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Abstract

The set of all strings Parikh equivalent to a string in a language L is called the
permutation of L. The permutation of a finite n-state DFA (deterministic finite
automaton) language over a binary alphabet can be recognized by a DFA with
n2−n+2

2 states. We show that if the language consists of equal length binary

strings the bound can be improved to f(n) = n2+n+1
3 and for every n congruent

to 1 modulo 3 there exists an n-state DFA A recognizing a set of equal length
strings such that the minimal DFA for the permutation of L(A) needs f(n)
states.

Keywords: state complexity, finite automata, finite languages, Parikh
equivalence

1. Introduction

The descriptional complexity of finite automata is an active area of research.
Recent surveys on descriptional complexity and state complexity include [10, 12,
19, 21]. The state complexity of a regular language L, sc(L), [30] is the minimal
number of states of a deterministic finite automaton (DFA) recognizing the
language. The number of states of the minimal DFA is equal to the number of
left quotients of the language and the notion is equivalently called also quotient
complexity [1]. The nondeterministic state complexity [18] measures the number
of states of a minimal nondeterministic finite automaton (NFA) and transition
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complexity quantifies the number of transitions of an NFA [7, 11]. Also, the size
of the syntactic semigroup of a minimal DFA has been used as a descriptional
complexity measure for regular languages [1, 20, 15].

The effect of a regularity preserving operation on the number of states of
the minimal DFA is called the state complexity of the operation. More pre-
cisely, if φ is an m-ary language operation, the state complexity of φ is a
function φsc : Nm → N such that for any regular languages L1, . . . , Lm, the
language φ(L1, . . . , Lm) has a DFA with φsc(sc(L1), . . . , sc(Lm)) states and,
furthermore, for any n1, . . . , nm ∈ N there exist regular languages Li with
sc(Li) = ni, i = 1, . . . ,m, such that the minimal DFA for φ(L1, . . . , Lm) has
exactly φsc(n1, . . . , nm) states [9].

The operational state complexity of regular languages was considered by
Maslov [24] already in the 1970’s. However, Maslov [24] gave no proofs and the
work remained unknown in the west until much later. In 1994 Yu et al. [31]
established the state complexity of basic regularity preserving operations and
included complete proofs. Also the operational state complexity of subclasses
of regular languages [8, 13], the nondeterministic state complexity of operations
[16, 18], and the operational state complexity of NFAs with limited nondeter-
minism [25] have been considered in the literature. The precise worst-case state
complexity of all combinations of two basic operations was determined by S. Yu
and co-authors in a sequence of papers culminating with [5] and, interestingsly,
it was shown by A. Salomaa et al. [26] that determining the state complexity
of arbitrary combinations of operations that include marked concatenation and
intersection is undecidable. Furthermore, Dassow and Harbich [6] have investi-
gated the descriptional complexity, with respect to the number of productions
and symbols, of operations on context-free languages. Operational state com-
plexity is an active research topic and for more information we refer the reader
to the survey [9].

The set of permutations of a string w consists of all strings w′ such that the
Parikh vectors of w and w′ coincide. The permutation operation is extended in
the natural way for languages and it is easy to see that the permutation oper-
ation does not, in general, preserve regularity. For example, the set of permu-
tations of (ab)∗ is nonregular. We mention that Lavado et al. [23] have studied
operational state complexity under Parikh equivalence, see also [22]. This work
deals with finding the smallest DFA (or NFA) that is Parikh equivalent to a
given language, as opposed to finding a DFA that recognizes all permutations
of strings in a given language.

Here we investigate the state complexity of the permutation operation on
finite languages. The state complexity of operations restricted to finite lan-
guages often is different from the general state complexity of the same opera-
tion [3, 14, 17]. Similarly as when considering the size blow-up of determiniza-
tion of NFAs recognizing finite languages [27], the precise worst-case state com-
plexity of permutation on finite languages depends on the alphabet size and we
focus on binary alphabets.

We define state complexity as the minimal size of an incomplete DFA rec-
ognizing a language as this simplifies some of the constructions. Since we are
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dealing with finite languages, as a corollary we get an exact bound also for the
state complexity of permutation defined in terms of complete DFAs. Note that,
in general, the relationship between the operational state complexity functions
defined, respectively, in terms of complete and incomplete DFAs may be less
clear. For example, for the shuffle operation the state complexity in terms of
incomplete DFAs is known since 2002 [4], but determining the precise state
complexity in terms of complete DFAs is more difficult and remains open [2].

First we give a general upper bound for the state complexity of the per-
mutation of finite languages over binary alphabets. A chain DFA consists of a
chain of transitions and only one final state (a more precise definition is given

in section 2). We give an improved upper bound f(n) = n2+n+1
3 for the state

complexity of the permutation of an n state chain DFA and a matching lower
bound. Chain DFAs recognize a subclass of equal length languages. We show
that f(n) is the precise worst case state complexity of the permutation of L(A)
where A is an n-state DFA recognizing an equal length language. The precise
worst case state complexity of permutations of general finite languages remains
open.

2. Preliminaries

We assume that the reader is familiar with the basic definitions concerning
finite automata [28, 29] and just fix here some notation. General surveys on the
descriptional complexity of finite automata include [9, 10, 19, 21].

The set of strings over a finite alphabet Σ is Σ∗, the length of w ∈ Σ∗ is |w|
and ε is the empty string. For a letter a ∈ Σ and a string w ∈ Σ∗, we denote the
number of occurrences of a in the string w by |w|a. The set of positive integers
is denoted by N. The cardinality of a finite set S is |S|.

A deterministic finite automaton (DFA) is a 5-tuple A = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite alphabet, δ is a partial function
Q × Σ → Q, q0 ∈ Q is the start state and F ⊆ Q is the set of accepting
states. The function δ is extended in the usual way as a (partial) function
Q × Σ∗ → Q and the language recognized by A consists of strings w ∈ Σ∗

such that δ(q0, w) ∈ F . The DFA A is complete if δ is a total function. When
speaking of a DFA, unless otherwise mentioned, we allow the possibility that
some transitions are undefined. By the size of A, size(A), we mean the number
of states of A. Unless otherwise mentioned, we always assume that a DFA has
no useless states, that is, each state can be reached from the initial state and a
computation originating from each state can reach a final state.

We deal only with finite languages, so all DFAs we consider will be acyclic.
We say that A is a chain DFA if the states of A can be numbered as 0, . . . , n−1,
where 0 is the start state, n−1 is the only final state, and A has only transitions
that take state i to i + 1, 0 ≤ i ≤ n − 2. Note that for a state i transitions on
some alphabet symbols can be undefined. A chain DFA with n states recognizes
a subset of Σn−1.

Another subclass of acyclic DFAs we consider are the DFAs recognizing sets
of equal length strings, called equal length DFAs. Note that every chain DFA is
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an equal length DFA, but not vice versa. It is immediate that, for example, the
set of equal length strings {aa, bb} cannot be recognized by a chain DFA.

Lemma 2.1. Let L ⊆ Σℓ, ℓ ∈ N. Then the minimal DFA for L has only one
final state.

Proof. Let A be the minimal DFA for L. Since A has no useless states and all
strings accepted by A must have length ℓ, there can be no outgoing transitions
from a final state. This means that all final states of A can be identified. 2

The minimal size of a DFA recognizing a regular language L is called the
state complexity of L and denoted by sc(L). Note that we allow DFAs to be
incomplete. The convention simplifies some constructions since then we do not
need to include a dead state and large numbers of transitions to the dead state.
The minimal incomplete DFA for a finite language L has always exactly one less
state than the minimal complete DFA for L and, since all our state complexity
bounds deal with finite languages, the precise state complexity bounds can be
straightforwardly translated for upper and lower bounds defined in terms of
complete DFAs (see Corollary 4.4).

The (right) Myhill-Nerode congruence of a language L ⊆ Σ∗ is the relation
≡L⊆ Σ∗ × Σ∗ defined by setting

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L⇔ yz ∈ L].

The language L is regular if and only if the index of ≡L is finite and, in this
case, the index of ≡L is equal to the size of the minimal complete DFA for L
[28].

The permutation per(L) of a language L ⊆ Σ∗ consists of all strings w ∈ Σ∗

such that for some string u ∈ L the strings w and u have the same number of
occurrences of every letter of Σ. Formally, we define

per(L) = { w ∈ Σ∗ | (∃u ∈ L)(∀a ∈ Σ)(|u|a = |w|a) }.

Note that the family of regular languages is not closed under permutation. For
example, the permutation of (a·b)∗ consists of all strings w such that |w|a = |w|b,
which is not a regular language. On the other hand, if L is finite so is per(L).

Given an alphabet Σ = {a1, a2, . . . , ak}, let Ψ : Σ∗ → [N0]
k be a mapping

defined by Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak
). This function is called the Parikh

mapping and Ψ(w) is called the Parikh vector of w. The Parikh mapping is

extended for sets of strings, Ψ : 2Σ
∗ → 2[N0]

k

, in the natural way by setting
Ψ(L) = {Ψ(w) | w ∈ L}. Two languages L1, L2 are Parikh equivalent, denoted
by L1 ≡Parikh L2, if Ψ(L1) = Ψ(L2).

3. General upper bound for the state complexity of permutation

We begin by giving an upper bound for the state complexity of permutation
for arbitrary finite languages over a binary alphabet. In the next section we
derive a tight state complexity bound for chain DFAs.

4



In the following, unless otherwise mentioned, we always assume that the
alphabet is Σ = {a, b}.

Lemma 3.1. Let L ⊆ {a, b}∗ be a finite language and m = max{|w| | w ∈ L},
for some positive integer m. Then

sc(per(L)) ≤ m2 +m+ 2

2
.

Proof. We construct a DFA A = (Q, {a, b}, δ, q0, F ) that recognizes per(L).
The set of states of A will be

Q = { (i, j) | 0 ≤ i, j < m and i+ j < m } ∪ {fA},

the set of final states is F = {fA}∪{ (i, j) ∈ Q | aibj ∈ per(L) }, and the partial
transition function δ is defined by setting for (i, j) ∈ Q,

δ((i, j), a) =


(i+ 1, j) if i+ j + 1 < m;

fA if i+ j + 1 = m and ai+1bj ∈ per(L);

undefined if i+ j + 1 = m and ai+1bj ̸∈ per(L).

δ((i, j), b) =


(i, j + 1) if i+ j + 1 < m;

fA if i+ j + 1 = m and aibj+1 ∈ per(L);

undefined if i+ j + 1 = m and aibj+1 ̸∈ per(L).

The transitions δ(fA, a) and δ(fA, b) are undefined.
A state of A keeps track of the number of occurrences of a’s and of b’s that

have been read in the input so far. Thus, for all states (i, j) of A we can restrict
i+ j to be at most m− 1 and fA is used as an accepting state when the count
has reached i+ j = m. The final states of A are all states (i, j) such that there
is a string w ∈ L with |w|a = i and |w|b = j.

The number of states of A is m+m− 1 + · · ·+ 1 + 1 = m·(m+1)
2 + 1. 2

For a finite language L, the length of the longest string of L is at most
sc(L)− 1. By this observation and Lemma 3.1, we have the following corollary.

Corollary 3.2. Let L be a binary finite language and sc(L) = n for some pos-
itive integer n. Then

sc(per(L)) ≤ n2 − n+ 2

2
.

The upper bound of Corollary 3.2 is not optimal and, for large values
of n, could be improved using a more careful analysis of the construction of
Lemma 3.1.1 The precise state complexity of permutation of finite languages
remains open. In the next sections we derive tight bounds for languages recog-
nized by chain DFAs and, more generally, for sets of equal length strings.

1This has been pointed out by a referee of the paper.
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4. State complexity of permutation on chain DFAs

We show that for languages recognized by chain DFAs, in the upper bound
of Corollary 3.2, roughly speaking, the multiplicative constant 1

2 can be reduced
to 1

3 and that, furthermore, the resulting bound is tight.

Lemma 4.1. Let A be a chain DFA with n states over the alphabet {a, b}. Then

sc(per(L(A))) ≤ n2 + n+ 1

3
.

Proof. Let the set of states of A be {1, . . . , n}, where 1 is the start state
and n is the only final state, and for 1 ≤ h ≤ n − 1, the transitions from h go
only to h+ 1. We have three possibilities for outgoing transitions from a state
1 ≤ h ≤ n− 1:

1. δ(h, a) = h+ 1 and δ(h, b) is undefined (a-transition)

2. δ(h, b) = h+ 1 and δ(h, a) is undefined (b-transition)

3. δ(h, a) = δ(h, b) = h+ 1 (a&b-transition)

The order of the different types of transitions (a, b, or a&b) of A does
not affect the language per(L(A)). Hence, without loss of generality, we can
assume that the DFA A has first a (possibly empty) sequence of a-transitions,
followed by a (possibly empty) sequence of b-transitions, followed by a (possibly
empty) sequence of a&b-transitions. Thus, we can assume that A recognizes a
language of the form aibj(a+ b)k for some non-negative integers i, j, k such that
i+ j + k = n− 1.

Now the language per(L(A)) is recognized by the DFA Bi,j,k =
(Q, {a, b}, γ, q0, FB) where

Q = { (r, s) | 0 ≤ r ≤ i+ k, 0 ≤ s < j }
∪ { (r, s) | 0 ≤ s ≤ j + k, 0 ≤ r < i } ∪ {z0, z1, . . . , zk},

FB = {zk}, q0 = (0, 0) and the transitions are defined by setting, for (r, s) ∈ Q,

γ((r, s), a) =


(r + 1, s) if r < i− 2 or (r < i+ k and s < j);

zs−j if r = i− 1 and s ≥ j;

undefined if r + 1 > i+ k;

γ((r, s), b) =


(r, s+ 1) if s < j − 2 or (s < j + k and r < i)

zr−i if s = j − 1 and r ≥ i;

undefined if s+ 1 > j + k;

and,

γ(zℓ, a) = γ(zℓ, b) =

{
zℓ+1 if 0 ≤ ℓ < k,

undefined if ℓ = k.
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Figure 1: The DFA B3,3,3.

The DFA B3,3,3 is given in Figure 1. A computation of Bi,j,k reaches a state
of the form (r, s) after encountering r occurrences of a and s occurrences of b,
where r < i or s < j. A state zℓ, 0 ≤ ℓ ≤ k, is reached after encountering at least
i occurrences of a and at least j occurrences of b, where ℓ+ i+ j is the length of
the input processed up to that point. Thus, Bi,j,k reaches the accepting state
zk exactly on inputs of length i+ j+ k that have at least i occurrences of a and
at least j occurrences of b.

The cardinality of Q is

f(i, j, k) = (i+ 1) · (j + 1) + k · j + k · i+ k

(taking into account that the first two sets in the union defining Q have elements
in common). In order to get an upper bound for the state complexity of per(L)
as a function of the size of A, we determine for which values of i, j, k, where
i+ j + k = n− 1, the function f(i, j, k) has a maximal value. The function f is
maximized if ij + kj + ki is maximal, thus if i = j = k = n−1

3 . More generally,

max
i+j+k=n−1

f(i, j, k) =

{
n2+n+1

3 , if n ≡ 1 (mod 3);
n2+n

3 , otherwise.

2

Next we show that the upper bound of Lemma 4.1 can be reached by a chain
DFA language.

7



b b, aa b b, a b, aaa b

Figure 2: A chain DFA recognizing the language L10.

Lemma 4.2. For any n ∈ N with n ≡ 1 (mod 3) there exists a binary regular
language recognized by a chain DFA with n states such that

sc(per(L)) ≥ n2 + n+ 1

3
.

Proof. Denote n = 3k + 1, k ≥ 0 and choose Ln = akbk(a + b)k. For k = 3
and n = 10, Figure 2 gives a chain DFA with 10 states recognizing L10.

We prove a lower bound for the state complexity of per(Ln). Note that with
n = 3k + 1 we have

per(Ln) = { w ∈ Σ3·k | |w|a, |w|b ≥ k }.

Let X and Y be the sets of strings chosen as follows:

X = {aibj : 0 ≤ i ≤ 2k, 0 ≤ j ≤ k} and Y = {aibj : 0 ≤ i < k, k < j ≤ 2k}.

We show that all strings of X ∪ Y ∪ {a2k+1} are pairwise inequivalent with
respect to the Myhill-Nerode congruence of per(Ln). Every string of X ∪Y is a
prefix of a string in per(Ln) and this implies that a2k+1 is not equivalent with
any string of X ∪ Y . It remains to show that all strings of X ∪ Y are pairwise
inequivalent. Let u = aibj and u′ = ai

′
bj

′
be two arbitrary distinct strings from

X ∪ Y .
First consider the possibility that |u| ̸= |u′|. Now u and u′ are inequivalent

since by choosing a string z such that uz ∈ per(Ln) we note that |u′z| ̸= 3 · k
and, consequently, u′z /∈ per(Ln). Thus, in the following case analysis we can
assume that |u| = |u′|.

1. Consider the possibility u, u′ ∈ X. Since |u| = |u′| and u ̸= u′, either
|u|a < |u′|a or |u′|a < |u|a. Without loss of generality, we assume that
|u|a < |u′|a. For z = a2·k−ibk−j , we have uz ∈ per(Ln). However, for the
string u′z, we have |u′z|a > 2 · k, which means, since |uz| = |u′z| = 3 · k,
that |u′z|b < k and u′z /∈ per(Ln).

2. Next consider the case u, u′ ∈ Y . Similarly as above, without loss of
generality, we assume that |u|b < |u′|b. For z = ak−ib2·k−j , we have uz ∈
per(Ln). However, we have |u′z|b > 2·k, which implies that u′z /∈ per(Ln).

3. The remaining possibility is that u ∈ X and u′ ∈ Y . Since u′ ∈ Y and
u ∈ X, we know that |u′|b > k and |u|b ≤ k. This implies that |u|a > |u′|a
because |u| = |u′|.
(a) First consider the case i > k and choose z = b3k−i−j . Now uz ∈

per(L) but |u′z|a < k and, consequently, u′z ̸∈ per(L).
(b) Second consider the case i ≤ k. Now for the string z = ak−ib2·k−j ,

we have uz ∈ per(Ln). However, for the string u′z, we have that
|u′z|a < k and, thus, u′z /∈ per(Ln).

8



For finite languages, the number of states of the minimal incomplete DFA is
one less than the index of the Myhill-Nerode congruence and, hence, the number
of states of the minimal incomplete DFA recognizing the language per(Ln) has
at least (2 · k + 1) · (k + 1) + k2 = 3 · k2 + 3 · k + 1 states. Since n = 3 · k + 1, a

simple calculation yields sc(per(Ln)) ≥ n2+n+1
3 . 2

From Lemma 4.1 it follows that the lower bound given in Lemma 4.2 (for val-
ues n ≡ 1(mod 3)) is also an upper bound for the state complexity of per(Ln),
n ∈ N. The minimal DFA recognizing the language per(L10) is shown in Fig-
ure 1.

Now combining the results of Lemma 4.1 and Lemma 4.2 we have a tight
bound for the state complexity of permutation for languages defined by chain
DFAs.

Theorem 4.3. Let n ∈ N and let L be a binary language recognized by a chain
DFA with n states. Then

sc(per(L)) ≤ n2 + n+ 1

3
.

For every n ≡ 1 (mod 3), there exists a binary chain DFA A with n states such

that sc(per(L(A))) = n2+n+1
3 .

Recall that our state complexity definition is based on the size of incomplete
DFAs. Since for a finite language the size of the minimal incomplete DFA is
always exactly one less than the size of the minimal complete DFA, translating
the upper bound of Lemma 4.1 and the lower bound of Lemma 4.2 for complete
DFAs yields the same bound in both cases. By a complete chain DFA we mean
a chain DFA A augmented with a dead state that is the target of all undefined
transitions of A.

Corollary 4.4. If L is recognized by a complete chain DFA with n states, the

language per(L) is recognized by a complete DFA with g(n) = n2−n+4
3 states.

For every n ≡ 2 (mod 3), there exists a complete chain DFA A with n states
such that the minimal complete DFA for per(L(A)) needs g(n) states.

5. Upper bound for sets of equal length strings

We prove an upper bound for the state complexity of permutation of sets
of equal length strings. The upper bound coincides with the lower bound from
Lemma 4.2, which uses chain DFAs that define a subclass of equal length lan-
guages. We begin by introducing some terminology for DFAs that recognize
sets of equal length strings.

5.1. Terminology and notation for equal length DFAs

In the following, we consider a DFA A = (Q, {a, b}, δ, q0, {qf}) recognizing
a subset of {a, b}ℓ. Without loss of generality A has no useless states and by
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Figure 3: A DFA with a block of length 2 and a block of length 4.

Lemma 2.1 we can assume that A has one final state. The number of states of
A is always n.

The level of a state q ∈ Q is the length of a string w such that δ(q0, w) = q.
Since A recognizes a set of equal length strings and has no useless states, the
level of a state is a unique integer in {0, 1, . . . , ℓ}. The set of level z states is
Q[z] for 0 ≤ z ≤ ℓ. We say that level z is singular if |Q[z]| = 1, 0 ≤ z ≤ ℓ.
Levels 0 and ℓ are always singular. A linear transition is a transition between
two singular levels. A linear transition can be labeled by a, b or a&b. (A linear
transition labeled by a&b is strictly speaking two transitions.) The number of
linear transitions labeled by a (respectively, by b, a&b) is denoted i (respectively,
j, k).

The length of the nonlinear part of A is

h = ℓ− (i+ j + k). (1)

Thus h denotes the number of pairs (z, z + 1), for 0 ≤ z < ℓ, such that at least
one of the levels z or z + 1 is not singular.

Consider 0 ≤ x ≤ ℓ, 0 ≤ y ≤ ℓ, and x + 1 < y, where levels x and y are
singular and all levels strictly between x and y are non-singular. A nonlinear
block Bx,y of A between the levels x and y is a subautomaton of A consisting of
all states of ∪x≤z≤yQ[z] and the transitions between them. The initial (respec-
tively, final) state of the subautomaton is the state having level x (respectively,
level y). The length of the nonlinear block Bx,y is y − x. The length of a block
is always at least two.

Note that a nonlinear block begins and ends in a singular level and all levels
between these are non-singular. In the following, nonlinear blocks are called
simply blocks. Examples of blocks are illustrated in Figure 3.

The sum of the lengths of the blocks of A equals to h. The estimation of the
length of accepted strings ℓ in terms of the number of states n depends on the
types of blocks that A has.

Assume that the total length h of the blocks of A is fixed. Then the maximal
value of ℓ can be reached if all blocks have length two (and h is even). Note
that a block of length two has always exactly 4 states. Thus, we have

ℓ ≤ n− 1− 1

2
h. (2)

Example of the worst-case situation where ℓ = n − 1 − 1
2h is illustrated in

Figure 4.
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Figure 4: n = 13 and h = 8, ℓ = 8.

b

a

b

a

Figure 5: A diamond.

5.2. Estimate for DFAs having blocks of length two

We begin by providing an upper bound in the case where a DFA A includes
blocks of length two and none of bigger length. Strictly speaking, this is a
special case of the more general estimate given in Section 5.3. The proof of the
general case is based on similar ideas but is considerably more complicated. For
readability we consider first the special case of DFAs having blocks of length at
most two.

A block of length two that recognizes the language {aa, bb} is called a dia-
mond (see Figure 5). There are a total of 9 different blocks of length two and it
is easy to see that any block of length two that is not a diamond is “redundant”
in the sense that it can be replaced by linear transitions and the modified DFA
is Parikh-equivalent to A and has fewer states. This is stated in the following
lemma.

Lemma 5.1. Assume that A has a block of length two that is not a diamond.
Then there exists a DFA A1 having n− 1 states such that L(A1) ≡Parikh L(A).

In the next lemma, we observe that if A has one or more diamonds, then
without loss of generality A can be assumed to have no linear transitions with
label a&b.

Lemma 5.2. Assume that A has r ≥ 1 diamonds and k ≥ 1. Then there exists
a DFA A2 with n− r states such that L(A2) ≡Parikh L(A).

Proof. This follows from the observation that when k ≥ 1,

(aa+ bb)r(a+ b)k ≡Parikh (a+ b)2r+k.

2
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By Lemmas 5.1 and 5.2, when computing an upper bound estimate for the
state complexity of per(L(A)), in the case where A has blocks of length two,
we can assume that all blocks of length two are all diamonds and, furthermore,
that k = 0 (i.e., A has no linear transitions labeled with a&b).

With the above assumptions combining with (1) and (2), we have

3

2
· h+ i+ j ≤ n− 1. (3)

We construct a DFA B recognizing per(L(A)). Note that it is sufficient for
B to count a’s up to i+ h and count b’s up to j + h with the further restriction
that the sum of the counts is at most i+ j + h. The states of B consist of pairs
(x, y), where x is the a-count and y is the b-count. The states can be listed as
follows:

• (i+ 1) · (j + 1) pairs, where a-count is at most i and b-count is at most j.

• When a-count is i + z, for 1 ≤ z ≤ h, b-count can be between 0 and
j + h − z. This results in 1

2h(2j + h + 1) states. (The number of states
comes from calculating, for some positive integersm and n, the cardinality
of the following set {(i0, j0) | 1 ≤ i0 ≤ m, 0 ≤ j0 ≤ n +m − i0} which is
1
2m(2n+m+ 1).)

• Additionally, for each b-count greater than j, we need to count up to i
a’s, which results in h · (i+ 1) added states. The situation where also the
a-count is above i was included already in states listed above.

In total, B has

ij + hi+ hj +
1

2
h2 + i+ j +

3

2
h+ 1

states. This function, under constraint (3) can be maximized by mathematics
software such as Maple. For the sake of completeness, we include here a proof.

Substituting h = 2
3 (n − 1 − i − j) yields a two variable function that after

some simplification can be written as

f(i, j) = ij + n+
2

9
(ni+ nj − i− j − 2i2 − 2j2 − 4ij + n2 − 2n+ 1).

1. Boundary j = 0. The maximum is attained at i = n−1
4 and f(n−1

4 , 0) =
n2

4 + n
2 + 1

4 and this polynomial is always at most n2+n+1
3 .

2. The calculation for the boundary i = 0 is symmetric.

3. Critical points of f(i, j): Setting the first partial derivative as zero, after
some simplification we get

∂f

∂i
=

2

9
(n− 1− 4i+

1

2
j) = 0,

that is, n−1 = 4i− 1
2j. Symmetrically, setting ∂f

∂j = 0 yields n−1 = 4j− 1
2 i.
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Figure 6: An NFA of the form specified in the proof of Theorem 5.4.

Solving the equations ∂f
∂i = 0 and ∂f

∂j = 0 gives the solution i = j =
2
7 (n− 1), and consequently h = 2

7 (n− 1). This gives a maximal value for

f(i, j) as 2
7 (n − 1)2 + n. This polynomial is upper bounded by n2+n+1

3
and only reaches that bound in the trivial case where i = j = h = 0 and
n = 1.2

Above we have verified the following:

Proposition 5.3. If A is a DFA with n states that recognizes a set of equal
length strings over {a, b} and the nonlinear part of A has only blocks of length
two, then

sc(per(L(A)) ≤ n2 + n+ 1

3
.

5.3. Estimate for general DFAs for equal length languages

The result of the following theorem extends the result of Proposition 5.3 to
all DFAs recognizing sets of equal length strings.

Theorem 5.4. Let A be an n-state DFA recognizing a language L ⊆ {a, b}ℓ.
Then there exists a DFA C recognizing per(L) with no more than n2+n+1

3 states.

Proof. Without loss of generality, we assume that A is of the following form:
a set of linear transitions labelled by a, followed by a set of linear transitions
labelled by b, followed by a blocks ordered in decreasing length and finally
followed by linear transitions labelled by a&b. An example of such an NFA can
be seen in Figure 6. Any DFA that is not of this form can be ‘rearranged’ into
a Parikh-equivalent DFA of this form. Furthermore, we assume that the DFA
A is minimal in its Parikh-equivalence class, since only the minimal DFAs of a
language will contribute to the bound.

Next, we define a function which measures the maximum distance between
the two closest words in a language L. Let L = {w1, w2, . . . , wp} ∈ {a, b}ℓ
and order the wi so that |w1|a ≤ |w2|a ≤ · · · ≤ |wp|a. Then define γ(L) =
max1≤i≤p−1{|wi+1|a − |wi|a}.

2Note that the general construction used in section 4 to reach this bound uses a&b transi-
tions, i.e., k > 0. Our current estimate could exclude a&b transitions in Lemma 5.2 because
in the presence of a block of length two the smallest Parikh equivalent DFA cannot have a&b
transitions.
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Now γ gives useful insight into the state complexity of L ∈ {a, b}ℓ or at least
the state complexity of another language Parikh-equivalent to L.

Claim 1. Suppose that γ(L) = 1, and s and t be respectively the lowest
a-count and b-count of all the words in L. Then we claim that the language
K = asbt(a+ b)ℓ−(s+t) is Parikh-equivalent to L.
Proof of Claim 1. Let w ∈ L and let ψ(w) = (wa, wb). We know that s ≤
wa ≤ ℓ − t since there must be at least s a’s in w and at least t b’s. Similarly,
we conclude that t ≤ wb ≤ ℓ − s. Now, v = asbtawa−sbwb−t ∈ K and ψ(v) =
(wa, wb), so we have that ψ(L) ⊆ ψ(K).

On the other hand, let v ∈ K and let ψ(v) = (va, vb). Again, we conclude
that s ≤ va ≤ ℓ − t and t ≤ vb ≤ ℓ − s. Suppose that (va, vb) ̸∈ ψ(L), and let
wi ∈ L be such that |wi|a < va < |wi+1|a (consequently |wi|b > vb > |wi+1|b).
Such a wi must exist since (s, ℓ − s) ∈ ψ(L) and (ℓ − t, t) ∈ ψ(L). Then
|wi+1|a−|wi|a ≥ 2, a contradiction. This implies that ψ(K) ⊆ ψ(L) concluding
the proof of our claim. ◁

Let m be the length of the shortest block in A. Thus, in particular, m ≤ h.
We have two cases to consider:

Case m ≤ k + 1: Let B the last nonlinear block of A (since the blocks of A
are ordered in decreasing size of the blocks, B is of length m – the length
of the shortest block) and let s and t be respectively the lowest a-count
and b-count of all the words in L(B). It follows that γ(L(B)) is at most
m (in fact no more than m − s − t) but since m ≤ k + 1 we have that
γ(L(B) · (a+ b)k) is 1.

Proof of Case 1. Suppose that γ(L(B) · (a+ b)k) > 1 and write L(B) · (a+
b)k = {w1, w2, . . . , wp} where |w1|a ≤ |w2|a ≤ · · · ≤ |wp|a. Let i be such
that |wi|a < |wi+1|a − 1. Suppose that there is a b in the last k letters
of wi, clearly it can be replaced with a forming w′ ∈ L(B) · (a + b)k a
contradiction. Similarly we argue that the last k letters of wi+1 contain
no a. Therefore, wi = w′

ia
k and wi+1 = w′

i+1b
k where w′

i and w
′
i+1 belong

to L(B). But γ(L(B)) ≤ m ≤ k + 1 and so |w′
i+1|a − |w′

i|a ≤ k + 1 which
implies |wi+1|a−|wi|a ≤ −k+k+1 = 1. This contradicts our assumption
and so we conclude that γ(L(B) · (a+ b)k) = 1. In Figure 7 we can see an
example of a language K with γ(K) = 4 showing how γ(K ·(a+b)3) = 1. ◁

Let A′ be the machine modified from A where the block B is replaced with
a subautomaton with m linear transitions recognizing the language asbt(a +
b)m−(s+t). By Claim 1, A′ is Parikh-equivalent to A, but clearly A′ has less
states than A as all the nonlinear states in B are replaced with one state per
level. This contradicts A’s minimality.

Case m > k + 1: Next we calculate an estimate for DFAs that have no blocks
of length less than k + 2. In this case we get a better estimate for ℓ in
terms of n and h than the general bound provided by (2). For example,
when h is fixed, and m = 3 the maximal value of ℓ is reached when blocks
of A are as depicted in Figure 8. (We have already illustrated the example
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a

b

ψ(K)

ψ(K · (a+ b)3)

Figure 7: A figure showing ψ(K · (a+ b)3) where γ(K) = 4.

Figure 8: Two blocks of length 3.

when m = 2 in the Figure 4.) In other words, the maximal value of ℓ is
reached when all the blocks are as short as possible – in this case m. Since
for each block of length m we need at least m − 1 non-singular levels we
get

ℓ ≤ n− 1− m

2m− 1
· h. (4)

A DFA C recognizing per(L(A)) counts a’s up to i + h, b’s up to j + h
and checks that the length of the string is i + j + k + h. The number
of “counting” states can be reduced by the observation that the sum of
the counts should be at most i + j + k + h. The number of states that
can be reduced is expressed in the formula g further below. Having that
m ≥ k + 2 we see that g should be maximised under the condition:

2k + 3

k + 2
· h+ i+ j + k ≤ n− 1. (5)

15



In this case for the DFA C it is sufficient to have following states (x, y)
where x is the a-count and y is the b-count.

• 0 ≤ x ≤ i+k, 0 ≤ y ≤ j+k which gives (i+1+k) · (j+1+k) states,

• – when a-count x = i+ k+1, count b’s in range 0 ≤ y ≤ j + h− 1
This yields j + h states.

– when x = i+ k + 2, need j + h− 1 states,

– . . . ,

– when x = i+ h+ k, need j + 1 states.

In total this part uses 1
2 · h · (2j + h+ 1) = hj + 1

2h
2 + 1

2h states.

• – when b-count is y = j + k + 1, count a’s between 0 ≤ x ≤ i+ k.
(The values x > i+ k were included in the previous item.)

– . . .

– when b-count is y = j + h, count a’s between 0 ≤ x ≤ i+ k.

This part yields (h− k) · (i+ k + 1) states.

• – when b-count y = j + h+ 1, count 0 ≤ x ≤ i+ k − 1.

– . . . ,

– when y = j + h+ k, count 0 ≤ x ≤ i.

This part yields 1
2 · k · (2i+ k + 1) = ki+ 1

2 · k2 + 1
2k states.

In total the above construction gives

g(i, j, k, h) = ij+ ik+ jk+hi+hk+hj+
1

2
h2+

1

2
k2+ i+ j+

3

2
h+

3

2
k+1

states. The maximization of g(i, j, k, h) could be calculated by mathemat-
ics software such as Maple, but for the sake of completeness we include
here a proof.3 We have

g(i, j, k, h) = i(j+k+h+1)+j(k+h+1)+k(h+
1

2
k+

3

2
)+

1

2
h2+

3

2
h+1.

With X = 2k+3
k+2 , we get

g(i, j, k+X,h−1) = g(i, j, k, h)+(X−1)(i+j+k+h+
1

2
X+1) > g(i, j, k, h),

so under the restriction h ≥ m > k + 1, g is maximized by h = k + 2.
Now, 3k + 3+ i+ j = n− 1, so i = n− j − 3k − 4, and after substitution
in g(i, j, k, h) we get

f(j, k) = −j2 + j(n− 3k − 4)− 4k2 + k(2n− 10) + 3n− 6.

1. Boundary j = 0. Then maximum is attained at k = n−5
8 and equals

7
24n

2 +O(n).

3The proof was provided by one of the reviewers.
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2. Boundary k = 0. Then maximum is attained at j = n−4
2 and equals

1
4n

2 +O(n).

3. Critical points: ∂f
∂j = −2j+n− 3k− 4, ∂f

∂k = −8k− 5j+2n− 15. By

solving ∂f
∂j = 0 and ∂f

∂k = 0, we get k = 1
7 (n−8) and j = 2

7 (n−1) (so

that i = 2
7 (n−1) and h = 1

7 (n+6)). This gives the maximal value of
2n2+3n+2

7 which is bounded from the above by n2+n+1
3 for all n ≥ 1.

This concludes the proof of the theorem. 2

From Lemma 4.2, we already know that the upper bound of Theorem 5.4
can be reached by sets of equal length strings.

Corollary 5.5. The upper bound for sets of equal length strings given by The-
orem 5.4 is tight for all integers n ≡ 1(mod 3).

6. Conclusion

We have shown that the worst case state complexity of the permutation of
a language over a binary alphabet recognized by an n-state chain DFA and,

more generally, an n-state equal length DFA is n2+n+1
3 . We have given an up-

per bound n2−n+1
2 for the state complexity of permutations of general finite

languages over a binary alphabet, but the bound is not tight. The state com-
plexity of permutation of finite languages depends on alphabet size and future
work could consider finite languages over arbitrary alphabets.
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