001); Casablanca, Morocco [20]; Ahmedabad, Delhi, Pune and Hyderabad in India

[21, 87–89]; and Medellin [7]. [23] reported that the most deprived areas in Accra are associ-

ated with less land cover variability. The most useful features from these sets of variables are

RSF and RMM (Fig 2). Both features provide information of the spatial pattern by quantifying
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the changes in the variability of intensity values and of the variance at short distances [62]. In

Liverpool, the areas with high RSF values tend to have large homogeneous green spaces and

are associated with low LED index values, while the areas with high RMM values tend to have

a periodic pattern of buildings in close proximity, few areas of large homogeneous spaces and

are associated with high values of the LED index. Our results indicate that urban layout pat-

terns in Liverpool with high heterogeneity in short distances, high spatial regularity, few large

homogeneous surfaces and high homogeneity at larger distances are indicative of high levels of

the LED index.

These results provide new evidence about the instability of the predictive variables for living

conditions across countries. In particular, our findings stress the need to account for the par-

ticular conditions in each place when using remote sensing for place-based analysis [90]

because findings for one city can be quite the opposite of those for another city [10, 17]. In

context of this debate, it is worth highlighting an additional advantage of the machine learning

approaches featured in this analysis. In contrast to the specific nature of the PCA results used

in the linear models, both the RF and GBR provide the opportunity to include the raw mea-

surements directly into the model, without previous transformations. This does not only make

the modelling process more transparent and interpretable –as it is possible to assess the role

each single variable plays– but also allows for easier and more direct comparisons with closely

related literature. We anticipate that a greater adoption of this kind of methods will enhance

the integration of similar studies and thus help build a better evidence base on how different

contexts influence the predictive power of any given variable.

Finally, one of the advantages of using spatial regression is the ability to include contextual

information and correlations that play out over space in the formal model. Given that the LED

index is provided at the LSOA level, which is administratively defined and is likely not to fol-

low the true underlying data generating process (DGP), the benchmark OLS estimates are

likely to suffer from the well-known modifiable areal unit problem (MAUP, [64]). This is also

true for the machine learning methods, which also take observations as isolated realizations of

the DGP. This implies that since they cannot adequately capture the true underlying process,

their predictions are not as accurate. The introduction of a spatial lag as in this study makes it

possible to smooth part of the biases and breaks imposed by the administrative boundaries

and thus adapt better to the true DGP, resulting in improved prediction quality. Our results

confirm previous findings that the inclusion of explicitly spatial methodologies can improve

results when the process observed has a spatial dimension, such as in the case of the LED index

in Liverpool or, more generally, of other deprivation measures [7, 91–96]. Other ways to

account for spatial dependence include designing analytical regions [97] that aggregate small

areas into homogeneous and spatially contiguous regions, thus better reflecting the true under-

lying DGP. Analytical regions have been used by [23] and [7] in the context of poverty studies

and have demonstrated good qualities for controlling spurious spatial autocorrelation and

minimizing MAUP effects. In the case of both the RF and the GBR, this type of spatial prob-

lems are not as relevant of a problem as with the linear model because they do not impose any

pre-defined structure on the DGP, so the trees grown by the classifiers are more flexible and

adaptable.

Conclusions

This paper explores the potential of two machine learning methods, GBR and RF, to predict

the LED index in Liverpool (UK) using land cover, spectral, texture and structure variables

extracted from a very high spatial resolution aerial image. We compare the results with the out-

comes of two classic econometric models: OLS regression and a spatial lag model. In this
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model competition, RF proved to be the best model, with a median cross-validated R2 of 0.54,

followed by GBR with 0.5, the spatial lag model with 0.43 (non-cross validated), and finally the

OLS regression with 0.3.

Two structure variables, RSF and RMM, and two land cover variables, share of vegetation

and share of water, show the best predictive power of the LED index in Liverpool. RSF indi-

cates the changes in variability and homogeneity at short distances, and RMM indicates the

total variability inside each LSOA polygon. In our case study, larger proportions of water and

vegetation are associated with smaller deprivation. These results, when compared to previous

studies, confirm that the variables that better explain socioeconomic indexes, like the Living

Environment Deprivation, change between cities, regions and geographical contexts. More

studies on this topic will make it possible to detect spatial patterns in the predictive power of

image-extracted variables and, as a result, to determine the proper set of explanatory variables

of living conditions of a city based on its geographical location.

In addition to noticeably better predictive performance, machine learning techniques, as

illustrated by those used in this paper, offer a promising framework to include larger numbers

of potential explanatory variables (features) derived from satellite images. This opens the door

to the derivation of new variables for which, a priori, there is no substantive theory underlying

their association with poverty or deprivation but might be found have a strong predictive

power (this is the case, for example, of the recent work by [5]). In this sense, we firmly believe

a broader embrace of this kind of methods will translate into more transparent and accurate

predictions of measures of deprivation, even though these might come in part from variables

without much substantive meaning in their socio-economic interpretation.
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