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testing and non-linear preconditioning of the

proximal point method

Tuomo Valkonen∗

2017-03-16

Abstract Employing the ideas of non-linear preconditioning and testing of the classical
proximal point method, we formalise common arguments in convergence rate and con-
vergence proofs of optimisation methods to the veri�cation of a simple iteration-wise in-
equality. When applied to �xed point operators, the latter can be seen as a generalisation of
�rm non-expansivity or the α-averaged property. The main purpose of this work is to pro-
vide the abstract background theory for our companion paper “Block-proximal methods
with spatially adapted acceleration”. In the present account we demonstrate the e�ective-
ness of the general approach on several classical algorithms, as well as their stochastic
variants. Besides, of course, the proximal point method, these method include the gradi-
ent descent, forward–backward splitting, Douglas–Rachford splitting, Newton’s method,
as well as several methods for saddle-point problems, such as the Alternating Directions
Method of Multipliers, and the Chambolle–Pock method.
Get the version from h�p://tuomov.iki.fi/publications, citations broken in this one

due broken arXiv biblatex support.

1 introduction

The proximal point method for monotone operators [17, 22], while infrequently used by itself,

can be found as a building block of many popular optimisation algorithms. Indeed, many im-

portant application problems can be written in the form

(P) min
x
G(x) + F (Kx)

for convex non-smoothG and F , and a linear operatorK . Examples abound in image processing

and data science. The problem (P) can often be solved by methods such as forward–backward

splitting, ADMM (alternating directions method of multipliers) and their variants [2, 16, 11, 6].

They all involve a proximal point step.

The equivalent saddle point form of (P) is

(S) min
x

max
y

G(x) + 〈Kx ,y〉 − F ∗(y).

In particular within mathematical image processing and computer vision, a popular algorithm

for solving (S) is the primal–dual method of Chambolle and Pock [6]. As discovered in [12], the
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method can most concisely be written as a preconditioned proximal point method, solving on

each iteration for ui+1 = (x i+1,y i+1) the variational inclusion

(PP0) 0 ∈ H (ui+1) +Mi+1(ui+1 − ui ),

where the monotone operator

H (u) :=
(
∂G(x) + K∗y
∂F ∗(y) − Kx

)

encodes the optimality condition 0 ∈ H (û) for (S). In the standard proximal point method [22],

one would take Mi+1 = I the identity. With this choice, (PP0) is generally di�cult to solve.

In the Chambolle–Pock method the preconditioning operator is given for suitable step length

parameters τi ,σi+1,θi > 0 by

(1.1) Mi+1 :=

(
τ−1i I −K∗

−θiK σ−1
i+1I

)
.

This choice ofMi+1 decouples the primal x and dual y updates, making the solution of (PP0) fea-

sible in a wide range of problems. IfG is strongly convex, the step length parameters τi ,σi+1,θi
can be chosen to yieldO(1/N 2) convergence rates of an ergodic duality gap and the quadratic

distance ‖x i − x̂ ‖2.
In our earlier work [25], we have modi�edMi+1 as well as the condition (PP0) to still allow

a level of mixed-rate acceleration when G is strongly convex only on sub-spaces. Our conver-

gence proofs were based on testing the abstract proximal point method by a suitable operator,

which encodes the desired and achievable convergence rates on relevant subspaces.

In the present paper, we extend this theoretical approach to non-linear preconditioning, non-

invertible step-length operators, and arbitrary monotone operators H . Our main purpose is to

provide the abstract background theory for our companion paper [24]. Here,within these pages,

we demonstrate that several classical optimisation methods—including the second-order New-

ton’s method—can also be seen as variants of the proximal point method, and that their com-

mon convergence rate and convergence proofs reduce to the veri�cation of a simple iteration-

wise inequality. Through application of our theory to Browder’s �xed point theorem [4] in

Section 2.5, we see that our inequality generalises the concepts of �rm non-expansivity or the

α-averaged property. Our theory also covers stochastic variants of the considered algorithms.

In Section 2, we start by developing our theory for general monotone operators H . This ex-

tends, simpli�es, and clari�es the more disconnected results from [25] that concentrated on

saddle-point problems with preconditioners derived from (1.1). We demonstrate our results

on the basic proximal point method, gradient descent, forward–backward splitting, Douglas–

Rachford splitting, and Newton’s method. The proximal step in forward–backward splitting

and proximal Newton’s method can be introduced completely “free”, without any additional

proof e�ort, in our approach.

In Section 3 we specialise our work to saddle-point problems, and demonstrate the results

on variants of the Chambolle–Pockmethod, ADMM, and the Generalised Iterative Soft Thresh-

olding (GIST) algorithm of [16]. In the �nal Section 4 we extend our results and examples to

produce the convergence of ergodic duality gaps. This is also where we move to the stochastic
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setting, which allows our results to be used to study various stochastic block-coordinate de-

scent methods. We refer to [26] for a review of this class of methods. In the companion paper

[24], we will apply our results to stochastic primal-dual methods with coordinate-wise adapted

step lengths.

Besides already citedworks, other previous work related to ours includes that on generalised

proximal point methods, such as [5, 8], as well inertial methods for variational inclusions [15].

2 an abstract preconditioned proximal point iteration

2.1 notation and general setup

We use C(X ) to denote the space of convex, proper, lower semicontinuous functions from X to

the extended realsR := [−∞,∞], and L(X ;Y ) to denote the space of bounded linear operators
between Hilbert spaces X and Y . We denote the identity operator by I . For T ,S ∈ L(X ;X ),
we write T ≥ S when T − S is positive semide�nite. Also for possibly non-self-adjoint T , we

introduce the inner product and norm-like notations

(2.1) 〈x, z〉T := 〈Tx , z〉, and ‖x ‖T :=
√
〈x,x〉T .

For a set A ⊂ R, we write A ≥ 0 if every element t ∈ A satis�es t ≥ 0.

Our overall wish is to �nd some û ∈ U , on a Hilbert space U , solving for a given set-valued

map H : U ⇒ U the variational inclusion

(2.2) 0 ∈ H (û).

In the present Section 2, H will be arbitrary, but in Section 3, where we specialise the results,

and in Section 4, where we consider gap estimates, we concentrate onH arising from the saddle

point problem (S).

Our strategy towards �nding a solution û is to introduce an arbitrary non-linear iteration-

dependent preconditioner Vi+1 : U → U and a step length operatorWi+1 ∈ L(U ;U ). With these,

we de�ne the generalised proximal point method, which on each iteration i ∈ N solves forui+1

from

(PP) 0 ∈Wi+1H (ui+1) +Vi+1(ui+1),

We assume thatVi+1 splits intoMi+1 ∈ L(U ;U ), and V ′
i+1 : U → U as

(2.3) Vi+1(u) = V ′
i+1(u) +Mi+1(u − ui ).

More generally, to rigorously extend our approach to cases that would otherwise involve set-

valuedVi+1, we also consider for H̃i+1 : U ⇒ U the iteration

(PP∼) 0 ∈ H̃i+1(ui+1) +Mi+1(ui+1 − ui ).
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2.2 basic estimates

We analyse (PP) and (PP∼) by applying a testing operator Zi+1 ∈ L(U ;U ), following the ideas

introduced in [25]. The product Zi+1Mi+1 with the linear part of the preconditioner, will, as we

soon demonstrate, be an indicator of convergence rates.

Theorem 2.1. On a Hilbert space U , let H̃i+1 : U ⇒ U , and Mi+1,Zi+1 ∈ L(U ;U ) for i ∈ N.

Suppose (PP∼) is solvable, and denote the iterates by {ui }i∈N. If Zi+1Mi+1 is self-adjoint, and

(CI∼)
1

2
‖ui+1 − ui ‖2Zi+1Mi+1

+

1

2
‖ui+1 − û‖2Zi+1Mi+1−Zi+2Mi+2

+ 〈H̃i+1(ui+1),ui+1 − û〉Zi+1 ≥ −∆i+1(û)

for all i ∈ N and some û ∈ U , then

(DI)
1

2
‖uN − û‖2ZN+1MN+1

≤ 1

2
‖u0 − û‖2Z1M1

+

N−1∑

i=0

∆i+1(û) (N ≥ 1).

Corollary 2.2. On a Hilbert space U , let H : U ⇒ U . Also let Zi+1,Wi+1,Mi+1 ∈ L(U ;U ), and
V ′
i+1 : U → U for i ∈ N. Suppose (PP) is solvable forVi+1 as in (2.3). Denote the iterates by {ui }i∈N.
Let û ∈ H−1(0). If Zi+1Mi+1 is self-adjoint, and

(CI)
1

2
‖ui+1 − ui ‖2Zi+1Mi+1

+

1

2
‖ui+1 − û‖2Zi+1Mi+1−Zi+2Mi+2

+ 〈Wi+1[H (ui+1) −H (û)] +V ′
i+1(ui+1),ui+1 − û〉Zi+1 ≥ −∆i+1(û),

for all i ∈ N, then (CI∼) and (DI) hold for H̃i+1(u) :=Wi+1H (u) +V ′
i+1(u).

For (PP), the condition (CI) is oftenmore practical to verify than (CI∼) thanks to the additional
structure introduced byH (û) ∋ 0. Indeed, inmany of our examples,we can eliminateH through

monotonicity. To derive gap estimates in Section 4, we will however need (CI∼).

Proof of Theorem 2.1. Inserting (PP∼) into (CI∼), we obtain

(2.4)
1

2
‖ui+1 − ui ‖2Zi+1Mi+1

+

1

2
‖ui+1 − û‖2Zi+1Mi+1−Zi+2Mi+2

− 〈ui+1 − ui ,ui+1 − û〉Zi+1Mi+1
≥ −∆i+1(û).

We recall for general self-adjointM the three-point formula

(2.5) 〈ui+1 − ui ,ui+1 − û〉M =
1

2
‖ui+1 − ui ‖2M − 1

2
‖ui − û‖2M +

1

2
‖ui+1 − û‖2M .

Using this withM = Zi+1Mi+1, we rewrite (2.4) as

1

2
‖ui − û‖2Zi+1Mi+1

− 1

2
‖ui+1 − û‖2Zi+2Mi+2

≥ −∆i+1(û).

Summing this over i = 0, . . . ,N − 1, we obtain (DI). �
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Remark 2.3 (Bregman distances). The three-point formula (2.5) generalises to Bregman distances

[8]. If Zi+1 = ϕi+1I for some scalar ϕi+1, it is then easy to generalise Theorem 2.1 from 1
2 ‖ · ‖Mi+1

to

more general Bregman distances. While we do occasionally work withVi+1 arising as the gradient

of a more general Bregman distance, we will, however, not bene�t from more general Mi+1.

The next two results demonstrate how the estimate of Theorem 2.1 can be used to prove

convergence with or without rates.

Proposition 2.4 (Convergence with a rate). Suppose (DI) holds with ∆i+1(û) ≤ 0, and that

ZN+1MN+1 ≥ µ(N )I . Then ‖uN − û‖2 → 0 at the rate O(1/µ(N )).

Proof. Immediate from (DI). �

Proposition 2.5 (Weak convergence). Suppose ZiMi = Z0M0 ≥ 0 is self-adjoint, and that the

iterates of (PP∼) satisfy (CI∼) with ∆i+1(û) ≤ −δ
2
‖ui+1 −ui ‖2Zi+1Mi+1

for all û ∈ Û := {u ∈ U | 0 ∈
H (u)} and some δ > 0. If

(CL) Zi+1Mi+1(ui+1 − ui ) → 0 and uik ⇀ u =⇒ lim sup
k→∞

H̃i+1(uik ) ⊂W∗H (u)

for some non-singularW∗ ∈ L(U ;U ), then Z0M0(ui −u∗)⇀ 0 weakly inU for some u∗ satisfying
0 ∈ H (u∗).

The lim sup denotes the (strong) outer limit [?, see, e.g.,]]rockafellar-wets-va. For the proof,

we use the next lemma. Its earliest version is contained in the proof of [18, Theorem 1].

Lemma 2.6 ([4, Lemma 6]). On a Hilbert space X , let X̂ ⊂ X be closed and convex, and {x i }i∈N ⊂
X . If the following conditions hold, then x i ⇀ x∗ weakly in X for some x∗ ∈ X̂ :

(i) i 7→ ‖x i − x∗‖ is non-increasing for all x∗ ∈ X̂ .

(ii) All weak limit points of {x i }i∈N belong to X̂ .

Proof of Proposition 2.5. Since Zi+1Mi+1 − Zi+2Mi+2 ≤ 0, it is easy to see that (CI∼) and conse-

quently (DI) holds for all û ∈ U ′ := cl conv Û . We apply Theorem 2.1 on any û ∈ U ′. Using
∆i+1(û) ≤ −δ

2 ‖ui+1−ui ‖2Zi+1Mi+1
, we have Zi+1Mi+1(ui+1 −ui ) → 0. By (PP∼) and (CL), any weak

limit point u∗ of the sequence {ui }i∈N then satis�es u∗ ∈ Û ⊂ U ′. Since A := Z0M0 = Zi+1Mi+1 ,

this veri�es condition (ii) of the lemma for x i := A1/2ui andX ′ := A1/2Û onX := A1/2U ⊂ U . Ap-

plied withN = 1 andui in place ofu0, (DI) shows condition (i) of the lemma. Thus x i ⇀ x∗ ∈ X̂ .
But x∗ = A1/2u∗ for some u∗ = Û . Thus A(ui − u∗) ⇀ 0. This implies Z0M0(ui − u∗) ⇀ 0

weakly. �

2.3 examples of first-order methods

We now look at several concrete examples.

Example 2.1 (The proximal point method). Take Mi = I , V ′
i = 0, andWi+1 = τi I for some

τi > 0. Then (PP) is the standard proximal point method with step length 1/τi . If H is
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maximal monotone, {ui }i∈N converges weakly to some u∗ ∈ H−1(0).

Proof of convergence. We take Zi+1 = ϕi I for some ϕi > 0. As long as ϕi ≥ ϕi+1, the monotonic-

ity of H clearly shows (CI) with ∆i+1(û) = −ϕi
2 ‖ui+1 − ui ‖2. Using the maximal monotonicity,

Minty’s theorem [?, e.g.,]Theorem 21.1]bauschke2011convex guarantees the solvability of (PP).

Thus the conditions of Corollary 2.2 are satis�ed. Maximalmonotonicity also guarantees thatH

is weak-to-strong outer semicontinuous; see Lemma a.1. This establishes (CL). Taking ϕi ≡ ϕ0
for constant ϕ0 > 0, so that Zi+1Mi+1 = Z0M0 = ϕ0I , it remains to refer to Proposition 2.5. �

Example 2.2 (Accelerated proximal point method). Continuing from Example 2.1, suppose

H is strongly monotone. Then 〈H (ui+1) −H (û),ui+1 − û〉 ≥ γ ‖ui+1 − û‖2 for some γ > 0, so

(CI) continues to hold with ∆i+1(û) = −ϕi
2 ‖ui+1 −ui ‖2 if ϕi (1+ 2γτi ) ≥ ϕi+1. This is the case

for τi+1 := τi/
√
1 + 2γτi , and ϕi+1 := 1/τ 2i+1. The testing variable ϕN is of the order Θ(N 2)

[6, 25], so we get convergence of ‖uN − û‖2 to zero at the rate O(1/N 2) from Corollary 2.2

and Proposition 2.4.

To facilitate the analysis algorithmswith a proximal step,we introduce the following strength-

ened version of (CI), assumed to hold for some ∆i+1(u∗;u) at all u ∈ Ui+1 ⊂ U and u∗ ∈ U :

(CI∗)
1

2
‖u − ui ‖2Zi+1Mi+1

+

1

2
‖u − u∗‖2Zi+1Mi+1−Zi+2Mi+2

+ 〈Wi+1(H (u) −H (u∗)) +V ′
i+1(u),u − u∗〉Zi+1 ≥ −∆i+1(u∗;u).

Note that only the choice u = ui+1 and u∗ = û implies (CI∼) and thus convergence. The role of

the subset Ui+1 is to model a compatible range of ui+1 between H = A and H = A + B in the

next lemma. TypicallyUi+1 = U , but for the stochastic examples of Section 4.5, we will need to

make restrictions.

Lemma 2.7. Let A,B : U ⇒ U . Suppose (CI∗) holds for H = A, and that

(2.6) 〈B(u) − B(u∗),u − u∗〉Zi+1Wi+1
≥ 0, (u ∈ Ui+1, u∗ ∈ U ).

Then (CI∗) holds for H = A + B withWi+1, Mi+1 , Zi+1, V
′
i+1 and ∆i+1(u,u∗) unchanged. Moreover,

if vi+1 solves (PP) for H = A, then ui+1 := (I +Wi+1B)−1(vi+1) solves (PP) for H = A + B.

Proof. Using (2.6), B is easily eliminated from (CI∗). The result is (CI∗) for H = A. The relation-
ship betweenvi+1 and ui+1 is immediate from expansion of (PP). �

The next lemma starts our analysis of gradient descent:

Lemma 2.8. Let H = ∇G forG ∈ C(X ) such that ∇G is L-Lipschitz. TakeMi+1 ≡ I andV ′
i+1(u) :=

τi (∇G(ui ) − ∇G(u)) withWi+1 = τi I as well as Zi+1 ≡ ϕi I for some τi ,ϕi > 0. Then (CI∗) holds
with Ui+1 = U if

(i) ϕi = ϕ is constant, τiL < 2, and ∆i+1(u∗;u) := −ϕi (1 − τiL/2)‖u − ui ‖2/2.
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If G is strongly convex with factor γ > 0, alternatively:

(ii) τ0L
2 < γ , ϕi+1 := ϕi + ϕiτi (γ − τiL2), τi := ϕ−1/2

i , and ∆i+1(u∗;u) = 0.

Moreover, Vi+1 satis�es (CL) under the above constraints on τi .

Proof. The satisfaction (CL) is immediate from the continuity of ∇G and the boundedness of τi .

For the rest, we start by expanding the condition (CI∗) as

(2.7)
ϕi

2
‖u − ui ‖2 + ϕi − ϕi+1

2
‖u − u∗‖2 + ϕiτi 〈∇G(ui ) − ∇G(u∗),u − u∗〉 ≥ −∆i+1(u∗;u).

(i) Lipschitz gradient implies L−1-co-coercivity ([1], see also Appendix b)

(2.8) 〈∇G(u ′) − ∇G(u),u ′ − u〉 ≥ L−1‖∇G(u ′) − ∇G(u)‖2 for all u,u ′
.

Now (2.7) follows after we use (2.8) and Cauchy’s inequality to estimate

(2.9) 〈∇G(ui ) − ∇G(u∗),u − u∗〉 = 〈∇G(ui ) − ∇G(u∗),ui − u∗〉

+ 〈∇G(ui ) − ∇G(u∗),u − ui 〉 ≥ −L
4
‖u − ui ‖2.

(ii) We estimate

〈∇G(ui ) − ∇G(u∗),u − u∗〉 = 〈∇G(u) − ∇G(u∗),u − u∗〉 + 〈∇G(ui ) − ∇G(u),u − u∗〉

≥ γ

2
‖u − u∗‖2 − 1

2τi
‖u − ui ‖2 − τiL

2

2
‖u − u∗‖2.

Inserting this into (2.7), we see that (CI∗) holds with ∆i+1(u∗;u) = 0 if

(2.10) ϕi + ϕiτi (γ − τiL2) ≥ ϕi+1.

Clearly our choice of {τi }i∈N is non-increasing. Therefore, (2.10) follows from the initialisation

condition τ0L
2 < γ and the update rule ϕi+1 := ϕi + ϕiτi (γ − τiL2). �

Example 2.3 (Gradient descent). Taking τi = τ constant in Lemma 2.8, (PP) reads

0 = τ∇G(ui ) + ui+1 − ui .

This is the gradient descent method. Direct application of Lemma 2.8(i) with u = ui+1 and

u∗ = û together with Corollary 2.2 and Proposition 2.5 now veri�es the well-known weak

convergence of the method when τL < 2.

Observe thatVi+1 = ∇Qi+1 for

Qi+1(u) :=
1

2
‖u − ui ‖2 + τ

[
G(ui ) + 〈∇G(ui ),u − ui 〉 −G(u)

]
.

Each step of (PP) therefore minimises the surrogate objective [9]

(2.11) u 7→ G(u) + τ−1Qi+1(u).

7



The function Qi+1 on one hand penalises long steps, and on the other hand allows longer

steps when the local linearisation error is large. In this example, Qi+1 is, in fact, a Breg-

man distance. Proximal point methods based on general Bregman distances in place of the

squared norm are studied in, e.g., [5, 8, 13, 14].

Example 2.4 (Acceleration of gradient descent). Continuing fromExample 2.3, ifG is strongly

convex, we may use the acceleration scheme in Lemma 2.8(ii). Similarly to Example 2.1, ϕN
is of the order Θ(N 2). Therefore, Corollary 2.2 and Proposition 2.4 show the convergence

of ‖uN − û‖2 to zero at the rateO(1/N 2).

Example 2.5 (Forward–backward spli�ing). Let H = ∇G + ∂F for G, F ∈ C(X ) with ∇G
Lipschitz. TakingMi+1 ,Wi+1, and V

′
i+1 as in Example 2.3, (PP) becomes

0 ∈ τi∂F (ui+1) + τi∇G(ui ) + ui+1 − ui .

This is the forward–backward splitting method

ui+1 := (I + τi∂F )−1(ui − τi∇G(ui )).

ByLemma 2.7, convergence and accelerationwork exactly as for gradient descent inExamples 2.3

and 2.4. If F is strongly convexwith factorγF ,we can introduce the additional term
γF
2 ‖ui+1−

û‖2 to (2.7). This will improve (2.10) to allow ϕi+1 := ϕi + ϕiτi (γ + γF − τiL). Alternatively,
it would be possible to choose ϕi and τi to yield FISTA-style acceleration [2].

Example 2.6 (Douglas–Rachford spli�ing). Let A,B : U ⇒ U be monotone operators. Con-

sider the problem of �nding û with 0 ∈ A(û) + B(û). For λ > 0, let

H (u,v) :=
(
λB(u) + u −v
λA(u) +v − u

)
, Mi+1 :=

(
0 0

0 I

)
, and

H̃i+1(u,v) :=
(

λB(ui+1) + ui+1 −vi
λA(ui+1 +vi+1 −vi ) +vi − ui+1

)
.(2.12)

Then 0 ∈ A(û) + B(û) if and only if 0 ∈ H (û, v̂), where v̂ ∈ (û − λA(û)) ∩ (û + λB(û)). The
algorithm (PP∼) becomes the Douglas–Rachford splitting [10]

ui+1 := (I + λB)−1(vi ),
vi+1 := vi + (I + λA)−1(2ui+1 −vi ) − ui+1.

We work with (PP∼) since in (PP), V ′
i+1 would have to be set-valued. If A and B are maxi-

mal monotone, the variables {vi }i∈N converge weakly to v̂ . Again, it is possible to devise
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acceleration schemes under strong monotonicity [?, see, e.g.,]]bredies2016accelerated.

Proof of convergence. Write ūi := (ui ,vi ) and ̂̄u := (û, v̂). Observe that

ui+1 − vi+1 =: qi+1 ∈ λA(ui+1 −vi+1 −vi ) and û − v̂ =: q̂ ∈ λA(û).

Using the monotonicity of A and B, with Zi+1 := I , we have

〈H̃i+1(ūi+1),Z ∗
i+1(ūi+1 − ̂̄u)〉 ⊂ 〈H̃i+1(ūi+1) −H (̂ū),Z ∗

i+1(ūi+1 − ̂̄u)〉
= λ〈B(ui+1) − B(û),ui+1 − û〉 + λ〈qi+1 − q̂,vi+1 − v̂〉
+ 〈ui+1 −vi , (ui+1 −vi+1) − (û − v̂)〉

= λ〈B(ui+1) − B(û),ui+1 − û〉 + λ〈qi+1 − q̂,ui+1 + vi+1 −vi − v̂〉 ≥ 0.

Thus (CI∼) holds with ∆i+1 (̂ū) := − 1
2 ‖ūi+1 − ūi ‖2Zi+1Mi+1

. Using (2.12) and the weak-to-strong

outer semicontinuity of A and B (see Lemma a.1), we easily verify (CL). Weak convergence

now follows from Theorem 2.1 and Proposition 2.5. �

2.4 examples of second-order methods

Lemma 2.9. Let H = ∇G forG ∈ C2(U ). Take

Vi+1(u) := ∇2G(ui )(u − ui ) + ∇G(ui ) − ∇G(u), and Wi+1 := I

If ∇2G(u∗) > 0, then (CI∗) holds for ui close enough to u∗ with ∆i+1(u,u∗) = 0 and ZNMN =

κN∇2G(u∗) for some κ > 1 .

Proof. We set Mi+1 := ∇2G(u∗) and Zi+1 := ϕi I for some ϕi > 0. Then G ∈ C2(X ) implies that

Zi+1Mi+1 = ϕi∇2G(u∗) is self-adjoint. The condition (CI∗) reads

(2.13)
1

2
‖u − ui ‖2

ϕi ∇2G(u∗) +
1

2
‖u − u∗‖2(ϕi−ϕi+1)∇2G(u∗) + ϕiDi+1 ≥ −∆i+1(u∗;u),

where

Di+1 := 〈∇G(ui ) − ∇G(u∗) + (∇2G(ui ) − ∇2G(u∗))(u − ui ),u − u∗〉.
By the fundamental theorem of calculus, there exists ζ i between ui and u∗ with

Di+1 = 〈∇2G(ζ i )(ui − u∗),u − u∗〉 + 〈(∇2G(ui ) − ∇2G(u∗))(u − ui ),u − u∗〉.

Using the three-point formula (2.5) and Cauchy’s inequality we therefore obtain

Di+1 =
1

2
‖u − u∗‖2

2∇2G(ui )−∇2G(u∗) −
1

2
‖u − ui ‖2∇2G(u∗) +

1

2
‖ui − u∗‖2∇2G(u∗)

+ 〈[∇2G(ζ i ) − ∇2G(ui )](ui − u∗),u − u∗〉

≥ 1

2
‖u − u∗‖2

2∇2G(ui )−∇2G(u∗)−Ai −
1

2
‖u − ui ‖2∇2G(u∗)

for

Ai := [∇2G(ζ i ) − ∇2G(ui )][∇2G(u∗)]−1[∇2G(ζ i ) − ∇2G(ui )].
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Inserting this estimate into (2.13), we deduce that we can take ∆i+1(u∗;u) = 0 if

2ϕi∇2G(ui ) − ϕi+1∇2G(u∗) ≥ ϕiAi .

Since G ∈ C2(U ), and ∇2G(u∗) > 0, locally near u∗, we can ensure Ai ≤ ϵ∇2G(ζ i+1) and
∇2G(ui ) ≥ [κ/2 + ϵ/2]∇2G(u∗) for some κ > 1 and ϵ > 0. Thus it remains to satisfy

(1 + ϵ)κϕi − ϕi+1 ≥ ϕiϵκ .

This holds when ϕi+1 = κϕi . Taking ϕ0 = 1, thus ZNMN ≥ κN∇2G(u∗). �

Example 2.7 (Newton’s method). Suppose H = ∇G forG ∈ C2(U ). TakeVi+1 andWi+1 as in

Lemma 2.9. Then (PP) reads

0 = ∇G(ui ) + ∇2G(ui )(ui+1 − ui ).

This is Newton’s method. By Lemma 2.9,Corollary 2.2, and Proposition 2.4,we obtain linear

convergence if ∇2G(û) > 0.

Observe that now Vi+1(u) is the gradient of

Qi+1(u) := G(ui ) + 〈∇G(ui ),u − ui 〉 + 1

2
‖u − ui ‖2∇2G(ui ) −G(u).

In the surrogate objective (2.11), this allows longer steps when the second-order Taylor ex-

pansion under-approximates, and forces shorter steps when it over-approximates.

Example 2.8 (Proximal Newton’s method). Similarly to Example 2.5, let H = ∇G + ∂F for

G ∈ C2(X ), and F ∈ C(X ). TakingMi+1 ,Wi+1, and V
′
i+1 as in Lemma 2.9, (PP) becomes

0 ∈ ∂F (ui+1) + ∇G(ui ) + ∇2G(ui )(ui+1 − ui ).

This is the proximal Newton’s method [?, see, e.g.,]]lee2014proximal

ui+1 := (I + [∇2G(ui )]−1∂F )−1(ui − [∇2G(ui )]−1∇G(ui )),

where (I + A−1∂F )−1(v) solves minu
1
2 ‖u − v ‖2A + F (u). By Lemma 2.7, convergence and

acceleration work exactly as for Newton’s method in Example 2.7.

2.5 connections to fixed point theorems

We demonstrate connections of our approach to established �xed point theorems.

Example 2.9 (Browder’s fixed point theorem [4]). Let T : U → U be α-averaged, that is

T = (1−α)J +αI for some non-expansive J and α ∈ (0, 1). Suppose there exists a �xed point
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û = T (û). Then ui ⇀ u∗ for some �xed point u∗ of T .

Proof of Browder’s �xed point theorem. Let us set H (u) := T (u) − u, as well as Zi+1 := Wi+1 :=

Mi+1 := I andV
′
i+1(u) := T (ui ) + ui −T (u) − u. We have

(2.14) H̃i+1(ui+1) :=Wi+1H (ui+1) +V ′
i+1(ui+1) = T (ui ) + ui − 2ui+1 = ui − ui+1,

where the last step follows by observing from the previous steps that (PP) says ui+1 = T (ui ).
The expression (2.14) easily gives (CL), and reduces (CI∼) to

1

2
‖ui+1 − ui ‖2 + 〈ui − ui+1,ui+1 − û〉 ≥ −∆i+1(û).

Using ui+1 = T (ui ) and û = T (û), and taking β > 0, (CI∼) therefore holds for

(2.15) ∆i+1(û) =
α + 2β − 1

2(1 − α) ‖ui+1 − ui ‖2

provided

0 ≤ D :=
β

1 − α ‖T (ui ) − ui ‖2 + 〈ui − û − (T (ui ) −T (û)),T (ui ) −T (û)〉.

Using the α-averaged property and û = J (û), we expand

D

1 − α = β ‖ J (u
i ) − ui ‖2 + 〈ui − û − J (ui ) + J (û), (1 − α)(J (ui ) − J (û)) + α(ui − û)〉

= (α + β)‖ui − û‖2 + (β + α − 1)‖ J (ui ) − J (û)‖2 − (2α + 2β − 1)〈J (ui ) − J (û),ui − û〉.

We take β := max{0, 1/2 − α}. Then 2α + 2β ≥ 1. Cauchy’s inequality and non-expansivity of

J thus give
D

1 − α ≥ 1

2
‖ui − û‖2 − 1

2
‖ J (ui ) − J (û)‖2 ≥ 0.

This veri�es (CI∼). From (2.15), ∆i+1(û) ≤ − 1
2 min{1,α/(1 − α)}‖ui+1 −ui ‖2. We now obtain the

claimed convergence from Corollary 2.2 and Proposition 2.5. �

Remark 2.10. The preconditioner Vi+1(u) = T (ui ) − T (u) is a T -based “distance”, which is not

obviously a Bregman distance.

3 saddle point problems

With K ∈ L(X ;Y ), G ∈ C(X ) and F ∗ ∈ C(Y ) on Hilbert spaces X and Y , we now wish to solve

(S). The �rst-order necessary optimality conditions can be written

(OC) − K∗ŷ ∈ ∂G(x̂), and Kx̂ ∈ ∂F ∗(ŷ).
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Setting U := X × Y and introducing the variable splitting notation u = (x,y), û = (x̂ , ŷ), etc.,
this succinctly be written as 0 ∈ H (û) in terms of the operator

(3.1) H (u) :=
(
∂G(x) + K∗y
∂F ∗(y) − Kx

)
.

In this section, concentrating on this speci�cH , we specialise the theory of Section 2.2 to saddle

point problems. Throughout, for some primal and dual step length and testing operatorsTi ,Φi ∈
L(X ;X ), and Σi+1,Ψi+1 ∈ L(Y ;Y ), we take

(3.2) Wi+1 :=

(
Ti 0

0 Σi+1

)
, and Zi+1 :=

(
Φi 0

0 Ψi+1

)
.

To work with arbitrary step length operators, which will be necessary for stochastic algo-

rithms in Section 4.5, as well as the partially accelerated algorithmsof [25],wewill need abstract

forms of partial strong monotonicity ofG and F ∗. As a �rst step, we take subsets of operators

T ⊂ L(X ;X ), and S ⊂ L(Y ;Y ).

We suppose that ∂G is partially (strongly) T -monotone, which we take to mean

(G-PM) 〈∂G(x ′) − ∂G(x),x ′ − x〉T̃ ≥ ‖x ′ − x ‖2
T̃ Γ
, (x,x ′ ∈ X ; T̃ ∈ T)

for some linear operator 0 ≤ Γ ∈ L(X ;X ). The operator T̃ ∈ T acts as a testing operator.

Similarly, we assume that ∂F ∗ is S-monotone in the sense

(F∗-PM) 〈∂F ∗(y ′) − ∂F ∗(y),y ′ − y〉
Σ̃
≥ 0 (y ,y ′ ∈ Y ; Σ̃ ∈ S).

Assuming G to satisfy (G-PM) for Γ and F ∗ to satisfy (F∗-PM), we also introduce

Ξi+1(Γ) :=
(

2Ti Γ 2TiK
∗

−2Σi+1K 0

)
,

which is an operator measure of strong monotonicity of H .

Example 3.1 (Block-separable structure, monotonicity). Let P1, . . . , Pm be projection opera-

tors in X with
∑m

j=1 Pj = I and PjPi = 0 if i , j . Suppose G1, . . . ,Gm ∈ C(X ) are (strongly)
convex with factors γ1, . . . ,γm ≥ 0. Then (G-PM) holds with Γ =

∑m
j=1 γjPj for

G(x) =
m∑

j=1

Gj (Pjx), and T =
{
T :=

∑

j ∈S
tjPj

���� tj > 0, S ⊂ {1, . . . ,m}
}
.(3.3)

3.1 estimates

Using the (strong) T -monotonicity of ∂G, the next lemma simpli�es Corollary 2.2 for H given

by (3.1). We introduce Γ̃ = Γ to facilitate later gap estimates that will require the conditions in

the lemma to hold for Γ̃ = Γ/2 instead of Γ̃ = Γ.
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Theorem 3.1. Let us be given K ∈ L(X ;Y ), G ∈ C(X ), and F ∗ ∈ C(Y ) on Hilbert spaces X and

Y . Suppose G satis�es (G-PM) for some 0 ≤ Γ ∈ L(X ;X ). For each i ∈ N, let Ti ,Φi ∈ L(X ;X )
and Σi+1,Ψi+1 ∈ L(Y ;Y ) be such that ΦiTi ∈ T . Also take V ′

i+1 : X × Y → X × Y , and Mi+1 ∈
L(X × Y ;X × Y ). Let H given by (3.1), Zi+1 andWi+1 by (3.2), and Vi+1 by (2.3). Suppose (PP)

is solvable, and denote the iterates by ui = (x i ,y i ). Then (CI), (CI∼) and (DI) hold if Zi+1Mi+1 is

self-adjoint, and for Γ̃ = Γ we have

(CI-Γ)
1

2
‖ui+1 − ui ‖2Zi+1Mi+1

︸                   ︷︷                   ︸
step length in local metric

+

1

2
‖ui+1 − û‖2

Zi+1(Ξi+1(Γ̃)+Mi+1)−Zi+2Mi+2︸                                         ︷︷                                         ︸
linear preconditioner update discrepancy

+ 〈∂F ∗(y i+1) − ∂F ∗(ŷ),y i+1 − ŷ〉Ψi+1Σi+1︸                                          ︷︷                                          ︸
variably useful remainder from H

+ 〈V ′
i+1(ui+1),ui+1 − û〉Zi+1︸                         ︷︷                         ︸

from non-linear preconditioner

≥ −∆i+1(û).

Proof. First of all, we observe that (CI-Γ) implies

(3.4)
1

2
‖ui+1 − ui ‖ + 1

2
‖ui+1 − û‖2Zi+1(Ξi+1(0)+Mi+1)−Zi+2Mi+2

+ 〈∂G(x i+1) − ∂G(x̂),x i+1 − x̂〉ΦiTi + 〈∂F ∗(y i+1) − ∂F ∗(ŷ),y i+1 − ŷ〉Ψi+1Σi+1
+ 〈V ′

i+1(ui+1),ui+1 − û〉Zi+1 ≥ −∆i+1(û).

Here pay attention to the fact that (3.4) employs Ξi+1(0) while (CI-Γ) employs Ξi+1(Γ̃). If we
show that (CI) follows from (3.4), then (CI∼) and (DI) follow from Corollary 2.2. Indeed, using

the expansion

Zi+1Wi+1 =

(
ΦiTi 0

0 Ψi+1Σi+1

)
,

we expand for any ũ = (x̃ , ỹ) that

〈Zi+1Wi+1(H (ui+1) −H (ũ)),ui+1 − ũ〉
= 〈∂G(x i+1) − ∂G(x̃),x i+1 − x̃〉ΦiTi + 〈∂F ∗(y i+1) − ∂F ∗(ỹ),y i+1 − ỹ〉Ψi+1Σi+1
+ 〈ΦiTiK

∗(y i+1 − ỹ),x i+1 − x̃〉 − 〈Ψi+1Σi+1K(x i+1 − x̃),y i+1 − ỹ〉.

With the help of Ξi+1(0) we then obtain

〈H (ui+1) −H (ũ),ui+1 − ũ〉Zi+1Wi+1
≥ 1

2
‖ui+1 − ũ‖Zi+1Ξi+1(0)

+ 〈∂G(x i+1) − ∂G(x̃),x i+1 − x̃〉ΦiTi + 〈∂F ∗(y i+1) − ∂F ∗(ỹ),y i+1 − ỹ〉Ψi+1Σi+1 .

Inserting this into (3.4), we obtain (CI). �

3.2 examples of primal–dual methods

We now look at several known methods for the saddle point problem (S).
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Example 3.2 (The primal–dual method of Chambolle and Pock [6]). This method consists

of iterating the system

x i+1 := (I + τi∂G)−1(x i − τiK∗y i),(3.5a)

x̄ i+1 := ωi (x i+1 − x i ) + x i+1,(3.5b)

y i+1 := (I + σi+1∂F ∗)−1(y i + σi+1Kx̄ i+1).(3.5c)

In the basic version of the algorithm, ωi = 1, τi ≡ τ0 > 0, and σi ≡ σ0 > 0, assuming the

step length parameters to satisfy

(3.6) τ0σ0‖K ‖2 < 1.

The iterates convergence weakly, and the method has O(1/N ) rate for the ergodic duality
gap, to which we will return in Section 4. IfG is strongly convex with factorγ , we may take

γ̃ ∈ (0,γ ], and accelerate

(3.7) ωi := 1/
√
1 + 2γ̃τi , τi+1 := τiωi , and σi+1 := σi/ωi .

This yieldsO(1/N 2) convergence of ‖xN − x̂ ‖2 to zero.

Proof of convergence of iterates. We formulate the method in our proximal point framework fol-

lowing [25, 12] by taking as the preconditioner

Mi+1 =

(
I −τiK∗

−σiK I

)
and V ′

i+1 = 0.

As the step length and testing operators we take Ti = τi I , Σi+1 = σi+1I , Φi = ϕi I , Ψi+1 = ψi+1I .

We also write Γ̃ := γ̃ I . Taking ∆i+1(û) := − 1
2 ‖ui+1 − ui ‖2Zi+1Mi+1

, we reduce (CI-Γ) to

(3.8)
1

2
‖ui+1 − û‖2Di+2

≥ 0 for Di+2 := Zi+1(Ξi+1(Γ̃) +Mi+1) − Zi+2Mi+2.

We may expand

Zi+1Mi+1 =

(
ϕi I −ϕiτiK∗

−ψi+1σiK ψi+1I

)
, and(3.9a)

Di+2 =

(
(ϕi (1 + 2γ̃τi ) − ϕi+1)I (ϕiτi + ϕi+1τi+1)K∗

(ψi+2σi+1 − 2ψi+1σi+1 −ψi+1σi )K (ψi+1 −ψi+2)I

)
.(3.9b)

We have ‖ · ‖Di+2
= 0 (but not Di+2 = 0, as the former depends on the o�-diagonals cancelling

out), and Zi+1Mi+1 is self-adjoint, if for some constantψ we take

(3.10) ϕi+1 := ϕi (1 + 2γ̃τi ), τi := ϕ
−1/2
i , σi := ϕiτi/ψ , and ψi+1 := ψ .

This gives the acceleration scheme (3.7). Moreover, for any δ ∈ (0, 1) holds

(3.11) Zi+1Mi+1 ≥
(
δϕiI 0

0 ψI − (1 − δ )−1KK∗

)
.
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Thus Zi+1Mi+1 ≥ 0 ifψ ≥ (1 − δ )−1‖K ‖2. By (3.10), σiτi = 1/ψ . Since this �xes the ratio of σi to
τi , we need to takeψ := 1/(σ0τ0) as well as δ := 1 − σ0τ0‖K ‖2. Through the positivity of δ , we

recover the initialisation condition (3.6).

Theorem 3.1 and Proposition 2.5 show weak convergence of the iterates without a rate. IfG

is strongly convex with factor γ ≥ 0, so that also γ̃ > 0, the results in [6, 25] show that τN is

of the orderO(1/N ), and consequently ϕN is of the order Θ(N 2). By Proposition 2.4, ‖xN − x̂ ‖2
converges to zero at the rate O(1/N 2). �

Example 3.3 (Alternating Directions Method of Multipliers, briefly). The classical ADMM

[11] and Douglas–Rachford splitting [10] are known to be related to the Chambolle–Pock

method; in fact the Chambolle–Pock method is a preconditioned ADMM [6]. From [3, Sec-

tion 5], we can deduce that compared to the Chambolle–Pock method, the ADMM merely

has the sign of K reversed in

Mi+1 =

(
I τiK

σiK I

)
.

Taking τi = τ0 and σi = σ0 constant and satisfying (3.6), the iterates converge weakly.

Acceleration can provide O(1/N ) convergence of ‖xN − x̂ ‖2.

Proof of convergence. Following Example 3.2, we now expand

Di+2 =

(
(ϕi (1 + 2γ̃τi ) − ϕi+1)I (3ϕiτi − ϕi+1τi+1)K∗

(ψi+1σi − 2ψi+1σi+1 −ψi+2σi+1)K (ψi+1 −ψi+2)I

)
.

This time ‖ · ‖Di+2
= 0 and Zi+1Mi+1 is self-adjoint if we take

(3.12) ϕi+1 := ϕi (1 + 2γ̃ τi ), τi+1 := τiϕi/ϕi+1, σi := ϕiτi/ψ , and ψi+1 := ψ .

If γ̃ = 0, which corresponds to the standard ADMMwith �xed step lengths, it is easy to retrace

the steps of Example 3.2 to prove weak convergence (without a rate). If γ̃ , 0, we obtainϕN+1 =

ϕN + 2γ̃ τN−1ϕN−1 = ϕN + 2γ̃τ0ϕ0 = ϕ0 + 2Nγ̃τ0ϕ0. Therefore, the acceleration scheme (3.12)

only gives the rate O(1/N ). �

Example 3.4 (Chambolle–Pock with a forward step). SupposeG = G0 + J withG (strongly)

convex with factor γ ≥ 0, and ∇J Lipschitz with factor L. (J does not have to be convex.)

In [7], the Chambolle–Pock method was extended to take forward steps with respect to J .

With everything else as in Example 3.2, take V ′
i+1(u) := (τi (∇J (x i ) − ∇J (x)), 0). Then (PP)

can be rearranged as

x i+1 := (I + τi∂G0)−1(x i − τi∇J (x i ) − τiK∗y i ),(3.13)

x̄ i+1 := ωi (x i+1 − x i ) + x i+1,(3.14)

y i+1 := (I + σi+1∂F ∗)−1(y i + σi+1Kx̄ i+1).(3.15)

The method inherits the convergences properties of Example 3.2 if we use the step length
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update rules (3.7), and initialise τ0,σ0 > 0 subject to (3.6), and

(3.16) 0 < θ := 1 − Lτ0/(1 − τ0σ0‖K ‖2).

Proof of convergence. With Di+2 as in (3.8), the condition (CI-Γ) becomes

(3.17)
1

2
‖ui+1 − ui ‖2Zi+1Mi+1

+

1

2
‖ui+1 − û‖2Di+2

+ τiϕi 〈∇J (x i ) − ∇J (x̂),x i+1 − x̂〉 ≥ −∆i+1(û).

The rules (3.10) force ‖ · ‖Di+2
= 0. Applying the estimate (2.9) to J , (3.17) becomes

1

2
‖ui+1 − ui ‖2Zi+1Mi+1

− τiϕiL

4
‖x i+1 − x i ‖2 ≥ −∆i+1(û).

We take ∆i+1(û) = −θ
2 ‖ui+1 −ui ‖2Zi+1Mi+1

for some θ > 0, and deduce using Cauchy’s inequality

that this condition holds if

(1 − θ )Zi+1Mi+1 ≥ τiϕiL

(
I 0

0 0

)
.

Recalling (3.11), this is true if (1 − θ )δϕi ≥ τiϕiL and ψ ≥ (1 − δ )−1ϕiτ 2i ‖K ‖2. Further recalling
(3.10), and observing that {τi } is non-increasing, we only have to satisfy (1−θ )(1−τ0σ0‖K ‖2) ≥
Lτ0. Otherwise put, we obtain (3.16). �

Example 3.5 (GIST). Suppose G(x) = 1
2 ‖ f −Ax ‖2, ‖A‖ <

√
2, and ‖K ‖ ≤ 1. Take

V ′
i+1(u) :=

(
∇G(x i ) − ∇G(x)

0

)
, and Mi+1 :=

(
I 0

0 I − KK∗

)
.

WithTi := I and Σi+1 := I , we then obtain the Generalised Iterative Soft Thresholding (GIST)

algorithm of [16]

y i+1 := (I + ∂F ∗)−1((I − KK∗)y i + K(x i − ∇G(x i ))),
x i+1 := x i − ∇G(x i ) − K∗y i+1.

The iterates {x i }i∈N converge weakly to x̂ .

Proof of convergence. Clearly Zi+1Mi+1 is positive semi-de�nite self-adjoint. Also G satis�es

(G-PM) with Γ = A∗A. If we take Φi = I and Ψi+1 = I , then

Di+2 := Zi+1(Ξi+1(Γ̃) +Mi+1) − Zi+2Mi+2 =

(
2A∗A 2K∗

−2K 0

)
.

Thus 1
2 ‖u‖2Di+2

= ‖x ‖2A∗A. Eliminating ∂F ∗ by monotonicity, (CI-Γ) thus holds if

1

2
‖ui+1 − ui ‖2Zi+1Mi+1

+ ‖x i+1 − x̂ ‖2A∗A + 〈Zi+1V ′
i+1(ui+1),ui+1 − û〉 ≥ −∆i+1(û).
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Expanding and using ‖K ‖ < 1, we see this to hold when

1

2
‖x i+1 − x i ‖2 + ‖x i+1 − x̂ ‖2A∗A + 〈A∗A(x i − x i+1),x i+1 − x̂〉 ≥ −∆i+1(û).

Our assumption ‖A‖ <
√
2 guarantees 1

2 (A∗A)2 < A∗A. Cauchy’s inequality therefore shows

that we can take ∆i+1 = − c
2 ‖x i+1 −x i ‖2 for some c > 0. Using Theorem 3.1 and Proposition 2.4,

we obtain weak convergence. �

4 the ergodic duality gap and stochastic methods

We now study the extension of the testing approach of Section 2.2 to produce the convergence

of an ergodic duality gap. Throughout this section, we are in the saddle point setup of Section 3.

In particular,H is as in (3.1), and the step length and testing operatorsWi+1 and Zi+1 as in (3.2).

4.1 preliminary gap estimates

Our �rst lemma demonstrates how to obtain a “preliminary” gap G ′
i+1(u) from H . If the step

lengths and tests are scalar, Ti = τi I , and Φi = ϕi I , etc., and satisfy τiϕi = σiψi+1, it is easy to

bound this preliminary gap from below by τiϕi times the conventional duality gap

(4.1) G(x,y) :=
(
G(x) + 〈ŷ,Kx〉 − F (ŷ)

)
−

(
G(x̂) + 〈y ,Kx̂〉 − F ∗(y)

)
.

To do the same for more general step length operators, we will in Section 4.2 introduce abstract

notions of convexity that incorporate ergodicity and stochasticity.

Lemma 4.1. Let us be given K ∈ L(X ;Y ), G ∈ C(X ), and F ∗ ∈ C(Y ) on Hilbert spaces X and Y .

For each i ∈ N, let Ti ,Φi ∈ L(X ;X ) and Σi+1,Ψi+1 ∈ L(Y ;Y ). Then for any Γ̃ ∈ L(X ;X ),

(4.2) 〈H (ui+1),ui+1 − û〉Zi+1Wi+1
= G ′

i+1(ui+1; Γ̃) +
1

2
‖ui+1 − û‖2

Zi+1Ξi+1(Γ̃)
,

where the “preliminary gap”

G ′
i+1(u; Γ̃) :=〈∂G(x),x − x̂〉ΦiTi − ‖x − x̂ ‖2

ΦiTi Γ̃
+ 〈∂F ∗(y),y − ŷ〉Ψi+1Σi+1

− 〈ŷ, (KT ∗
i Φ

∗
i − Ψi+1Σi+1K)x̂〉 − 〈y ,Ψi+1Σi+1Kx̂〉 + 〈ŷ,KT ∗

i Φ
∗
i x〉.

Proof. Similarly to the proof of Theorem 3.1, we have

〈H (ui+1),ui+1 − û〉Zi+1Wi+1
= 〈∂G(x i+1),x i+1 − x̂〉ΦiTi + 〈ΦiTiK

∗y i+1,x i+1 − x̂〉
+ 〈∂F ∗(y i+1),y i+1 − ŷ〉Ψi+1Σi+1 − 〈Ψi+1Σi+1Kx i+1,y i+1 − ŷ〉.
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A little bit of reorganisation gives (4.2). Indeed

〈H (ui+1),ui+1 − û〉Zi+1Wi+1
= 〈∂G(x i+1),x i+1 − x̂〉ΦiTi − ‖x i+1 − x̂ ‖2

ΦiTi Γ̃

+ 〈∂F ∗(y i+1),y i+1 − ŷ〉Ψi+1Σi+1 + ‖x i+1 − x̂ ‖2
ΦiTi Γ̃

+ 〈y i+1 − ŷ, (KT ∗
i Φ

∗
i − Ψi+1Σi+1K)(x i+1 − x̂)〉

− 〈ŷ, (KT ∗
i Φ

∗
i − Ψi+1Σi+1K)x̂〉

− 〈y i+1,Ψi+1Σi+1Kx̂〉 + 〈ŷ,KT ∗
i Φ

∗
i x

i+1〉

= G ′
i+1(ui+1; Γ̃) +

1

2
‖ui+1 − û‖2

Zi+1Ξi+1(Γ̃)
. �

The next lemma extends Theorem 3.1 to estimate the preliminary gap.

Lemma 4.2. Let us be given K ∈ L(X ;Y ), G ∈ C(X ), and F ∗ ∈ C(Y ) on Hilbert spaces X and Y .

For each i ∈ N, letTi ,Φi ∈ R(L(X ;X )) and Σi+1,Ψi+1 ∈ R(L(Y ;Y )), as well asV ′
i+1 ∈ R(X ×Y →

X ×Y ) andMi+1 ∈ R(L(X ×Y ;X ×Y )). Let H given by (3.1), Zi+1 andWi+1 by (3.2), and Vi+1 by

(2.3). Suppose (PP) is solvable, and denote the iterates by ui = (x i ,y i). If Zi+1Mi+1 is self-adjoint,

and

(CI-G) 1

2
‖ui+1 − ui ‖2Zi+1Mi+1

+

1

2
‖ui+1 − û‖2

Zi+1(Ξi+1(Γ̃)+Mi+1)−Zi+2Mi+2

+ 〈V ′
i+1(ui+1),ui+1 − û〉Zi+1 ≥ −∆̃i+1(û)

for some Γ̃ ∈ L(X ;X ), then

(4.3)
1

2
‖uN − û‖2ZN+1MN+1

+

N−1∑

i=0

G ′
i+1(ui+1; Γ̃) ≤

1

2
‖u0 − û‖2Z1M1

+

N−1∑

i=0

∆̃i+1(û) (N ≥ 1).

Proof. Inserting (4.2) into (CI-G) proves (CI∼) for ∆i+1(û) := ∆̃i+1(û) − G ′
i+1(ui+1; Γ̃). Now we

use Theorem 2.1. �

The problem with the above Lemma 4.2 is that it loses ∂F from the condition (CI-G) com-

pared to (CI-Γ). Thus (CI-G) can be more di�cult to satisfy for particular preconditioners that

are related to ∂F , such as the forward–backward splitting in Example 2.5. Fortunately, there is

a remedy: to study a one-sided gap that provides no indication of the convergence of the dual

variable.

Lemma 4.3. Let us be given K ∈ L(X ;Y ), G ∈ C(X ), and F ∗ ∈ C(Y ) on Hilbert spaces X and Y .

For each i ∈ N, letTi ,Φi ∈ R(L(X ;X )) and Σi+1,Ψi+1 ∈ R(L(Y ;Y )), as well asV ′
i+1 ∈ R(X ×Y →

X ×Y ) andMi+1 ∈ R(L(X ×Y ;X ×Y )). Let H given by (3.1), Zi+1 andWi+1 by (3.2), and Vi+1 by

(2.3). Suppose (PP) is solvable, and denote the iterates by ui = (x i ,y i). If Zi+1Mi+1 is self-adjoint,

and (CI-Γ) holds for some Γ̃ ∈ L(X ;X ), then

(4.4)
1

2
‖uN − û‖2ZN+1MN+1

+

N−1∑

i=0

G ′
i+1(x i+1, ŷ; Γ̃) ≤

1

2
‖u0 − û‖2Z1M1

+

N−1∑

i=0

∆i+1(û) (N ≥ 1).
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Proof. Let us write (Hx (u),Hy (u)) := H (u). Then 0 ∈ Hy (ŷ). We may thus expand

G ′
i+1(ui+1; Γ̃) = G ′

i+1(ui+1; Γ̃) − 〈Hy (ŷ),y i+1 − ŷ〉Ψi+1Σi+1
= G ′

i+1(ui+1; Γ̃) − 〈∂F ∗(ŷ),y i+1 − ŷ〉Ψi+1Σi+1 + 〈Ψi+1Σi+1K∗x̂ ,y i+1 − ŷ〉
= G ′

i+1(x i+1, ŷ ; Γ̃) + 〈∂F ∗(y i+1) − ∂F ∗(ŷ),y i+1 − ŷ〉Ψi+1Σi+1 .

Inserting this into (4.2), we obtain

〈H (ui+1),ui+1 − û〉Zi+1Wi+1
= G ′

i+1(x i+1, ŷ ; Γ̃) +
1

2
‖ui+1 − û‖2

Zi+1Ξi+1(Γ̃)

+ 〈∂F ∗(y i+1) − ∂F ∗(ŷ),y i+1 − ŷ〉Ψi+1Σi+1 .
(4.5)

We write ∆̃i+1 for the ∆i+1 for which (CI-Γ) holds. Inserting (4.5) into (CI-Γ) proves (CI∼) for
∆i+1(û) := ∆̃i+1(û) − G ′

i+1(x i+1, ŷ; Γ̃). The rest follows from Theorem 2.1. �

4.2 conversion of preliminary gaps to ergodic gaps

The “preliminary gaps” are not as such very useful. To go further, the abstract monotonicity

assumptions (G-PM) and (F∗-PM) are not enough, and we need analogous convexity formula-

tions. We formulate these conditions directly in the stochastic setting. Towards this end we

introduce the following notation:

Definition 4.1. We write x ∈ R(X ) if T is an T -valued random variable: x : Ω → X for some

(in the present work �xed) probability space (Ω,O), where O is a σ -algebra on Ω. We denote

by E the expectation with respect to a probability measure P on Ω. As is common, we abuse

notation and write x = x(ω) for the unknown random realisation ω ∈ Ω.

We refer to [23] for more details on measure-theoretic probability. From now on, we assume

for all N ≥ 1 that whenever T̃i (:= ΦiTi ) ∈ R(T ) and x i+1 ∈ R(X ) for each i = 0, . . . ,N − 1with∑N−1
i=0 E[T̃i ] = I , then for some 0 ≤ Γ ∈ L(X ;X ) holds

(G-EC) G

(
N−1∑

i=0

E[T̃ ∗
i x

i+1]
)
−G(x̂) ≥

N−1∑

i=0

E
[
〈∂G(x i+1),x i+1 − x̂〉T̃i +

1

2
‖x i+1 − x̂ ‖2

T̃i Γ

]
.

Analogously, we assume for Σ̃i+1 (:= Ψi+1Σi+1) ∈ R(S) and y i+1 ∈ R(Y ) for each i = 0, . . . ,N −1
with

∑N−1
i=0 E[Σ̃i+1] = I that

(F∗-EC) F ∗
(
N−1∑

i=0

E[Σ̃∗
i+1y

i+1]
)
− F ∗(ŷ) ≥

N−1∑

i=0

E
[
〈∂F ∗(y i+1),y i+1 − ŷ〉

Σ̃i+1

]
.

Example 4.1 (Block-separable structure, ergodic convexity). Let G and T have the separa-

ble structure of Example 3.1. We claim that (G-EC) holds. Indeed, let us introduce T̃i :=∑m
j=1 τ̃j,iPj ≥ 0, satisfying

∑N−1
i=0 E[̃τj,i ] = 1 for each j = 1, . . . ,m. Splitting (G-EC) into sepa-

rate inequalities over all j = 1, . . . ,m, and using the strong convexity of Gj , we see (G-EC)
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to be true if for all j = 1, . . . ,m holds

(4.6) Gj

(
N−1∑

i=0

E[̃τj,iPjx i+1]
)
−Gj (Pj x̂) ≥

N−1∑

i=0

E
[
τ̃i

(
Gj (Pjx i+1) −Gj (Pj x̂)

) ]
.

The right hand side can also be written as
∫
ΩN

Gj (Pjx i (ω)) −Gj (Pj x̂)dµN (i,ω) for the mea-

sure µN := τ̃j
∑N−1
i=0 δi × P on the domain Ω

N := {0, . . . ,N − 1} × Ω. Using our assumption∑N−1
i=0 E[̃τj,i ] = 1, we deduce µN (ΩN ) = 1. An application of Jensen’s inequality now shows

(4.6). Therefore (G-EC) is satis�ed.

We also assume that either

E[ΦiTi ] = η̄i I , and E[Ψi+1Σi+1] = η̄i I , (i ≥ 1),(CG)

or

E[ΦiTi ] = η̄i I , and E[ΨiΣi ] = η̄i I , (i ≥ 1),(CG∗)

As will see in Example 4.2, (CG∗) is satis�ed by the accelerated Chambolle–Pock method of

Example 3.2. In our companion paper [24], we will however see that (CG) is required to develop

doubly-stochastic methods.

With these, and the gap functional G from (4.1), we derive the next two lemmas that are

meant to be used in combination with either Lemma 4.2 or Lemma 4.3, to estimate the sum of

the preliminary gaps therein. For this, the expectation needs to be taken in the estimates of the

latter. All of these di�erent combinations will be summarised in Theorem 4.6 after the lemmas.

Lemma 4.4. Suppose (G-EC), (F∗-EC), and (CG) hold. Set

(4.7) ζN :=

N−1∑

i=0

η̄i ,

and for {(x i ,y i )}Ni=1 ⊂ X × Y , de�ne the ergodic sequences

(4.8) x̃N := ζ −1N E

[
N−1∑

i=0

T ∗
i Φ

∗
i x

i+1

]
, and ỹN := ζ −1N E

[
N−1∑

i=0

Σ
∗
i+1Ψ

∗
i+1y

i+1

]
.

Then
N−1∑

i=0

E[G ′
i+1(x i+1,y i+1; Γ/2)] ≥ ζNG(x̃N , ỹN ).

Proof. Using (CG), (G-EC), and (F∗-EC), we compute

N−1∑

i=0

E[G ′
i+1(x i+1,y i+1; Γ/2)] =

N−1∑

i=0

E

[
〈∂G(x i+1),x i+1 − x̂〉ΦiTi

−‖x i+1 − x̂ ‖2
ΦiTi Γ/2 + 〈∂F ∗(y i+1),y i+1 − ŷ〉Ψi+1Σi+1

]

− ζN 〈ỹN ,Kx̂〉 + ζN 〈ŷ,Kx̃N 〉 ≥ ζNG(x̃N , ỹN ).
This immediately yields the claim. �
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Lemma 4.5. Suppose (G-PM), (F∗-PM), (G-EC), (F∗-EC), and (CG∗) hold. Set

(4.9) ζ∗,N :=

N−1∑

i=1

η̄i ,

and for {(x i ,y i )}Ni=1 ⊂ X × Y , de�ne the ergodic sequences

(4.10) x̃∗,N := ζ −1∗,NE

[
N−1∑

i=1

T ∗
i Φ

∗
i x

i+1

]
, and ỹ∗,N := ζ −1∗,NE

[
N−1∑

i=1

Σ
∗
iΨ

∗
i y

i

]
.

Then
N−1∑

i=0

E[G ′
i+1(x i+1,y i+1; Γ/2)] ≥ ζNG(x̃∗,N , ỹ∗,N ).

Proof. Using (G-PM) and (OC), we deduce

G ′
1 (x 1,y 1; Γ/2) ≥ 〈∂F ∗(y 1),y 1 − ŷ〉Ψ1Σ1

+ 〈ŷ,Ψ1Σ1Kx̂〉 − 〈y 1,Ψ1Σ1Kx̂〉.

Likewise (F∗-PM) and (OC) give

G ′
N (xN ,yN ; Γ/2) ≥ 〈∂G(xN ),xN − x̂〉ΦN−1TN−1 − ‖xN − x̂ ‖2

ΦN−1TN−1Γ/2

− 〈ŷ,KT ∗
N−1Φ

∗
N−1x̂〉 + 〈ŷ,KT ∗

N−1Φ
∗
N−1x

N 〉.

Shifting indices of y i by one compared to G ′
i+1, we de�ne

G ′
∗,i+1 :=〈∂G(x i+1),x i+1 − x̂〉ΦiTi − ‖x i+1 − x̂ ‖2

ΦiTi Γ/2 + 〈∂F ∗(y i ), Σ∗
iΨ

∗
i (y i − ŷ)〉

− 〈ŷ, (KT ∗
i Φ

∗
i − ΨiΣiK)x̂〉 − 〈y i ,ΨiΣiKx̂〉 + 〈ŷ,KT ∗

i Φ
∗
i x

i+1〉.

Correspondingly reorganising terms, we observe

N−1∑

i=0

G ′
i+1(x i+1,y i+1; Γ/2) = G ′

1 (x 1,y 1) + G ′
N (xN ,yN ; Γ/2)

+

N−2∑

i=1

G ′
i+1(x i+1,y i+1; Γ/2) ≥

N−1∑

i=1

G ′
∗,i+1.

We now estimate
∑N−1

i=1 E[G ′
∗,i+1] analogously to the proof of Lemma 4.4. �

The next theorem is our main result for saddle point problems.

Theorem 4.6. Let us be given K ∈ L(X ;Y ),G ∈ C(X ), and F ∗ ∈ C(Y ) on Hilbert spaces X and Y ,

satisfying (G-PM) and (F∗-PM) for some 0 ≤ Γ ∈ L(X ;X ). For each i ∈ N, letTi ,Φi ∈ R(L(X ;X ))
and Σi+1,Ψi+1 ∈ R(L(Y ;Y )) be such that ΦiTi ∈ R(T ) and Ψi+1Σi+1 ∈ R(S). Also take V ′

i+1 ∈
R(X ×Y → X ×Y ) andMi+1 ∈ R(L(X ×Y ;X ×Y )). Let H given by (3.1), Zi+1 andWi+1 by (3.2),
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and Vi+1 by (2.3). Suppose (PP) is solvable, and denote the iterates by ui = (x i ,y i ). Let û = (x̂, ŷ)
be a solution to (OC). Assuming one of the following cases to hold, let

д̃N :=




0, Γ̃ = Γ, (CI-Γ) holds,

ζNG(x̃N , ŷ), Γ̃ = Γ/2; (CI-Γ), (G-EC), (F∗-EC) and (CG) hold,

ζ∗,NG(x̃∗,N , ŷ), Γ̃ = Γ/2; (CI-Γ), (G-EC), (F∗-EC) and (CG∗) hold,

ζNG(x̃N , ỹN ), Γ̃ = Γ/2; (CI-G), (G-EC), (F∗-EC) and (CG) hold,
ζ∗,NG(x̃∗,N , ỹ∗,N ), Γ̃ = Γ/2; (CI-G), (G-EC), (F∗-EC) and (CG∗) hold.

If Zi+1Mi+1 is self-adjoint, then

(DI-G) 1

2
E

[
‖uN − û‖2ZN+1MN+1

]
+ д̃N ≤ ‖u0 − û‖2Z1M1

+

N−1∑

i=0

E[∆i+1(û)].

Proof. The case д̃N = 0 is simply the result of taking the expectation in the claim of Theorem 3.1.

The remaining cases follow by taking the expectation in di�erent combinations of Lemma 4.2

or 4.3 with Lemma 4.4 or 4.5. �

As an easy corollary, we obtain convergence of function values for the basic minimisation

problem H = ∂G.

Corollary 4.7. Let us be given G ∈ C(X ), satisfying (G-PM) and (G-EC) for Γ = 0. For each

i ∈ N, letWi ,Mi ,Zi ∈ R(L(X ;X )) as well as V ′
i ∈ R(X → X ). Suppose ZiWi ∈ R(T ), that

ZiMi is self-adjoint, that (CI) holds, and (PP) is solvable withH = ∂G andVi+1 as in (2.3). Suppose

E[ZiWi ] = η̄i I for some η̄i > 0. Let û ∈ [∂G]−1(0). Then the iterates {ui }i∈N of (PP) satisfy (DI-G)
with

д̃N := ζN (G(ũN ) −G(û)),

where

ũN := ζ −1N E

[
N−1∑

i=0

W ∗
i Z

∗
i u

i+1

]
, ζN =

N−1∑

i=0

η̄i .

Proof. Introducing K := 0 and F ∗ ≡ 0 (or F ∗ ≡ δ {0}), we can write the original problem in the

saddle point form (S). Then the gapG(x,y) = G(x)−G(x̂ )measures the convergence of function

values. We can also extend the method for (PP) with H = ∂G to the saddle point problem by

choosing

V̄ ′
i+1(u) = (V ′

i+1(x), 0), and M̄i+1 :=

(
Mi+1 0

0 0

)
,

as well as Ti := Wi , Φi := Zi . We also denote by W̄i+1 and Z̄i+1 the step length and testing

operators for the saddle point problem. Now TiΦi = η̄i I , so we can choose Ψi+1 = ψi+1I and

Σi+1 = σi+1I such that (CG) holds and indeed KT ∗
i Φ

∗
i = Ψi+1Σi+1K . The latter causes the o�-

diagonal components of Z̄i+1Ξi+1(Γ̃) to cancel. Consequently (CI-Γ) holds for Γ̃ = 0 by virtue

of (CI) holding for the original method. Now we just apply Theorem 4.6. �
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4.3 primal–dual examples revisited

We now study gap estimates for several of the examples from Section 3.

Lemma 4.8. SupposeG ∈ C(X ) is (strongly) convex with factor γ ≥ 0,Ti = τi I and Φi = ϕi I , and

T = [0,∞)I . Then both (G-PM) and (G-EC) hold with Γ = γ I .

Proof. This follows from Example 4.1 withm = 1. �

Suppose we have a method for (S) that satis�es the conditions of the earlier Theorem 3.1

with Γ̃ = Γ = γ I , Ti = τi I , Φi = ϕi I , Σi+1 = σi+1, and Ψi+1 = ψi+1I . This includes the exam-

ples of Section 3.2. Then Lemma 4.8 proves all of (G-EC), (F∗-EC), (G-PM) and (F∗-PM). To use

Theorem 4.6, it remains to prove either (CI-Γ) or (CI-G) with Γ̃ = (γ/2)I instead of Γ̃ = γ I , and
either (CG) or (CG∗). The conditions (CG) or (CG∗) we reduce to

(4.11) either ϕiτi = ψi+1σi+1 or ϕiτi = ψiσi .

If these conditions are satis�ed, and ∆i+1 ≤ 0, we get from Theorem 4.6 the convergence of

G(x̃N , ŷ) or G(x̃∗,N , ŷ) to zero at the respective rate O(1/ζN ) or (1/ζ∗,N ).
Let us now return to the primal–dual examples of Section 3.2. In the accelerated variants, we

took arbitrary γ̃ ∈ [0,γ ], and proved (CI-Γ) for Γ̃ = γ̃ I . Therefore, it now su�ces to restrict γ̃ ∈
[0,γ/2] to satisfy (CI-Γ) for Theorem 4.6. We can also eliminate F ∗ from (CI-Γ) by monotonicity,

so (CI-G) also holds in that case.

Example 4.2 (Chambolle–Pock gap). The Chambolle–Pock method of Example 3.2 satis�es

the second part of (4.11), and we have ζ∗,N =
∑N−1

i=1 ϕ
1/2
i as well as ∆i+1 ≤ 0. In the unac-

celerated case (̃γ = 0), we get ζ∗,N = Nϕ
1/2
0 . Therefore, according to the remarks in the

previous paragraph, we getO(1/N ) convergence of G(x̃∗,N , ỹ∗,N ) to zero. In the accelerated

case γ̃ ∈ (0,γ/2],ϕi is of the orderΘ(i2). Therefore also ζ∗,N is of the orderΘ(N 2), so we get
O(1/N 2) convergence of G(x̃∗,N , ỹ∗,N ) to zero. The convergence of G(x̃∗,N , ŷ) is analogous.

Example 4.3 (ADMMgap). The ADMM of Example 3.3 also satis�es the second part of (4.11).

We recall that ϕiτi = constant. Therefore ζN is always of the order Θ(N ). We now get the

convergence of G(x̃N , ỹN ) to zero at the rateO(1/N )with or without the step length update
scheme (3.12).

Example 4.4 (GIST gap). The GIST of Example 3.5 satis�es either of the conditions in (4.11),

as τi = ϕi = σi+1 = ψi+1 = 1. It therefore has ζN = N − 1 and ζ∗,N = N . Therefore, we have

O(1/N ) convergence of all of the gaps to zero.
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4.4 basic examples revisited

Let H = ∂G for G ∈ C(U ), and consider a method satisfying the conditions of Theorem 2.1

withWi = τi I , Zi = ϕi I . This includes many of our examples in Section 2.3. Lemma 4.8 proves

(G-EC), so the conditions of Corollary 4.7 are satis�ed with ζN =
∑N−1

i=1 τiϕi . Therefore,G(x̃N )
converges to G(x̂) at the rate O(1/ζN ).

Example 4.5 (Gradient descent function value). For the gradient descentmethod of Example 2.3,

we have τi = τ and ϕi = ϕ constants, so we obtain O(1/N ) rate. Similarly we can obtain

O(1/N 2) convergence for the accelerated variant from Example 2.4 as long as we choose

γ̃ ∈ (0,γ/2].

Example 4.6 (Forward–backward spli�ing function value). As we recall from Example 2.5,

forward–backward splittinghas the same convergence properties as gradient descent. There-

fore Example 4.5 characterises convergence of the function values.

Example 4.7 (Newton’s method function value). For Newton’s method in Example 2.7, we

have τi = 1 and ϕN := (2κ)Nϕ0 for κ ∈ (1/2, 1). We therefore obtain linear convergence of

the function values.

4.5 stochastic examples

We now exploit the fact that the step lengthWi+1 can be a non-invertible operator. We observe

that in a stochastic setting,we only need the expectationE[∆i+1] in Corollary 4.7 and Theorem 4.6.

Therefore, we can relax the relevant condition (CI∼), (CI), (CI-Γ), or (CI-G) to the expectation.

This may produce more lenient step length and other conditions. Here we demonstrate the

�exibility of our techniques with a few basic examples. We refer to the review article [26] for

an introduction and further references to stochastic coordinate descent, and to our companion

paper [24] for primal–dual methods based on the work here.

Definition 4.2. We write (P1, . . . , Pm) ∈ P(U ) if P1, . . . , Pm are projection operators in U with∑m
j=1 Pj = I , and PjPi = 0 for i , j . For random S(i) ⊂ {1, . . . ,m}, we then set

PS (i) :=
∑

j ∈S (i)
Pj , and ΠS (i) :=

∑

j ∈S (i)
π−1
j,iPj , where πj,i := P[j ∈ S(i)] > 0.

For smoothG ∈ C(U ), we let LS (i) > 0 be the ΠS (i)-relative smoothness factor (see Lemma b.1),

satisfying

(4.12) L−1S (i)‖∇G(u) − ∇G(v)‖2
ΠS (i )

≤ 〈∇G(u) − ∇G(v),u − v〉, (u,v ∈ U ).

We write E[·|i] for the conditional expectation with respect to random variable realisations

up to and including iteration i.
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Example 4.8 (Stochastic gradient descent). Let G ∈ C(U ) have Lipschitz gradient, and

(P1, . . . , Pm) ∈ P(U ). For each i ∈ N, take random S(i) ⊂ {1, . . . ,n}, and set

(4.13) Wi+1 := τiΠS (i), Mi+1 := I , and V ′
i+1(u) :=Wi+1[∇G(ui ) − ∇G(u)].

Then (PP) says that we take gradient step on the random subspace range(ΠS (i)):

(4.14) ui+1 = ui − τiΠS (i)∇G(ui ).

If the step lengths are deterministic and satisfy ϵ ≤ τiLS (i) < 2πj,i for all j ∈ S(i) for
some ϵ > 0, we have E[G(ũN )] → G(û) at the rate O(1/N ). Through the use of the “local”

smoothness factors LS (i), the method may be able to take larger steps τi than those allowed

by the global factor L in Example 2.3.

Proof of convergence. Taking Zi+1 := I , Lemma 4.8 shows that G satis�es (G-EC) (with Γ = 0).

We can also simply de�ne η̄i := E[ZiWi ]. Then ζN =
∑N−1
i=0 E[ZiWi ] ≥ ∑N−1

i=0 E[Wi ]ϵ ≥ ϵI .

Therefore Corollary 4.7 and Proposition 2.4 show the desired convergence provided we verify

(CI∼). We do this through (CI∗), which withUi+1 = U now reads

1

2
‖u − ui ‖2 + ϕτi 〈∇G(ui ) − ∇G(u∗),u − u∗〉ΠS (i ) ≥ −∆i+1(u∗;u).

We have

E[〈∇G(ui ) − ∇G(u∗),ui − u∗〉ΠS (i )] = E[〈∇G(ui ) − ∇G(u∗),ui − u∗〉E[ΠS (i ) |i−1]]
= E[〈∇G(ui ) − ∇G(u∗),ui − u∗〉].

Similarly to (2.9), we may thus estimate

E[〈∇G(ui ) − ∇G(u∗),u − u∗〉ΠS (i )]
= E[〈∇G(ui ) − ∇G(u∗),ui − u∗〉] + E[〈∇G(ui ) − ∇G(u∗),u − ui 〉ΠS (i )]

≥ E

[
〈∇G(ui ) − ∇G(u∗),ui − u∗〉 − L−1S (i)‖∇G(u

i ) − ∇G(u∗)‖2
ΠS (i )

−
LS (i)
4

‖u − ui ‖2
ΠS (i )

]
.

Using (4.12), we see that (CI∗) is veri�ed with

(4.15) E[∆i+1(u∗;u)] = −E
[
m∑

j=1

1 − τiπ−1
j,iLS (i)/2
2

‖Pj (u − ui )‖2
]
.

This satis�es ∆i+1(u∗;u) ≤ 0 under our step length assumptions. �

The smoothness of G limits the usefulness of Example 4.8. However, it forms the basis for

popular stochastic forward–backward splitting methods, of which we now provide an example.
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Example 4.9 (Stochastic forward–backward spli�ing). Let (P1, . . . , Pm) ∈ P(U ). Suppose
H = ∇G + ∂F for G, F ∈ C(U ), where G has Lipschitz gradient, and F =

∑m
j=1 Fj ◦ Pj . Take

Mi+1,Wi+1, andV
′
i+1 as in Example 4.8. Then (PP) describes the stochastic forward–backward

splitting method

ui+1 := (I + τiΠS (i)∂F )−1
(
ui − τiΠS (i)∇G(ui )

)
.

With uj := Pju, this can be written

ui+1j :=

{
(I + τiπ−1

j,i∂Fj )−1
(
uij − τiπ−1

j,iPj∇G(ui )
)
, j ∈ S(i),

uj , j < S(i).

Using Lemma 2.7, we deduce that the method has exactly the same convergence properties

as the stochastic gradient descent in Example 4.8.

Remark 4.9. Following Example 2.4, it is also possible to construct accelerated versions of both

Examples 4.8 and 4.9 if G + F is strongly convex.

Example 4.10 (Stochastic Newton’s method). Suppose (P1, . . . , Pm) ∈ P(U ) andG ∈ C2(X ).
Take H = ∇G,Wi+1 := PS (i) and

Vi+1(u) := [∇2G(ui ) − (I − PS (i))∇2G(ui )PS (i)](u − ui ) + PS (i)[∇G(ui ) − ∇G(u)],

where we abbreviate AS (i) := PS (i)APS (i). Then (PP) reads

0 = PS (i)∇G(ui ) + [∇2G(ui )]S (i)(ui+1 − ui ) + [∇2G(ui )]S (i)c (ui+1 − ui ).

We get

ui+1 = ui + [∇2G(u)]†
S (i)∇G(u

i ),

where A†
S (i) satis�es A

†
S (i) = PS (i)A

†
S (i)PS (i) and AS (i)A

†
S (i) = A†

S (i)AS (i) = PS (i). This is a

variant of stochastic Newton’s method and “sketching” [20, 19]. Notice how [∇2G(u)]†
S (i)

can be signi�cantly cheaper to compute than [∇2G(u)]−1 .
With ourmachinery,we easily obtainwith no convexity assumptions both function value

and, as a novelty for general G, iterate convergence in expectation: If ∇2G(û) > 0 and

E[P i |i − 1] = pI for some p ∈ (0, 1), then both E[G(ũN )] → G(û) and E[‖uN − û‖2] → 0 at

a linear rate.

Proof of convergence. We set Mi+1 := ∇2G(u∗) and Zi := ϕi I for some ϕi > 0. Then G ∈ C2(X )
implies that Zi+1Mi+1 is self-adjoint. We abbreviate P i := PS (i) and suppose ∇2G(u∗) > 0. We

also setUi+1 := {u ∈ U | (I − P i )(u − ui )} in (CI∗), which now reads

(4.16)
1

2
‖u − ui ‖2

ϕi ∇2G(u∗) +
1

2
‖u − u∗‖2(ϕi−ϕi+1)∇2G(u∗) + ϕiDi+1 ≥ −∆i+1(u∗;u)
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for

Di+1 := D
1
i+1 + D

2
i+2 := 〈P i (∇G(ui ) − ∇G(u∗)),u − u∗〉

+ 〈(∇2G(ui ) − (I − P i )∇2G(ui )P i − ∇2G(u∗))(u − ui ),u − u∗〉.

By the fundamental theorem of calculus, there exists ζ i between ui and u∗ with

D1
i+1 = 〈P i∇2G(ζ i )(ui − u∗),u − u∗〉 = 〈∇2G(u∗)(ui − u∗),u − u∗〉

− 〈(I − P i )∇2G(u∗)(ui − u∗),u − u∗〉 + 〈P i [∇2G(ζ i ) − ∇2G(u∗)](ui − u∗),u − u∗〉.

Using P i (u − ui ) = u − ui = (u − u∗) + (u∗ − ui ), we can rearrange

D2
i+1 = 〈[∇2G(ui ) − ∇2G(u∗)](u − ui ),u − u∗〉 − 〈(I − P i )∇2G(ui )(u − ui ),u − u∗〉
= 〈[∇2G(ui ) − ∇2G(u∗)](u − u∗),u − u∗〉 − 〈P i [∇2G(ui ) − ∇2G(u∗)](ui − u∗),u − u∗〉
− 〈(I − P i )∇2G(ui )(u − u∗),u − u∗〉 + 〈(I − P i )∇2G(u∗)(ui − u∗),u − u∗〉.

Using the three-point formula (2.5), we therefore obtain

Di+1 =
1

2
‖u − u∗‖2

2∇2G(ui )−∇2G(u∗) −
1

2
‖u − ui ‖2∇2G(u∗) +

1

2
‖ui − u∗‖2∇2G(u∗)

− 〈P i [∇2G(ui ) − ∇2G(ζ i )](ui − u∗),u − u∗〉 − D ′
i+1

for

D ′
i+1 := 〈(I − P i )∇2G(ui )(u − u∗),u − u∗〉 = 〈(I − P i )∇2G(ui )(u − u∗),ui − u∗〉.

Since by assumption E[P i |i − 1] = pI for some p ∈ (0, 1), and ui is known on iteration i − 1,

by Cauchy’s inequality for arbitrary ϵ ∈ (0, 1) holds

E[D ′
i+1 |i − 1] ≤ E

[ 1 − p
2(1 − ϵ) ‖u − u∗‖2∇2G(ui )

��� i − 1
]
+

1 − ϵ
2

‖ui − u∗‖2∇2G(ui ).

Writing

Ai := P
i [∇2G(ζ i ) − ∇2G(ui )][∇2G(u∗)]−1[∇2G(ζ i ) − ∇2G(ui )]P i ,

we deduce for θ := 2 − (1 − p)/(1 − ϵ) = (1 + p − 2ϵ)/(1 − ϵ) that

E[Di+1] ≥ E

[ 1
2
‖u − u∗‖2

θ ∇2G(ui )−∇2G(u∗)−Ai −
1

2
‖u − ui ‖2∇2G(u∗)

]
.

For (4.16) to hold with E[∆i+1(u∗;u)] = 0, it therefore su�ces that

ϕi [θ∇2G(ui ) −Ai ] ≥ ϕi+1∇2G(u∗).

For small enough ϵ > 0, we have θ > 1. Proceeding similarly to Lemma 2.9, we deduce the

existence of κ > 1 such that this holds if we take ϕN := κN . In that case ZNMN = ∇2G(u∗)κN .
The rest follows from Proposition 2.4 and Corollary 4.7. �

An advantage of our techniques is the immediate convergence of:
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Example 4.11 (Stochastic proximal Newton’s method). Let (P1, . . . , Pm) ∈ P(U ). Suppose
H = ∇G + ∂F for G, F ∈ C(U ), where G is smooth and F =

∑m
j=1 Fj ◦ Pj . Take Mi+1,Wi+1,

andV ′
i+1 as in Example 4.10. Then we obtain the algorithm

ui+1 := (I + [∇2G(u)]†
S (i)∂F )

−1 (ui − [∇2G(u)]†
S (i)∇G(u

i )
)
.

Note that the proximal step maintains ui+1 ∈ Ui+1 := {u ∈ U | (I − P i )(ui+1 − ui ) = 0}.
Therefore, using Lemma 2.7, we deduce that the method has exactly the same convergence

properties as the stochastic Newton’s method in Example 4.10.

conclusion

We have uni�ed common convergence proofs of optimisation methods, employing the ideas of

non-linear preconditioning and testing of the classical proximal point method. We have demon-

strated that popular classical and modern algorithms can be presented in this framework, and

their convergence, including convergence rates, proved with little e�ort. The theory was, how-

ever, not developed with existing algorithms in mind. It was developed to allow the develop-

ment of new spatially adapted block-proximal methods in [24]. We will demonstrate there and

in other works to follow, the full power of the theory. For one, we did not yet fully exploit the

fact thatWi+1 and Zi+1 are operators, to construct step-wise step lengths and acceleration.

appendix a outer semicontinuity of maximal monotone operators

We could not �nd the following result explicitly stated in the literature, although it is hidden

in, e.g., the proof of [22, Theorem 1].

Lemma a.1. Let H : U ⇒ U be maximal monotone on a Hilbert space U . Then H is is weak-

to-strong outer semicontinuous: for any sequence {ui }i∈N, and any zi ∈ H (ui ) such that ui ⇀ u

weakly, and zi → z strongly, we have z ∈ H (u).

Proof. By monotonicity, for any u ′ ∈ U and z ′ ∈ U holds Di := 〈u ′ − ui , z ′ − zi 〉 ≥ 0. Since a

weakly convergent sequence is bounded, we have Di ≥ 〈u ′ − ui , z ′ − z〉 −C ‖z − zi ‖ for some

C > 0 independent of i. Taking the limit, we therefore have 〈u ′ − u, z ′ − z〉 ≥ 0. If we had

z < H (u), this would contradict that H is maximal, i.e., its graph not contained in the graph of

any monotone operator. �

appendix b projected gradients and smoothness

The next lemmageneraliseswell-knownproperties [?, see, e.g.,]]bauschke2011convex of smooth

convex functions to projected gradients, when we take P as projection operator. With P a ran-

dom projection, taking the expectation in (b.3), we in particular obtain a connection to the Ex-

pected Separable Over-approximation property in the stochastic coordinate descent literature

[21].
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Lemma b.1. LetG ∈ C(X ), and P ∈ L(X ;X ) be self-adjoint and positive semi-de�nite on a Hilbert

space X . Suppose P has a pseudo-inverse P† satisfying PP†P = P . Consider the properties:

(i) P-relative Lipschitz continuity of ∇G with factor L:

(b.1) ‖∇G(x) − ∇G(y)‖P ≤ L‖x − y ‖P † (x,y ∈ X ).

(ii) The P-relative property

(b.2) 〈∇G(x + Ph) − ∇G(x), Ph〉 ≤ L‖h‖2P (x,h ∈ X ).

(iii) P-relative smoothness ofG with factor L:

(b.3) G(x + Ph) ≤ G(x) + 〈∇G(x), Ph〉 + L
2
‖h‖2P (x,h ∈ X ).

(iv) P-relative co-coercivity of ∇G with factor L−1:

(b.4) L−1‖∇G(x) − ∇G(y)‖2P ≤ 〈∇G(x) − ∇G(y),x − y〉 (x,y ∈ X ).

We have (i) =⇒ (ii) ⇐⇒ (iii) =⇒ (iv). If P is invertible, all are equivalent.

Proof. (i) =⇒ (ii): Take y = x + Ph and multiply (b.1) by ‖h‖P . Then use Cauchy–Schwarz.

(ii) =⇒ (iii): Using the mean value theorem and (b.2), we compute (b.3):

G(x + Ph) −G(x) − 〈∇G(x), Ph〉 =
∫ 1

0

〈∇G(x + tPh), Ph〉 dt − 〈∇G(x), Ph〉

=

∫ 1

0

〈∇G(x + tPh) − ∇G(x), Ph〉 dt =
∫ 1

0

t dt · L‖h‖2P ≤ L

2
‖h‖2P .

(iii) =⇒ (ii): Add together (b.3) for x = x ′ and x = x ′ + Ph.
(iii) =⇒ (iv): Adding −〈∇G(y),x + Ph〉 on both sides of (b.3), we get

G(x + Ph) − 〈∇G(y),x + Ph〉 ≤ G(x) − 〈∇G(y),x〉 + 〈∇G(x) − ∇G(y), Ph〉 + L
2
‖h‖2P .

The left hand side is minimisedwith respect to x by takingx = y−Ph. Taking on the right-hand
side h = L−1(∇G(y) − ∇G(x)) therefore gives

G(y) − 〈∇G(y),y〉 ≤ G(x) − 〈∇G(y),x〉 − 1

2L
‖∇G(x) − ∇G(y)‖2P .

Summing this estimate with one with x and y exchanged, we obtain (b.4).

(iv) =⇒ (i) when P is invertible: Cauchy–Schwarz. �
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