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ABSTRACT
The 2Jy sample is a survey of radio galaxies with flux densities above 2 Jy at 2.7 GHz. As part of our
ongoing work on the southern subset of 2Jy sources, in paper Iof this series we analysed the X-ray cores
of the complete 2Jy sample with redshifts 0.05< z< 0.7. For this work we focus on the X-ray emission
associated with the extended structures (jets, lobes, and environments) of the complete subset of 2Jy sources
with 0.05< z< 0.2, that we have observed withChandra. We find that hotspots and jet knots are ubiquitous
in FRII sources, which also inhabit systematically poorer environments than the FRI sources in our sample.
Spectral fits of the hotspots with good X-ray statistics invariably show properties consistent with synchrotron
emission, and we show that inverse-Compton mechanisms under-predict the X-ray emission we observe by
1–2 orders of magnitude. Inverse-Compton emission is detected from many of the lobes in our sample, and
we find that the lobes of the FRII sources show magnetic fields lower by up to an order of magnitude than
expected from equipartition extrapolations. This is consistent with previous results, which show that most
FRII sources have electron energy densities higher than minimum energy requirements.
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1 INTRODUCTION

The 2Jy sample of radio galaxies1, as defined byWall & Peacock
(1985), includes all the galaxies with flux greater than 2Jy at 2.7
GHz. Over the last twenty years we have obtained and studied in
detail uniform data for the complete subset of Southern sources
defined byTadhunter et al.(1993) andMorganti et al.(1993) (δ <
+10◦) and, especially, the steep-spectrum (α > 0.5, whereα is
the radio spectral index, such thatSν ∝ ν−α ) subsample defined
by Dicken et al.(2008), which contains 47 objects and is statis-
tically complete for redshifts 0.05< z< 0.7 (seeMorganti et al.
1993, 1999; Tadhunter et al. 1993, 1998; Inskip et al. 2010;
Ramos Almeida et al. 2011b; Dicken et al. 2008, 2009, 2012,
2014; Mingo et al. 2014). Most recently, in the first paper of this se-
ries (Mingo et al. 2014, hereafter, Paper I), we analysed the X-ray
cores of the 2Jy sources in the subset ofDicken et al.(2008), using
data fromChandraandXMM-Newton, and found our results to be

⋆ E-mail:bmingo@extragalactic.info
1 http://2Jy.extragalactic.info/2Jy_home_page.html

in good agreement with those ofHardcastle et al.(2006, 2009) on
the 3CRR radio galaxies.

In this work we focus on the extended X-ray emission (jets,
hotspots, and lobes) and the environments of the 0.05< z< 0.2
subset of sources that we have observed withChandra, whose nu-
clei we studied in paper I. Our knowledge of X-ray jets (see e.g. the
review byWorrall 2009) and hotspots (e.g.Hardcastle et al. 2004,
2007b; Massaro et al. 2010, 2015) has certainly improved over the
last two decades, as has our understanding of the environment in
which radio galaxies live (e.g.Belsole et al. 2007; Croston et al.
2008; Ineson et al. 2013, 2015), but the samples of radio galaxies
with available detailed observations are still relativelysmall, and
more work needs to be done to understand their extended struc-
tures and how they co-evolve with the hosts (see also the recent
review by Tadhunter 2016). The 2Jy sample is important in that
it is not only statistically complete, but uniformly observed, with
long ChandraandXMM-Newtonexposures (∼ 20 kiloseconds on
average) that allow a detailed spectroscopic study of some of the
most important structures.

The traditional radio classification, defined by
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Fanaroff & Riley (1974), divides the sources according to their
radio structure, into centre-brightened (FRI), and edge-brightened
(FRII) classes. This division is tied to the total radio luminosity of
the source, with FRIs being less luminous and FRIIs being more
so; Fanaroff & Riley’s transition corresponds to a power of 1025

W Hz−1 at 1.4 GHz. The radio luminosity in turn is expected to
be related to the intrinsic jet powerQ, but radio luminosity must
also be affected by other factors, including a source’s age and the
density of its environment (e.g.Hardcastle & Krause 2013, 2014;
English et al. 2016), so that morphology and radio luminosity are
not always reliable estimators of intrinsic jet power. FRI jets are
known to decelerate from relativistic to non-relativisticspeeds on
kpc scales (e.g.Laing & Bridle 2014), which implies relatively
substantial entrainment of external material. In general terms, the
standard explanation for the FRI/FRII dichotomy (e.g.Bicknell
1995) is that FRI jets, which are less intrinsically powerful (lower
Q), are decelerated by entrainment, to transonic speeds before
leaving the environment of the host galaxy, while FRII jets are
powerful enough to retain supersonic (relativistic) speeds on scales
of tens of kpc. The FRI/FRII division would thus be a function
of both environment and intrinsic jet power (but see also e.g.
Tchekhovskoy & Bromberg 2016).

Consistent with this, FRI sources in flux-limited samples
have long been thought to inhabit relatively dense environments
(e.g. Prestage & Peacock 1988), although this seems to change
for low-luminosity FRI LERGs (low excitation radio galaxies,
seeIneson et al. 2015), and there is evidence from pressure bal-
ance arguments (e.g.Croston et al. 2007; Mingo et al. 2012) that
their lobes may contain a substantial non-radiating component,
and as such depart substantially from an assumption of energy
equipartition between the magnetic field and the electrons in the
lobes (Croston et al. 2008). FRIIs inhabit sparser environments
(e.g.Ineson et al. 2013, 2015), and their lobes are closer to equipar-
tition (Croston et al. 2005, but see alsoHarwood et al. 2016),
though they can drive strong shocks into their surroundingsas well
(Croston et al. 2011). Pressure balance arguments do not require a
substantial non-radiating component in the lobes of many FRIIs
(Hardcastle et al. 2002) and these differences in particle content
mean that, a priori, the same correlations between jet kinetic energy
and radio luminosity cannot be applied across both populations (al-
though the dependence of radio luminosity on environment com-
pensates for this fact to some extent, see alsoHardcastle & Krause
2013, 2014; Godfrey & Shabala 2013, 2016; English et al. 2016;
Mingo et al. 2016).

The FRI/FRII dichotomy should not be confused with
the well-known accretion mode dichotomy in radio-loud AGN
(Hine & Longair 1979; Laing et al. 1994). Many FRI also
have radiatively inefficient (Narayan & Yi 1995) nuclei (e.g
Hardcastle et al. 2006, 2007a, 2009), but that is not always the case.
Many, but not all, FRIIs have radiatively efficient (“traditional”
AGN, Shakura & Sunyaev 1973) nuclei (however, see e.g. the re-
cent review byTadhunter 2016). The environmental properties of
these sources seem to be tied to their accretion mode, ratherthan
their radio morphology (Ineson et al. 2015). We discussed the na-
ture of the AGN in the 2Jy sample in great detail inPaper I, and use
our classifications from that paper in this work.

Since the energy-loss timescales for relativistic electrons are
inversely proportional to their energies, synchrotron emission from
radio galaxy lobes is generally detected only at radio frequen-
cies, unless there is an on-going source of particle accelera-
tion. The dominant X-ray emission process from the lobes them-
selves appears to be inverse-Compton scattering of CMB photons

(Feigelson et al. 1995; Hardcastle et al. 2002; Croston et al. 2005).
However, in richer environments (often those of FRIs) the X-ray
emission is dominated by thermal bremsstrahlung from the undis-
turbed large-scale environment and/or shocked gas surrounding the
radio source (e.g.Croston et al. 2007; Mingo et al. 2011, 2012).
One of our objectives in the present paper is to carry out a sys-
tematic search for lobe-related emission (inverse-Compton) and ex-
tended thermal emission around the 2Jy objects.

Hotspots are the termination points of FRII jets, assumed to
be the terminal shocks expected at the end of a supersonic jet
(Meisenheimer et al. 1989). Hotspots are regions of intense, on-
going particle acceleration, and as such they are bright in the ra-
dio, but can be detected at shorter wavelengths as well. In X-
rays they often display synchrotron or synchrotron self-Compton
spectra (Hardcastle et al. 2004, 2007b), the latter being more fre-
quent in very luminous hotspots. Often the X-ray hotspots are
slightly offset from their radio counterparts, hinting at an under-
lying complexity in the local environment or the magnetic field. In
many sources, including several FRIs, we also see secondarybright
spots along the jet. It is likely that some of these so-calledknots,
which we detect beyond the radio, are also the results of shocks,
as they must have on-going particle acceleration to producesyn-
chrotron emission in the optical and X-rays, but others seemto
present more diffuse structures and no particle acceleration, indi-
cating, rather, points in which the jet kinetic energy is transferred
into particles without the jet being significantly disrupted. These
diffuse knots can sometimes be faint in the radio but bright in X-
rays (see e.g.Hardcastle et al. 2004, 2007b; Hardcastle & Looney
2008; Massaro et al. 2010, 2015; Mack et al. 2009; Werner et al.
2012; Goodger et al. 2010; Kharb et al. 2012; Orienti et al. 2012;
Hardcastle et al. 2016; Worrall et al. 2016, and references therein,
for examples of different hotspots and knots and their interac-
tions with the environment). It is still not clear what makessome
hotspots, knots and jet features X-ray synchrotron sourceswhile
others are undetected in the X-rays, and the non-uniform nature of
the existing large samples (Hardcastle et al. 2004) makes it hard to
draw conclusions from observations.

In this paper we use our relatively uniform survey of thez<
0.2 2Jy sources to assess the incidence of X-ray hotspots in FRII
sources and investigate the mechanisms that produce their X-ray
emission, compare the environments we find for FRI and FRII with
what we know from the literature, and test the predictions for the
inverse-Compton emission in FRIIs against the lobes we detect in
X-rays. A detailed study of the large-scale environments ofthe 2Jy
sources, which ties in with some of our results, was carried out
by Ineson et al.(2015). A follow-up study byIneson et al.(2017)
provides further details on the energetics of the 2Jy FRII sources,
as part of a larger sample of FRIIs.

For this paper we have used a concordance cosmology with
H0 = 70 km s−1 Mpc−1, Ωm= 0.3 andΩΛ = 0.7, for compatibility
with the results we presented inPaper I.

2 DATA

2.1 The sample

Table1 gives details of the 2Jy sample used in this paper. As in
Mingo et al.(2014) andHardcastle et al.(2006, 2009), we classify
sources as LERGs based on their [OIII] equivalent widths, after the
definition ofLaing et al.(1994), and on inspection of their optical
spectra. This definition is consistent with the WLRG (weak line



An X-ray survey of the 2Jy sample II 3

Table 1. Objects in the 2Jy sample observed withChandra(ACIS-S except for PKS 0625−53 and PKS 2135−14, which were taken with the ACIS-I), also
detailing the radio data used to generate the contours for each source (Figs.1 to 26). There are no radio maps for PKS 1814−63 and PKS 1934−63, as
these sources lack extended radio structures. FRI and FRII stand for Fanaroff-Riley class I and II respectively (Fanaroff & Riley 1974); CSS and C/J stand
for compact steep-spectrum and compact/jet, respectively; BL-LAC stands for BL Lacertae object. In terms of their nuclear (AGN) properties, LERG stands
for low-excitation radio galaxy (see e.g.Laing et al. 1994), NLRG and BLRG for narrow-line and broad-line radio galaxy, and Q for quasar. The references
for the radio maps are: (1)Leahy et al.(1997); (2) made directly from Karl G. Jansky Very Large Array (VLA) archive data; (3)Morganti et al.(1993); (4)
Morganti et al.(1999); (5) Hardcastle et al.(2007b); (6) Gizani & Leahy(2003); (7) Dennett-Thorpe et al.(2002); (8) made directly from new Jansky Very
Large Array (JVLA) data; (9) made directly from Australia Telescope Compact Array (ATCA) archive data.

PKS 3C FR Class AGN type z Chandraobsid Exp. time Radio map freq. Resolution Peak flux RMS Ref.

(ks) (GHz) (arcsec) mJy/beam mJy/beam

0034−01 15 FRII LERG 0.073 02176 28.18 8.4 0.3×0.3 27.954 0.064 1

0038+09 18 FRII BLRG 0.188 09293 8.05 4.9 4.4×3.4 121.00 0.13 3

0043−42 FRII LERG 0.116 10319 18.62 8.6 1.2×0.88 154.95 0.21 4

0213−13 62 FRII NLRG 0.147 10320 20.15 4.9 5.9×3.4 313.36 0.18 3

0349−27 FRII NLRG 0.066 11497 20.14 1.5 11.0×8.9 876.96 0.18 2

0404+03 105 FRII NLRG 0.089 09299 8.18 8.4 2.2×2.2 384.90 0.17 1

0442−28 FRII NLRG 0.147 11498 20.04 4.9 1.0×0.6 243.66 0.12 2

0521−36 C/J BL-LAC/BLRG 0.055 00846 9.87 4.7 1.2×0.7 3022.6 1.8 3

0620−52 FRI LERG 0.051 11499 20.05 4.9 2.6×1.5 237.711 0.046 3

0625−35 FRI LERG 0.055 11500 20.05 4.9 4.7×3.2 690.63 0.14 2

0625−53 FRI LERG 0.054 04943 18.69 4.8 2.0×1.6 23.61 0.94 4

0806−10 195 FRII NLRG 0.110 11501 20.04 4.9 2.4×1.6 119.689 0.075 2

0915−11 218 FRI LERG 0.054 04969 98.2 1.4 2.0×1.5 1257.28 0.64 2

04970 100.13

0945+07 227 FRII BLRG 0.086 06842 30.17 1.5 4.0×4.0 186.404 0.095 5

07265 20.11

1559+02 327 FRII NLRG 0.104 06841 40.18 8.5 2.2×2.2 23.871 0.021 5

1648+05 348 FRI LERG 0.154 05796 48.17 1.5 1.4×1.4 13.185 0.062 6

06257 50.17

1733−56 FRII BLRG 0.098 11502 20.12 4.7 2.2×1.9 577.42 0.41 3

1814−63 CSS NLRG 0.063 11503 20.13 - - - - -

1839−48 FRI LERG 0.112 10321 20.04 4.7 2.6×1.7 126.087 0.090 3

1934−63 CSS NLRG 0.183 11504 20.05 - - - - -

1949+02 403 FRII NLRG 0.059 02968 50.13 1.5 4.5×4.1 505.11 0.12 7

1954−55 FRI LERG 0.060 11505 20.92 4.8 2.4×1.3 93.95 0.56 4

2135−14 FRII Q 0.200 01626 15.13 4.9 5.5×3.4 211.02 0.15 3

2211−17 444 FRII LERG 0.153 11506 20.04 1.5 2.3×1.5 38.254 0.039 8

2221−02 445 FRII BLRG 0.057 07869 46.20 8.2 2.4×2.4 77.74 0.24 1

2356−61 FRII NLRG 0.096 11507 20.05 1.5 7.2×6.9 1348.0 1.3 9

radio galaxy) classification, also often used in the literature to refer
to these sources (e.g.Tadhunter et al. 1998; Buttiglione et al. 2009;
Dicken et al. 2014).

In terms of their Fanaroff-Riley classification
(Fanaroff & Riley 1974), our 2Jy sample has 7 FRI, 16 FRII,
and 3 compact sources. We have listed these classifications,as well
as the AGN types, in Table1.

It is worth mentioning again that the 2Jy sample does not over-
lap with the 3CRR catalogue, due to the different location ofthe
sources (the 3CRR catalogue covers sources in the Northern hemi-
sphere, withδ > +10◦). Some of the brightest 2Jy sources are in-
cluded in the original 3C catalogue, as is the case for e.g. the quasar
3C 273 (PKS 1226+02). Because the 2Jy selection was made at
a higher frequency than the 3CRR sample, overall, more beamed
sources are selected for the 2Jy sample than they are for the 3CRR,

despite the steep-spectrum cut. Some of the implications ofthis fact
are discussed inPaper I.

2.2 X-ray analysis

As mentioned in the previous Section, for the X-rays we analysed
Chandra observations for the low-z sources in our sample, also
listed in Table1. Four low-z sources (PKS 0404+03, 1814−63,
2135−14, 2221−02) haveXMM observations that we did not use,
since theChandraimages provided all the information needed for
our analysis, and had a much better spatial resolution. Mostof
the observations were carried out at our request, using the ACIS-S
CCD and no gratings; when using archival data we only considered
ACIS-S and ACIS-I observations without gratings, and discarded
calibration or very short observations that did not significantly con-
tribute to the statistics. We reprocessed all the data presented by
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Paper I, using CIAO 4.7 and the latest CALDB. We included the
correction for VFAINT mode to minimise the issues with the back-
ground for all the sources with a count rate below 0.01 countss−1

and observed in VFAINT mode. While this correction is not essen-
tial to study the cores of the sources, it can improve the statistics
for extended and faint emission, which we have analysed for this
work.

2.3 Reduction and calibration of new radio data

Most of our radio maps are taken from the work byMorganti et al.
(1993, 1999). Table1 lists the radio map properties for each source,
as well as the references for each dataset.

A minority of sources were imaged afresh from VLA archive
data. These were reduced in AIPS in the standard manner – flux
calibration used 3C 48 or 3C 286, a nearby point-source calibrator
was used for phase calibration, and one or two iterations of phase
followed by at most one iteration of amplitude self-calibration were
carried out before final images were made at the full resolution of
the data (using Briggs weighting with the robustness parameter set
to 0). Where the structure of the source demanded it, data from dif-
ferent VLA configurations were combined and cross-calibrated be-
fore imaging. The one image made from archival ATCA data, that
of PKS 2356−61, is composed of data from 3 different ATCA ob-
servations (in 3 different configurations) which were reduced in the
standard manner inMIRIAD before being combined, self-calibrated
and imaged inAIPS.

The data for PKS 2211−17 (3C 444) are new broad-band (1-2
GHz) JVLA data obtained for a different purpose and will be dis-
cussed in more detail elsewhere (Mahatma et al. in prep.). For these
data we used AOFLAGGER (Offringa et al. 2012) on the raw data
prior to data reduction to flag RFI. Data reduction was then per-
formed on both A and B-configuration data sets individually,using
CASA version 4.3.1, performed in the standard manner as described
in theCASA tutorials2.

For flux and bandpass calibration, 3C 48 was observed in a
single 3-minute scan. Phase and amplitude gain calibrationwas
performed using the source J2246-1206. Bad baselines evident
through the calibration process were flagged manually, as well as
with the automated RFI flagging command ‘rflag’. The data were
then averaged 16-fold so as to include 4 channels in each spectral
window (16 spectral windows in total) with 512 MHz bandwidth
per channel. Self-calibration was then performed in phase and am-
plitude on the individual A and B-configuration data sets before
imaging both A and B-configuration data sets together, with apixel
size of 0.3×0.3 arcsec, and a clean noise threshold of 0.01 mJy.

3 THE 2JY SOURCES

The following subsections briefly describe the images and spectra
of the 2Jy sources imaged byChandra, with the exception of PKS
1226+02 (3C 273), which was the first object to be identified asa
quasar, and as such has been thoroughly studied in the past (see e.g.
Soldi et al. 2008; Jester et al. 2005, 2006; Liu & Zhang 2011, and
references therein).

All the X-ray images (Figs.1 to 26) correspond to ACIS-S
observations, except for PKS 0625−53 and PKS 2135−14, which
were taken with the ACIS-I. The images have been filtered to show

2 https://casaguides.nrao.edu/index.php/Main_Page

06.0 05.5 05.0 04.5 0:37:04.0 03.5 03.0 02.5

08:40.0

50.0

-1:09:00.0

10.0

20.0

30.0

40.0

Right ascension

D
ec

lin
at

io
n

~25 kpc

N

E

Figure 1. PKS 0034−01 (3C 15). The radio contours increase by factors of
2 between 0.0001 and 0.0128 Jy/beam, the beam major axis is 0.3 arcsec,
and the minor axis is 0.3 arcsec.

just the 0.3–7 keV energy range, and are smoothed with a Gaussian
profile withσ = 5 pixels (1 pixel=0.492 arcsec), to better show the
extended structures, except for PKS 0521−36 (Fig.8), for which
we usedσ = 3 pixels.

Radio maps shown are listed in Table1, where the peak flux
and RMS for each map are also listed. No radio contours are shown
in Figs.18(PKS 1814−63) and20(PKS 1934−63), since these are
compact steep-spectrum sources (CSS) and have no extended radio
structures. Although in this work we focus on X-ray emissionfrom
extended structures, we have also included images for thesetwo
compact sources, for completeness. For all the Figures, we have
plotted radio contours uniformly covering the largest possible range
of fluxes in each map, while also aiming to most clearly display the
morphology of the sources, and avoid noise artifacts.

3.1 PKS 0034−01 (3C 15)

The radio morphology of PKS 0034−01 (Fig. 1) is intermediate
between that of an FRI and an FRII, with a prominent jet in the
N lobe but a weak hotspot in the S. The host galaxy sits in a
relatively sparse environment, and it does not appear to be dis-
turbed or interacting (Ramos Almeida et al. 2011a), showing no
signs of recent star formation (Dicken et al. 2012), but it does
have a dust lane (Martel et al. 1999). The Chandra observation
shows a 6 kpc (∼ 4 arcsec) one-sided jet (for a detailed study see
Dulwich et al. 2007), which is also detected in radio (Leahy et al.
1997; Morganti et al. 1999) and the Ks band (Inskip et al. 2010).
There is also some X-ray emission coincident with the edges of
the radio lobes (Kataoka et al. 2003), and its unusual X-ray nuclear
emission has been discussed elsewhere (van der Wolk et al. 2010;
Paper I). We have recently obtained new, deeperChandradata for
3C 15, which will be presented in an upcoming paper.

https://casaguides.nrao.edu/index.php/Main_Page
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Figure 2. PKS 0038+09 (3C 18). The radio contours increase by factors of
2 between 0.007 and 0.112 Jy/beam, the beam major axis is 4.4 arcsec, and
the minor axis is 3.4 arcsec.

3.2 PKS 0038+09 (3C 18)

This BLRG seems to be in a dense environment, when observed
in the optical (Ramos Almeida et al. 2013). We do not detect a lu-
minous intracluster medium (see alsoIneson et al. 2015), but there
seems to be some extended emission around the AGN in our images
(Fig. 2). The X-ray image shows some enhanced emission coinci-
dent with the N hotspot, but the detection is not statistically signif-
icant (1.5σ ), especially since there are similarly bright structures
around it, so we have not included it in Table2.

3.3 PKS 0043−42

Optical observations of PKS 0043−42 indicate that it inhabits a
dense environment (Ramos Almeida et al. 2013), from which we
detect some faint extended emission in ourChandra image (Fig.
3). Inskip et al.(2010) report a possible interaction with a nearby
companion. Its radio morphology is very extended, and typical of
a powerful FRII, with strong hotspots (Morganti et al. 1999). We
detect both hotspots in our X-ray image (see Table2), with a high
significance in the case of the N hotspot (5.3σ ). It must be noted
that, although this source is classified as a LERG, it shows signs of
radiatively efficient accretion (seeRamos Almeida et al. 2011band
Paper I).

3.4 PKS 0213−13 (3C 62)

This NLRG has an optical shell and a narrow tidal tail
(Ramos Almeida et al. 2011a). The Chandra image (Fig.4) fea-
tures a very bright hotspot W of the nucleus (Table2), in good
agreement with the position of the radio emission. We do not de-
tect the E hotspot in our X-ray image. We do detect an enhancement
in emission inside the lobes, consistent with inverse-Compton scat-
tering (see Section6 and Table3).
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Figure 3. PKS 0043−42. The radio contours increase by factors of 3 be-
tween 0.0015 and 0.1215 Jy/beam, the beam major axis is 1.3 arcsec, and
the minor axis is 0.9 arcsec.
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Figure 4. PKS 0213−13 (3C 62). The radio contours increase by factors of
2 between 0.003 and 0.192 Jy/beam, the beam major axis is 5.9 arcsec, and
the minor axis is 3.4 arcsec.

3.5 PKS 0349−27

This source is a well-known FRII galaxy, and it has some re-
markable optical features, including an extended narrow line re-
gion and bridges connecting it to two neighbouring galaxies
(Ramos Almeida et al. 2013; Inskip et al. 2010), and an extended
emission line nebulosity (Danziger et al. 1984). In ourChandraim-
age (Fig.5) we detect some extended emission in the E-W direc-
tion, on scales of∼ 20 kpc (∼ 16 arcsec) around the nucleus, which
could be associated with the optical bridges linking the host to the
other galaxies or a hot medium. The emission towards the NE, in
particular, along the expected direction of the jet, could correspond
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Figure 5. PKS 0349−27. The radio contours increase by factors of 2 be-
tween 0.0016 and 0.4096 Jy/beam, the beam major axis is 11.0 arcsec, and
the minor axis is 8.9 arcsec.

to the optical ionisation enhancement observed byDanziger et al.
(1984). We detect emission inside the lobes over the background
level (see Section6), and observe an enhancement in emission with
a slight offset (∼ 6.4 arcsec, equivalent to∼ 8.3 kpc) with the N ra-
dio hotspot (Table2, see also Fig.27d), although the offset may be
partly caused by the fact that the X-ray emission falls very close to
the edge of the CCD. We do not detect the S hotspot in X-rays.

3.6 PKS 0404+03 (3C 105)

The host galaxy of PKS 0404+03 has been extensively studied in
the IR and optical (seeInskip et al. 2010, and references therein),
despite the high foregroundNH column and the presence of a
nearby star. TheChandraimage (Fig.6) shows some emission co-
incident with the S radio hotspot (see Table2), which has also been
studied in detail byOrienti et al.(2012).

3.7 PKS 0442−28

The Chandra image of this NLRG (Fig.7) shows some ex-
tended emission, particularly surrounding the base of the Nra-
dio lobe. Although there is no ICM emission detected in the X-
rays (Ineson et al. 2015), Ramos Almeida et al.(2013) found sev-
eral neighbouring galaxies. We also see a bright region coincident
with the N hotspot, which we detect at a 3σ level (see Table2). We
do not detect the S hotspot.

3.8 PKS 0521−36

PKS 0521−36 is a very bright, misaligned BLRG with
some peculiar spectral characteristics (seeInskip et al. 2010;
D’Ammando et al. 2015, and references therein), and an intermedi-
ate FRI/FRII structure. TheChandraimage (Fig.8) features a large
streak, and is significantly piled up at the nucleus.Birkinshaw et al.
(2002), in their analysis of this dataset, report a detection of the
core, jet, S hotspot and an extended, presumably thermal, halo.
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Figure 6. PKS 0404+03 (3C 105). The radio contours increase by factors
of 2 between 0.0003 and 0.1536 Jy/beam, the beam major axis is2.2 arcsec,
and the minor axis is 2.2 arcsec.
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Figure 7. PKS 0442−28. The radio contours increase by factors of 2 be-
tween 0.001 and 0.128 Jy/beam, the beam major axis is 1.0 arcsec, and the
minor axis is 0.6 arcsec.

3.9 PKS 0620−52

This source has the lowest redshift in our sample, and it
shows evidence for a young stellar population (Dicken et al.
2012). Although its optical morphology is not disturbed
(Ramos Almeida et al. 2011a), the presence of numerous nearby
galaxies (Ramos Almeida et al. 2013), and the fact that we detect
extended emission in ourChandraimage (Fig.9, see also Fig.29
for the larger-scale emission, andIneson et al. 2015), make us agree
with the hypothesis ofSiebert et al.(1996), Trussoni et al.(1999),
andVenturi et al.(2000) that this object sits in a rich cluster. The
distorted shape of the radio lobes also indicates an interaction with
the surrounding environment.
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Figure 8. PKS 0521−36. The radio contours increase by factors of 2 be-
tween 0.02 and 2.56 Jy/beam, the beam major axis is 1.3cm arcsec, and the
minor axis is 0.7 arcsec. The instrumental streak is visiblein the NE-SW
direction.
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Figure 9. PKS 0620−52. The radio contours increase by factors of 2 be-
tween 0.0005 and 0.1280 Jy/beam, the beam major axis is 2.6 arcsec, and
the minor axis is 1.5 arcsec.

3.10 PKS 0625−35

PKS 0625−35 is suspected to be a BL Lac (Wills et al. 2004).
It has a one-sided jet (Ramos Almeida et al. 2011a; Inskip et al.
2010), which we do not resolve in the X-rays, and it does not seem
to be interacting. The presence of a cluster environment wasini-
tially not clear (Trussoni et al. 1999), but it has recently been con-
firmed (Ramos Almeida et al. 2013; Ineson et al. 2015). Although
optically classified as a LERG, it is clear from our data that this
is not a “standard” low-excitation object. TheChandraimage (Fig.
10) shows a large streak, and is piled up (see alsoPaper I), but there
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Figure 10. PKS 0625−35. The radio contours increase by factors of 2 be-
tween 0.001 and 0.256 Jy/beam, the beam major axis is 4.7 arcsec, and the
minor axis is 3.2 arcsec. The instrumental streak is visiblein the N-S direc-
tion.

are clear signs of a brightness gradient around the source (see Fig.
29), indicating the possible presence of intra-cluster medium (ICM)
emission from a dense environment.

3.11 PKS 0625−53

PKS 0625−53 is a LERG hosted by a dumbbell galaxy, which is
also the brightest member of the cluster Abell 3391 (Frank et al.
2013; Ramos Almeida et al. 2013; Ineson et al. 2015). It has a
‘wide-angled tail’ morphology (Morganti et al. 1999) and a de-
flected jet. ‘Wide-angled tail’ sources are traditionally classified
as FRI, although they often show properties that are intermedi-
ate between both classes (see e.g.Hardcastle & Sakelliou 2004;
Jetha et al. 2006). The optical images of PKS 0625−53 show a
bridge of interaction with the W component of the dumbbell sys-
tem (Ramos Almeida et al. 2011a). TheChandra image (Fig.11)
shows emission around the galaxy from the hot ICM, with a de-
crease in emission in the area overlapping with the N radio lobe,
indicating a possible X-ray cavity.

3.12 PKS 0806−10 (3C 195)

The optical and IR images of this galaxy show clear signs of
disturbance (Inskip et al. 2010; Ramos Almeida et al. 2011a). Our
Chandraimage (Fig.12) shows some enhancement in emission at
the base of the radio lobes, near the nucleus, and enhancements
in emission that are spatially coincident with the radio emission
from the hotspots and S knot (Morganti et al. 1993). Around the N
hotspot the X-ray emission is only enhanced at a 1.5σ level, with
other structures of similar brightness around it, so we do not con-
sider it a detection in Table2. We do detect the S hotspot and knot,
however.
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Figure 11. PKS 0625−53. The radio contours increase by factors of 2 be-
tween 0.004 and 0.016 Jy/beam, the beam major axis is 2.0 arcsec, and the
minor axis is 1.6 arcsec.
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Figure 12. PKS 0806−10 (3C 195). The radio contours increase by factors
of 2 between 0.001 and 0.064 Jy/beam, the beam major axis is 2.4 arcsec,
and the minor axis is 1.6 arcsec.

3.13 PKS 0915−11 (3C 218, Hydra A)

Hydra A is a very well-studied galaxy. It is one of the most power-
ful local radio sources, and it sits in the centre of a rich cluster (see
e.g.Lane et al. 2004, and references therein). It shows evidence for
recent star formation (Dicken et al. 2012), which is not common
in cluster-centre galaxies, but can be attributed to a recent merger
(Ramos Almeida et al. 2011a, report the presence of a dust lane).
The Chandra images (Fig.13) show the hot gas emission from
the ICM, as well as emission associated with the lobes (see e.g.
Kaastra et al. 2004; Wise et al. 2007; Hardcastle & Croston 2010;
Gitti et al. 2011, and references therein).
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Figure 13. PKS 0915−11 (3C 218, Hydra A). The radio contours increase
by factors of 2 between 0.004 and 1.024 Jy/beam, the beam major axis is
2.0 arcsec, and the minor axis is 1.5 arcsec.
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Figure 14. PKS 0945+07 (3C 227). The radio contours increase by factors
of 2 between 0.0005 and 0.0128 Jy/beam, the beam major axis is4.0 arcsec,
and the minor axis is 4.0 arcsec. The instrumental streak is visible in the
NW-SE direction.

3.14 PKS 0945+07 (3C 227)

PKS 0945+07 is a well-known BLRG (Morganti et al. 1993), with
a very extended optical emission line region (Prieto et al. 1993).
TheChandraimage (Fig.14) shows a faint readout streak. We de-
tect some enhanced emission inside the radio lobes, whose spec-
trum is compatible with inverse-Compton scattering (see Section
6 and Table3), and bright X-ray emission coincident with the ra-
dio hotspots, particularly for the E structures (seeHardcastle et al.
2007b, for a detailed study of the hotspots, and also Table2).
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Figure 15. PKS 1559+02 (3C 327). The radio contours increase by factors
of 2 between 0.0002 and 0.0256 Jy/beam, the beam major axis is2.2 arcsec,
and the minor axis is 2.2 arcsec.

3.15 PKS 1559+02 (3C 327)

The host galaxy of this NLRG is very massive, and seems to have
a bifurcated dust lane (Inskip et al. 2010; Ramos Almeida et al.
2011a), which crosses the nucleus. Its radio morphology is ex-
tended and well known (Morganti et al. 1993), with the E lobe
being much brighter than its W counterpart.van der Wolk et al.
(2010) report a large infrared excess that extends beyond what is
expected for a torus. TheChandra image (Fig.15) shows a very
bright nucleus, which is close to the edge of the S3 chip. As re-
ported byHardcastle et al.(2007b), there is enhanced emission
within the E lobe (see Section6 and Table3), with two bright spots
coinciding with the E radio hotspot. It is worth mentioning that
VLT observations show a foreground galaxy very close to the loca-
tion of the E hotspot (Mack et al. 2009). There seems to be some
enhanced emission in the W lobe as well, but since it falls in one of
the front-illuminated chips, and partly in the CCD gap, it ishard to
quantify; we also do not detect a hotspot in the W lobe.

3.16 PKS 1648+05 (3C 348, Hercules A)

Hercules A is a cluster-embedded LERG with some unusual ra-
dio properties (Morganti et al. 1993; Gizani & Leahy 2003). Dust
features are detected in the optical images (Ramos Almeida et al.
2011a). The host galaxy is at the centre of a rich cluster
(Ramos Almeida et al. 2013; Ineson et al. 2015), and the lobes
seem to be driving a shock into the ICM (Nulsen et al. 2005a,b),
which is evident in theChandra image (Fig.16), where there is
clear emission from the hot ICM, with a lower density in the re-
gions corresponding to the radio lobes. The nuclear X-ray spec-
trum is very faint (Paper I), with soft emission being the main con-
tributor, as expected, and the X-ray images also show an enhance-
ment in emission coincident with the radio jet, in the E direction.
Hardcastle & Croston(2010) have placed limits on the non-thermal
emission associated with the lobes, but the extended emission is
clearly dominated by thermal emission from the shocked ICM.
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Figure 16. PKS 1648+05 (3C 348, Hercules A). The radio contours in-
crease by factors of 3 between 0.002 and 0.162 Jy/beam, the beam major
axis is 1.4 arcsec, and the minor axis is 1.4 arcsec.

3.17 PKS 1733−56

The host galaxy of PKS 1733−56 shows evidence of recent star
formation (Dicken et al. 2012, 2009), and it has a disturbed opti-
cal morphology (Ramos Almeida et al. 2011a; Inskip et al. 2010).
Although there is a high foreground star density in the optical
field, there are not many neighbouring galaxies near this source
(Ramos Almeida et al. 2013). TheChandraimage (Fig.17) shows
some diffuse emission, which could correspond to a hot ICM, and
an enhancement in emission coincident with the radio hotspots. The
N hotspot is the brighter in radio, but it is faint in X-rays, and there
is extended emission around it, making its detection slightly un-
clear, (we have reported it on Table2, nonetheless, as statistically
it is significant at a 3.2σ level). We do detect, with high signifi-
cance, the S hotspot and knot (8.8σ and 6.9σ , respectively), both
of which are fainter in the radio. The knot is coincident withthe
radio emission, but the S hotspot seems slightly offset, by∼ 5.5
arcsec, corresponding to∼ 10.2 kpc (see also Fig.27i).

3.18 PKS 1814−63

PKS 1814−63 is a compact steep-spectrum radio source, and hence
its core is not resolved byChandra(Fig. 18). The galaxy shows
clear traces of an optical disk and a dust lane (Inskip et al. 2010;
Ramos Almeida et al. 2011a), which is atypical for a system with
this radio luminosity (Morganti et al. 2011). It also shows evidence
for starburst activity (Dicken et al. 2012) and it has an extended
emission line region (Holt et al. 2008, 2009). TheChandraimage
shows no large-scale emission enhancement corresponding to a hot
ICM, but there could be some extended emission near the AGN.

3.19 PKS 1839−48

This FRI is another example of a cluster-embedded LERG
(Tadhunter et al. 1993; Ramos Almeida et al. 2013; Ineson et al.
2015). Although not as dense as that of Hydra A or Hercules A,
there is emission from the ICM in theChandra image (Fig.19,
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Figure 17. PKS 1733−56. The radio contours increase by factors of 2 be-
tween 0.004 and 0.256 Jy/beam, the beam major axis is 2.2 arcsec, and the
minor axis is 1.9 arcsec.
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Figure 18. PKS 1814−63. This source has no extended radio structures.

see also Fig.29), and the radio lobes are clearly deflected by the
interaction with the ICM, showing a ‘wide-angle tail’ morphology.

3.20 PKS 1934−63

This source has a compact radio structure (Ojha et al. 2004), which
is not resolved byChandra (Fig. 20). It is optically very blue
(Ramos Almeida et al. 2011a), as well as being part of an inter-
acting galaxy pair (Inskip et al. 2010). It also shows evidence for
infalling gas (Holt et al. 2008, 2009). The Chandra image shows
no signs of extended emission, only the compact source that coin-
cides with the radio core.
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Figure 19. PKS 1839−48. The radio contours increase by factors of 2 be-
tween 0.001 and 0.064 Jy/beam, the beam major axis is 2.6 arcsec, and the
minor axis is 1.7 arcsec.

34.0 32.0 30.0 28.0 26.0 24.0 22.0 19:39:20.0 18.0 16.0

42:00.0

30.0

-63:43:00.0

30.0

Right ascension

D
ec

lin
at

io
n

~50 kpc

N

E

Figure 20. PKS 1934−63. This source has no extended radio structures.

3.21 PKS 1949+02 (3C 403)

PKS 1949+02 is a NLRG with an X-shaped radio morphology,
which has been studied in detail (seeRamos Almeida et al. 2011a,
and references therein). TheChandradata have been studied in de-
tail by Kraft et al.(2005). They found the image (Fig.21) to show
some enhancement that could correspond to a dense medium, and
two features to the E of the core (a hotspot and a knot) spatially
coincident with the radio emission. There is also a bridge between
both features, which might indicate emission from the jet, although
it might also be hot gas. Some emission can also be observed close
to the W radio hotspot, which is not detected in the X-rays.
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Figure 21. PKS 1949+02 (3C 403). The radio contours increase by factors
of 2 between 0.001 and 0.256 Jy/beam, the beam major axis is 4.5 arcsec,
and the minor axis is 4.1 arcsec.
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Figure 22. PKS 1954−55. The radio contours increase by factors of 2 be-
tween 0.004 and 0.064 Jy/beam, the beam major axis is 2.4 arcsec, and the
minor axis is 1.3 arcsec.

3.22 PKS 1954−55

PKS 1954−55 is another FRI LERG located the centre of a rich
cluster (Ramos Almeida et al. 2013; Ineson et al. 2015), whose hot
gas emission is clearly visible in the X-rays (Fig.22, see also Fig.
29). TheChandraimage does not show clearly whether there are
cavities associated with the lobes.

3.23 PKS 2135−14

The host of PKS 2135−14 has a close disk galaxy companion
(Ramos Almeida et al. 2011a) and a disturbed morphology. The

52.0 50.0 48.0 46.0 44.0 42.0 21:37:40.0 38.0

31:00.0

30.0

32:00.0

30.0

-14:33:00.0

30.0

34:00.0

30.0

35:00.0

Right ascension

D
ec

lin
at

io
n

~200 kpc

N

E

Figure 23. PKS 2135−14. The radio contours increase by factors of 2 be-
tween 0.001 and 0.128 Jy/beam, the beam major axis is 5.5 arcsec, and the
minor axis is 3.4 arcsec. The instrumental streak is visiblein the NE-SW
direction.

Chandra image (Fig.23) shows some extended emission around
the nucleus, but given the brightness of this QSO (evidencedby the
bright readout streak) it is difficult to tell whether that emission is
from the PSF or a real ICM.

3.24 PKS 2211−17 (3C 444)

PKS 2211−17 (Fig. 24) is another cluster-embedded LERG
(Inskip et al. 2010; Ramos Almeida et al. 2013; Ineson et al. 2015).
It is classified as an FRII, but its morphology is almost intermedi-
ate between the two FR classes. We detect a very dense ICM with
clear cavities corresponding to the radio lobes, which are driving
a shock (Croston et al. 2011, and in prep.). We used new 1.5 GHz
JVLA radio data, processed by V. Mahatma as part of an on-going
project, to generate the radio contours for Fig.24.

3.25 PKS 2221−02 (3C 445)

This object is a relatively well-known ‘double-double’ BLRG
(Morganti et al. 1993; Leahy et al. 1997; Schoenmakers et al.
2000; Balmaverde et al. 2008; Inskip et al. 2010). It seems to be
interacting with a close companion (Ramos Almeida et al. 2011a).
The radio hotspots are detected byChandra(Fig. 25). The North-
ern one falls outside of the S3 chip, and it is not clearly de-
tected, appearing at the 2.4σ level (see Table2, Fig. 27j, and also
Orienti et al. 2012, for a detailed analysis of the hotspots), perhaps
in part due to the slightly reduced sensitivity outside of the S3 chip.
There seems to be some enhanced emission around the nucleus as
well. Please note that, although we carried out all the analysis with
the 8.2 GHz radio map ofLeahy et al.(1997), we used archival 4.9
GHz VLA radio data to generate the contours for Fig.25, in order
to show the large-scale radio lobes.
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Figure 24. PKS 2211−17 (3C 444). The radio contours increase by factors
of 2 between 0.001 and 0.032 Jy/beam, the beam major axis is 2.4 arcsec,
and the minor axis is 1.3 arcsec.
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Figure 25. PKS 2221−02 (3C 445). The radio contours increase by factors
of 2 between 0.001 and 0.032 Jy/beam, the beam major axis is 2.4 arcsec,
and the minor axis is 2.4 arcsec. The arrows indicate the positions of the
two hotspots.

3.26 PKS 2356−61

The host of PKS 2356−61 shows signs of a past merger
(Ramos Almeida et al. 2011a). It is very radio powerful and has
large hotspots and bright tails (Subrahmanyan et al. 1996), with
the S hotspot being detected at a 6σ level in ourChandra image
(Fig. 26, see also Table2). Although there is some emission in the
area around the N hotspot, we do not detect it. There is also X-ray
inverse-Compton emission inside the lobes (Table3), and emission
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Figure 26. PKS 2356−61. The radio contours increase by factors of 2 be-
tween 0.02 and 0.64 Jy/beam, the beam major axis is 7.2 arcsec, and the
minor axis is 6.9 arcsec.

around the source and at the base of the lobes which could be re-
lated to a hot ICM.

4 HOTSPOTS

We detected X-ray emission coincident with at least one of the ra-
dio hotspots and jet knots in 12 out of our 16 FRII sources (Table2),
with high significance (> 3σ ) in 19 out of the 23 structures listed. It
has long been understood that X-ray hotpsots are very commonin
FRII galaxies (e.g.Hardcastle et al. 2007b; Hardcastle & Croston
2010; Massaro et al. 2010, 2015), but this is the first time that a sys-
tematic study has been carried out on a complete sample of sources.
Our hotspot detection rate seems to be slightly higher than those
reported in previous studies (e.g.Massaro et al. 2015), but this is
difficult to quantify when comparing with heterogeneous samples.
Fig. 27 shows the details of the individual detections, and it is in-
teresting to note that in most sources there is a clear misalignment
between the location of the X-ray and radio emission in at least
one of the structures (knots or hotspots), on physical scales of 4–10
kpc. As mentioned in Section1, this misalignment is rather com-
mon, and it hints at complexities in the local environment orthe
underlying magnetic field (e.g.Worrall et al. 2016).

In Table2 we also tabulate the ratio between the monochro-
matic 1-keV X-ray flux density and the radio flux density, here-
after the X-ray/radio flux density. This quantity gives a crude char-
acterization of the emission mechanism, with large values being
more consistent with a synchrotron origin for the X-rays. Weused
fairly conservative regions for all the structures, allowing them to
match the sizes and positions of the hotspots in the individual radio
maps, adjusting them when the X-ray emission was clearly offset
from the radio. We also used simple integrated fluxes, ratherthan
background-subtracted Gaussian profile fits, as was the casefor the
works ofHardcastle et al.(2007b) andKraft et al.(2005). As such,
our X-ray/radio flux ratios are probably slightly smaller than those
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Table 2. Hotspots and knots. The photon index of the X-ray powerlaw (Γ) was fixed to 1.9 when the statistics did not allow a model fit; these fixed values are
indicated with an asterisk. When no∼ 8.4 GHz data were available, the radio fluxes for the hotspots were extrapolated from the frequency listed on Table1,
using a spectral indexα = 0.6. See also Fig.27, for details on the structures listed on this table. The results for PKS 0945+07 (3C 227) and PKS 1559+02
(3C 327) were extracted directly fromHardcastle et al.(2007b); the results for PKS 1949+02 (3C 403) were extracted directly fromKraft et al. (2005). The
X-ray results for PKS 0521−36 were extracted fromBirkinshaw et al.(2002). Although the detections of the N lobes of PKS 1733−56 and PKS 2221−02 are
slightly dubious (see sections3.17and3.25, and Fig.27), we report them here for completeness. The errors quoted only take into account the flux measurement
uncertainty, please see Table1 and the references listed therein for the RMS values and details on the individual calibration uncertainties.

PKS 3C Structure 0.3–7 keV net counts Γ 1 keV flux dens. Radio freq. Radio flux dens. X-ray/Radio
(nJy) (GHz) (mJy) ×10−9

0043−42 N hotspot 32±6 1.9* 1.5±0.3 8.5 582±1 2.6
S hotspot 6±3 1.9* 0.3±0.2 8.5 119±1 2.5

0213−13 62 W hotspot 23±5 1.9* 1.2±0.3 8.5 226.5±0.4 5.3
0349−27 N hotspot 31±8 1.9* 2.2±0.8 4.8 988.7±0.8 2.2
0404+03 105 S hotspot 22±5 1.9* 5.5±1.3 8.4 1031±1 5.3
0442−28 N hotspot 9±3 1.9* 0.5±0.2 4.9 406±1 1.2
0521−36 E hotspot 5±1 1.9* 0.4±0.1 4.9 1220±1 0.3
0806−10 195 S knot 7±3 1.9* 0.4±0.2 4.9 130.5±0.2 3.1

S hotspot 8±3 1.9* 0.5±0.2 4.9 151.0±0.2 3.3
0945+07 227 E hotspot 10±3 1.6* 0.3±0.1 8.4 5.3 56.6

W primary hotspot 84±9 1.6±0.2 1.5±0.2 8.4 41 36.6
W secondary hotspot 19±5 1.6* 0.3±0.1 8.4 13 23.1

W knot 22±5 1.6* 0.4±0.1 8.4 1.2 333.3
1559+02 327 E primary hotspot 12±3 1.7* 0.3±0.1 8.4 15 18.0

E secondary hotspot 12±3 1.7* 0.3±0.1 8.4 3.2 84.4
1733−56 N hotspot 13±4 1.9* 0.8±0.2 4.7 1252±2 0.6

S hotspot 88±10 1.9±0.4 5.1±1.1 4.7 315±2 16.2
S knot 55±8 1.9±0.4 3.0±0.8 4.7 105±2 28.6

1949−02 403 E hotspot 44±6 1.8±0.4 0.9±0.2 8.4 25 40.00
E knot 83±9 1.7±0.3 2.3±0.2 8.4 41 60.0

2221−02 445 N hotspot 12±5 1.9* 0.3±0.1 8.2 87.8±0.9 3.4
S hotspot 174±14 2.0±0.2 3.9±0.6 8.2 126.3±0.9 30.9

2356−61 S hotspot 61±10 1.9±0.5 3.0±0.5 1.4 1875±4 1.6

presented in the other works listed. To take the radio flux measure-
ments we used a python plugin3 on the clean radio maps.

The brightest newly detected X-ray hotspots in our sample are
the southern hotspot and knot of PKS 1733−56 and the S hotspot
of PKS 2356−61. To test whether these two hotspots are syn-
chrotron or inverse-Compton (synchrotron self-Compton) in origin
we used the measured 1-keV flux density and the radio flux den-
sity of the corresponding hotspot to carry out inverse-Compton cal-
culations using the code ofHardcastle et al.(1998). As the radio
maps we have are all of low resolution, we estimate the hotspot
sizes for these two objects from the fact that they appear unre-
solved or marginally resolved in theChandradata, and assign all
the measured radio flux density from Gaussian fitting to a spher-
ical region of radius 1 arcsec. We use an electron energy spec-
trum with γmin = 1000 andγmax = 105, with an energy index
p= 2 at low energies breaking top= 3 at γ = 4000 – this repro-
duces the observed synchrotron break seen in other bright hotspots.
The synchrotron spectrum is then computed between 104 and 1012

Hz. The equipartition-field inverse-Compton predictions (including
both SSC and inverse-Compton scattering of the CMB) are 1.5–3
orders of magnitude below the X-ray emission observed, withthe
closest agreement being for PKS 2356−61. For this source, a field
strength a factor 5 below equipartition could allow us to explain the
observed X-rays as SSC emission, but this is based on the probably
unrealistic assignment of 1.6 Jy of 1.4-GHz radio flux to thiscom-

3 http://www.extragalactic.info/~mjh/radio-flux.html

pact feature, and is extreme compared to other sources whereSSC
is the accepted explanation (Hardcastle et al. 2004). For this, and
for PKS 1733−56 where the departure from equipartition would
have to be even larger, we prefer a synchrotron model for the ob-
served X-rays. Synchrotron models have also been applied success-
fully to explain the X-ray emission from hotspots in other sources,
e.g. Pictor A (Tingay et al. 2008), 3C 445 (Perlman et al. 2010;
Orienti et al. 2012), and 4C74.26 (Erlund et al. 2010), although the
interpretation is more complicated in the latter.

Even considering the uncertainties, the flux density ratiosfor
the other sources, where the lower statistics did not allow us to fit
the spectra directly using monochromatic 1-keV X-ray flux den-
sity and radio flux density, are of the same order of magnitudeas
those in PKS 1733−56 and PKS 2356−61, if not even larger, sug-
gesting that an inverse-Compton emission mechanism is alsoun-
likely in those sources. More detailed analysis would require high-
resolution, multi-frequency images of the radio hotspots,which are
not in general available.

5 JETS

We only detect X-ray jets clearly in two of our sources. The jet
of PKS 0034−01 (3C 15) is well-known, and it has been studied
in detail byDulwich et al.(2007). Our images (Fig.28) also show
evidence of a jet in PKS 1648+05 (3C 348, Hercules A), extending
eastwards from the nucleus, with no evidence of a counter-jet in
the opposite direction. It is very possible that its existence has been

http://www.extragalactic.info/~mjh/radio-flux.html
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Figure 27. X-ray hotspot close-ups for the sources in Table2. The radio contours are the same as those detailed in the captions of Figs.1 to 26. All the images
are lightly smoothed with a Gaussian profile withσ = 5 pixels (1 pixel=0.492 arcsec). Where both a knot and a hotspot are present in the image, they have
been labelled, respectively, as ‘K’ and ‘H’. The hotspots ofPKS 0945+07 (3C 227), PKS 1559+02 (3C 327), and PKS 1949+02 (3C 403) arenot displayed, as
they are discussed in detail in the original publications (Hardcastle et al. 2007b; Kraft et al. 2005).

noted in the past, as this source has been observed multiple times,
but due to the incredibly dense and complex environment the jet is
propagating through it may not have been possible to analyseit in
detail.

We also observe some enhanced emission in PKS 1949+02
(3C 403), Eastward from the core, which could hint at the pres-
ence of a jet, but it might arise from other mechanisms, as already
pointed out byKraft et al.(2005).

Although it does not show clearly in our images, PKS
0521−36 also has an X-ray jet, which has been studied in detail
by Birkinshaw et al.(2002).

Our results are consistent with previous studies, in terms of
the number of detections of radio jets in the X-rays (see e.g.
Sambruna et al. 2004; Jester et al. 2007; Worrall 2009). Of the 26
radio-loud AGN in our sample, 7 possess well-defined radio jets
visible in our 1.4 – 8 GHz radio maps. The X-ray jet detection frac-
tion is therefore around 50 per cent, with 3 definite non-detections.
The structure in the N lobe of PKS 0620-52 is unresolved in the
radio maps, therefore it is not clear whether this source hasan
FRI radio jet, and although there is some excess X-ray emission

in this area, it is probably linked to the dense, hot ICM. Hydra A
(PKS 0915−11) has been extensively studied withChandra, but
the strong X-ray ICM emission, and small angular scale of thera-
dio jet, probably preclude its detection in the X-rays. PKS 2135-
14 also shows some jet-like radio emission extending East ofthe
core, but given the higher distance, and, comparably, lowerexpo-
sure time (see Table1), an X-ray counterpart to this structure may
be too faint to be visible in our images.

6 LOBES

We studied the lobes of the FRII sources in our sample, to find
out how they compared to the results ofCroston et al.(2005)
in terms of their lobe pressures and equipartition (see Table 3).
This analysis was carried out as part of a wider FRII lobe study
(Ineson et al. 2017). Full details of the method, which follows that
of Croston et al.(2005), are presented in that work, but are also
summarised here. We used the radio maps to measure the radio flux
densities (with the same python plugin) and determine the shapes
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Table 3. Summary of lobe equipartition and inverse-Compton magnetic fields for the FRII sources in our sample. Further details are presented in a recent
paper byIneson et al.(2017). In the third column, N, S, E, W, and C refer to, respectively, the north, south, east, west or both lobes, for each source (in cases
where one of the lobes was split by the CCD edge, the calculations were only carried out for the lobe that was fully within the CCD). The abbreviations for
the methods used to fit the X-ray data are as follows: S=fitted with free photon index (Γ); F=fitted with fixed photon index; M=modelled with unbinneddata;
U=upper limit. Upper/lower limits for the X-ray fluxes and inverse-Compton fields are preceded by the “< / >” symbols, respectively. The 178 MHz fluxes
for PKS 0404+03 were obtained from the data ofLeahy et al.(1997), who quote no errors; the overall flux was split into both lobes following the same ratios
obtained from the 8.4 GHz data of this source.

PKS 3C Lobe Radio freq. Radio flux Method X-rayΓ 1 keV flux Bequip. Binv.−Compton

GHz Jy nJy ×10−10 T ×10−10 T

0034−01 15 C 0.408 9.7±0.3 S 1.9+0.2
−0.2 5.0+0.5

−0.5 17.1 3.89+0.25
−0.21

0038+09 18 C 0.408 11.5±0.3 F 1.5 8.6+1.7
−1.7 12.8 3.840.52

0.38

0043−42 N 0.408 8.2±0.2 U 1.5 < 1.0 16.1 > 9.99
S 0.408 7.4±0.2 U 1.5 < 0.8 18.3 > 10.9

0213−13 62 C 0.408 11.7±0.3 M 1.5 4.0+0.7
−0.7 11.5 5.60+0.62

−0.48

0349−27 S 1.471 1.033±0.002 M 1.5 10.9+1.1
1.1− 4.31 1.05+0.07

−0.06

0404+03 105 N 0.178 11.130 U 1.5 < 4.7 7.47 > 3.09
S 0.178 8.270 U 1.5 < 4.2 6.81 > 3.18

0806−10 195 C 0.408 10.2±0.3 U 1.5 < 2.7 12.3 > 6.01
0945+07 227 W 1.429 2.291±0.003 S 1.9+0.2

−0.2 11.5+0.9
−0.9 7.33 1.68+0.08

−0.07

1559+02 327 E 0.408 10.8±0.5 S 1.6+0.5
−0.4 6.1+1.4

−1.4 7.85 3.78+0.60
−0.44

2221−02 445 S 1.420 3.40±0.06 S 1.3+0.3
−0.3 11.6+1.9

−1.9 4.52 1.98+0.22
−0.17

2356−61 N 1.472 3.81±0.02 S 1.6+0.3
−0.2 17.7+2.2

−2.2 7.71 1.82+0.15
−0.12

S 1.472 5.40±0.02 S 1.4+0.3
−0.2 19.0+2.4

−2.4 8.47 2.15+0.17
−0.14
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Figure 28. Possible jet in PKS 1648+05 (3C 348, Hercules A). Contours
and radio image resolution as in Fig.16. The blue dashed arrow indicates
the enhancement in X-ray emission that might correspond to the jet.

and extent of the lobes in the X-ray images, excluding the hotspots
and nuclei, and omitting any structures that were split by the edge
of the CCD (N lobe in PKS 0349−27, W lobe in PKS 1559+02,
N lobe in PKS 2221−02), the E lobe of PKS 0945+07, which was
contaminated by a readout streak, as well as both lobes for PKS
0442−28 and PKS 1733−56, for which the only available radio
maps did not provide enough information to determine the shape
and extent of the emission, both lobes of PKS 1949+02, which
has a complex, X-shaped morphology and no apparent inverse-

Compton emission, and both lobes of PKS 2211−17 (3C 444),
which is in a very dense and disturbed environment.

We were able to detect X-ray emission inside the lobes of eight
of our sources, and to derive constraints for the rest. We assumed
that the bulk of the emission originated from inverse-Compton pro-
cesses, as the spectral profiles in the sources with good statistics
also indicated: all the spectra were well fitted with powerlaw mod-
els (corrected for Galactic absorption), and none were improved by
the addition of a thermal component, which would arise if ICM
shocks were present (e.g.Shelton et al. 2011). For sources with
low counts, we followed the results ofCroston et al.(2005) as a
guideline. We then fed these results, in conjunction with the ra-
dio fluxes and lobe volumes, into theSYNCH code developed by
Hardcastle et al.(1998). SYNCH uses the radio spectrum and a
given magnetic field to model the underlying relativistic electron
population and its interaction with photons from the cosmicmi-
crowave background (CMB) and synchrotron emission. The results
for an equipartition magnetic field, and one that produces the ob-
served (inverse-Compton) X-ray emission in the lobes, are shown
in Table3.

We found that all the observed magnetic fields were lower than
those predicted by equipartition, although never by more than one
order of magnitude. The difference inB values suggests that the
lobes of our FRII sources contain electron energy densitiesaddi-
tional to the minimum energy condition, but the relatively small de-
viation from equipartition also suggests that our assumptions about
the energetically dominant particle population in the lobes (elec-
trons, rather than protons), are correct, all of which is consistent
with the earlier results ofHardcastle et al.(2002) andCroston et al.
(2005).

7 ENVIRONMENTS

Ineson et al.(2013, 2015) found that the environments of radio-
loud AGN are different depending on their accretion mode. They
found that for LERGs, most of which are FRI, there is a correlation
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(a) PKS 0620−52 (b) PKS 0625−35

(c) PKS 0625−53

(d) PKS 1839−48 (e) PKS 1954−55

Figure 29. Zoomed-out X-ray images illustrating the dense environments of the FRI LERGs in the low-z 2Jy sample. All the images are smoothed with a
Gaussian profile withσ = 7 pixels (1 pixel=0.492 arcsec). PKS 0915−11 (Hydra A) and PKS 1648+05 (Hercules A) are not included, as their environments
can already be clearly seen in Figs.13and16. We have not included here the FRII LERGs, as the environmentof PKS 2211−17 (3C 444) can be clearly seen
in Fig. 24, and PKS 0034−01 (3C 15) and PKS 0043−42, whose nuclear spectra are atypical for LERGs, show no clear signs of extended emission.
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between radio luminosity and ICM richness, while no correlation
was apparent for HERGs (high excitation radio galaxies, thera-
diatively efficient sources), and they seemed to avoid the richest
environments. All seven of our FRI sources are LERGs, in the up-
per range of the FRI radio power distribution. They all show clear
evidence of large-scale extended X-ray emission around thehost
(with PKS 0625−35 having the poorest environment among them,
see Fig.29), and several of them inhabit well-known clusters. We
would expect lower luminosity LERGs to be found in poorer envi-
ronments, but they aren’t represented in the 2Jy sample.

Of our 16 FRII sources, three are classified as LERGs: PKS
0034−01 (3C 15), PKS 0043−42, and PKS 2211−17 (3C 444).
The first two sources, however, have X-ray spectra that are
somewhat atypical for LERGs, and PKS 0043−42, in particular,
shows signs of radiatively efficient accretion (Ramos Almeida et al.
2011b; Paper I). PKS 2211−17 is a bona-fide LERG, and it inhab-
its a well-known cluster. PKS 0043−42 shows signs of extended
X-ray emission, whichIneson et al.(2015) found to be consistent
with a weak cluster or group environment. There are no signs of ex-
tended emission around PKS 0034−01, andRamos Almeida et al.
(2013) found only a weak environment around it.

Of the 13 HERG FRII, only three (PKS 0349−27, PKS
1733−56, and PKS 1949+02) show some traces of extended X-
ray emission (see alsoIneson et al. 2015). However, several of
the HERG FRII sources present some smaller-scale, low surface
brightness extended emission around the nucleus or the edges of
the lobes, and in the optical, far from being isolated, many of them
have dense environments, close companions, or show signs ofre-
cent interaction (Ramos Almeida et al. 2011a, 2013). It is possible
that we are not detecting their extended ICM emission in the X-rays
because the HERGs in our sample are found, on average, at higher
z than the LERGs.

An extended, quantitative analysis of the 2Jy environments
has been presented byIneson et al.(2015), as part of their broader
study of the properties of radio galaxies.Ineson et al.(2017) also
present a detailed analysis of the pressure balance betweenthe FRII
sources in our sample and their environments, in the contextof a
larger FRII sample. Here we just note that the Mach numbers for
the expansion of the lobes of the 2Jy sources, obtained by consid-
ering the Rankine-Hugoniot conditions at the lobe tip, are found
in their analysis to be in the range 1 to 3, with an average Mach
number∼ 2.1. This is similar to the Mach numbers of comparable
systems (Croston et al. 2011; Shelton et al. 2011; Kraft et al. 2012;
Harwood et al. 2016, e.g.), but lower than those we obtained for
lower-power systems in less dense environments (e.g.Kraft et al.
2003; Croston et al. 2007; Mingo et al. 2011, 2012), which is ex-
pected.

8 CONCLUSIONS

In agreement with previous results, we find that X-ray hotspots and
jet knots are fairly ubiquitous in FRII galaxies, with at least one
of them being detected in 12 out of our 16 sources, with high sig-
nificance (σ > 3) in all but four out of the 23 structures detected
(listed in Table2). We also observe a clear misalignment between
the radio and X-ray emission in several sources, on physicalscales
of 4–10 kpc.

The hotspots whose spectra we have been able to fit show,
invariably, synchrotron emission spectra. Our calculations for PKS
1733−56 and PKS 2356−61 show that inverse-Compton emission
is unlikely.

We only observed jets unequivocally in two of our sources,
PKS 0034−01 (3C 15), and PKS 1648+05 (3C 348, Hercules A).

We found that the lobes of all the FRII sources in our sample
have magnetic fields that are lower than expected from equiparti-
tion conditions, though never by more than an order of magnitude.
These results are consistent with those of previous studiesof simi-
lar sources.

We also confirmed the tendency of luminous LERGs (mostly
FRI) to inhabit rather dense environments, consistent withthe
results ofRamos Almeida et al.(2013) and Ineson et al.(2015),
while our HERGs (mostly FRII) seem to inhabit slightly sparser
areas.
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