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Abstract We study and develop (stochastic) primal–dual block-coordinate descent meth-
ods based on the method of Chambolle and Pock. Our methods have known convergence
rates for the iterates and the ergodic gap: O(1/N 2) if each each block is strongly convex,
O(1/N ) if no convexity is present, and more generally a mixed rate O(1/N 2) + O(1/N )
for strongly convex blocks, if only some blocks are strongly convex. Additional novelties
of our methods include blockwise-adapted step lengths and acceleration, as well as the
ability update both the primal and dual variables randomly in blocks under a very light
compatibility condition. In other words, these variants of our methods are doubly-stochastic.
We test the proposed methods on various image processing problems, where we employ
pixelwise-adapted acceleration.
Get the version from h�p://tuomov.iki.fi/publications/, citations may be broken in

this one due arXiv’s inability to support biblatex.

1 introduction

We want to e�ciently solve optimisation problems of the form

(1.1) min
x

G(x) + F (Kx),

arising from the variational regularisation of image processing and inverse problems. We assume
G : X → R and F : Y → R to be convex, proper, and lower semicontinuous functionals on
Hilbert spaces X and Y , respectively, and K ∈ L(X ;Y ) to be a bounded linear operator. We are
particularly interested in the block-separable case with G and the convex conjugate F ∗ having
the structure

(S-GF) G(x) =
m∑
j=1

G j (Pjx), and F ∗(y) =
n∑̀
=1
F ∗` (Q`y).

Here P1, . . . , Pm are projection operators in X with
∑m

j=1 Pj = I and PjPi = 0 if i , j. Likewise,
Q1, . . . ,Qn are similarly projection operators in Y .

Several �rst-order optimisation methods have been developed for (1.1), without the block-
separable structure, typically with bothG and F convex, andK linear, but recently also accepting
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a level of non-convexity and non-linearity [4, 18, 33, 20]. In applications to image processing and
data science, one ofG or F is typically non-smooth. E�ective primal algorithms operating directly
on the primal problem (1.1), or its dual, therefore tend to be a form of classical forward–backward
splitting, occasionally going by the name of iterative soft-thresholding [11, 1].

In big data optimisation, various forward–backward block-coordinate descent methods have
been developed for (1.1) when G block-separable as in (S-GF). At each step of the optimisation
method, they only update a subset of the blocks x j := Pjx , randomly in parallel, see e.g. the review
[34] and the original articles [19, 26, 15, 27, 25, 37, 28, 10, 9, 22, 2]. Typically F is assumed smooth.
Often, each of the functions G j is assumed strongly convex. Besides parallelism, one advantage
of these methods is the exploitation of local blockwise factors of smoothness (Lipschitz gradient)
of F and K . This can be better than the global factor, and helps convergence.

Unfortunately, primal-only and dual-only stochastic approaches are rarely applicable to image
processing and other problems that do not satisfy the separability and smoothness requirements
simultaneously, at least not without additional Moreau–Yosida (aka. Huber, aka. Nesterov)
regularisation. Generally, even without the splitting into blocks, primal-only or dual-only
approaches, as discussed above, can be ine�cient on more complicated problems, as the steps
of the algorithms become very expensive optimisation problems themselves. This di�culty
can often be circumvented through primal-dual approaches. If F is convex, and F ∗ denotes the
conjugate of F , the problem (1.1) can be written

(1.2) min
x

max
y

G(x) + 〈Kx ,y〉 − F ∗(x).

If G is also convex, a popular algorithm for (1.2) is the Chambolle–Pock method [6, 24], also
classi�ed as the Primal-Dual Hybrid Gradient Method (Modi�ed) or PDHGM in [13]. The method
consists of alternating proximal steps on x and y , combined with an over-relaxation step that
ensures convergence. It is closely related to the classical ADMM and Douglas–Rachford splitting,
as well as the split Bregman method. These connections are discussed in detail in [13].

While early work on block-coordinate descent methods concentrated on primal-only or dual-
only algorithms, recently primal-dual algorithms based on the ADMM and the PDHGM have
been proposed [30, 36, 14, 3, 21, 23, 35]. Besides [30, 36, 35] that have restrictive smoothness and
strong convexity requirements, little is known about the convergence rates of these algorithms.
In this paper, we will derive block-coordinate descent variants of the PDHGM with known

convergence rates: O(1/N 2) if each G j is strongly convex, O(1/N ) if no convexity is present, and
a mixed rate O(1/N 2) + O(1/N ) if some of the G j are strongly convex. These rates apply to
an ergodic duality gap, and the faster rates also to the iterates themselves. Our methods will
have the additional novelty of blockwise-adapted step lengths. In the imaging applications of
Section 5 we will even employ pixelwise-adapted step lengths. Moreover, we can update both
the primal and dual variable randomly in blocks under a very light compatibility condition.
Such “doubly-stochastic” updates, as they are called in [35], have previously been possible only
in very limited settings.

Our present work is based on our previous approach in [33] on acceleration of the PDHGM
when G is strongly convex only on a subspace. This is the two-block casem = 2 and n = 1 of
(S-GF) with entirely deterministic updates. Besides allowing for (doubly-)stochastic updates
and an arbitrary number of both primal and dual blocks, in the present work, through a more
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careful analysis, we derive simpli�ed step length rules.
The more abstract basis of our present work has been split out in [31]. There we study

preconditioning of the abstract proximal point method and “testing” by suitable operators as
means of obtaining convergence rates. We recall the relevant aspects of this theory in Section 2
along with going through notation and former research on the PDHGM in more detail. In
Section 3 we develop the general structure of the promised new methods. We complete the
development in Section 4 by deriving step length update rules that yield good convergence
rates. We �nish with numerical experiments in Section 5. The reader who wishes to skip the
detailed derivations may after Section 2 want to go directly to our main result, Theorem 4.5
combined with Algorithms 1 and 2.

2 background and abstract results

To make the notation de�nite, we write L(X ;Y ) for the space of bounded linear operators
between Hilbert spaces X and Y . The identity operator we denote by I . For T , S ∈ L(X ;X ),
we use T ≥ S to mean that T − S is positive semide�nite; in particular T ≥ 0 means that T is
positive semide�nite. Also for possibly non-self-adjoint T , we introduce the inner product and
norm-like notations

(2.1) 〈x , z〉T := 〈Tx , z〉, and ‖x ‖T :=
√
〈x ,x〉T ,

the latter only de�ned for positive semi-de�nite T . We write T ' T ′ if 〈x ,x〉T ′−T = 0 for all x .
We denote by C(X ) the set of convex, proper, lower semicontinuous functionals from a Hilbert

space X to R := [−∞,∞]. With G ∈ C(X ), F ∗ ∈ C(Y ), and K ∈ L(X ;Y ), we then wish to solve
the minimax problem

(P) min
x ∈X

max
y ∈Y

G(x) + 〈Kx ,y〉 − F ∗(y),

assuming the existence of a solution û = (x̂ , ŷ) satisfying the optimality conditions

(OC) − K∗ŷ ∈ ∂G(x̂), and Kx̂ ∈ ∂F ∗(ŷ).

2.1 primal-dual algorithms as proximal point methods

Let us introduce the general variable splitting notation

u = (x ,y).

Following [17, 33], the primal-dual method of Chambolle and Pock [6] (PDHGM) may then in
proximal point form be written as

(PP0) 0 ∈ H (ui+1) + Li (ui+1 − ui )

for a monotone operator H encoding the optimality conditions (OC) as 0 ∈ H (û), and a precon-
ditioning or step length operator Li = L0

i . These are

(2.2) H (u) :=
(
∂G(x) + K∗y
∂F ∗(y) − Kx

)
, and L0

i :=
(
τ−1
i −K∗
−ω̃iK σ−1

i+1

)
.
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Here τi ,σi+1 > 0 are step length parameters, and ω̃i > 0 an over-relaxation parameter. In the
basic version of the algorithm,ωi = 1, τi ≡ τ0, and σi ≡ σ0, assuming τ0σ0‖K ‖2 < 1. Observe that
we may equivalently parametrise the algorithm by τ0 and δ = 1 − ‖K ‖2τ0σ0 > 0. The method
has O(1/N ) rate for the ergodic duality gap that we will return to in Section 2.3.

If G is strongly convex with factor γ > 0, we may for γ̃ ∈ (0,γ ] accelerate

(2.3) ωi := 1/
√

1 + 2γ̃τi , τi+1 := τiωi , and σi+1 := σi/ωi .

This gives O(1/N 2) convergence of ‖xN − x̂ ‖2 to zero. If γ̃ ∈ (0,γ/2], we also obtain O(1/N 2)
convergence of the ergodic duality gap.

Let then G and F ∗ have the structure (S-GF). In [33], we extended the PDHGM to partially
strongly convex problems: the two-block casem = 2 and n = 1 with only G1 strongly convex.
This was based on taking in (PP0) for suitable invertible step length operators Ti ∈ L(X ;X ) and
Σi ∈ L(Y ;Y ) the preconditioning operator

(2.4) Li =

(
T −1
i −K∗
−ω̃iK Σ−1

i+1

)
.

In this paper, we want to update any number of blocks stochastically. This will demand the use
of non-invertible step length operators

(S-TΣ) Ti :=
∑
j ∈S (i)

τj,iPj , and Σi+1 :=
∑

`∈V (i+1)
σ`,i+1Q`, (i ≥ 0),

where τj,i ,σ`,i+1 ≥ 0 and S(i) ⊂ {1, . . . ,m}, V (i + 1) ⊂ {1, . . . ,n}.
De�ning

(2.5) Wi+1 :=
(
Ti 0
0 Σi+1

)
, and (for now) Mi+1 =

(
I −TiK∗

−ω̃iΣi+1K I

)
,

the method (PP0) & (2.4) can also be written

(PP) Wi+1H (ui+1) +Mi+1(ui+1 − ui ) 3 0.

This will be the abstract form of our algorithm. To study its convergence, we apply the concept
of testing that we introduced in [33, 31]. The idea is to analyse the inclusion (PP) by multiplying
it with the testing operator

(2.6) Zi+1 :=
(
Φi 0
0 Ψi+1

)
for some primal test Φi ∈ L(X ;X ) and dual test Ψi+1 ∈ L(Y ;Y ). To employ the general estimates
of [31], we need Zi+1Mi+1 to be self-adjoint and positive semi-de�nite. We allow for general
Mi+1 ∈ L(X × Y ;X × Y ) instead of the one in (2.5), and assume for some Λi ∈ L(X ;Y ) that

Zi+1Mi+1 =

(
Φi −Λ∗i
−Λi Ψi+1

)
≥ 0 and is self-adjoint, (i ∈ N).(CZ)
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Expanded, Mi+1 solved from (CZ), and the proximal maps inverted, (PP) states

x i+1 = (I +Ti∂G)−1(x i + Φ−1
i Λ∗i (y i+1 − y i ) −TiK∗y i+1),(2.7a)

y i+1 = (I + Σi+1∂F
∗)−1(y i + Ψ−1

i+1Λi (x i+1 − x i ) + Σi+1Kx
i+1).(2.7b)

In an e�ective algorithm, Λi needs to be chosen to avoid cross-dependencies between x i+1 and
y i+1. An obvious choice would be Λ∗i = ΦiTiK . IfV (i + 1) , {1, . . . ,n}, i.e., for doubly-stochastic
algorithms, we will, however, have to make other choices.

Minding the structures (S-GF) and (S-TΣ), in the present work we will take

Φi :=
m∑
j=1

ϕ j,iPj , Ψi+1 :=
n∑̀
=1
ψ`,i+1Q`, and(S-ΦΨ)

Λi :=
m∑
j=1

∑
`∈V(j)

λ`, j,iQ`KPj , where V(j) := {` ∈ {1, . . . ,n} | Q`KPj , 0}(S-Λ)

for some ϕ j,i ,ψ`,i+1 > 0 and λ`, j,i ∈ R over j = 1, . . . ,m, ` = 1, . . . ,n, and i ∈ N. Then Φi , Ψi+1,
Ti , and Σi+1 are self-adjoint and positive semi-de�nite. We also introduce the notation

(2.8) x j := Pjx , y` := Q`y, and K`, j := Q`KPj .

For the moment, we however continue stating background conditions and results for the more
convenient abstract structure. In Section 3 we then analyse in detail the block-separable structure,
and make speci�c choices of all the scalar parameters.

2.2 stochastic setup

Just before commencing with the i:th iteration of (PP0), let us choose Ti and Σi+1 randomly. In
practise, we do this through the random choice of S(i) and V (i + 1), otherwise based on the
information we have gathered before iteration i . This information is modelled by the σ -algebra
Oi−1, which satis�es Oi−1 ⊂ Oi . To make this formal, let us recall basic measure-theoretic
probability from, e.g., [29].

Definition 2.1. We denote by (Ω,O,P) the probability space consisting of the set Ω of possible
realisation of a random experiment, by O a σ -algebra on Ω, and by P a probability measure on
(Ω,O). We denote the expectation corresponding to P by E, the conditional probability with
respect to a sub-σ -algebra O ′ ⊂ O by P[ · |O ′], and the conditional expectation by E[ · |O ′].

We also use the next non-standard notation.

Definition 2.2. If O is a σ -algebra on the space Ω, we denote by R(O;V ) the space of V -valued
random variables A, such that A : Ω → V is O-measurable.

To return to our random step length and testing operators, we will assume

Ti ∈ R(Oi ;L(X ;X )), Σi+1 ∈ R(Oi ;L(Y ;Y )),
Φi ∈ R(Oi ;L(X ;X )) and Ψi+1 ∈ R(Oi ;L(Y ;Y )).

We then deduce from (PP) that x i+1 ∈ R(Oi ;X ) and y i+1 ∈ R(Oi ;Y ).
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2.3 ergodic duality gaps and a convergence estimate

We now recall the most central results from our companion paper [31]. To begin to develop
duality gaps, we assume for some η̄i > 0 that either

E[T ∗i Φ∗i ] = η̄i I , and E[Ψi+1Σi+1] = η̄i I , (i ≥ 1), or(CG)
E[T ∗i Φ∗i ] = η̄i I , and E[ΨiΣi ] = η̄i I , (i ≥ 1).(CG∗)

Correspondingly, with

(2.9) ζN :=
N−1∑
i=0

η̄i and ζ∗,N :=
N−1∑
i=1

η̄i ,

we de�ne the ergodic sequences

x̃N := ζ −1
N E

[
N−1∑
i=0

T ∗i Φ
∗
i x

i+1

]
, ỹN := ζ −1

N E

[
N−1∑
i=0

Σ∗i+1Ψ
∗
i+1y

i+1

]
,(2.10)

x̃∗,N := ζ −1
∗,NE

[
N−1∑
i=1

T ∗i Φ
∗
i x

i+1

]
, ỹ∗,N := ζ −1

∗,NE

[
N−1∑
i=1

Σ∗iΨ
∗
i y

i

]
.(2.11)

For the accelerated PDHGM, we have τiϕi = ψσi for a suitable constant ψ and ϕi = τ−2
i .

Therefore (CG∗) holds while (CG) does not. In Section 3 we will however see that the latter is
the only possibility for doubly-stochastic methods. Introducing

(2.12) G(x ,y) :=
(
G(x) + 〈ŷ ,Kx〉 − F (ŷ)

)
−

(
G(x̂) + 〈y,Kx̂〉 − F ∗(y)

)
,

the conditions (CG) and (CG∗) will then produce two di�erent ergodic duality gaps G(x̃N , ỹN )
and G(x̃∗,N , ỹ∗,N ). We demonstrate this in the next theorem from [31] that forms the basis for
our work in the remaining sections. Its statement refers to

Ξi+1(Γ̃) :=
(

2Ti Γ̃ 2TiK∗
−2Σi+1K 0

)
.

Theorem 2.1. Let us be given K ∈ L(X ;Y ),G ∈ C(X ), and F ∗ ∈ C(Y ) with the separable structure
(S-GF) on Hilbert spaces X and Y . Denote the factor of (strong) convexity of G j by γj > 0, and
write Γ :=

∑m
j=1 γjPj . Also let Ti ,Φi ∈ R(Oi ;L(X ;X )) and Σi+1,Ψi+1 ∈ R(Oi ;L(Y ;Y )) have the

structures (S-TΣ) and (S-ΦΨ). Assuming one of the following conditions and choices of Γ̃ to hold, let

(2.13) д̃N :=


0, Γ̃ = Γ,

ζNG(x̃N , ỹN ), Γ̃ = Γ/2; (CG) holds,
ζ∗,NG(x̃∗,N , ỹ∗,N ), Γ̃ = Γ/2; (CG∗) holds.

Suppose (CZ) holds and that ∆i+1(Γ̃) satis�es

(C∆) ‖ui+1 − ui ‖2Zi+1Mi+1
+ ‖ui+1 − û‖2

Zi+1(Ξi+1(Γ̃)+Mi+1)−Zi+2Mi+2
≥ −∆i+1(Γ̃).
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Then the iterates ui = (x i ,y i ) of (PP), assumed solvable, satisfy

(2.14) E
[
‖uN − û‖2ZNMN

]
+ д̃N ≤ ‖u0 − û‖2Z1M1

+

N−1∑
i=0

E[∆i+1(Γ̃)].

Proof. This is [31, Theorem 4.6] together with [31, Example 4.1]. The latter proves the struc-
ture (S-GF), (S-TΣ) & (S-ΦΨ) to satisfy an “ergodic convexity” property that we have avoided
introducing here. �

3 block-proximal methods

The remainder of our work consists of verifying the conditions (CZ), (C∆) and (CG) or (CG∗)
for Theorem 2.1, as well as estimating E[∆i+1(Γ̃)] and ZNMN . This will be done by re�nement of
the block-separable step length and testing structure (S-TΣ), (S-ΦΨ) & (S-Λ). Most of this work
is done in Sections 3.1 to 3.4, and then combined into almost �nal algorithms and corresponding
convergence results in Section 3.5. We discuss sampling patterns in Section 3.6, and the remaining
parameter choices related to convergence rates in Section 4.

For convenience, we introduce

τ̂j,i := τj,i χS (i)(j), σ̂`,i := σ`,i χV (i)(`),
πj,i := P[j ∈ S(i) | Oi−1], and ν`,i+1 := P[` ∈ V (i + 1) | Oi−1].

The �rst two denote “e�ective” step lengths on iteration i . The latter two denote the probability
that j will be contained in S(i) and, that ` will be contained in V (i + 1), given what is known at
iteration i − 1.

3.1 verification of (CZ) and lower bounds for Zi+1Mi+1

The structure (S-ΦΨ) and the choice (2.6) of Zi+1 guarantee the self-adjointness of Zi+1Mi+1 in
(CZ) and allow us to solve for Mi+1. Since Φi+1 is self-adjoint and positive de�nite, using (CZ),
for any δ ∈ (0, 1) we moreover deduce

(3.1) Zi+1Mi+1 =

(
Φi −Λ∗i
−Λi Ψi+1

)
≥

(
δΦi 0

0 Ψi+1 − 1
1−δ ΛiΦ

−1
i Λ∗i

)
.

We require (1 − δ )Ψi+1 ≥ ΛiΦ
−1
i Λ∗i , which can be expanded as

(3.2) (1 − δ )
n∑̀
=1
ψ`,i+1Q` ≥

m∑
j=1

n∑
`,k=1

λ`, j,iλk, j,iϕ
−1
j,iQ`KPjK

∗Qk .

To go further, we require the functions κ` introduced next.

Definition 3.1. LetP := {P1, . . . , Pm}, andQ := {Q1, . . . ,Qn}. We write (κ1, . . . ,κn) ∈ K(K ,P,Q)
if each κ` : [0,∞)m → [0,∞) is monotone (` = 1, . . . ,n) and for all {z`, j } ⊂ R holds:
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(i) (Estimation) The estimate

(C-κ.a)
m∑
j=1

n∑
`,k=1

z1/2
`, jz

1/2
k, jQ`KPjK

∗Qk ≤
n∑̀
=1
κ`(z`,1, . . . , z`,m)Q` .

(ii) (Boundedness) For some κ > 0 the bound

(C-κ.b) κ`(z1, . . . , zm) ≤ κ
m∑
j=1

zj .

(iii) (Non-degeneracy) There exists κ > 0 and `∗(j) ∈ {1, . . . ,n} with

(C-κ.c) κzj∗ ≤ κ`∗(j)(z1, . . . , zm) (j = 1, . . . ,m).

Lemma 3.1. Let (κ1, . . . ,κn) ∈ K(K ,P,Q), and suppose

(C-κψ ) (1 − δ )ψ`,i+1 ≥ κ`(λ2
`,1,iϕ

−1
1,i , . . . , λ

2
`,m,iϕ

−1
m,i ) (` = 1, . . . ,n).

Then (CZ) holds and

(3.3) Zi+1Mi+1 ≥
(
δΦi+1 0

0 0

)
.

Proof. Clearly Φi+1 is self-adjoint and positive de�nite. The estimate (3.3) follows from (3.2),
which follows from (C-κ.a) with z`, j := λ2

`, j,iϕ
−1
j,i . �

The choice ofκ allows us to construct di�erent algorithms. Here we consider a few possibilities,
�rst an easy one, and then a more optimal one.

Example 3.1 (Worst-case κ). We may estimate

m∑
j=1

n∑
`,k=1

z1/2
`, jz

1/2
k, jQ`KPjK

∗Qk ≤
n∑

`,k=1
z1/2
`
z1/2
k Q`KK

∗Qk ≤
n∑̀
=1
z` ‖K ‖2Q` .

Therefore (C-κ.a) and (C-κ.b) hold with κ = ‖K ‖2 for the monotone choice

κ`(z1, . . . , zm) := ‖K ‖2 max{z1, . . . , zm}.

Clearly also κ = κ for any choice of `∗(j) ∈ {1, . . . ,n}. This choice of κ` corresponds to the
rule τσ ‖K ‖2 < 1 in the Chambolle–Pock method.

Example 3.2 (Balancedκ). Choose a minimalκ` satisfying (C-κ.a) and the balancing condition

κ`(z`,1, . . . , z`,m) = κk (zk,1, . . . , zk,m) (`,k = 1, . . . ,n).

This requires problem-speci�c analysis, but tends to perform well, as we will see in Section 5.
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3.2 verification of (C∆) and bounds on ∆i+1

For the next lemma, we set

Ai+2 := (Ψi+1Σi+1K − Λi+1) + (Λi − KT ∗i Φ∗i ),

and introduce the assumption

(CA) E[Ai+2 |Oi ](x i+1 − x i ) = 0, E[A∗i+2 |Oi ](y i+1 − y i ) = 0, E[A∗i+2 |Oi−1] = 0,

which we will seek to enforce in the next Section 3.3. We also recall the coordinate notation x j
and y` from (2.8).

Lemma 3.2. Given the structure (S-GF), (S-TΣ), (S-ΦΨ), and (S-Λ), suppose (CA) holds, and

(C-ψ inc) E[ψ`,i+2 |Oi ] ≥ E[ψ`,i+1 |Oi ] (` = 1, . . . ,n; i ∈ N).

For arbitrary αi ,δ > 0, de�ne

qj,i+2(̃γj ) :=
(
E[ϕ j,i+1 − ϕ j,i (1 + 2τ̂j,iγ̃j )|Oi ](3.4)
+ αi |E[ϕ j,i+1 − ϕ j,i (1 + 2τ̂j,iγ̃j )|Oi ]| − δϕ j,i

)
χS (i)(j), and

hj,i+2(̃γj ) := E[ϕ j,i+1 − ϕ j,i (1 + 2τ̂j,iγ̃j )|Oi−1](3.5)
+ α−1

i |E[ϕ j,i+1 − ϕ j,i (1 + 2τ̂j,iγ̃j )|Oi ]|,

and assume for some Cx > 0 either

‖x i+1
j − x̂ j ‖2 ≤ Cx (j = 1, . . . ,m; i ∈ N) or(C-xbnd.a)
hj,i+2(̃γj ) ≤ 0 and qj,i+2(̃γj ) ≤ 0 (j = 1, . . . ,m; i ∈ N),(C-xbnd.b)

and for some Cy > 0 either

‖y i+1
` − ŷ` ‖

2 ≤ Cy (` = 1, . . . ,n; i ∈ N) or(C-ybnd.a)
E[ψ`,i+2 −ψ`,i+1 |Oi ] = 0 (` = 1, . . . ,n; i ∈ N).(C-ybnd.b)

Then (C∆) is satis�ed with E[∆i+1(Γ̃)] ≤
∑m

j=1 δ
x
j,i+2(̃γj ) +

∑n
`=1 δ

y
`,i+2 for

δxj,i+2(̃γj ) := 4CxE[max{0,qj,i+2(̃γj )}] +CxE[max{0,hj,i+2(̃γj )}], and(3.6)
δ
y
`,i+2 :=9CyE[ψ`,i+2 −ψ`,i+1].(3.7)

Proof. The condition (C∆) holds if we take

∆i+1(Γ̃) := ‖ui+1 − û‖2
Di+1(Γ̃)

for Di+1(Γ̃) := Zi+2Mi+2 − Zi+1(Ξi+1(Γ̃) +Mi+1).
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We then need to estimate E[∆i+1(Γ̃)] from above. Sinceui+1 ∈ R(Oi ;X ×Y ) andui ∈ R(Oi−1;X ×
Y ), standard nesting properties of conditional expectations show

E[∆i+1(Γ̃)] = E
[
‖ui+1 − ui ‖2

E[Di+1(Γ̃) |Oi ]
+ ‖ui − û‖2

E[Di+1(Γ̃) |Oi−1]

+ 2〈ui+1 − ui ,ui − û〉E[Di+1(Γ̃) |Oi ]

]
.

(3.8)

Next we note using (CZ) that

Zi+1(Mi+1 + Ξi+1(Γ̃)) =
(

Φi (I + 2Ti Γ̃) 2ΦiTiK
∗ − Λ∗i

−2Ψi+1Σi+1K − Λi Ψi+1

)
.

In particular, we get

Di+1(Γ̃) =
(

Φi+1 − Φi (I + 2Ti Γ̃) Λ∗i − Λ∗i+1 − 2ΦiTiK
∗

2Ψi+1Σi+1K + Λi − Λi+1 Ψi+2 − Ψi+1

)
'

(
Φi+1 − Φi (I + 2Ti Γ̃) A∗i+2

Ai+2 Ψi+2 − Ψi+1

)
.

Using (CA), we thus expand (3.8) into

(3.9) E[∆i+1(Γ̃)] = E
[
‖x i+1 − x i ‖2

E[Φi+1−Φi (I+2Ti Γ̃) |Oi ]
+ ‖y i+1 − y i ‖2

E[Ψi+2−Ψi+1 |Oi ]

+ ‖x i − x̂ ‖2
E[Φi+1−Φi (I+2Ti Γ̃) |Oi−1]

+ 2〈x i+1 − x i ,x i − x̂〉E[Φi+1−Φi (I+2Ti Γ̃) |Oi ]

+ ‖y i − ŷ ‖2
E[Ψi+2−Ψi+1 |Oi−1] + 2〈y i+1 − y i ,y i − ŷ〉E[Ψi+2−Ψi+1 |Oi ]

]
.

We apply Cauchy’s inequality in (3.9) with arbitrary αi , βi > 0. Split into blocks, we obtain
E[∆i+1(Γ̃)] ≤

∑m
j=1 δ

x
j,i+2(̃γj ) +

∑m
`=1 δ

y
`,i+2 provided for each j = 1, . . . ,m and i = 1, . . . ,n, we

have the upper bounds

E
[
qj,i+2(̃γj )‖x i+1

j − x ij ‖2 + hj,i+2(̃γj )‖x ij − x̂ j ‖2
]
≤ δxj,i+2(̃γj ),

E
[
(1 + βi )‖y i+1

` − y
i
` ‖

2
E[ψ`,i+2−ψ`,i+1 |Oi ] + (1 + β

−1
i )‖y i` − ŷ` ‖

2
E[ψ`,i+2−ψ`,i+1 |Oi−1]

]
≤ δy

`,i+2.

These are easy to estimate with (C-xbnd), (C-ybnd), and βi = 1/2. �

It is relatively easy to satisfy (C-ψ inc) and to bound δy
`,i+2. To estimate δxj,i+2(̃γj ), we need to

derive more involved update rules. We next construct one example.

Example 3.3 (Random primal test updates). If (C-xbnd.a) holds, take ρ j ≥ 0, otherwise take
ρ j = 0 (j = 1, . . . ,m). Set

(R-ϕrnd) ϕ j,i+1 := ϕ j,i (1 + 2γ̃j τ̂j,i ) + 2ρ jπ−1
j,i χS (i)(j), (j = 1, . . . ,m; i ∈ N).

Then it is not di�cult to show that ϕ j,i+1 ∈ R(Oi ; (0,∞)) and δxj,i+2(̃γj ) = 18Cxρ j .
If we set ρ j = 0 and have just a single deterministically updated block, (R-ϕrnd) is the

standard rule (2.3) with ϕi = τ−2
i . The role of ρ j > 0 is to ensure some (slower) acceleration
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on non-strongly-convex blocks with γ̃j = 0. This is necessary for convergence rate estimates.

The di�culty with (R-ϕrnd) is that the coupling parameter ηi+1 that we introduce in the
next section, will depend on the random realisations of S(i) through ϕ j,i+1. This will require
communication in a parallel implementation of the algorithm. We therefore desire to update
ϕ j,i+1 deterministically. We delay the introduction of an appropriate update rule to Lemma 4.1
in Section 4 where we study convergence rates in more detail.

3.3 computability of (PP) and satisfaction of (CA)
As we recall from the discussion after (2.7), we need to chooseΛi so as to avoid cross-dependencies
on x i+1 and y i+1. Moreover, we would want S(i) and V (i + 1) to correspond exactly to the coor-
dinates x i+1

j and y i+1
j that are indeed updated. We therefore seek to enforce

x i+1
j = x ij , (j < S(i)), and likewise(C-cons.a)

y i+1
` = y i`, (` < V (i + 1)).(C-cons.b)

The next lemma gives a general approach to updating step lengths and sampling blocks such
that our demands are met (the condition (C-SV .a) we only use later). To read its statement, we
recallV de�ned in (S-Λ).

Lemma 3.3. Assume the structure (S-GF), (S-TΣ), (S-ΦΨ), and (S-Λ). The conditions (CA) and
(C-cons) hold if we do the following: For i ∈ N, we take S̊(i), S(i), V̊ (i + 1), and V (i + 1) satisfying

V−1(V̊ (i + 1)) ∩ V−1(V(S̊(i))) = ∅,(C-SV .a)
S(i) ⊃ S̊(i) ∪ V−1(V̊ (i + 1)), and V (i + 1) ⊃ V̊ (i + 1) ∪ V(S̊(i)),(C-SV .b)

as well as ηi ,η⊥τ ,i ,η
⊥
σ ,i ∈ R(Oi ; [0,∞)) satisfying

(C-η) i 7→ ηi > 0 is non-decreasing, and
{
ϵηi ·minj (πj,i − π̊j,i ) ≥ η⊥τ ,i ,
ηi ·min`(ν`,i − ν̊`,i ) ≥ η⊥σ ,i−1,

for some ϵ ∈ (0, 1), independent of i ,

π̊j,i := P[j ∈ S̊(i) | Oi−1], and ν̊`,i+1 := P[` ∈ V̊ (i + 1) | Oi−1].

Then, with these assumptions met, we set

τj,i =


ηi−ϕj,i−1τj,i−1χS (i−1)\S̊ (i−1)(j)

ϕj,i π̊j,i
, j ∈ S̊(i),

η⊥τ ,i
ϕj,i (πj,i−π̊j,i ) , j ∈ S(i) \ S̊(i),

(R-τσ .a)

σj,i+1 =


ηi−ψj,iσj,i χV (i )\V̊ (i )(j)

ψj,i+1ν̊`,i+1
, j ∈ V̊ (i + 1),

η⊥σ ,i
ψj,i+1(ν`,i+1−ν̊`,i+1) , j ∈ V (i + 1) \ V̊ (i + 1),

(R-τσ .b)

as well as

(R-λ) λ`, j,i := ϕ j,i τ̂j,i χS̊ (i)(j) −ψ`,i+1σ̂`,i+1χV̊ (i+1)(`) (` ∈ V(j)).
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Proof. We start by claiming that

(3.10) E[λ`, j,i+1 |Oi ] = ψ`,i+1σ̂`,i+1(1 − χV̊ (i+1)(`)) − ϕ j,i τ̂j,i (1 − χS̊ (i)(j))
whenever ` ∈ V(j). Inserting (R-λ), we see (3.10) to be satis�ed if

E[ϕ j,i+1τ̂j,i+1χS̊ (i+1)(j)|Oi ] = ηi+1 − ϕ j,i τ̂j,i (1 − χS̊ (i)(j)) ≥ 0, and(3.11a)

E[ψ`,i+2σ̂`,i+2χV̊ (i+2)(`)|Oi ] = ηi+1 −ψ`,i+1σ̂`,i+1(1 − χV̊ (i+1)(`)) ≥ 0,(3.11b)

with j = 1, . . . ,m; ` = 1, . . . ,n; and i ≥ −1, taking S̊(−1) = {1, . . . ,m} and V̊ (0) = {1, . . . ,n}.
The condition (C-η) guarantees the inequalities in (3.11). To verify the equalities, we observe

that the one in (3.11a) can be written

ϕ j,i+1E[τj,i+1 |j ∈ S̊(i + 1)]π̊j,i+1 = ηi+1 − ϕ j,i τ̂j,i (1 − χS̊ (i)(j)).

If j ∈ S̊(i), shifting indices down by one, this is given by the case j ∈ S̊(i) of (R-τσ .a). Similarly
we cover the case ` ∈ V̊ (i + 1) of (R-τσ .b). No conditions are set by (3.11) on the remaining cases.
However, to cover j ∈ S(i) \ S̊(i) and ` ∈ V (i + 1) \ V̊ (i + 1), we decide to demand

E[ϕ j,i+1τ̂j,i+1(1 − χS̊ (i+1)(j))|Oi ] = η
⊥
τ ,i+1, and(3.12a)

E[ψ`,i+2σ̂`,i+2(1 − χV̊ (i+2)(`))|Oi ] = η
⊥
σ ,i+1,(3.12b)

These demands are veri�ed by the remaining cases in (R-τσ ).
Using (C-SV .b) and (3.10), we observe that λ`, j,i satis�es

λ`, j,i = 0, (j < S(i) or ` < V (i + 1)), and(3.13a)
E[λ`, j,i+1 |Oi ] = λ̃`, j,i+1, (j = 1, . . . ,m; ` ∈ V(j)),(3.13b)

where we set λ̃`, j,i+1 := ψ`,i+1σ̂`,i+1 + λ`, j,i − ϕ j,i τ̂j,i . Clearly (3.13a), (S-GF), and (2.7) imply
(C-cons). Using (C-cons), (CA) expands as

E[λ`, j,i+1 |Oi ] = λ̃`, j,i+1 (j ∈ S(i), ` ∈ V(j)),(3.14a)
E[λ`, j,i+1 |Oi ] = λ̃`, j,i+1 (` ∈ V (i + 1), j ∈ V−1(`)), and(3.14b)

E[λ`, j,i+1 |Oi−1] = E[λ̃`, j,i+1 |Oi−1], (j = 1, . . . ,m; ` ∈ V(j)).(3.14c)

Clearly (3.13b) implies (3.14a) and (3.14b). Together with (3.13a), it also implies

E[E[λ`, j,i+1 |Oi ](1 − χV (i+1)(`))(1 − χS (i)(j))|Oi−1] = 0.

These allow us to expand
E[λ`, j,i+1 |Oi−1] = E[E[λ`, j,i+1 |Oi ]χV (i+1)(`)|Oi−1]

+ E[E[λ`, j,i+1 |Oi ](1 − χV (i+1)(`))χS (i)(j)|Oi−1]
+ E[E[λ`, j,i+1 |Oi ](1 − χV (i+1)(`))(1 − χS (i)(j))|Oi−1]

= E[λ̃`, j,i+1χV (i+1)(`)|Oi−1] + E[λ̃`, j,i+1(1 − χV (i+1)(`))χS (i)(j)|Oi−1].

(3.15)

On the other hand, (3.13a) implies

E[λ̃`, j,i+1(1 − χV (i+1)(`))(1 − χS (i)(j))|Oi−1] = 0.

This and (3.15) show (3.14c). We have therefore veri�ed (CA). �
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3.4 satisfaction of the gap conditions (CG) or (CG∗)
As a corollary of Lemma 3.3, we obtain the following:

Lemma 3.4. Assume the structure (S-GF), (S-TΣ), (S-ΦΨ), and (S-Λ). Suppose (R-τσ ) and (C-SV )
hold. Then (CG) is satis�ed if

(C-η⊥) E[η⊥τ ,i − η⊥σ ,i ] = constant.

Proof. The condition (CG) holds if E[ϕ j,i+1τ̂j,i+1] = η̄i+1 = E[ψ`,i+2σ̂`,i+2] for some η̄i+1. The
updates (R-τσ ) (more directly (3.11) and (3.12)) with (C-SV ) imply

E[ϕ j,i+1τ̂j,i+1] = E[ηi+1 + η
⊥
τ ,i+1 − η⊥τ ,i ], and(3.16a)

E[ψ`,i+2σ̂`,i+2] = E[ηi+1 + η
⊥
σ ,i+1 − η⊥σ ,i ].(3.16b)

Thus (CG) follows from (C-η⊥). �

Remark 3.5. If we deterministically take V̊ (i + 1) = ∅, then (3.12b) implies η⊥σ ,i ≡ 0. But then
(3.11b) will be incompatible with (3.16b). Therefore V̊ (i + 1) has to be random to satisfy (CG). The
same holds for S̊(i). Thus algorithms satisfying (CG) are necessarily doubly-stochastic, randomly
updating both the primal and dual variables, or neither.

The alternative (CG∗) requires E[ϕ j,i+1τ̂j,i+1] = η̄i+1 = E[ψ`,i+1σ̂`,i+1] for some η̄i+1. By (3.16a),
this holds when E[ηi+1 + η

⊥
τ ,i+1 − η⊥τ ,i ] = η̄i = E[ηi + η⊥σ ,i − η⊥σ ,i−1]. It is not clear how to satisfy

this simultaneously with (C-η), other than proceeding as in the next lemma.

Lemma 3.6. Assume the structure (S-GF), (S-TΣ), (S-ΦΨ), and (S-Λ). Suppose (R-λ) holds, and
i 7→ ηi > 0 is non-decreasing. Take η⊥τ ,i = 0, and η⊥σ ,i = ηi+1 for i ∈ N. Then (C-η), (R-τσ ), (C-SV ),
and (CG∗) hold if and only if S̊(i) ⊂ S(i), V̊ (i + 1) = ∅, V (i + 1) = {1, . . . ,n}, and

τj,i = ηi/(ϕ j,i π̊j,i ) (j ∈ S(i)),(R-τσ∗.a)
σj,i+1 = ηi+1/ψj,i+1 (j ∈ V(S(i))).(R-τσ∗.b)

Proof. Under our setup, (C-η) holds exactly when ν̊`,i+1 = 0, and ν`,i+1 = 1. This says V̊ (i+1) = ∅,
and V (i + 1) = {1, . . . ,n}. Therefore (C-SV ) holds exactly when S(i) ⊂ S̊(i). The rule (R-τσ∗) is
a specialisation of (R-τσ ) to this setup. (CG∗) follows from the discussion above. �

Remark 3.7. We needed to impose full dual updates to satisfy (CG∗). This is akin to most existing
primal-dual coordinate descent methods [30, 3, 14]. The algorithms in [23, 21, 35] are more closely
related to our method. However only [35] provides convergence rates for very limited single-block
sampling schemes under the strong assumption that both G and F ∗ are strongly convex.

3.5 block-proximal primal–dual algorithms and their convergence

In the preceding subsections, we have converted the conditions of Theorem 2.1 into more explicit
blockwise forms. We collect all of these new conditions in the next proposition. We have not
yet speci�ed any of the parameters ϕ j,i ,ψ`,i ,ηi ,η

⊥
τ ,i , or η⊥σ ,i . We will return to these choices in

the next section on convergence rates.
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Proposition 3.8. Assume the block-separable structure (S-GF), (S-TΣ), (S-ΦΨ) & (S-Λ). For each
j = 1, . . . ,m, supposeG j is (strongly) convex with factor γj ≥ 0, and pick γ̃j ∈ [0,γj ]. Let δ ∈ (0, 1)
and (κ1, . . . ,κn) ∈ K(K ,P,Q). For each i ∈ N, do the following:

(i) Sample S̊(i) ⊂ S(i) ⊂ {1, . . . ,m} and V̊ (i + 1) ⊂ V (i + 1) ⊂ {1, . . . ,n} subject to (C-SV ).

(ii) De�ne τj,i and σ`,i+1 through (R-τσ ), and λ`, j,i through (R-λ).

(iii) Choose ϕ j,i subject to (C-xbnd), andψ`,i+1 subject to (C-ybnd), (C-ψ inc) and (C-κψ ).

(iv) Either

(a) Take ηi , η⊥τ ,i , and η
⊥
σ ,i satisfying (C-η) and (C-η⊥); or

(b) Take i 7→ ηi > 0 non-decreasing, η⊥τ ,i = 0, and η⊥σ ,i = ηi+1.

Then there exists C0 > 0 such that the iterates of (PP) satisfy (C-cons) and

(3.17) δ
m∑
k=1

1
E[ϕ−1

k,N ]
· E

[
‖xNk − x̂k ‖

]2
+ д̃N ≤ C0 +

m∑
j=1

dxj,N (̃γj ) +
n∑̀
=1
d
y
`,N ,

where

dxj,N (̃γj ) :=
N−1∑
i=0

δxj,i+2(̃γj ), and d
y
`,N :=

N−1∑
i=0

δ
y
`,i+2 = 9CyE[ψ`,N+1 −ψ`,0],

with δxj,i+2(̃γj ) de�ned in (3.6), and (see (2.10)—(2.11))

д̃N :=


ζNG(x̃N , ỹN ), case (a) and γ̃j ≤ γj/2 for all j,
ζ∗,NG(x̃∗,N , ỹ∗,N ), case (b) and γ̃j ≤ γj/2 for all j,
0, otherwise.

Proof. We use Theorem 2.1, so we need to prove (CZ) and (C∆), as well as the solvability of (PP).
For the gap estimates, we also need (CG) or (CG∗). Lemma 3.1 and us assuming (C-κψ ) proves
(CZ). To prove (C∆), we proceed as follows: Lemma 3.3 with our assumptions (R-τσ ), (R-λ),
and (C-SV ) proves (CA) as well as (C-cons). The latter applied in (2.7) proves the computability
of (PP). Finally, with (CA) veri�ed, Lemma 3.2 and our assumptions (C-xbnd), (C-ybnd), and
(C-ψ inc) show (C∆). In case (a), we obtain (CG) from Lemma 3.4, having imposed (R-λ), (C-SV ),
and (R-τσ ). In case (b), Lemma 3.6 similarly yields (CG∗) and (C-η).

It remains to verify (3.17) based on the estimate (2.14) from Theorem 2.1. There we have
constrained Γ̃ = Γ or Γ̃ = Γ/2, that is γ̃j ∈ {γj ,γj/2}. However, G j is (strongly) convex with
factor γ ′j for any γ ′j ∈ [0,γj ], so we may take 0 ≤ γ̃j ≤ γj with the gap estimates holding when
γ̃j ≤ γj/2. SettingC0 := 1

2 ‖u0 − û‖2Z0M0
, (2.14) and the estimates of Lemmas 3.1 and 3.2 now yield

δE[‖xN − x̂ ‖2ΦN ] + д̃N ≤ C0 +
N−1∑
i=0
(δxi+2(̃γj ) + δ

y
i+2).
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By Hölder’s inequality

E[‖xN − x̂ ‖2ΦN ] =
m∑
k=1

E
[
ϕk,N ‖xNk − x̂k ‖

2] ≥ m∑
k=1

E[‖xNk − x̂k ‖]
2/E[ϕ−1

k,N ].

The estimate (3.17) is now immediate. �

We now write (PP) explicitly in terms of blocks. We already reformulated it in (2.7). We
continue from there, �rst writing {λ`, j,i } from (R-λ) in operator form as

Λi = KT̊ ∗i Φ
∗
i − Ψi+1Σ̊i+1K , where

{
T̊i :=

∑m
j=1 χS̊ (i)(j)τ̂j,iPj , and

Ψ̊i+1 :=
∑`

j=1 χV̊ (i+1)(`)σ̂`,iQ` .

Setting T⊥i := Ti − T̊i , and Σ⊥i+1 := Σi+1 − Σ̊i+1, we can thus rewrite (2.7) as

vi+1 := Φ−1
i K∗Σ̊∗i+1Ψ

∗
i+1(y i+1 − y i ) +T⊥i K∗y i+1,(3.18a)

x i+1 := (I +Ti∂G)−1(x i − T̊iK∗y i −vi+1),(3.18b)
zi+1 := Ψ−1

i+1KT̊
∗
i Φ
∗
i (x i+1 − x i ) + Σ⊥i+1Kx

i+1,(3.18c)
y i+1 := (I + Σi+1∂F

∗)−1(y i + Σ̊i+1Kx
i + zi+1).(3.18d)

Let us set

Θi :=
∑
j ∈S (i)

∑
`∈V(j)

θ`, j,iQ`KPj with θ`, j,i+1 :=
τj,iϕ j,i

σ`,i+1ψ`,i+1
.

Then thanks to (C-SV ), we have Σ⊥i+1Θi+1 = Ψ−1
i+1KT̊

∗
i Φ
∗
i . Likewise,

Bi :=
∑

`∈V (i+1)

∑
j ∈V−1(`)

b`, j,iQ`KPj with b`, j,i+1 :=
σ`,i+1ψ`,i+1
τj,iϕ j,i

,

satis�es T⊥i B∗i+1 = Φ−1
i K∗Σ̊i+1Ψi+1. Now we can rewrite (3.18a) and (3.18c) as

vi+1 := T⊥i [B∗i+1(y i+1 − y i ) + K∗y i+1], and(3.19a)
zi+1 := Σ⊥i+1[Θi+1(x i+1 − x i ) + Kx i+1].(3.19b)

Observe using (S-GF) how (3.18b) splits with respect to T̊i and T⊥i , while (C-SV .a) guarantees
zi+1 = Σ⊥i+1[Θi+1(x̊ i+1 − x i ) + Kx̊ i+1]. Therefore, (3.18), (3.19) become

x̊ i+1 := (I + T̊i∂G)−1(x i − T̊iK∗y i ),(3.20a)
w i+1 := Θi+1(x̊ i+1 − x i ) + x̊ i+1,(3.20b)
y i+1 := (I + Σi+1∂F

∗)−1(y i + Σ̊i+1Kx
i + Σ⊥i+1w

i+1),(3.20c)
vi+1 := B∗i+1(y i+1 − y i ) + y i+1,(3.20d)
x i+1 := (I +T⊥i ∂G)−1(x̊ i+1 −T⊥i vi+1).(3.20e)

Using the coordinate notation (2.8) and the parameter setup of Lemma 3.3, the iterations
(3.20) expand to Algorithm 1. We obtain from Proposition 3.8:
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Algorithm 1 Doubly-stochastic primal-dual method
Require: K ∈ L(X ;Y ),G ∈ C(X ), and F ∗ ∈ C(Y )with the separable structures (S-GF). Rules for

ϕ j,i ,ψ`,i+1, ηi+1,η
⊥
τ ,i+1,η

⊥
σ ,i+1 ∈ R(Oi ; [0,∞)), as well as sampling rules for S̊(i) and V̊ (i + 1),

(j = 1, . . . ,m; ` = 1, . . . ,n; i ∈ N).
1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: for all i ≥ 0 until a stopping criterion is satis�ed do
3: Sample S̊(i) ⊂ S(i) ⊂ {1, . . . ,m} and V̊ (i + 1) ⊂ V (i + 1) ⊂ {1, . . . ,n} subject to (C-SV ).
4: For each j < S(i), set x i+1

j := x ij .
5: For each j ∈ S̊(i), compute

τj,i :=
ηi−ϕj,i−1τj,i−1χS (i−1)\S̊ (i−1)(j)

ϕj,i π̊j,i
, and

x i+1
j := (I + τj,i∂G j )−1

(
x ij − τj,i

∑
`∈V(j) K

∗
`, jy

i
`

)
.

6: For each j ∈ S̊(i) and ` ∈ V(j), set
w̃ i+1

`, j := θ`, j,i+1(x i+1
j − x ij ) + x i+1

j with θ`, j,i+1 := τj,iϕj,i
σ`,i+1ψ`,i+1

.

7: For each ` < V (i + 1), set y i+1
`

:= y i
`
.

8: For each ` ∈ V̊ (i + 1), compute

σj,i+1 :=
ηi−ψj,iσj,i χV (i )\V̊ (i )(j)

ψj,i+1ν̊`,i+1
, and

y i+1
` := (I + σ`,i+1∂F

∗
`
)−1

(
y i
`
+ σ`,i+1

∑
j ∈V−1(`) K`, jx

i
j

)
.

9: For each ` ∈ V (i + 1) \ V̊ (i + 1) compute

σj,i+1 := η⊥σ ,i
ψj,i+1(ν`,i+1−ν̊`,i+1) , and

y i+1
` := (I + σ`,i+1∂F

∗
`
)−1

(
y i
`
+ σ`,i+1

∑
j ∈V−1(`) K`, jw̃

i+1
`, j

)
.

10: For each ` ∈ V̊ (i + 1) and j ∈ V−1(`), set
ṽi+1
`, j := b`, j,i+1(y i+1

`
− y i

`
) + y i

`
with b`, j,i+1 := σ`,i+1ψ`,i+1

τj,iϕj,i
.

11: For each j ∈ S(i) \ S̊(i), compute

τj,i := η⊥τ ,i
ϕj,i (πj,i−π̊j,i ) , and

x i+1
j := (I + τj,i∂G j )−1

(
x ij − τj,i

∑
`∈V(j) K

∗
`, jṽ

i+1
`, j

)
.

12: end for

Corollary 3.9. Let δ ∈ (0, 1) and (κ1, . . . ,κn) ∈ K(K ,P,Q). Suppose (C-xbnd), (C-ψ inc), (C-ybnd),
and (C-κψ ) hold along with (C-η⊥), (C-η), and (C-SV ). Then Algorithm 1 satis�es (R-τσ ), (R-λ),
and (3.17) with д̃N = ζNG(x̃N , ỹN ) when γ̃j ≤ γj/2 for all j, and д̃N = 0 otherwise.

Using Lemma 3.6, and further enforcing S(i) = S̊(i), we reduce Algorithm 1 to Algorithm 2.
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Algorithm 2 Block-stochastic primal-dual method, primal randomisation only
Require: K ∈ L(X ;Y ), G ∈ C(X ), and F ∗ ∈ C(Y ) with the separable structures (S-GF). Rules

for ϕ j,i ,ψ`,i+1,ηi+1 ∈ R(Oi ; (0,∞)), as well as a sampling rule for the set S(i), (j = 1, . . . ,m;
` = 1, . . . ,n; i ∈ N).

1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: for all i ≥ 0 until a stopping criterion is satis�ed do
3: Select random S(i) ⊂ {1, . . . ,m}.
4: For each j < S(i), set x i+1

j := x ij .
5: For each j ∈ S(i), with τj,i := ηiπ−1

j,iϕ
−1
j,i , compute

x i+1
j := (I + τj,i∂G j )−1

(
x ij − τj,i

∑
`∈V(j) K

∗
`, jy

i
`

)
.

6: For each j ∈ S(i) set

x̄ i+1
j := θ j,i+1(x i+1

j − x ij ) + x i+1
j with θ j,i+1 := ηi

πj,iηi+1
.

7: For each ` ∈ {1, . . . ,n} using σ`,i+1 := ηi+1ψ
−1
`,i+1, compute

y i+1
`

:= (I + σ`,i+1∂F
∗
`
)−1

(
y i
`
+ σ`,i+1

∑
j ∈V−1(`) K`, j x̄

i+1
j

)
.

8: end for

Its convergence is characterised by:

Corollary 3.10. Letδ ∈ (0, 1) and (κ1, . . . ,κn) ∈ K(K ,P,Q). Suppose (C-xbnd), (C-ψ inc), (C-ybnd),
and (C-κψ ) hold, and i 7→ ηi > 0 is non-decreasing. Then Algorithm 2 satis�es (R-τσ∗), (R-λ), and
(3.17) with д̃N = ζ∗,NG(x̃∗,N , ỹ∗,N ) when γ̃j ≤ γj/2 for all j, and д̃N = 0 otherwise.

3.6 sampling patterns

The only possible fully deterministic sampling patterns allowed by (3.11) and (C-SV ) are to
consistently take S̊(i) = {1, . . . ,m} and V̊ (i + 1) = ∅, or alternatively S̊(i) = ∅ and V̊ (i + 1) =
{1, . . . ,n}. Regarding stochastic algorithms, we start with a few options for sampling S(i) in
Algorithm 2 with iteration-independent probabilities πj,i ≡ πj .

Example 3.4 (Independent probabilities). If all the blocks {1, . . . ,m} are chosen indepen-
dently, we have P({j,k} ⊂ S(i)) = πjπk for j , k , where πj ∈ (0, 1].

Example 3.5 (Fixed number of random blocks). If we have a �xed number M of processors,
we may want to choose a subset S(i) ⊂ {1, . . . ,m} such that #S(i) = M .

The next example gives the simplest way to satisfy (C-SV .a) for Algorithm 1.
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Example 3.6 (Alternating x-y and y-x steps). Let us randomly alternate between S̊(i) = ∅
and V̊ (i + 1) = ∅. That is, with some probability px , we choose to take an x-y step that omits
lines 11 and 10 in Algorithm 1, and with probability 1 − px , an y-x step that omits the lines 6
and 9. If π̃j = P[j ∈ S̊ |S̊ , ∅], and ν̃` = P[` ∈ V̊ |V̊ , ∅] denote the probabilities of the rule
used to sample S̊ = S̊(i) and V̊ = V̊ (i + 1) when non-empty, then (C-SV ) gives

π̊j = px π̃j , πj = px π̃j + (1 − px )P[j ∈ V−1(V̊ )|V̊ , ∅],
ν̊` = (1 − px )ν̃`, ν` = (1 − px )ν̃j + pxP[` ∈ V(S̊)|S̊ , ∅].

To compute πj and ν` we thus need to knowV and the exact sampling pattern.

Remark 3.11. Based on Example 3.6, we can derive an algorithm where the only randomness comes
from alternating between full x-y and full y-x steps.

4 rates of convergence

We now need to satisfy the conditions of Corollaries 3.9 and 3.10. This involves choosing update
rules for ηi+1, η⊥τ ,i+1, η⊥σ ,i+1, ϕ j,i+1 andψ`,i+1. At the same time, to obtain good convergence rates,
we need to make dxj,N (̃γj ) and d

y
`,N = E[ψ`,N+1 −ψ`,0] small in (3.17). We do these tasks here. In

Section 4.1 we introduce and study a deterministic alternative to the exemplary update rule for
ϕ j,i+1 in Example 3.3. The analysis of the new rule is easier, and it allows the computation of ηi ,
which will also be deterministic, without communication in parallel implementations of our
algorithms. Afterwards, in Section 4.2 we look at possible choices for the parameters η⊥τ ,i and
η⊥σ ,i , which are only needed in stochastic variants of Algorithm 1. In Sections 4.3 to 4.6 we then
give various useful choices of ηi andψ`,i that yield concrete convergence rates.

We assume for simplicity, that the sampling pattern is independent of iteration,

π̊j,i ≡ π̊j > 0, and ν̊`,i ≡ ν̊` .(R-πν )

Then (C-SV ) shows that also πj,i ≡ πj > 0 and ν`,i ≡ ν` > 0.

4.1 deterministic primal test updates

The next lemma gives a deterministic alternative to Example 3.3. We recall that γj ≥ 0 is the
factor of strong convexity of G j .

Lemma 4.1. Suppose (R-τσ ), (C-η), and (R-πν ) hold, and that i 7→ η⊥τ ,i is non-decreasing. If
(C-xbnd.a) holds, take ρ j ≥ 0, otherwise take ρ j = 0 (j = 1, . . . ,m). Also take γ̄j ≥ 0 such that
ρ j + γ̄j > 0, and set

(R-ϕdet) ϕ j,i+1 := ϕ j,i + 2(γ̄jηi + ρ j ), (j = 1, . . . ,m; i ∈ N).
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Then for some c j > 0 holds

ϕ j,N ∈ R(ON−1; (0,∞)),(4.1a)

E[ϕ j,N ] = ϕ j,0 + 2ρ jN + 2γ̄j
N−1∑
i=0

E[ηi ], and(4.1b)

E[ϕ−1
j,N ] ≤ c jN

−1, (N ≥ 1).(4.1c)

If γ̄j , γ̃j ≥ 0 satisfy

2γ̃jγ̄jηi ≤ (̃γj − γ̄j )δϕ j,i , (j ∈ S(i), i ∈ N),(C-ϕdet)

then the primal test bound (C-xbnd) holds, and

dxj,N (̃γj ) = 18ρ jCxN .(4.1d)

Finally, if ηi ≥ bj minj ϕ
p
j,i for some p,bj > 0, then for some c̃ j ≥ 0 holds

1
E[ϕ−1

j,N ]
≥ γ̄j c̃ jN p+1, (N ≥ 4).(4.1e)

Proof. Since ηi ∈ R(Oi−1; (0,∞)), we deduce (4.1a). In fact, ϕ j,i+1 is deterministic as long as ηi is
deterministic. From (R-ϕdet) we compute

(4.2) ϕ j,N = ϕ j,N−1 + 2(γ̄jηN−1 + ρ j ) = ϕ j,0 + 2ρ jN + 2γ̄j
N−1∑
i=0

ηi .

Since i 7→ ηi is non-decreasing by (C-η), clearly ϕ j,N ≥ 2N ρ̃ j for ρ̃ j := ρ j + γ̄jη0 > 0. Then
ϕ−1
j,N ≤

1
2ρ̃ jN . Taking the expectation proves (4.1c), while (4.1b) is immediate from (4.2). Clearly

(4.1e) holds if γ̄j = 0, so assume γ̄j > 0. Using the assumption ηi ≥ bj minj ϕ
p
j,i and ϕ j,i ≥ 2iρ̃ j

that we just proved, we get ηi ≥ b ′j (i + 1)p for some b ′j > 0. With this and (4.2) we calculate

ϕ j,N ≥ ϕ j,0 + bj
N∑
i=1

ip ≥ ϕ j,0 + bj
∫ N

2
xp dx ≥ ϕ j,0 + p−1bj (N p+1 − 2).

Thus ϕ−1
j,N ≤ 1/(γ̄j c̃ jN 1+p ) for some c̃ j > 0. Taking the expectation proves (4.1e).

It remains to prove (4.1d) and (C-xbnd). Abbreviating γj,i := γ̄j + ρ jη−1
i , we write ϕ j,i+1 =

ϕ j,i + 2γj,iηi . Since i 7→ η⊥τ ,i is non-decreasing, (R-τσ ) gives

(4.3) E[ϕ j,i τ̂j,i |Oi−1] = ηi + η⊥τ ,i − η⊥i−1,τ ≥ ηi .

Expanding of (3.5), with the help of (4.3) we estimate

hj,i+2(̃γj ) = 2E[γj,iηi − γ̃jϕ j,i τ̂j,i |Oi−1] + 2α−1
i |E[γj,iηi − γ̃jϕ j,i τ̂j,i |Oi ]|

≤ 2(γj,i − γ̃j )ηi + 2α−1
i |γj,iηi − γ̃jϕ j,i τ̂j,i |

≤ 2(1 + α−1
i )ρ j + 2(γ̄j − γ̃j )ηi + 2α−1

i |γ̄jηi − γ̃jϕ j,i τ̂j,i |.
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Since (C-ϕdet) implies γ̄j ≤ γ̃j , it follows

(4.4) E[max{0,hj,i+2(̃γj )}] ≤ 2(1 + α−1
i )ρ j ,

provided

(4.5) α−1
i |γ̄jηi − γ̃jϕ j,i τ̂j,i | ≤ (̃γj − γ̄j )ηi .

We claim that this holds for

(4.6) αi :=
{

minj γ̄j/(̃γj − γ̄j ), γ̄jηi > γ̃jϕ j,i τ̂j,i ,

maxj (̃γj π̊−1
j + γ̄j )/(̃γj − γ̄j ), γ̄jηi ≤ γ̃jϕ j,i τ̂j,i .

The case γ̄jηi > γ̃jϕ j,i τ̂j,i is clear. Otherwise, we see that (4.5) holds if

(4.7) γ̃jϕ j,i τ̂j,i ≤ (αi (̃γj − γ̄j ) − γ̄j )ηi .

Using (4.6), this reduces to the condition ϕ j,i τ̂j,i ≤ π̊−1
j ηi . To verify this, we have to consider the

cases j ∈ S̊(i) and j ∈ S(i) \ S̊(i) separately. From (R-τσ ) we have

ϕ j,i τ̂j,i π̊j χS̊ (i)(j) ≤ ηi , and ϕ j,i τ̂j,i (πj − π̊j )(1 − χS̊ (i)(j)) ≤ η
⊥
τ ,i .

Using (C-η) in the latter estimate, we verify (4.7), and consequently (4.4).
Next, we expand (3.4), obtaining

qj,i+2(̃γj ) =
(
2E[γj,iηi − γ̃jϕ j,i τ̂j,i |Oi ] + 2αi |E[γj,iηi − γ̃jϕ j,i τ̂j,i |Oi ]| − δϕ j,i

)
χS (i)(j),

=
(
2(γj,iηi − γ̃jϕ j,i τ̂j,i ) + 2αi |γj,iηi − γ̃jϕ j,i τ̂j,i | − δϕ j,i

)
χS (i)(j),

≤
(
2(1 + αi )ρ j + 2(γ̄jηi − γ̃jϕ j,i τ̂j,i ) + 2αi |γ̄jηi − γ̃jϕ j,i τ̂j,i | − δϕ j,i

)
χS (i)(j).

Since ηi and ϕ j,iτj,i are increasing, we have

(4.8) E[qj,i+2(̃γj )] ≤ 2(1 + αi )ρ j ,

provided

(4.9) 2(γ̄jηi − γ̃jϕ j,i τ̂j,i ) + 2αi |γ̄jηi − γ̃jϕ j,i τ̂j,i | ≤ δϕ j,i , (j ∈ S(i)).

Inserting αi from (4.6), we see that (4.9) follows from (C-ϕdet). Finally, we see from (4.4) and
(4.8) that (C-xbnd.b) holds if we take ρ j = 0. Therefore (C-xbnd) always holds. From Lemma 3.2
now

δxj,i+2(̃γj ) = 2(1 + α−1
i )ρ jCx + 8(1 + αi )ρ jCx .

Clearly αi de�ned in (4.6) is bounded above and below, so we obtain (4.1d). �
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4.2 the parameters η⊥τ ,i and η⊥σ ,i
As it turns out, the parameters η⊥τ ,i and η⊥σ ,i , do not have any e�ect on converge rates, as long
as they satisfy (C-η⊥) and (C-η). Here we look at a few options.

Lemma 4.2. Suppose (R-πν ) holds. The conditions (C-η⊥) and (C-η) hold, and both i 7→ η⊥τ ,i and
i 7→ η⊥σ ,i are non-decreasing, if i 7→ ηi > 0 is non-decreasing, and we either:

(i) (Constant rule) Take η⊥τ ,i ≡ η⊥τ and η⊥σ ,i ≡ η⊥σ for constant η⊥σ ,η
⊥
τ > 0 satisfying

(4.10) η0 ·min
j
(πj − π̊j ) > η⊥τ , and η0 ·min

`
(ν` − ν̊`) > η⊥σ .

(ii) (Proportional rule) For some α ∈ (0, 1) let us take η⊥τ ,i := η⊥σ ,i := αηi satisfying

(4.11) min
j
(πj − π̊j ) > α , and min

`
(ν` − ν̊`) ≥ α .

Proof. Clearly both rules satisfy (C-η⊥), while (4.10) or (4.11) together with (R-πν ) and i 7→ ηi
being positive and non-decreasing, guarantee (C-η). That i 7→ η⊥τ ,i and i 7→ η⊥σ ,i are non-
decreasing is obvious. �

4.3 worst-case rules for ηi

For a random variable p ∈ R(Ω;R) on the probability space (Ω,O,P), let us de�ne the con-
ditional worst-case realisation with respect to the σ -algebra O ′ ⊂ O as the random variable
W[p |O ′] ∈ R(O ′;R) de�ned by

p ≤ W[p |O ′] ≤ q P-a.e. for all q ∈ R(O ′;R) s.t. p ≤ q P-a.e.

We also write W[p] := W[p |O ′] when O ′ = {Ω, ∅} is the trivial σ -algebra.
By (R-λ), (R-τσ ), and (R-πν ), we have

λl, j,i ≤ ηi
(
π̊−1
j χS̊ (i)(j) + ν̊

−1
` χV̊ (i+1)(`)

)
=: ηi µ̂`, j,i , (` ∈ V(j)).

The condition (C-κψ ) will therefore hold if

(4.12) ψ`,i+1 ≥
η2
i

1 − δW[κ`(. . . , µ̂
2
`, j,iϕ

−1
j,i , . . .)|Oi−1].

Accordingly, we take

(R-η) ηi := min
`=1, ...,n

√
(1 − δ )ψ`,i+1

W[κ`(. . . , µ̂2
`, j,iϕ

−1
j,i , . . .)|Oi−1]

.

By the construction of W, we get ηi ∈ R(Oi−1; (0,∞)) provided also ψi+1 ∈ R(Oi−1; (0,∞)). It
is our task in the rest of this section to experiment with di�erent choices ofψ`,i+1, satisfying
(C-ψ inc) and (C-ybnd). Before this we establish the following important fact.
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Lemma 4.3. Let δ ∈ (0, 1) and (κ1, . . . ,κn) ∈ K(K ,P,Q). Suppose (R-πν ) holds, and that both
i 7→ ϕ j,i and i 7→ ψ`,i are non-decreasing for all j = 1, . . . ,m and ` = 1, . . . ,n. Then i 7→ ηi
de�ned in (R-η) is non-decreasing and ensures (C-κψ ).

Proof. We �x ` ∈ {1, . . . ,n}. The condition (R-πν ) implies that (µ̂`,1,i , . . . , µ̂`,m,i ) are indepen-
dently identically distributed for all i ∈ N. Since ϕ j,i ∈ R(Oi−1; (0,∞)), we can for some random
(µ̂1, . . . , µ̂m) on a probability space (Pµ ,Ωµ ,Oµ ), distinct from (P,Ω,O), write

W[κ`(. . . , µ̂2
`, j,iϕ

−1
j,i , . . .)|Oi−1] ∼ W[κ`(. . . , µ̂2

jϕ
−1
j,i , . . .)], (i ∈ N),

where ∼ stands for “identically distributed”. Since i 7→ ϕ j,i is non-decreasing and κ` monotone,
this implies

W[κ`(. . . , µ̂2
`, j,iϕ

−1
j,i , . . .)|Oi−1] ≥ W[κ`(. . . , µ̂2

`, j,i+1ϕ
−1
j,i+1, . . .)|Oi ], P-a.e.

Since i 7→ ψ`,i is also non-decreasing, the claim follows. �

4.4 mixed rates under partial strong convexity

Let us takeψ`,i+1 := ψ`,0η
2−1/p
i for some p ∈ (0, 1]. Then (R-η) gives

(R-η′) ηi = min
`=1, ...,n

(
(1 − δ )ψ`,0

W[κ`(. . . , µ̂2
`, j,iϕ

−1
j,i , . . .)|Oi−1]

)p
.

Lemma 4.4. Let (κ1, . . . ,κn) ∈ K(K ,P,Q) Suppose (R-η) and (4.1c) hold, ϕ j,i ∈ R(Oi−1; (0,∞)),
and that ψ`,i+1 = η

2−1/p
i ψ`,0 for some ψ`,0 > 0 and p ∈ (0, 1]. Then E[ηi ] ≥ c

p
ηi
p and ηi ≥

b
p
η minj ϕ

p
j,i for some constants cη ,bη > 0 independent of p.

Proof. Withψ
0

:= min`=1, ...,nψ`,0, from (R-η) now

η
1/p
i ≥

(1 − δ )ψ0

max`=1, ...,n W[κ`(. . . , µ̂2
`, j,iϕ

−1
j,i , . . .)|Oi−1]

.

Since µ̂`, j,i = 0 for ` < V(j), using (C-κ.b) and ϕ j,i ∈ R(Oi−1; (0,∞)), we get

η
1/p
i ≥

(1 − δ )ψ0

κ max`∈V(j)W[
∑n

j=1 µ̂
2
`, j,iϕ

−1
j,i |Oi−1]

≥ 1∑n
j=1 b

−1
j ϕ
−1
j,i

for bj := (1 − δ )ψ0/(κw2
j ). This shows ηi ≥ minj b

p
j ϕ

p
j,i . Since x 7→ 1/x and x 7→ xq are convex

on [0,∞) for q ≥ 1, Jensen’s inequality gives

E[ηi ] ≥
1

E
[
(∑n

j=1 b
−1
j ϕ
−1
j,i )p

] ≥ 1(∑n
j=1 b

−1
j E[ϕ−1

j,i ]
)p .

Using (4.1c) follows E[ηi ] ≥ c
p
ηi
p for cη := 1/∑m

j=1 b
−1
j c j . �
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We introduce the short-hand notation

wj := max
`∈V(j)

W[µ̂`, j,i |Oi−1] = max
`∈V(j)

W
[
π̊−1
j χS̊ (i)(j) + ν̊

−1
` χV̊ (i+1)(`)

�� Oi−1
]
,

observing that wj is independent of i ≥ 0 by the proof of Lemma 4.3. With this, we are �nally
ready to state our main result:

Theorem 4.5. Let δ ∈ (0, 1) and (κ1, . . . ,κn) ∈ K(K ,P,Q) (see De�nition 3.1). Write γj ≥ 0 for
the factor of (strong) convexity of G j . In Algorithm 1 or Algorithm 2, take

(i) The probabilitiesP[j ∈ S̊(i)] ≡ π̊j > 0, and (in Algorithm 1)P[` ∈ V̊ (i+1)] ≡ ν̊` independent
of iteration, satisfying (C-SV ).

(ii) ϕ j,0 > 0 freely, and ϕ j,i+1 := ϕ j,i + 2(γ̄jηi + ρ j ), where γ̄j , ρ j ≥ 0 satisfy ρ j + γ̄j > 0.

(iii) ψ`,i := ψ`,0η
2−1/p
i for some �xedψ`,0 > 0 and p ∈ (0, 1].

(iv) ηi by (R-η′) and (in Algorithm 1) η⊥τ ,i ,η
⊥
σ ,i > 0 following Lemma 4.2.

Let `∗(j) and κ be given by (C-κ.c). Suppose for each j = 1, . . . ,m either ρ j = 0 or (C-xbnd.a) holds
with the constant Cx , and for some γ̃j ∈ [γ̄j ,γj ] the initialisation bound holds

(C-ϕdet′) γ̃j = γ̄j = 0 or
2γ̃jγ̄j
γ̃j − γ̄j

(
1 − δ
κwj

)p
≤ δψ−p

`∗(j),0ϕ
1−p
j,0 .

If p , 1/2, also assume that γ̄j∗ = 0 for some j∗ ∈ {1, . . . ,m}, and that (C-ybnd.a) holds with the
corresponding constant Cy . Let c̃ j ≥ 0 be the constants provided by Lemma 4.1. Then

(4.13)
m∑
j=1

δc̃ jγ̄jE
[
‖xNj − x̂ j ‖

]2
+ дp,N ≤

C0 + 18Cx (
∑m

j=1 ρ j )N +
∑n

`=1ψ`,0
(
C∗N + δ ∗

)
N p+1 ,

for N ≥ 4, and

дp,N :=


cpG(x̃N , ỹN ), Algorithm 1, γ̃j ≤ γj/2 for all j,
c∗,pG(x̃∗,N , ỹ∗,N ), Algorithm 2, γ̃j ≤ γj/2 for all j,
0, otherwise.

The constants cp , c∗,p > 0 are dependent on p alone, while C∗,δ ∗ ≥ 0 are zero if p = 1/2, and
otherwise depend onψ`∗(j∗),0, ϕ j∗,0, κ, w`∗(j∗), δ , and p.

Remark 4.6. If p = 1/2, we haveψ`,i+1 = ψ`,0, and a mixed O(1/N 3/2) +O(1/N 1/2) convergence
rate. If p = 1,ψ`,i+1 is increasing, but we have a mixed O(1/N 2) +O(1/N ) convergence rate.

Remark 4.7. The lemma is valid (with suitable constants) for general primal update rules as long
as (4.1) holds and i 7→ ϕ j,i is non-decreasing. As we have seen, this is the case for the deterministic
rule of Lemma 4.1. For the random rule of Example 3.3, the rest of the conditions hold, but we have
not been able to verify (4.1e). This has the implication that only the gap estimates hold.
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Proof. We use Corollary 3.9 (Algorithm 1) and 3.10 (Algorithm 2). We have assumed (C-SV ).
The conditions (C-ψ inc) and (C-ybnd.b) clearly hold by the choice ofψ`,i+1. Since i 7→ ϕ j,i and
i 7→ ψ`,i are clearly non-decreasing, Lemma 4.3 shows (C-κψ ) and that i 7→ ηi is non-decreasing.
Moreover, (i) veri�es (R-πν ). Therefore, Lemma 4.2 shows (C-η⊥), (C-η), and that i 7→ η⊥τ ,i is
non-decreasing (for Algorithm 1).

To verify (C-xbnd) via Lemma 4.1, we still need to satisfy (C-ϕdet). With the help (C-κ.c), we
deduce from (R-η′) that

(4.14) ηi ≤
( (1 − δ )ψ`∗(j),0

κwj
ϕ j,i

)p
.

Moreover ϕ1−p
j,i ≥ ϕ

1−p
j,0 . Therefore (C-ϕdet) follows from (C-ϕdet′). Lemma 4.1 thus shows

(C-xbnd), since the algorithms satisfy (3.11). This �nishes the veri�cation of the conditions of
the corollaries, so we obtain the estimate (3.17).

To obtain convergence rates, we need to further analyse (3.17). We mainly need to estimate
ζN and ζ∗,N . We recall the variable η̄i from (CG) and (CG∗). The condition (C-η) and the update
formulas (R-τσ ) guarantee η̄i ≥ E[ηi ]; cf. Section 3.4. Moreover, Lemma 4.4 gives E[ηi ] ≥ c

p
ηi
p

for some cη > 0. Thus we estimate ζN from (2.9) as

ζN =
N−1∑
i=0

η̄i ≥
N−1∑
i=0

E[ηi ] ≥ c
p
η

N−1∑
i=0

ip ≥ c
p
η

∫ N−2

0
xp dx

≥
c
p
η

p + 1 (N − 2)p+1 ≥
c
p
η

2p+1(p + 1)N
p+1 =: cpN p+1 (N ≥ 4),

(4.15)

Similarly, for some c∗,p > 0, ζ∗,N de�ned in (2.9) satis�es

(4.16) ζ∗,N ≥
N−1∑
i=1

E[ηi ] ≥
c
p
η

p + 1 ((N − 2)p+1 − 1) ≥ c∗,pN
p+1 (N ≥ 4).

If p = 1/2, clearly d
y
`,N = E[ψ`,N − ψ`,0] ≡ 0. Otherwise, we still need to bound ψ`,N+1 to

bound d
y
`,N . To do this, we need the assumed existence j∗ with γj∗ = 0. From (4.14) we have

ηi ≤ Cϕ j∗,i for someC > 0. Since γj∗ = 0, a referral to (4.1b) shows that E[ϕ j∗,N ] = ϕ j∗,0 + Nρ j∗ .
We now deduce for some C∗,δ∗ ≥ 0 that

(4.17) E[dNy, `] = ψ`,0(E[ηN ] − 1) ≤ ψ`,0
(
C∗N p + δ ∗

)
.

Lemma 4.4 shows ηi ≥ b
p
η minj ϕ

p
j,i for j = 1, . . . ,m. Thus (4.1e) and (4.1d) in Lemma 4.1

give 1/E[ϕ−1
j,N ] ≥ γ̄j c̃ jN p+1 for N ≥ 4, and dxj,N (̃γj ) = 18ρ jCxN . Now (4.13) is immediate from

applying these estimates and (4.15)–(4.17) in (3.17). �

4.5 unaccelerated algorithm

If ρ j = 0 and γ̄j = γ̃j = 0 for all j = 1, . . . ,m, then ϕ j,i ≡ ϕ j,0. Consequently (R-η) shows
that ηi ≡ η0. Recalling ζN from (2.9), we see that ζN = Nη0. Likewise ζ∗,N from (2.9) satis�es
ζ∗,N = (N − 1)η0. Clearly also d

y
`,N = 0 and dxj,N (̃γj ) = 0. Inserting this information into (3.17),

we immediately obtain:
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Corollary 4.8. Let δ ∈ (0, 1) and (κ1, . . . ,κn) ∈ K(K ,P,Q). In Algorithm 1 or 2, take

(i) P[j ∈ S̊(i)] ≡ π̊j > 0, and (in Algorithm 1) P[` ∈ V̊ (i + 1)] ≡ ν̊` independent of iteration,
satisfying (C-SV ).

(ii) ϕ j,i ≡ ϕ j,0 for some �xed ϕ j,0 > 0.

(iii) ψ`,i ≡ ψ`,0 for some �xedψ`,0 > 0.

(iv) ηi ≡ η0 with η0 given by (R-η), and (in Algorithm 1) η⊥τ ,i ,η
⊥
σ ,i > 0 following Lemma 4.2.

Then

(I) The iterates of Algorithm 1 satisfy G(x̃N , ỹN ) ≤ C0η
−1
0 /N , (N ≥ 1).

(II) The iterates of Algorithm 2 satisfy G(x̃∗,N , ỹ∗,N ) ≤ C0η
−1
0 /(N − 1), (N ≥ 2).

4.6 full primal strong convexity

If G is fully strongly convex, we can naturally derive an O(1/N 2) algorithm.

Corollary 4.9. Let δ ∈ (0, 1) and (κ1, . . . ,κn) ∈ K(K ,P,Q). Write γj for the factor of strong
convexity of G j , and suppose minj γj > 0. In Algorithm 1 or Algorithm 2, take

(i) P[j ∈ S̊(i)] ≡ π̊j > 0, and (in Algorithm 1) P[` ∈ V̊ (i + 1)] ≡ ν̊` independent of iteration,
satisfying (C-SV ).

(ii) ηi according to (R-η), and (in Algorithm 1) η⊥τ ,i ,η
⊥
σ ,i > 0 following Lemma 4.2.

(iii) ϕ j,0 > 0 freely, and ϕ j,i+1 := ϕ j,i (1 + 2γ̄jτj,i ) for some �xed γ̄j ∈ (0,γj ).

(iv) ψ`,i := ψ`,0 for some �xedψ`,0 > 0.

Suppose (C-ϕdet′) holds for some γ̃j ∈ [γ̄j ,γj ]. Let c̃ j be the constants from Lemma 4.1. Then

m∑
j=1

δc̃ jγ̄jE
[
‖xNj − x̂ j ‖

]2
+ д̃1,N ≤

C0
N 2 , (N ≥ 4).

where for some constants q1,q∗,1 > 0 we have

д̃1,N :=


q1G(x̃N , ỹN ), Algorithm 1, γ̃j ≤ γj/2 for all j,
q∗,1G(x̃∗,N , ỹ∗,N ), Algorithm 2, γ̃j ≤ γj/2 for all j,
0, otherwise.

Proof. The update rule (R-ϕdet) now gives

ϕ j,N ≥ ϕ0
+ γ

N−1∑
i=0

ηi ≥ ϕ0
+ γ

N−1∑
i=0

ηi with ϕ
0

:= min
j
ϕ j,0 > 0.
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(a) True image (b) Noisy image (c) Blurry image (d) Dimmed image

Figure 1: Sample images for denoising, deblurring, and undimming experiments.

Lemma 4.4 shows η2
i ≥ b minj ϕ j,i for some b. Therefore η2

N ≥ bϕ
0
+ bγ

∑N−1
i=0 ηi . Otherwise

written this says η2
N ≥ η̃2

N , where

η̃2
N = bϕ0

+ bγ
N−1∑
i=0

η̃i = η̃
2
N−1 + c

2γη̃N−1 = η̃
2
N−1 + bγη̃

−1
N−1.

This implies ηi ≥ η̃i ≥ c ′ηi for some c ′η > 0; cf. the estimates for the acceleration rule (2.3) in
[6, 33]. We now work through the proof of Theorem 4.5 with p = 1/2 and ρ j = 0, but using in
(4.15) and (4.16) the estimate ηi ≥ c ′ηi that would otherwise correspond to p = 1. �

Remark 4.10 (Linear rates under full primal-dual strong convexity). If bothG and F ∗ are strongly
convex, �xing τj,i ≡ τj , it is possible to derive linear rates.

5 numerical experience

We now apply several variants of the proposed algorithms to image processing problems. We
consider discretisations, as our methods are formulated in Hilbert spaces, but the space of
functions of bounded variation—where image processing problems are typically formulated—is
only a Banach space. Our speci�c example problems will be TGV2 denoising, TV deblurring,
and TV undimming.

We present the corrupt and ground-truth images in Figure 1, with values in the range [0, 255].
We use the images both at the original resolution of 768 × 512, and scaled down to 192 × 128
pixels. To the noisy high-resolution test image in Figure 1b, we have added Gaussian noise with
standard deviation 29.6 (12dB). In the downscaled image, this becomes 6.15 (25.7dB). The image
in Figure 1c we have distorted with Gaussian blur of standard deviation 4. To avoid inverse
crimes, we have added Gaussian noise of standard deviation 2.5. The dimmed image in Figure 1d,
we have distorted by multiplying the image with a sinusoidal mask γ ; see Figure 1c. Again, we
have added the small amount of noise to the blurry image.

Besides the unaccelerated PDHGM—our examples lack strong convexity for acceleration
of basic methods—we evaluate our algorithms against the relaxed PDHGM of [7, 17]. In our
precursor work [33], we have also evaluated these two algorithms against the mixed-rate method
of [8], and the adaptive PDHGM of [16]. To keep our tables and �gures easily legible, we also
do not include the algorithms of [33] in our evaluations. It is worth noting that even in the
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Table 1: Algorithm variant name construction
Letter: 1st 2nd 3rd 4th

Randomisation ϕ rule η andψ rules κ choice
A- D: Deterministic R: Random, Lem. 3.3 B: Bounded: p = 1

2 O: Balanc., Ex. 3.2
P: Primal only D: Determ., Lem. 4.1 I: Increasing: p = 1 M: Max., Ex. 3.1
B: Primal & Dual C: Constant

two-block case, the algorithms presented in this paper will not reduce to those of that paper:
our rules for σ`,i are very di�erent from the rules for the single σi therein.

We de�ne abbreviations of our algorithm variants in Table 1. We do not report the results or
apply all variants to all example problems, as this would not be informative. We demonstrate
the performance of the stochastic variants on TGV2 denoising only. This merely serves as an
example, as our problems are not large enough to bene�t from being split on a computer cluster,
where the bene�ts of stochastic approaches would be apparent.

To rely on Theorem 4.5 for convergence, we still need to satisfy (C-ybnd.a) and (C-xbnd.a), or
take ρ j = 0. The boundCy in (C-ybnd) is easily calculated, as in all of our example problems, the
functional F ∗ will restrict the dual variable to lie in a ball of known size. The primal variable, on
the other hand, is not explicitly bounded. It is however possible to prove data-based conservative
bounds on the optimal solution, see, e.g., [32, Appendix A]. We can therefore add an arti�cial
bound to the problem to force all iterates to be bounded, replacingG by G̃(x) := G(x)+δB(0,Cx )(x).
In practise, to avoid �guring out the exact magnitude of Cx , we update it dynamically. This
avoids the constraint from ever becoming active and a�ecting the algorithm at all. In [32] a
“pseudo duality gap” based on this idea was introduced to avoid problems with numerically
in�nite duality gaps. We will also use them in our reporting: we take the bound Cx as the
maximum over all iterations of all tested algorithms, and report the duality gap for the problem
with G̃ replacing G. We always report the pseudo-duality gap in decibels 10 log10(gap2/gap2

0)
relative to the initial iterate.

In addition to the pseudo-duality gap, we report for each algorithm the distance to a target
solution, and function value. We report the distance in decibels 10 log10(‖vi − v̂ ‖2/‖v̂ ‖2), and
the primal objective value val(x) := G(x) + F (Kx) relative to the target as 10 log10((val(x) −
val(x̂))2/val(x̂)2). The target solution x̂ we compute by taking one million iterations of the basic
PDHGM. Our computations were performed in Matlab+C-MEX on a MacBook Pro with 16GB
RAM and a 2.8 GHz Intel Core i5 CPU. Our initial iterates are always x0 = 0 and y0 = 0.

5.1 TGV2 denoising

In this problem, we write x = (v,w) and y = (ϕ,ψ ), where v is the image of interest, and take

G(x) = 1
2 ‖ f −v ‖

2, K =

(
∇ −I
0 E

)
, and F ∗(y) = δΠB(0,α )(ϕ) + δΠB(0,β )(ψ ).

Here α , β > 0 are regularisation parameters, E is the symmetrised gradient, and the balls are
pixelwise Euclidean with the product Π over image pixels. Since there is no further spatial
non-uniformity in this problem, it is natural to take as our projections P1x = v , P2x = w ,Q1y = ϕ,

27



Table 2: TGV2 denoising performance: CPU time and number of iterations (at a resolution of
10) to reach given duality gap, distance to target, or primal objective value.

low resolution / 0-init
gap ≤ −60dB tgt ≤ −60dB val ≤ −60dB
iter time iter time iter time
30 0.21s 100 0.72s 110 0.79s
20 0.20s 70 0.71s 70 0.71s
40 0.26s 230 1.55s 180 1.22s
80 0.54s 890 6.07s 500 3.41s
20 0.14s 50 0.36s 110 0.80s
30 0.19s 50 0.32s 90 0.58s

high resolution / 0-init
gap ≤ −50dB tgt ≤ −50dB val ≤ −50dB
iter time iter time iter time
50 6.31s 870 111.83s 370 47.49s
40 6.93s 580 102.89s 250 44.25s
70 9.17s 2750 365.52s 1050 139.48s
80 10.56s 860 114.81s 420 56.00s
60 7.37s 2140 267.29s 900 112.34s
60 7.85s 600 79.67s 340 45.09s

and Q2y = ψ . It is then not di�cult to calculate the optimal κ` of Example 3.2, so we use only
the ‘xxxO’ variants of the algorithms in Table 1.

As the regularisation parameters (β,α), we choose (4.4, 4) for the downscaled image. For
the original image we scale these parameters by (0.25−2, 0.25−1) corresponding to the image
downscaling factor [12]. Since G is not strongly convex with respect to w , we have γ̃2 = 0. For v
we take γ̃1 = 1/2, corresponding to the gap versions of our convergence estimates.

We take δ = 0.01, and parametrise the standard PDHGM with σ0 = 1.9/‖K ‖ and τ0 ≈
0.52/‖K ‖ solved from τ0σ0 = (1 − δ )‖K ‖2. These are values that typically work well. For
forward-di�erences discretisation of TGV2 with cell width h = 1, we have ‖K ‖2 ≤ 11.4 [32]. For
the ‘Relax’ method from [7], we use the same σ0 and τ0, as well as the value 1.5 for the inertial ρ
parameter. For the increasing-ψ ‘xxIx’ variants of our algorithms, we take ρ1 = ρ2 = 5, τ1,0 = τ0,
and τ2,0 = 3τ0. For the bounded-ψ ‘xxBx’ variants we take ρ1 = ρ2 = 5, τ1,0 = τ0, and τ2,0 = 8τ0.
For both methods we also take η0 = 1/τ0,1. These parametrisations force ϕ1,0 = 1/τ 2

1,0, and keep
the initial step length τ1,0 for v consistent with the basic PDHGM. This justi�es our algorithm
comparisons using just a single set of parameters.

The results for the deterministic variants of our algorithms are in Table 2 and Figure 2. We
display the �rst 5000 iterations in a logarithmic fashion. To reduce computational overheads, we
compute the reported quantities only every 10 iterations. To reduce the e�ects of other processes
occasionally slowing down the computer, the CPU times reported are based on the average
iteration_time = total_time/total_iterations, excluding time spent initialising the algorithm.

Our �rst observation is that the variants ‘xDxx’ based on the deterministic ϕ rule perform
better than the “random” ϕ rule ‘xRxx’. Presently, with no randomisation, the only di�erence
between the rules is the value of γ̄ . The value 0.0105 from (C-ϕdet′) for p = 1/2 and the value
0.0090 for p = 1 appear to give better performance than the maximal value γ̃1 = 0.5. Generally,
the A-DDBO seems to have the best asymptotic performance, with A-DRBO close. A-DDIO has
good initial performance, although especially on the higher resolution image, the PDHGM and
‘Relax’ perform initially the best. Overall, however, the question of the best performer seems to
be a rather fair competition between ‘Relax’ and A-DDBO.
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Figure 2: TGV2 denoising, deterministic variants of our algorithms with pixelwise step lengths,
5000 iterations, high (hi-res) and low (lo-res) resolution images.

5.2 TGV2 denoising with stochastic algorithm variants

We also test stochastic variants of our algorithms based on the alternating sampling of Exam-
ple 3.5 with M = 1 and, when appropriate, Example 3.6. We take all probabilities equal to 0.5,
that is px = π̃1 = π̃2 = ν̃1 = ν̃2 = 0.5. In the doubly-stochastic ‘Bxxx’ variants of the algorithms,
we take η⊥τ ,i = η⊥σ ,i = 0.9 · 0.5ηi following the proportional rule Lemma 4.2(ii).

The results are in Figure 3. To conserve space, we have only included a few descriptive
algorithm variants. On the x axis, to better describe to the amount of actual work performed by
the stochastic methods, the “iteration” count refers to the expected number of full primal-dual
updates. For all the displayed stochastic variants, with the present choice of probabilities, the
expected number of full updates in each iteration is 0.75.

We run each algorithm 50 times, and plot for each iteration the 90% con�dence interval
according to Student’s t-distribution. Towards the 5000th iteration, these generally become
very narrow, indicating reliability of the random method. Overall, the full-dual-update ‘Pxxx’
variants perform better than the doubly-stochastic ‘Bxxx’ variants. In particular, A-PDBO has
performance comparable to or even better than the PDHGM.

5.3 tv deblurring

We want to remove the blur in Figure 1c. We do this by taking

G(x) = 1
2 ‖ f − F

∗(aFx)‖2, K = ∇, and F ∗(y) = δΠB(0,α )(y),
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Figure 3: TGV2 denoising, stochastic variants of our algorithms: 5000 iterations, low resolution
images. Iteration number scaled by the fraction of blocks updated on average. For each
iteration, 90% con�dence interval according to the t-distribution over 50 random runs.

Table 3: TV deblurring performance: CPU time and number of iterations (at a resolution of 10)
to reach given duality gap, distance to target, or primal objective value.

low resolution / 0-init
gap ≤ −60dB tgt ≤ −60dB val ≤ −60dB
iter time iter time iter time
30 0.18s 330 2.05s 70 0.43s
20 0.11s 220 1.30s 50 0.29s
20 0.14s 280 2.08s 80 0.59s
20 0.14s 490 3.58s 90 0.65s
20 0.14s 170 1.25s 70 0.51s
20 0.15s 180 1.37s 60 0.45s

high resolution / 0-init
gap ≤ −50dB tgt ≤ −40dB val ≤ −40dB
iter time iter time iter time
60 5.04s 330 28.12s 110 9.31s
50 4.32s 220 19.30s 90 7.84s
30 3.27s 280 31.41s 320 35.92s
60 6.48s 240 26.27s 220 24.07s
30 3.17s 260 28.35s 230 25.06s
50 5.56s 230 25.98s 150 16.90s

where the balls are again pixelwise Euclidean, and F the discrete Fourier transform. The factors
a = (a1, . . . ,am) model the blurring operation in Fourier basis.

We use TV parameter α = 2.55 for the high resolution image and the scaled parameter
α = 2.55∗0.15 for the low resolution image. We parametrise the PDHGM and ‘Relax’ algorithms
exactly as for TGV2 denoising above, taking into account the estimate 8 ≥ ‖K ‖2 [5]. We take
as Pj the projection to the j:th Fourier component, and as Q` the projection to the `:th pixel.
Thus each dual pixel and each primal Fourier component have their own step length parameter.
We initialise the latter as τj,0 = τ0/(λ + (1 − λ)γj ), where the componentwise factor of strong
convexity γj = |aj |2. For the bounded-ψ ‘xxBx‘ algorithm variants we take λ = 0.01, and for the
increasing-ψ ‘xxIx’ variants λ = 0.1.

We only experiment with deterministic algorithms, as we do not expect small-scale randomi-
sation to be bene�cial. We also use the maximal κ ‘xxxM’ variants, as a more optimal κ would
be very di�cult to compute. The results are in Table 3 and Figure 4. Similarly to A-DDBO in our
TGV2 denoising experiments, A-DDBM performs reliably well, indeed better than the PDHGM
or ‘Relax’. However, in many cases, A-DRBM and A-DDIM are even faster.
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Figure 4: TV deblurring, deterministic variants of our algorithms with pixelwise step lengths,
�rst 5000 iterations, high (hi-res) and low (lo-res) resolution images.

Table 4: TV undimming performance: CPU time and number of iterations (at a resolution of 10)
to reach given duality gap, distance to target, or primal objective value.

low resolution / 0-init
gap ≤ −80dB tgt ≤ −60dB val ≤ −60dB
iter time iter time iter time
70 0.18s 200 0.51s 120 0.30s
50 0.16s 130 0.41s 80 0.25s
30 0.10s 160 0.57s 80 0.28s
20 0.05s 170 0.47s 60 0.16s
30 0.08s 110 0.30s 60 0.16s
20 0.05s 70 0.18s 40 0.10s

high resolution / 0-init
gap ≤ −80dB tgt ≤ −60dB val ≤ −60dB
iter time iter time iter time
100 3.41s 300 10.31s 210 7.21s
70 3.03s 200 8.73s 140 6.10s
80 3.52s 760 33.82s 640 28.48s
90 3.95s 370 16.39s 380 16.84s
70 3.05s 580 25.57s 430 18.94s
60 2.63s 230 10.22s 200 8.88s

5.4 tv undimming

In this problem K and F ∗ are as in TV deblurring, but G(u) := 1
2 ‖ f − γ · u‖2 for the sinusoidal

dimming mask γ : Ω → R. Our experimental setup is also nearly the same as TV deblurring,
with the natural di�erence that the projection Pj are no longer to the Fourier basis, but to
individual image pixels. The results are in Figure 5, and Table 4. They tell roughly the same
story as TV deblurring, with A-DDBM performing well and reliably.
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Figure 5: TV undimming, deterministic variants of our algorithms with pixelwise step lengths,
5000 iterations, high (hi-res) and low (lo-res) resolution images.

conclusions

We have derived from abstract theory several accelerated block-proximal primal-dual methods,
both stochastic and deterministic. So far, we have primarily concentrated on applying them
deterministically, taking advantage of blockwise—indeed pixelwise—factors of strong convexity,
to obtain improved performance compared to standard methods. In future work, it will be inter-
esting to evaluate the methods on real large scale problems to other state-of-the-art stochastic
optimisation methods. Moreover, interesting questions include heuristics and other mechanisms
for optimal initialisation of the pixelwise parameters.
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