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Predicting Fatigue Performance of Hot Mix Asphalt using Artificial 

Neural Networks 

Developing predictive models for fatigue performance is a complex process and 
can depend on variables including material properties, test conditions and sample 
geometry. Several models have been developed in this regard; some of these are 
regression models and are related to mechanistic properties in addition to 
volumetric properties. In this work, a computational model, based on artificial 
neural networks (ANNs), is used to predict the fatigue performance of hot mix 
asphalt (HMA) tested in a dynamic shear rheometer (DSR) technique. Fatigue 
performance was evaluated according to three approaches: traditional, energy 
ratio and dissipated pseudo strain energy. For predicting fatigue performance, 
two types of ANN models were developed: dependent test mode, i.e. based on 
controlled test modes, and independent test modes, i.e. irrespective of controlled 
test modes; using fundamental parameters e.g. stiffness modulus, phase angle and 
volumetric properties. In this work, limestone (L) and granite (G) aggregates 
were used with two binder grades (40/60 and 160/220) to prepare four mixtures 
with two different gradations: gap-graded hot rolled asphalt (HRA) and 
continuously graded dense bitumen macadam (DBM). The results revealed an 
excellent correlation between the predicted and experimental data. It was found 
that the prediction accuracy of the strain test mode was better than the stress test 
mode. 

Keywords: Fatigue performance, artificial neural network, hot mix asphalt, 
DSR technique. 

1. Introduction 

Hot mix asphalt (HMA) is a composite material with compounds from different scales: 
coarse and fine aggregates, filler and bitumen as a binder. Because of its composite 
nature (in addition to other factors such as environmental, test conditions and the 
properties of the material itself), the performance behaviour of HMA, e.g. fatigue, 
rutting and cracking, is complex and difficult to predict (You and Buttlar, 2004, Xiao et 

al., 2007). This complex behaviour arises because of the response of these components 
under loading – the stiffness of the aggregates is several times higher than that of the 
binder and deformation in the binder leads to non-linear behaviour in the HMA. In 
addition, rotation, slippage and interaction between aggregates all contribute to this non-
linear behaviour (Masad and Somadevan, 2002, Huang et al., 2007).  

1.1. Regression Models for Fatigue Life 

Despite the complex behaviour of HMA, several attempts have been made to develop 
regression models which predict its performance. To the best of the author’s knowledge 
the earliest model, introduced during the 1960s, was based on the relationship between 
HMA fatigue life (in terms of number of cycles) and horizontal tensile strain and tensile 
stress at the bottom of the asphalt layer (Monismith et al., 1961, Pell, 1962). Later, 
studies were extended in order to take into account mix properties (represented by the 
stiffness modulus (Monismith et al., 1985, Monismith, 1969)).……………  …………
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Extensive efforts were made to develop new regression models to predict the fatigue life 
of HMA based on large experimental studies; in these cases several variables related to 
the mix properties were represented in the models in order to take into account the 
variability of the mix properties and test conditions. For example, Bonnaure et al. 
(1980) developed regression models to predict the fatigue life of HMA for controlled 
strain and stress test modes. These models were more comprehensive: volumetric binder 
content (Vb) and temperature effects presented by the penetration index (PI) were 
included in these models (in addition to the stiffness modulus). The Shell International 
Petroleum Company (1978) also developed a model to predict the fatigue life of HMA, 
but in this case the volume of the binder (Vb) was included in the model (Shell, 1978). 
The Asphalt Institute developed a relationship similar to Shell’s model, except voids 
filled with binder (VFB) were used in this model instead of Vb (Shook et al., 1982). The 
Energy approach was used in several studies to predict the fatigue performance of HMA 
(Van Dijk and Visser, 1977, Tayebali et al., 1992, Rowe, 1993, Ghuzlan and Carpenter, 
2006). This approach is based on the hypothesis that the amount of energy dissipated is 
proportional to the number of cycles during cyclic loading. Despite their continued use, 
efforts are still being made to improve the performance of regression models by adding 
new parameters or fine tuning existing ones. There are still, however, problems with 
regard to the goodness of fit (quality) of these regression models, which is evaluated as 
the correlation between actual and predicted values using the determination coefficient 
(R2). Since the 1980s, a mathematical technique called artificial neural networks 
(ANNs) has been used widely to improve the prediction performance of a wide variety 
of models and the outcomes have often been good in terms of closeness of fit and the 
high correlation between actual and predicted results (Adeli, 2001). In the current paper, 
ANNs are used to develop models for predicting the fatigue life of HMA based on the 
mechanical and volumetric properties. Two categories of models were developed:  the 
first was based on test modes (strain and stress) and while the second could be applied 
irrespective of test mode. 

1.2. Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are computational models that are (loosely) based on 
the structure and functions of the central nervous system (Adeli, 2001, Priddy and 
Keller, 2005). ANNs consist of a large class of different architectures – multilayer 
neural networks are among the most widely used and consist of: input layers, hidden 
layers and output layers. In the hidden layers, there are a number of nodes called 
neurons, which represent the processing elements of the ANN. Each neuron takes a set 
of weights as an input to a transfer function, which produces a scalar output (as 
illustrated in Figure 1). The outputs of the three layers of the ANN in Figure 1 are 
calculated as in Equation (1) (Priddy and Keller, 2005): 

Y = θ�β + ∑ �V
. θ
�b
 + ∑ X�W�

�
��� ���


�� �                                                          (1) 

where: β is the output bias; Wij is the weight connection between neuron j in the hidden 
layers and input layers i; Vj is the weight connection between neuron j in the hidden 
layers and the output layer; bj is the bias at neuron j of the hidden layers; θ is the 
transfer function from hidden layers to the output layer; θj is the transfer function from 
the input layers to hidden layers and n is the number of neurons in the hidden layer; and 
k is the number of inputs. 
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Figure 1: Three layered neural network architecture. 

In ANNs, the back propagation method is often used to train the network’s weights and 
biases (Priddy and Keller, 2005). The most common transfer function is the sigmoid 
function; Equation (2) represents the formula of a sigmoidal logistic function;  

                                           ���� = �

�����
                                                                       (2) 

This function has nice mathematical properties such as continuity and differentiability 
that are very important during training. The working principle of ANNs is based on 
supervised learning; where, a simple error back-propagation (BP) training algorithm is 
used to train the neural networks. During the training, information is propagated 
forward through the neural network. The output response is compared to the observed 
outputs (or target) data. The error is then computed and propagated backward through 
the network neurons and used to make adjustments in the weights and biases (Adeli, 
2001, Priddy and Keller, 2005, Haykin, 1999). This method of training is used 
throughout the current paper. 

1.3. Utilisation of ANNs 

ANNs have been used successfully by researchers for prediction, classification and 
noise reduction in different disciplines of civil engineering; more details about the use 
of ANNs in civil engineering are available in the review paper by Adeli (2001). There 
are numerous studies which use ANNs to enhance predictive models for HMA 
performance. For example, Xiao et al. (2009) used a three-layered ANN to predict the 
fatigue life of rubberized asphalt concrete (RAC) and compared this with two regression 
models: the strain-dependent model and the energy-dependent model (Xiao, 2009). 
These two models led to a poor fit between the predicted and actual result, with low 
determination coefficients and high coefficients of variation (CoV). At the same time, 
the same independent variables for the two regression models have been used as inputs 
to an ANN, to predict the fatigue life of RAC. This led to a high correlation between the 
actual and predicted results; however, there are no details given about the numbers of 
neurons in the hidden layers and the data size was limited. Celyan et al. (2009) used 
ANNs with two hidden layers (20 neurons in each) to enhance the accuracy of the 
Witczak 1999–2006 models (Andrei et al., 1999, Bari and Witczak, 2006) for predicting 
the dynamic modulus, |E*|, of HMA.……………………………………………………
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In the study, the same input parameters as used by Witczak were used as inputs to the 
ANN. The study demonstrated a significant improvement in the ANN predictive model 
compared to other regression models: Witczak-1999 and Witczak-2006 (Ceylan et al., 
2009). Subsequently, an ANN with four layers (input–hidden–hidden–output) was used 
to predict the stiffness modulus |E*| of HMA (Ceylan, 2008). The same input 
parameters as used in an empirical model - called the Hirsch model - were used. The 
ANN model showed a remarkably high performance in predicting the stiffness modulus 
of HMA compared with the Hirsch model.  

2. Objectives of Study 

The following objectives have been determined for modelling using an ANN: 

1. To predict the fatigue performance of asphalt mixes tested in DSR and evaluated 
according to three approaches: the traditional approach (TA), the energy ratio approach 
(ER) and the fatigue index (FIR) approach. Fatigue test parameters such as initial 
stiffness modulus, initial phase angle, shear strain amplitude, shear stress amplitude and 
relaxation test coefficients (G1, m); in addition to volumetric properties (bulk density 
and air voids), were nominated as input parameters for the ANN. In this study, fatigue 
test parameters and volumetric properties are referred to as ‘fundamental parameters’. 
2. Develop ANN models for predicting the fatigue performance of HMA, 
irrespective of fatigue test modes. 
3. Conduct a bias analysis of the resulting ANN models. 

3. Materials and Experimental Work 

Experimental work includes performing fatigue tests using DSR instruments applied on 
HMA samples. In this work, DSR cylindrical samples (12 mm in diameter and 50 mm 
in height) were produced from two kinds of mixes.  Hot rolled asphalt (HRA) and dense 
bitumen macadam (DBM) samples were prepared in the laboratory using two types of 
aggregate: limestone (L) and granite (G), with two binders: 40/60 and 160/220 pen 
grades, according to British Standards recipes (BS 4987-1, 2005, BS 597-1, 2005, BS 
PD 6691, 2010). The DSR samples were produced by coring beams cut from roller-

compacted slabs for HMA prepared in the lab. The experimental work included 
performing fatigue tests using the DSR technique in stress and strain modes, using an 
approach that was developed and presented in  (Ahmed and Khalid, 2015, Ahmed, 
2016). Table 1 shows relevant details and test conditions. 

Table 1 Mix ID, material details and test conditions. 

Mix ID 
  Mixes properties Test Conditions 

Grade mm Content % Gbulk Mg/m3 Air voids % Strain (%) Stress KPa 

DBM-L 160/220 5.2 2.374 4.9 0.30 150 

DBM-G 160/220 5.2 2.290 7.5 0.30 150 

HRA-L 40/60 7.8 2.343 2.2 0.25 250 

HRA-G 40/60 7.8 2.298 4.0 0.25 400 
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4. Results and Discussion 

In this study, fatigue performance was defined using three approaches: 

1. The traditional approach (TA) defines fatigue life (Nf) as the number of cycles at 
which, respectively, 50% and 10% of the initial stiffness modulus occurs (Tayebali et 

al., 1992, Rowe, 1993, Kim et al., 2002, Ghuzlan and Carpenter, 2006).  

2. The energy ratio (ER) approach defines fatigue life (N1) in the stress mode as the 
number of cycles at the point when the ER reaches its peak value in the relationship of 
ER vs number of cycles, while in the strain mode it is defined as the point when the ER 
slope diverges from a straight line in the same relationship (Rowe, 1993). 

3. Pseudostrain energy – in this case, the fatigue index (FIR) - is calculated based on the 
ratio of recovered pseudostrain energy to applied pseudostrain energy; fatigue life is 
defined using the average value of FIR within a ‘plateau region’. Figure 2 shows a 
typical result for a fatigue test, evaluated using the TA, ER and FIR approaches for 
samples tested in strain and stress modes (for more details see (Ahmed and Khalid, 
2015, Ahmed, 2016)). 

  

 

Figure 2: Fatigue performance analyses: (a) strain mode, (b) stress mode and (c) FIR 
approach (Ahmed and Khalid, 2015, Ahmed, 2016). 

5.  ANN Model based on fundamental parameters 

The majority of the regression models that have been developed for predicting fatigue 
performance are based on two categories of variables: mechanistic variables (such as 
stress, strain and stiffness modulus) and volumetric properties such as air voids, void 
fields with asphalt or voids of binders (Monismith, 1969, Bonnaure et al., 1980, Shook 

et al., 1982, Monismith, 1985). Fatigue performance, in terms of number of cycles, was 
also evaluated using the parameters of the fatigue test outputs (stiffness modulus and 
phase angle as used in the traditional and energy ratio approaches (Tayebali et al., 1992, 
Rowe, 1993, AASHTO, 2002, Kim et al., 2003)). ………………………………………. 

Plateau region 
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Based on these works, all fundamental parameters were selected as inputs for the ANN 
models used in the current paper. These parameters are: the initial stiffness modulus 
( !∗�, initial phase angle (δo), shear strain amplitude (γ), shear stress amplitude (τ),  
relaxation test coefficients (G1, m), bulk density (Gbk) and air void percentage (AV%). 
The ANN model is therefore a function of these variables:  

																															$%%&!'�( ≡ *� !∗, ,! , -, .,  �, /,  01, $2%�                                    (3) 

The multi-layered general architecture shape presented in Figure 3. 

 

Figure 3: General architecture shapes for multi-layered ANN. 

The total data for training and testing were collected from 46 DSR-samples tested in 
strain and 46 DSR-samples tested in stress test modes; the data were divided randomly 
into two different groups: 85% of the data for training and 15% for testing. The 
developed ANNs in the following sections have been classified according to fatigue 
performance approaches.  

5.1: Traditional Approach (Nf) 

Multi-layered ANNs (as shown in Figure 3) were used to predict fatigue life. These 
included single and double hidden layers with 10, 15 and 20 neurons. The coefficient of 
determination (R2) was employed to investigate the correlation between the actual and 
predicted fatigue life. The chosen architecture of the neural network was based on the 
highest R

2; it was found that the best ANN architecture for this purpose consisted of 
double hidden layers with 15 neurones in each layer. For simplicity, this multi-layered 
ANN is denoted as [NInput-15HiddenI-15HiddenII-ṄOutput], where N is the number of input 
parameters and Ṅ is the number of output parameters; this definition is used throughout  
this work. The input parameters for the controlled strain test mode ANN 
are:	 !∗, ,! , .! ,  �, /, $2%	456	 01, while in stress test mode the same input parameters 
are used except -! replaces the stress amplitude	.!. This is because the strain amplitude 
in strain test mode is constant while in stress test mode the stress amplitude is constant. 
So the multi-layered ANN that was used in modelling the fatigue life (Nf) was denoted
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 as [7Input-15HiddenI-15HiddenII-1Output] for both test modes. In this work, the MATLAB-
2013a Neural Network Toolbox was used to create the ANN; the BP algorithm was 
used to train the neural network. For training, the Levenberg-Marquart algorithm was 
adopted because of its efficiency in training networks (Demuth, 2009). The 
relationships between the actual and predicted number of cycles by the ANNs are 
shown in Figure 4 for the strain and stress test modes.  

  

Figure 4: Actual against predicted number of cycles (Nf) of ANN model for: (a) strain 
mode, (b) stress mode. 

The predictive performance of the trained neural networks is considered satisfactory and 
a high correlation, in terms of R

2, between actual and predicted values for the tested 
ANN is shown. The R2 values show that there is no significant difference between both 
ANN models for stress and strain test modes. The correlation in both test modes are 
excellent (higher than 0.98), as shown in Figure 4.  

5.2: Energy Ratio Approach (N1) 

The same neural network architecture [7Input-15HiddenI-15HiddenII-1Output] as was used for 
the traditional approach (Nf) was chosen to model the number of cycles (N1) for the 
energy ratio approach because it resulted in the highest R2 value. The results revealed 
that there is high correlation between the actual and predicted number of cycles of the 
trained neural network, in both test modes, as presented in Figure 5.  

  

Figure 5: Actual against predicted number of cycles (N1) of ANN model for: (a) strain 
mode, (b) stress mode.
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Again, in the stress test mode the correlation was slightly higher than in the strain test 
mode, as was found with the traditional approach. This may be because the correlation 
between independent variables and number of cycles is better in the stress mode than 
the strain mode; however the correlation in both test modes are still excellent  (higher 
than 0.98 for both modes, as shown in Figure 5). 

5.3: Pseudostrain Energy (FI
R
) 

The ANN [7Input-15HiddenI-15HiddenII-1Output], was also used for modelling FI
R using the 

same input variables as described in the previous sections. The results revealed that 
there is an excellent correlation between the actual and predicted results; also there is no 
significant difference in R2 between both modes (approximately 0.97 and 0.99 for strain 
and stress test modes respectively, as shown in Figure 6). The quality analysis of the all 
previous ANN models are presented in a section related to bias analysis at the end of 
this study (made to reflect the accuracy of the model’s in predictions). 

  

Figure 6: Actual against predicted FIR of ANN model: (a) strain mode, (b) stress mode. 

6. ANN Model for independent fatigue mode test 

In this section, a successful attempt was made to develop an ANN model which predicts 
fatigue performance, independent of test mode. The results of fatigue performance from 
two approaches were selected for modelling: the TA and FI

R approaches. The ER 
approach was excluded because the definition of life as a number of cycles takes 
different criteria depending on the test mode, as the relation between energy ratio and 
number of cycles are different for both test modes as demonstrated in Figure 2. With the 
TA approach, the neural network was trained using the data of the fatigue life as a 
number of cycles at 50% and 15% of initial stiffness modulus irrespective of the test 
mode. The input parameters for the neural network were:	 !∗, ,! ,  �, /, $2%	and	 01. 
The shear stress amplitude,	.!, and shear strain amplitude, -!, have been excluded from 
the input parameters because the intention is to develop ANN model which works 
irrespective of the test mode. The resulting architecture is therefore [6Input-15HiddenI-
15HiddenII-1Output].  The total data for training and testing were collected from 92 DSR-
samples which were tested in strain and stress test modes; the data were divided 
randomly into two different groups: 85% of the data for training and 15% for testing. 
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6.1: Traditional Approach (Nf,50%,15%) 

The number of cycles in the TA was modelled using a neural network at 50% and 15% 
of the initial value of G*. Figure 7 shows the relationship between the predicted and 
actual Nf at 50% and 15% of the initial G*. The predicting performance of the trained 
neural network is considered acceptable, as the R2 values were 0.93 and 0.94 for 50% 
and 15% of initial G* respectively. This emphasises the feasibility of using the ANN 
model for predicting the fatigue performance as a function of the number of cycles, 
irrespective of test of modes. 

  

 

Figure 7: Actual against predicted number of cycles (Nf ): (a) at 50% of initial stiffness 

modulus, (b) at 15% of initial stiffness modulus. 

6.2: Pseudostrain Energy Approach (FI
R
) 

Figure 8 shows results obtained using a neural network [6Input-15HiddenI-15HiddenII-1Output] 
for modelling the fatigue index (FIR), independent of fatigue test modes. The correlation 
is excellent, as demonstrated from the high R2 value (0.93) between the actual and 
predicted FIR. This also emphasises the possibility of using ANN models to predict FIR 
irrespective of test of modes. To demonstrate the accuracy of these predictions, a bias 
analysis for these models is presented in the next section. 

 
 

Figure 8: Actual against predicted FIR value of independent test modes.
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7: The Bias Analysis of ANN Models 

In the previous sections, R2 was used to evaluate the accuracy of the ANN models for 
all the approaches; however overall ‘goodness-of-fit’ statistics such as R

2 do not 
necessarily tell the entire story regarding model accuracy. There may be overall biases 
in the predictions that can cause significant reduction in accuracy under certain 
conditions. Herein, the discussion was extended to study widely the bias of ANN 
models through the use of regression parameters. In this regard, three parameters were 
calculated based on the outcomes from the set of data that was used for the testing of 
each ANN. These parameters were: average error (AE) between predicted and actual 
results, evaluated using Equation (4) (Ceylan et al., 2009): 

                                 $: =
∑ �;
<=> ?@A?B�

C
                                                                 (4) 

(where: φp and φa are predicted and actual values for the set of tested data ), slope and 
intercept of the relationship between predicted and actual values. These three 
parameters will be compared with the optimum values that are presented by the line of 
equality (LQ). The LQ passes through the origin therefore the average error, intercept 
and slope are 0, 0 and 1, respectively. The model is close to the LQ when the slope and 
intercept approach 1 and 0, respectively. The discussion here comprised the bias 
analysis of the two categories of ANN models: ANN models based on fundamental 
parameters for the stress and strain mods and ANN models for independent test modes. 

7.1: ANN models of Fundamental Parameters  

The ANN models in this case were developed based on the test of modes, i.e. strain and 
stress. The bias analyses were therefore divided into two categories: the stress and strain 
test modes. Figure 9 summarises the average error for the ANN models for all 
approaches, in both test modes. It can be noted that the ANN models under-predict in 
the strain mode for FIR and N1 but over-predict in the stress test mode (as shown from 
the negative and positive average error values) while the behaviour was reversed when 
predicting Nf. Also, the ANN model prediction for stress has a lower tendency towards 
this bias than for the strain mode, if it was compared with the perfect value of the LQ, 
(as shown in Figure 9).  Figure 10 shows the intercept values of the three approaches. 
For FIR, the ANN model of the stress mode has the smallest prediction bias (Figure 
10(a)). The intercept ranges for the Nf and N1 approaches are approximately 1100 to 
100 cycles, as demonstrated in Figures 10(b) and 10(c) for both test modes. It is clear 
that the ANN model for the N1 approach in the strain test mode is the closest to LQ 
because its intercept is slightly higher than 100 cycles; while for the stress mode it was 
higher than 750 cycles, as shown in Figure 10(c). In contrast, there is no significant 
difference in the Nf approach for both test modes, where the intercept was 
approximately 1100 cycles. The third bias parameter is the slope, which is presented in 
Figure 11(where the smallest prediction bias ANN model is the closest to unity slope). 
The slopes of all ANN models are in a range between 1.1 and 0.9, which is acceptable. 
Overall, it is clear that the ANN models of the stress test mode have a lower prediction 
bias than the ANN models of the strain test mode. 
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Figure 9: Average error of ANN models for different approaches in strain and stress test 
modes: (a) FIR, (b) Nf and (c) N1. 

 

Figure 10: Intercept of ANN models for different approaches in strain and stress test 
modes: (a) FIR, (b) Nf and (c) N1. 

 

Figure 11: Slope of ANN models for different approaches in strain and stress test 
modes. 

7.2: ANN models of Independent Test Modes 

Herein, ANN models were developed irrespective of the test of modes (i.e. strain and 
stress), for the FIR and Nf approaches. Because the measurement unit of the Nf approach 
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is the number of cycles while FIR is without measurement unit, the bias analyses are 
presented in two categories: Nf and FIR for average error and intercept whereas the slope 
analysis was conducted directly on Nf and FIR. Figure 12(a) shows the average error and 
intercept for the Nf approach at 50% and 15% of the initial stiffness modulus. It can be 
seen that the ANN models for Nf at 50% and 15% are over-predicting. Figure 12(b) 
displays the average error and intercept for the ANN model of FIR. It is clear that the 
ANN model is under-predicting, although the average error is a very small value. Also, 
it can be seen that the intercept is a small value. The slope of the three ANN models is 
presented in Figure 12(c); it can be seen that the ANN models predicting FIR and Nf at 
50% have the same bias. In contrast, the ANN model predicting Nf at 15% has the 
highest. Overall, it is clear that the ANN model of Nf at 50% has the smallest prediction 
bias compared to the ANN models of FIR and Nf at 15% models. 

 

Figure 12: Bias parameters for ANN independent mode models. 

8. Conclusions and Future Work 

The practical advantage of this work is that it allows the fatigue life of HMA to be 

predicted  without having to perform numerous fatigue tests, which are time 

consuming and expensive.  The following outcomes were achieved based on the 
results and discussions: 

1. The ANN approach, in this work, was used to create effective predictive models. 
While the ANN-based models were able to predict the fatigue life accurately (as 
evidenced by high R2 values for the test data), these models are currently limited to the 
four types of HMA, tested at the specific strain and stress amplitudes described in the 
text. 

2. Experimental data from fatigue tests of cylindrical samples, tested in the DSR, were 
used to train the neural networks. The neural networks were used to predict the fatigue 
performance of HMA in terms of the number of cycles (Nf and N1) and the fatigue index 
(FIR). The ANN models  used parameters from fatigue tests, i.e. initial stiffness 
modulus, initial phase angle, shear strain amplitude, shear stress amplitude and 
relaxation test coefficients in addition to volumetric properties, as input variables. 
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3. One of the objectives of this study was to develop ANN models based on the fatigue 
test modes, i.e. strain and stress, to predict fatigue performance. The results showed a 
high correlation between predicted and measured data for all approaches (Nf, N1 and 
FIR). 

4. Another objective of the ANN approach was to develop models, independent of test 
mode, for predicting fatigue performance in terms of Nf at 50% and 15% reduction of 
the initial stiffness modulus and FIR. The same fatigue testing parameters were also 
used as input parameters for the neural networks. The results showed the capability of 
the ANN model to predict fatigue performance with high correlation, regardless of test 
mode. 

5. Bias analysis for all ANN models was evaluated based on typical values of the line of 
equality. The analysis result showed that the ANN model for the stress mode has a 
lower prediction bias than the ANN models for the strain mode; while in the 
independent test mode models, the ANN model of Nf at 50% gave smaller prediction 
bias when compared with the ANN models of FIR and Nf at 15%. 

6. While the ANNs performed well in this work, their performance was strongly 
influenced by the number of hidden layers and number of neurons used, i.e. the ANN 
architecture. In this case, the ANN architecture with two hidden layers and 15 neurons 
in each layer worked well based on the high determination coefficient (R2) between the 
actual and predicted data 

7. For future work the authors aim to retrain the ANN models using different test 
conditions, strain and stress amplitudes and different materials, to improve their 
predictive performance 
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