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Abstract

We address the question as to whether data for J/ψ mesons produced exclusively in the forward direction

at the LHC can be used in global parton analyses (based on collinear factorization) to pin down the low x

gluon PDF. We show that it may be possible to overcome the problems that (i) the process is described by a

skewed or Generalized Parton Distribution (GPD), (ii) it is very sensitive to the choice of factorization scale

and (iii) there is bad LO, NLO,... perturbative stability to the predictions. However, we start by briefly

explaining how the alternative kT factorization approach has been used to describe the process.

1 Introduction

As we shall see, LHCb data for the exclusive process pp→ p + J/ψ +p in the rapidity interval 2 < y(J/ψ) < 4.5

should, in principle, be able to probe the gluon PDF down to about x = (Mψ/
√
s) e−y ∼ 10−5. The process

is driven by the quasielastic subprocess γ∗p → J/ψ + p, see Fig. 1. In fact LHCb data for this process at 13

TeV have just become available [1], see the first plot in Fig. 2.
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Figure 1: dσ(pp→ p+ J/ψ + p)/dy driven by the subprocess γp→ J/ψ + p at two different energies, W±.

Following Fig. 1, the LHCb collaboration have extracted the cross sections for γp→ J/ψ + p from the pp

data using
dσ(pp)

dy
= S2(W+)

(
k+

dn

dk+

)
σ+(γp) + S2(W−)

(
k−

dn

dk−

)
σ−(γp) (1)
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Figure 2: Left plot: LHCb data for dσ(pp → p + J/ψ + p)/dy [1]. Right plot: the resulting beaviour of σ(γp →
J/ψ + p) as a function of the γp energy, W . The plots are taken from Ref. [1].

where the survival probabilities of the large rapidity gaps, S2, and the photon fluxes, kdn/dk, are known; k

is the energy of the photon. There are two contributions according as to whether the photon is emitted from

one or the other proton, with corresponding different γp energies squared W 2
± = Mψ

√
s e±|y|. The interference

term is negligible.

Long ago, Ryskin [2] gave the LO expression for the exclusive cross section in terms of the gluon PDF

dσ

dt
(γp→ J/ψ p)

∣∣∣
t=0

=
ΓeeM

3
ψπ

3

48α

(
1 +

Q2

M2

)[
αs(Q̄

2)

Q̄4
xg(x, µ2

F )

]2
, (2)

with µF ∼ Q̄, and where Mψ and Γee are the mass and electronic width of the J/ψ. The kinematic variables

are

Q̄2 = (Q2 +M2
ψ)/4 , x = (Q2 +M2

ψ)/(Q2 +W 2) , (3)

and W is the γp centre-of-mass energy. We assume the t dependence to be exponential, i.e. σ = exp(−Bt),
where the energy-dependent t slope parameter, B, has the form

B(W ) = (4.9 + 4α′ ln(W/W0)) GeV−2 , (4)

where the pomeron slope α′ = 0.06 GeV−2 and W0 = 90 GeV. From Fig. 1 we see that the quasielastic process

actually depends on the gluon Generalized Parton Distribution (GPD(ξ, x)), where ξ = (p+ − p′+)/(p+ + p′+)

is the skewedness parameter of Fig. 1. However this is not a problem, since for ξ < |x| � 1

GPD(ξ, x) = PDF(x′)⊗ Shuvaev(ξ, x, x′), (5)

to O(ξ), where the conventional PDF is convoluted with the Shuvaev tranform [3]. We will allow for skewing

and the real part of the amplitude exactly as in [4].

To constrain the collinear factorization scale, µF , at which the gluon is measured, we need the NLO

correction. However, we encounter very bad convergence of the LO, NLO,... perturbation series at low ξ and

low scales. The reason can be seen by estimating the average number 〈n〉 of additional gluons emitted in the

low ξ, µF domain

〈n〉 ' (3αS/π) ln(1/ξ) ∆ln(µ2
F ) ∼ 5, (6)

whereas including the NLO correction accounts for only one additional gluon!
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2 kT factorization approach

Given the above remarks, why is the JMRT ‘NLO’ prediction so reasonable in Fig. 2? The reason is that we

use the kT factorization procedure to obtain the approximate NLO correction to the coefficient functions

by performing the explicit kT integration in the last step of the evolution [5], and use an input PDF with

resummed (αS ln(1/ξ)ln(µ2
F ))n terms arising from ladder diagrams, see Fig 3. This is not the complete NLO

contribution, but it includes the most important diagrams at low x and low µ2
F . To do this we need the gluon

PDF unintegrated over kT ,

f(x, k2T ) = ∂[xg(x, k2T )T (k2T , µ
2)]/∂lnk2T , (7)

where µ2 = max(k2T , Q̄
2), and where the Sudakov factor T is required to ensure no additional gluons are emitted

with transverse momenta greater than kT . That is, we replace the [....] in (2) by

[
αs(Q̄

2)

Q̄4
xg(x, Q̄2)

]
−→

∫ (W 2−M2
ψ)/4

Q2
0

dk2T αs(µ
2)

Q̄2(Q̄2 + k2T )

∂
[
xg(x, k2T )

√
T (k2T , µ

2)
]

∂k2T
+Q0 contribution, (8)

where the convergence of the integral over kT is ensured (even for an infinite upper limit) by the factor 1/(Q̄2 +

k2T ). By parameterizing the gluon xg(x, µ2) in double logarithm form we sum the leading (αsln(1/ξ)ln(µ2
F ))n

contributions. The parameters were obtained [4] by fitting the 7 TeV LHCb data [6], and were used to make

the predictions shown in Fig. 2.
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Figure 3: The kT integration performed on the last step of the evolution to obtain the ‘NLO’ quark coefficient

function CNLO
q . The lower quark line is replaced by a gluon to obtain the ‘NLO’ gluon coefficient function CNLO

g .

3 Taming NLO in the collinear scheme

Unfortunately the ‘NLO’ gluon PDF obtained in the kT factorization scheme, cannot be directly related to the

MS PDFs of the global parton analyses. There we work in the collinear factorization scheme. Although the NLO

contribution is explicitly known in this scheme, there are problems [8, 9]. As mentioned before, there is very

bad perturbative convergence in the prediction for γp → J/ψ + p. Indeed, the NLO correction is comparable

or larger than the LO result and is opposite in sign. Moreover there is strong dependence on the choice of the

factorization scale µF . This is clearly visible in the left plot of Fig. 4, which shows the predictions at LO,

and the correction due to NLO, for factorization scales µF = 4.8, 2.4, 1.2 GeV2. However we can improve

the situation by resumming the (αsln(1/ξ)ln(µ2
F ))n terms and moving them into the LO contribution by a
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Figure 4: Left plot: predictions of ImA/W 2 for γp→ J/ψ+p for different values of the collinear factorization scale,

namely µ2
F = 4.8, 2.4, 1.2 GeV2. Right plot: the predictions after the transfer of the (αsln(1/ξ)ln(µ2

F ))n terms

from the NLO coefficient function to the LO contribution by the particular choice µ2
F = m2

c = 2.4 GeV2; we have

less dependence on the new factorization scale µf . We use CTEQ6.6 PDFs [7] to be consistent with earlier work and

to ensure a positive gluon PDF at low x and low Q2.

particular choice of factorization scale; namely µF = mc. The details are given in Ref. [9]. The result is that

the γp→ J/ψ + p amplitude is of the form

A(µf ) = CLO ⊗GPD(µF ) + CNLO
rem (µF )⊗GPD(µf ). (9)

With this choice of µF there is a smaller remaining contribution in the NLO coefficient function, and so the

residual dependence on the scale µf is reduced, as seen in the right plot of Fig. 4. Nevertheless we still have

very bad perturbative convergence. The NLO correction is still comparable to the LO result, and opposite in

sign!

Can anything more be done? Yes. We must investigate the effect of an important Q0 cut. Recall DGLAP

evolution starts at some input scale Q0. At leading order everything below Q0 is included in the input PDFs at

Q0. However, at NLO, the contribution to the coefficient functions from the region |q2| < Q2
0 result in double

counting. Here q is the four momentum of the t-channel gluons in the collinear version of the quark coefficient

function of Fig. 3. To be consistent we need to subtract the NLO(|q2| < Q2
0) contribution from both the quark

and gluon coefficient functions, CNLO
q and CNLO

g . The formulae that come from this non-trivial calculation are

given in the Appendix of Ref. [10]. We use them to perform the numerical computations to obtain the NLO

prediction after the subtractions. The result is shown in the lower plot in Fig. 5. We now have perturbative

stability; the NLO contribution becomes a much smaller correction to the LO prediction.

It should be emphasized that the asymptotics of the NLO amplitude is used only to determine the effective

scale µF . In all our further numerics we use the full expressions for the NLO amplitudes.

Throughout we have chosen the renormalization scale equal to the factorization scale, that is µR = µF .

The arguments are as follows. First, this corresponds to the BLM prescription [11]; such a choice eliminates

from the NLO terms the contribution proportional to β0 (that is, the term β0ln(µ2
R/µ

2
F ) in eq. (3.95) of [12].

Second, following the discussion in [13] for the analogous QED case, we note that the new quark loop insertion

into the gluon propagator appears twice in the calculation. The part with scales µ < µF is generated by the

virtual component (∝ δ(1− z)) of the LO splitting during DGLAP evolution, while the part with scales µ > µR
accounts for the running αs behaviour obtained after the regularization of the ultraviolet divergence. In order

not to miss some contribution and/or to avoid double counting we take the renormalization scale equal to the

factorization scale, µR = µF .
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Figure 5: The upper and lower plots are respectively ImA/W 2 for γp→ J/ψ+p before and after the Q0 subtraction

has been performed. The lower plot shows much less sensitivity to the new factorization scale µf , and that reasonable

perturbative stability has been achieved.

4 Conclusion

We have shown that the bad perturbative convergence and the large sensitivity of the QCD prediction for

exclusive J/ψ forward production can be avoided if (i) the factorization scale is chosen to be µF = mc so

that the double log terms, (αsln(1/ξ)ln(µ2
F ))n, in the NLO coefficient functions are transferred to the LO

contribution, and (ii) the |q2| < Q2
0 contribution is removed from the NLO coefficient functions to avoid double

counting. These modifications provide reasonable accuracy for the NLO γp → J/ψ + p amplitude in the

collinear MS factorization scheme, and open the possibility that data, for high precision exclusive production

of J/ψ mesons in the forward direction, can be included in the global parton analyses to determine the low x

gluon PDF.

Exclusive Υ production can be predicted more reliably theoretically than J/ψ production, but there will be

fewer experimental events.
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