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• We seek an estimate of the population proportion with extreme Mahalanobis index.
• Nine point estimates are examined in an extensive simulation study.
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a b s t r a c t

Mahalanobis distance may be used as a measure of the disparity between an individual’s
profile of scores and the average profile of a population of controls. The degree to which
the individual’s profile is unusual can then be equated to the proportion of the population
who would have a larger Mahalanobis distance than the individual. Several estimators
of this proportion are examined. These include plug-in maximum likelihood estimators,
medians, the posterior mean from a Bayesian probability matching prior, an estimator
derived from a Taylor expansion, and two forms of polynomial approximation, one based
on Bernstein polynomial and one on a quadrature method. Simulations show that some
estimators, including the commonly-used plug-in maximum likelihood estimators, can
have substantial bias for small or moderate sample sizes. The polynomial approximations
yield estimators that have low bias, with the quadrature method marginally to be
preferred over Bernstein polynomials. However, the polynomial estimators sometimes
yield infeasible estimates that are outside the 0–1 range. While none of the estimators
are perfectly unbiased, the median estimators match their definition; in simulations their
estimates of the proportion have a median error close to zero. The standard median
estimator can give unrealistically small estimates (including 0) and an adjustment is
proposed that ensures estimates are always credible. This latter estimator has much to
recommend it when unbiasedness is not of paramount importance, while the quadrature
method is recommended when bias is the dominant issue.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction

TheMahalanobis distance is frequently used inmultivariate analysis as a statistical measure of distance between a vector
of scores for a single case and the mean vector of the underlying population or a sample of data. It was developed by
Mahalanobis (1936) as a distance measure that incorporates the correlation between different scores. See also DasGupta
(1993). The Mahalanobis distance of a vector x, of say ν1 variables (scores), from a population mean µ is defined as

∆ =


(x − µ)′6−1(x − µ), (1)

where 6 is the population covariance matrix. The square of the Mahalanobis distance, ∆2, is sometimes referred to as the
Mahalanobis index (Huberty and Olejnik, 2006, p. 271). If the population follows a multivariate normal distribution (MVN)
and x is an observation from this same distribution, then the Mahalanobis index follows a central chi-square distribution
on ν1 degrees of freedom. In this paper, interest focuses on estimating P , the proportion of the population that gives a
more unusual Mahalanobis index than (x∗

− µ)′6−1(x∗
− µ) where x∗ is a specified vector, under the assumption that the

population distribution is a MVN distribution. That is

P = Pr{(x − µ)′6−1(x − µ) > (x∗
− µ)′6−1(x∗

− µ)}, (2)

where x ∼ MVN(µ, 6). For example, x∗ might be a patient’s profile from a set of medical tests, when P would be the
proportion of the population with a profile that is more unusual than that of the patient.

The corresponding Mahalanobis distance in a sample, of say n observations, is defined as

D =


(x − x̄)′S−1(x − x̄), (3)

where x̄ and S are the sample mean vector and sample covariance matrix, respectively. Under the assumption that x and
the sample data are from the same MVN distribution, the sample Mahalanobis index (D2) is proportional to a central F
distribution with ν1 and ν2 ≡ n − ν1 degrees of freedom. See, for example, Mardia et al. (1979).

Wewere initially motivated by the need to estimate the abnormality of a single patient’s profile in neuropsychology. The
problem arises, for example, when psychologists need to assess how a patient with some brain disorder or a head injury is
different from the general population or some particular subpopulation. This assessment is usually based on the patient’s
scores in a set of tests that measure different traits or abilities. The abnormality of the case’s profile of scores can then be
expressed in terms of the Mahalanobis index between this profile and the mean of the normative population or normative
sample. The degree of abnormality is measured byP = Pr{(x − x̄)′S−1(x − x̄) > (x∗

− x̄)′S−1(x∗
− x̄)}, (4)

where x∗ is the case’s profile and is treated as a fixed quantity.
A Hotelling’s T 2 significance test for testing whether the case could belong to the normative population is proposed in

Huizenga et al. (2007). Their test is based on the central F distribution to which the Hotelling’s test statistic is proportional.
Crawford et al. (2016) give a confidence interval for the probability (P) of getting a more extreme profile than the case.
The confidence interval is based on a non-central F distribution with a non-centrality parameter that is proportional to the
case’s Mahalanobis index. The confidence intervals are correct, in that their coverage levels equal the nominal confidence
level exactly. In contrast, the p-value from the Hotelling’s T 2 test provides an obvious point estimator of P , but it is biased.
Indeed, the problem of finding an unbiased estimator of P has not been resolved.

Here we consider a number of obvious estimators of P and propose some new, less obvious estimators. The bias and
mean square error of all the estimators are compared in extensive simulations. No estimator is uniformly better than all
alternatives, but a small selection of the estimators is clearly to be preferred. As well as bias and mean square error, other
criteria and desirable qualities in an estimator are also considered. In this paper, no distributional assumptions are made
about the source of x∗, other than when testing whether x∗ could be the profile of a member of the normative population.

The need to estimate the value of P for Mahalanobis distances does not only arise in psychology. In the literature, the
commonly used estimates of P are the p-value computed from the chi-square distribution of the sampleMahalanobis index,
or the p-value from the central F distribution associated with Hotelling’s T 2 test. For example, in remote sensing image
analysis, Foody (2006)was interested inmeasuring the closeness of an image pixel to a single class centroid. For that, he used
the Mahalanobis distance and converted the calculated Mahalanobis distance, of a particular image pixel from a specified
class centroid, to its associated p-value from the chi-square distribution. He then interpreted the p-value as the probability
of obtaining a Mahalanobis distance as extreme as that observed for a particular pixel with respect to a specified class, thus
effectively equating the p-value to P .

In environmental and health science, Liu andWeng (2012) usedMahalanobis distance in public health studies to enhance
the resolution of satellite imagery. They conducted a spatial–temporal analysis of West Nile Virus outbreak in Los Angeles
in 2007 using sensing variables and infective mosquito surveillance records. Mahalanobis distance was used to identify and
map the risk areaswhere habitatwas suitable for infectivemosquitoes. Liu andWeng (2012) calculated the distance between
a vector of environmental variables and the mean vector of environmental factors at the closest locations of mosquito
infections. Locations with smaller values of Mahalanobis distances indicated a more favorable habitat for the mosquitoes
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and hence an area of higher risk. They assumed that Mahalanobis distance follows a chi-square distribution, from which P
was calculated for eachmap pixel. Pixels with P between 0.6 and 0.9 (0.9 and 1.0) were consideredmoderate risk (high risk)
areas and then a risk map was produced.

In analytical chemistry, Shah and Gemperline (1990) were interested in analyzing the near-infrared reflectance spectra
of raw materials. They used Mahalanobis distance as a classification technique for pattern recognition to classify new
samples by comparing them to measurements of predetermined classes. Each sample was classified according to the
p-value associated with its Mahalanobis distance from the class centroids. Shah and Gemperline (1990) needed to estimate
the p-value for each new sample and used the chi-square distribution to estimate these probabilities. They considered
samples with probability levels between (0–0.01), (0.01–0.05) or (0.05–1.0) to be nonmembers, outliers or members,
respectively.

A sample Mahalanobis distance has an exact F distribution. Hence, unsurprisingly, the F distribution has also been
frequently used to quantify the rarity/commonness of a Mahalanobis distance. For example, Lu et al. (2005) used the
two groups Hotelling’s T 2 test for detecting differential expressions in genetic microarrays. They conducted a microarray
experiment in which samples from a disease group and from a normal group were obtained. They based their test for gene
differential expression on the scaled F distribution of the Hotelling’s T 2 statistic. Some other important applications of the
Hotelling’s T 2 statistic,Mahalanobis distance and the associated p-values include, for example,multivariate outlier detection
(e.g. Garrett, 1989;Hardin andRocke, 2005) andmultivariate quality control charts (e.g. Sullivan andWoodall, 1998; Johnson
andWichern, 2007). However, somemethodological researches in causal inference argue thatMahalanobis distances do not
work very well when the dimension, ν1, of x is greater than 8 or the normality assumption is not fulfilled. See, for example,
Stuart (2010) and the references therein.

We conducted a simulation study to test the performance of the sample p-value associated with the F distribution,
denoted by PF , and that associated with the chi-square distribution, denoted by Pχ2 , in estimating the probability P .
Simulation results show that both are biased estimates of P . We propose some alternative estimators of P and compare
them in terms of their bias and root mean square error in the simulation study. Some of the proposed estimates have much
lower biases than the estimators derived from the F and chi-square distributions.

Three of the alternative point estimators of P are based on its confidence intervals. The first uses the frequentist median
of the non-centrality parameter, and is denoted by PD. The second proposed estimator uses the Bayesian median of the
non-centrality parameter or its frequentist median, whichever is greater. We call it the modified median estimator and
denote it byPMD;PD andPMD only differ when P approaches 100%. The third estimator in this group is a Bayesian estimator; it
is based on the idea of probabilitymatching priors and is denoted byPBY . We propose another two new estimators of P based
on the mean of the non-centrality parameter of a non-central F distribution; these are denoted byPM andPR. Estimators
derived from a Taylor expansion (PT ) – Bernstein polynomials of degree 4, 7 and 10 (PB4,PB7 andPB10) and a quadrature
polynomial approximation of degree 4, 7 and 10 (PQ4,PQ7 andPQ10) – are also proposed and shown to be approximately
unbiased in the broad range of situations examined in the simulation study.

The paper is organized as follows. In Section 2, we briefly discuss the two frequently used point estimators of P . The
new twelve proposed point estimators of P are detailed in Section 3. All the fourteen point estimators are then compared in
Section 4, where we present and discuss the results of the simulation study. In Section 5, we examine the behavior of each
estimator at different observed values of theMahalanobis index.We also briefly consider themedian error of the estimators
(rather than average error) and mean absolute error. Concluding comments are given in Section 6.

2. Two plug-in maximum likelihood estimators of P

We aim to derive an unbiased estimate of

P = Pr{χ2
ν1

> λ}, (5)

whereχ2
ν1

is the populationMahalanobis index (x−µ)′6−1(x−µ), which follows a chi-square distribution on ν1 degrees of
freedom, and λ = ∆2 is the Mahalanobis index of the case. That is λ equals (x∗

− µ)′6−1(x∗
− µ), where x∗ is the vector of

a case’s profile of scores from ν1 tests. The probability P is the proportion of the population that has a profile more extreme
than the case. A minimum variance unbiased estimator of λ is readily available (see Section 3.2) but obtaining an unbiased
estimator of P is much harder.

Let x̄ and6 denote themaximum likelihood estimates ofµ and6, respectively, hence6 = [(n−1)/n]S. Simple estimates
of P can be obtained by replacing the unknown parameters in Eq. (2) with their maximum likelihood estimates. This gives
our first estimator,

PF = Pr{(x − x̄)′6−1
(x − x̄) > (x∗

− x̄)′6−1
(x∗

− x̄)}. (6)

It is well-known that

PF = Pr

Fν1,ν2 >


ν2

(n − 1) ν1


T 2


, (7)
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where

λ0 = (x∗
− x̄)′S−1(x∗

− x̄).

T 2
= nλ0/(n+1) is Hotelling’s T 2 statistic and Fν1,ν2 is a central F distribution on ν1 and ν2 degrees of freedom. ThenPF is the

p-value from testing the null hypothesis that the case is a member of the control population. Consequently, it is commonly
used as a point estimate of the proportion of the normative population with more extreme profiles than the case.

Another frequently used plug-in maximum likelihood estimate, denoted by Pχ2 , is the p-value from the chi-square

distribution. Instead of replacingµ and6−1 by x̄ and6−1 everywhere in (2),Pχ2 is obtained by onlymaking this replacement
on the right-hand side of the inequality. Thus

Pχ2 = Pr

(x − µ)′6−1(x − µ) > (x∗

− x̄)′6−1
(x∗

− x̄)


, (8)

and we have that

Pχ2 = Pr

χ2

ν1
>

n
n − 1

λ0


. (9)

Simulation results in Section 4 show thatPχ2 is generally better thanPF as an estimate of P . However, both are biased andPχ2 underestimates P in most cases, with absolute bias that is getting higher for larger values of the true parameter P .

3. New point estimators of P

3.1. Estimators derived from confidence intervals

3.1.1. Classical estimator of the median
Based on the work of Reiser (2001), Crawford et al. (2016) proposed a method for constructing confidence intervals on

P . The observable sample statistic F0 = [n ν2/(n− 1) ν1] λ0 has a non-central F distribution with ν1, ν2 degrees of freedom,
respectively, and a non-centrality parameter n λ, i.e.

F0 =


n ν2

(n − 1) ν1


λ0 ∼ Fν1,ν2(nλ). (10)

To construct a confidence interval for P , define Lα as the value of nλ for which F0 is the α-quantile of Fν1,ν2(nλ). Then, a
100(1 − α)% confidence interval for P is given by

{1 − G(Lα/2/n), 1 − G(L1−α/2/n)}, (11)

where G(.) is the cdf of a chi-square distribution on ν1 degrees of freedom.
Using the same technique, a point estimator of P is given by its median estimate. We have that L0.5 is the value of nλ at

which F0 is the median of the Fν1,ν2(nλ) distribution. The first of our new estimators,PD, is defined as

PD = 1 − G

L0.5
n


. (12)

AlthoughPD is a biased estimator of P , simulation results in Section 4 show that it usually has a smaller bias andmean square
error thanPF at all values of the true parameter P .

3.1.2. Modified estimator of the median
As nλ decreases, so does the median of Fν1,ν2(nλ). Since λ ≥ 0, a lower bound on the median of Fν1,ν2(nλ) is the median

of Fν1,ν2(0). (Fν1,ν2(0) is the ordinary central F distribution on ν1 and ν2 degrees of freedom.) If F0 is less than this lower
bound, one approach is to set nλ to zero. This is the standard approach adopted in the construction of confidence intervals,
where the same problem arises, as discussed in Reiser (2001). The problem arises whenever F0 is small, even if it is above the
lower bound. To illustrate, suppose ν1 = 4, ν2 = 20 and λ0 = 0.4, so F0 = 2.09. Then calculation givesPD = 99.49%. Thus
when a patient’s estimated Mahalanobis index is 0.4, then 0.51% is the estimate of the proportion of the normal population
with a smaller true Mahalanobis index than the case. However, if 0.4 were the true Mahalanobis distance of the case, then
the actual proportion of the normal population with a smaller Mahalanobis distance than the case is calculated at 1.75%
(P = 0.9825), from a chi-square distribution on 4 degrees of freedom. The disparity between 0.51% and 1.75% is substantial
and, moreover, intuitively one would expect uncertainty to result inPD being less extreme than P , rather than being greater
than it. As λ0 decreases the situation worsens. When λ0 = 0.2,PD = 99.99%, while P = 99.53% when λ = 0.2.

A pragmatic solutionwas proposed by Garthwaite et al. (2016). They supposed an individual’s sampleMahalanobis index
was λ0 and considered the question: ‘‘What proportion of the population will have a true Mahalanobis index that is bigger
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Fig. 1. PD and 1 − G(Mλ) at 0 ≤ λ0 ≤ 32.
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Fig. 2. PD and 1 − G(Mλ) at 0 ≤ λ0 ≤ 0.5.

than this individual?’’ under two situations

(i) the individual is the case
(ii) the individual is a randomly chosen member of the population.

They argue that the answer in situation (i) should be no bigger than in situation (ii). They suggest that the proportion should
be estimated for each situation and the smaller estimate selected. Adopting that approach, we construct another estimator,PMD, as follows.

Letλ be the Mahalanobis index of a randomly selected individual from the population and letP be the proportion of the
population with a larger Mahalanobis index thanλ. ThenP is a random variable and, before observing λ0,P has a uniform
distribution over the interval (0, 1). In consequence,λ has a chi-square distribution on ν1 degrees of freedom. This chi-square
distribution can be taken as the prior distribution in a Bayesian analysis in which there is a single datum, λ0. Note that there
is nothing arbitrary about this prior distribution; it is the distribution ofλ becauseP ∼ U(0, 1). The likelihood follows from
Eq. (10) as F0 = [n ν2/(n − 1) ν1] λ0|λ ∼ Fν1,ν2(nλ). We obtain the posterior distribution of λ, and compute its normalizing
constant through numerical integration. A simple search procedure is used to find the posterior median ofλ, say Mλ. We
then useMλ to enhance the median estimatorPD in (12) and propose the modified median estimator,PMD, asPMD = min{PD, 1 − G(Mλ)}. (13)

Obviously,PMD andPD only differwhenλ0 is small and then the differences are slight in absolute terms (|PMD–PD|), thoughPD/PMD is far from 1 for very small λ0. This is illustrated, for ν1 = 4 and ν2 = 20, in Figs. 1 and 2, wherePD and 1 − G(Mλ)
are plotted against λ0 at different observed values of 0 ≤ λ0 ≤ 32 and 0 ≤ λ0 ≤ 0.5, respectively. AsPMD takes the lower
value ofPD and 1 − G(Mλ), Fig. 1 shows thatPD andPMD are identical for λ0 > 4.5, while Fig. 2 shows that, as λ0 gets small,PMD is clearly less than 100% (as common sense dictates it should be) whilePD approaches 100%.

As expected, simulation results in Section 4 show that the bias and mean square error of the modified estimatorPMD are
nearly identical to those of the median estimatorPD. We recommendPMD overPD for use in practice to avoid the problem of
gettingPD = 1, as discussed above.

3.1.3. Bayesian probability matching
Bayesian 100(1 − α)% credible intervals quite often have the same endpoints as frequentist 100(1 − α)% confidence

intervals if the Bayesian intervals are based on uninformative prior distributions. Indeed, there has been substantial interest
in probabilitymatching priors (Datta andMukerjee, 2004),which are designed to give credible intervals thatmatch confidence
intervals. To construct our next estimate of P , we suppose a prior distribution has been found that gives posterior credible
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intervals which match the confidence intervals specified in Eq. (11). Treating the confidence intervals as exact credible
intervals, they determine a posterior distribution for the proportion P . We use a sufficiently large number, say R, of
one-sided credible interval limits to construct the posterior distribution. The posteriormean is then used as a point estimate,
sayPBY , of P .

Specifically, we estimate the interval limit Lr/R as the value of nλ for which F0 is the (r/R)-quantile of Fν1,ν2(nλ), for
r = 1, . . . , R. As in (11), the (r/R)-quantile of the posterior distribution of P is given by 1 − G(Lr/R/n). The posterior meanPBY is then computed as

PBY = 1 −

R
r=1

G(Lr/R/n)

R
. (14)

In practice, we take R = 500, so that we use the quantiles (0.002, 0.004, . . . , 0.998)which is a sufficiently fine partition for
our purpose and is not expensive in computing time.

Based on simulation results in Section 4, the estimate PBY is a badly biased estimate of P . This result illustrates an
important fact: while posterior distributions obtained from exact probability matching priors will (by design) give interval
estimates with good frequentist properties, the posterior mean may be far from meeting the frequentist definition of
unbiasedness.

3.2. Estimators based on the mean of λ

Our next proposed estimators of P are based on the estimated mean value of λ, say λ̄. If F0 is given by Eq. (10), then

nλ̄ =
ν1(ν2 − 2)

ν2
F0 − ν1 (15)

is the uniformly minimum variance unbiased estimator of the non-centrality parameter of the non-central F distribution
Fν1,ν2(nλ). However, it is well-known that this is not always positive and is therefore inadmissible. See, for example, Johnson
et al. (1995). To avoid a negative estimate of λ, put

λ = Max

1
n


ν1(ν2 − 2)

ν2
F0 − ν1


, 0


. (16)

Usingλ, we propose the estimatorPM of P asPM = 1 − G(λ). (17)

Unfortunately, based on the simulation results in Section 4,PM can have marked bias as an estimator of P .
The estimatorλ in (16) is also inadmissible (Chow, 1987), but Rukhin (1993) showed that, for ν2 > 4,

λ =
1
n


ν1(ν2 − 4)

ν2
F0


(18)

is an admissible estimator of λ. We base our next estimate,PR, of P onλ and putPR = 1 − G(λ). (19)

However, as illustrated in Section 4,PM is generally better thanPR in terms of bias and mean square error.

3.3. An estimator based on a Taylor expansion

We expand the cdf of the chi-square distribution G(X) about λ as

G(X) ≃ G(λ) + (X − λ)g(λ) +
(X − λ)2

2
g ′(λ), (20)

where g(.) is the pdf of a chi-square distribution with ν1 degrees of freedom. We set X equal to λ̄ in Eq. (15) and take the
expected value of both sides of (20). This gives

E{G(λ̄)} ≃ G(λ) +
Var(λ̄)

2
g ′(λ), (21)

where, from the variance of F0 with ν2 > 4, Var(λ̄) is given by

Var(λ̄) ≃ v0 + v1 λ + v2 λ2, (22)
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with v0 = 2ν1(ν1 + ν2 − 2)/(n2(ν2 − 4)), v1 = 4(ν1 + ν2 − 2)/(n(ν2 − 4)) and v2 = 2/(ν2 − 4). (As defined earlier,
F0 ∼ Fν1,ν2(nλ).)

In the light of (21), to obtain an approximately unbiased estimate of G(λ) to the second order, it seems natural to base
an estimate on λ# say, such that

G(λ#) − G(λ̄) = −
Var(λ̄)

2
g ′(λ). (23)

We start with the case where λ̄ is greater than the mode of the chi-square distribution. In this case g ′(λ) is negative, λ# > λ̄
and we can write

G(λ#) − G(λ̄) = (λ#
− λ̄)g(ξ), (24)

for some ξ ∈ (λ̄, λ#). From (23) and (24) we have

λ#
− λ̄ = −

Var(λ̄)

2
g ′(λ)

g(ξ)
. (25)

We define another estimate, λ∗, by replacing ξ in (24) with λ:

λ∗
− λ̄ = −

Var(λ̄)

2
g ′(λ)

g(λ)
. (26)

Suppose |λ̄ − λ| is large relative to |λ̄ − λ#
|. If λ > λ#, then λ∗ > λ# and λ∗ will be better than λ# as an estimate of λ. If

λ < λ̄, then λ∗ < λ# and λ∗ will again be better than λ# as an estimate of λ. On the other hand, supposing that |λ̄ − λ| is
small relative to |λ̄−λ#

|, then g(ξ) ≃ g(λ) and λ∗
≃ λ#. The consequence is that λ∗ defined in (26) is expected to be better

than λ#, in terms of the mean square error, as an estimate of λ. The other case in which λ̄ is less than or equal to the mode
of the chi-square distribution can be treated similarly.

It remains now to estimate the right hand side of (26). We find an unbiased estimate, say Var(λ̄), of Var(λ̄) expressed asVar(λ̄) = u0 + u1 λ̄ + u2 λ̄2, (27)

where u0, u1 and u2 are chosen such that E{Var(λ̄)} = Var(λ̄). Specifically, equating the corresponding coefficients of λ in
E{Var(λ̄)} to those in (22), we get u0 = 2ν1(ν1 +ν2 −2)/(n2(ν2 −2)), u1 = 4(ν1 +ν2 −2)/(n(ν2 −2)) and u2 = 2/(ν2 −2).
It is straightforward to show that

g ′(λ)

g(λ)
=

1
λ

ν1

2
− 1


−

1
2
. (28)

However, no simple unbiased estimate can be found for 1/λ, instead, we estimate it as 1/λ̄. The estimator λ∗ is finally
expressed as

λ∗
= λ̄ −

Var(λ̄)

2


1
λ̄

ν1

2
− 1


−

1
2


. (29)

Using this Taylor based estimate, our proposed approximately unbiased estimatePT of P is given byPT = 1 − G(λ∗). (30)

Simulation results show thatPT is usually one of the better estimates of P . More information is given in Section 4.

3.4. Estimators based on polynomial approximations

None of the point estimators we have proposed so far attain approximate unbiasedness uniformly for all values of
P . This motivates another set of point estimators that are approximately unbiased uniformly for all P . Using polynomial
approximations, we aim to base the proposed estimator of P in this section on a good global estimate of the non-centrality
parameterλ. Thismeans that in searching for an approximately unbiased estimate of P , we coverwide areas of the chi-square
cdf and do not locally search around some estimate of λ, as was proposed in Section 3.3 when using the Taylor expansion. In
principle, estimates based on global approximation of the cdf should prove better, in terms of bias, than an estimate based
on a local approximation.

We introduce a set of unbiased estimates of P , denoted for now byPP , which are based on approximating the probability
P in (5) as a polynomial function of degree r in λ. From Weierstrass’s Theorem, any function of a variable, λ say, can be
approximated by a polynomial of λ, provided the function satisfies weak regularity conditions. Now P = Pr(χ2

ν1
> λ) is a

function of λ that meets these regularity conditions, so we may put

P = Pr(χ2
ν1

> λ) ≃

r
i=0

ai λi. (31)
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The coefficients ai (i = 0, . . . , r) are known functions in ν1 (see below).
The key to exploiting Eq. (31) is that themoments of F0 are also polynomials in λ. Specifically, with F0 defined by Eq. (10),

the ith moment, E(F i
0), is a polynomial of λ of degree i. Writing P in the polynomial form (31), it can therefore be estimated

by another polynomial in F0 as follows

PP =

r
i=0

bi F i
0, (32)

where the coefficients bi (i = 0, . . . , r) are determined such that
r

i=0

bi E(F i
0) =

r
i=0

ai λi. (33)

This ensures the approximate unbiasedness of PP in estimating P . The coefficients bi (i = 0, . . . , r) can be obtained by
equating the coefficients of the corresponding terms of the polynomials on the two sides of (33). To do that, we used the
computer algebraic system Maple 16.

Although this computer algebraic systemdoes not give explicit symbolic formulas for the rawmoments of a non-central F
distributionwithout using special functions, it can efficiently give simple explicit forms of the rawmoments of a non-central
chi-square distribution up to any required order r . The former can then be obtained from the latter by using the following
straightforward relationship between the corresponding raw moments of the two distributions (Bain, 1969):

µ′

i[Fν1,ν2(λ)] = µ′

i[χ
2
ν1

(λ)]
Γ (ν2/2 − i) (ν2)

i

Γ (ν2/2) (2ν1)i
, (34)

where µ′
r [.] is the ith raw moment.

It has to be noted here that the ith raw moment of a non-central F distribution is finite only for ν2 > 2i. This puts
a constraint on the valid number r of polynomial terms to be used in the proposed approximation. If n is the size of the
control sample, then r must be strictly less than (n − ν1)/2.

Now, to apply the approach outlined in Eqs. (31)–(33), it remains to find a suitable polynomial approximation to be used
in (31). We use two different approximations, the first is based on Bernstein polynomials while the second is a quadrature
polynomial approximation.

3.4.1. Bernstein polynomials approximation
From Weierstrass’s Theorem, any continuous real valued function f (x) defined on a closed interval [a, b] can be

approximated by a polynomial function. See, for example, Lorentz (1986). In 1912, Bernstein gave a simple probabilistic
constructive proof for Weierstrass’s Theorem by introducing the Bernstein polynomials Br(f ; x) as a series of polynomials
that converge uniformly to any continuous bounded function f (x) on the closed interval [0, 1] as r → ∞. See, for example,
Chapter (7) in Phillips (2003). The rth Bernstein polynomial Br(f ; x) for f (x) is defined as:

Br(f ; x) =

r
i=0


r
i


xi(1 − x)r−if (i/r). (35)

The polynomial function Br(f ; x) uniformly approximates f (x) on [0, 1] in the sense that limr→∞ sup0≤x≤1 |Br(f ; x)−f (x)| =

0 (e.g. Theorem 1, Section VII.2 in Feller, 1965).
We use Bernstein polynomials to obtain a polynomial approximation for the chi-square cdf to be used in (31). Although

the domain of the chi-square cdf is [0, ∞), we use an affine transformation x = (λ−a)/(b−a), for any two arbitrary values
a and b, so as to work on the [0, 1] interval. The two end-points a and b are initially chosen such that the probability of
getting a sample value of the non-centrality parameter λ outside the interval [a, b] is fairly negligible. Therefore, we initially
take a = L0.999/n and b = L0.001/n where, as before, Lα is the value of nλ for which F0 is the α-quantile of Fν1,ν2(nλ). As
will be shown at the end of Section 3.4, the accuracy of the polynomial approximation is influenced by the choice of a and
b. For extremely large values of b, say above the 0.9999-quantile of the chi-square distribution, polynomial functions of
small degree r are not guaranteed to give a good approximation. Also, accuracy is greatly enhanced if a is chosen to be just
below the sample median value L0.5/n of λ. Hence, as a rule of thumb, if L0.5/n is greater than the mode of the chi-square
distribution, our final choice of a is a = 0.99(L0.5/n).

We then approximate P in (31) by its rth Bernstein polynomial in λ of the form

Br(P; λ) = 1 −

r
i=0


r
i

 
λ − a
b − a

i b − λ

b − a

r−i

G

a + (b − a)

i
r


. (36)

Clearly, the above expression of Br(P; λ) is a polynomial of degree r in λ, and we denote its coefficients by ai (i = 0, . . . , r).
The explicit form of these coefficients was obtained using the computer algebraic systemMaple 16. The coefficients of λ on
the left hand side of (33) are equated to their corresponding coefficients in the Bernstein polynomial approximation (36) so
as to obtain the values of bi and, hence,PP in Eq. (32). In this paper, we obtain the estimatePP for r = 4, 7 and 10, and denote
it byPB4,PB7 andPB10, respectively.
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Fig. 3. [a, b] = [0, 18].

3.4.2. Quadrature polynomial approximation
Weadopt the quadrature formula of Sahai et al. (2004) to obtain another polynomial approximation for P . This quadrature

formula gives polynomial approximations to the integration of real valued continuous functions defined on the closed
interval [0, 1]. Specifically, a function f (x) on [0, 1] is approximated by a polynomial in x of degree r as

Q (x) =

r
i=0


r x
i


r (1 − x)
r − i


f (xi), (37)

where xi = i/r (i = 0, . . . , r) partition the interval [0, 1] into r equal segments. The polynomial function Q (x) can then be
easily integrated over any sub-interval in [0, 1]. It has been shown empirically that the approximation has good accuracy
even when r is small. For example, it was used by Richard et al. (2010) to obtain an efficient polynomial approximation of
degree 9 to the normal distribution function and its inverse function.

Here, we apply the quadrature formula to approximate the density function of a chi-square distribution on ν1 degrees of
freedom with a polynomial of degree r − 1, which then yields the approximation in (31) after a straightforward symbolic
integration of the polynomial.

To work on the [0, 1] interval, we adopt the approach discussed in Section 3.4.1 for choosing the two end-points a and b,
with the same affine transformation x = (λ − a)/(b − a). The probability P can now be approximated as

PQ = 1 − Pr(χ2
ν1

< λ)

≃ 1 − G(a) −

 λ−a
b−a

x=0


r−1
i=0


(r − 1) x

i


(r − 1) (1 − x)

r − i − 1


(b − a) g


a +

i
r − 1

(b − a)
 

dx, (38)

where g[.] is the density function of a chi-square random variable with ν1 degrees of freedom.
The coefficients of λ in the expression of PQ in (38) above are again denoted by ai (i = 0, . . . , r), with their explicit forms

obtained using Maple 16. The coefficients of λ in the left hand side of (33) are equated to their corresponding coefficients in
the quadrature polynomial approximation PQ in (38) so as to obtain bi (i = 0, . . . , r). This gives another form ofPP (Eq. (32)).
Here we determine it for r = 4, 7 and 10, and denote the resulting estimators byPQ4,PQ7 andPQ10, respectively. Simulation
results show that these estimators are usually marginally better than those based on Bernstein polynomials.

In general, polynomial functions give approximations that are accurate only on specific intervals of the domain of the
underlying approximated function. The accuracy of the polynomial approximations thatweuse is highly related to the values
selected as the two interval end-points, a and b. Figs. 3–5 show Bernstein and quadrature polynomial approximations for
three choices of [a, b]. The cdf of a chi-square distribution on degrees of freedom ν1 = 4 is plotted togetherwith its Bernstein
approximation and quadrature polynomial approximation, each of degree r = 7.

Fig. 3 shows that both polynomial approximations give good accuracy when [a, b] is the rather short interval [0, 18] of
the cdf domain. The value b = 18 is near the boundary of plausible values for a χ2

4 variate, as 18 is the 0.999 quantile of a
χ2
4 distribution. For extremely large values of b, neither polynomial approximation of degree 7 is expected to attain good

accuracy. This can be seen in Fig. 4, where b = 30. For the same extreme value of b = 30, if a is above the mode of this
chi-square distribution (i.e. a > 2), remarkably better accuracy is obtained, especially for the quadrature approximation.
This is shown in Fig. 5, where a = 4 and b = 30. This argument motivates our choice of a and b that was discussed in
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Fig. 4. [a, b] = [0, 30].

Fig. 5. [a, b] = [4, 30].

Section 3.4.1, as the behavior of both polynomial approximations tends to be the same for all values of ν1. As seen in Fig. 3
and Fig. 5, the Bernstein polynomial approximation can be more accurate than the quadrature polynomial approximation
for values near b, but the quadrature approximation overall attains better accuracy over the whole interval [a, b].

4. Simulation results

In practice, we expect ν1, the number of test scores on each individual, to be small, while n (n = ν2 + ν1), the number
of people in the control sample, may be large. Therefore, we conducted a simulation study that examined combinations of
ν1 = 2, 4 and 8, with ν2 = 10, 20 and 80. Results of some other combinations are available on request from the authors.
Based on N = 100, 000 samples for each combination, we tested the performance of each of the proposed estimators in

terms of their average bias,
N

i=1(
Pi−P)/N , and the root ofmean square error,

N
i=1(

Pi − P)2/N , denoted by SE (standard
error) in tables.

Mahalanobis distance is invariant under affine transformations of location and scale parameters. Since all the methods
proposed in this paper depend only on the sample Mahalanobis index, λ0, we chose, without loss of generality, to set the
populationmean (µ) equal to 0 and the population variance (6) equal to the identity matrix Iν1 . The true values of P that we
examinedwere 1%, 2.5%, 5%, 10%, 20% and 40%. These true probabilities were attained from Eqs. (2) and (5) by choosing each
corresponding case’s profile of scores, x∗, as a vector of equal elements. We also examined some cases where the scores in
the profile, x∗, are not necessarily equal to each other. But these cases gave almost identical results to those of the profiles
with equal scores. We therefore give simulation results only for profiles with equal scores.
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Table 1
Bias and root mean square error (SE) of the proposed estimates of P at ν2 = 10.

ν1 1% 2.5% 5% 10% 20% 40%
Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

2 PF 4.6 7.1 5.9 9.4 6.8 11.5 7.2 14.0 6.2 16.5 2.3 18.7Pχ2 0.3 2.5 0.1 4.1 −0.5 6.1 −1.8 9.3 −4.5 14.2 −9.0 21.2PD 1.8 4.6 2.5 6.9 3.0 9.3 3.3 12.5 2.7 16.5 0.3 20.6PMD 1.8 4.6 2.5 6.9 3.0 9.3 3.3 12.4 2.4 16.0 −1.0 19.1PBY 4.5 6.9 5.5 8.9 6.4 11.1 7.2 13.9 5.4 16.1 2.1 19.1PM 3.4 6.8 4.9 9.7 6.4 12.7 7.8 16.3 8.6 20.1 7.5 22.8PR 6.8 10.6 9.4 14.2 11.8 17.5 14.0 20.9 15.1 23.5 12.5 22.8PT 0.8 3.9 1.2 6.2 1.6 9.1 2.0 13.0 2.1 18.1 1.7 22.9PB4 2.0 5.0 2.8 7.4 3.6 10.1 4.2 13.7 4.3 18.1 3.2 22.1PQ4 0.9 3.8 1.3 6.2 1.6 8.9 1.9 12.8 1.9 17.8 1.3 22.8

4 PF 7.0 10.5 8.6 13.2 9.7 15.4 10.1 17.6 8.4 19.4 2.5 20.6Pχ2 −0.2 2.2 −0.9 3.7 −2.1 5.7 −4.7 9.3 −9.6 15.7 −18.1 26.2PD 2.8 7.1 3.9 9.9 4.7 12.8 5.1 16.2 4.1 20.2 0.3 23.9PMD 2.8 7.0 3.9 9.8 4.7 12.5 4.9 15.7 3.4 18.7 −2.1 21.1PBY 7.2 10.7 8.4 13.2 9.7 15.3 9.4 17.4 8.2 19.4 2.9 20.5PM 5.3 10.4 7.4 14.1 9.2 17.5 10.8 21.2 11.2 24.7 8.4 26.1PR 10.6 16.4 14.0 20.9 17.0 24.7 19.7 28.3 20.6 30.5 16.9 28.2PT 1.6 6.4 2.4 9.7 3.3 13.4 4.1 18.0 4.5 23.7 3.5 28.4PB4 3.1 7.6 4.3 10.7 5.4 13.8 6.1 17.7 5.9 22.1 3.1 25.5PQ4 1.4 5.8 2.0 8.8 2.6 12.2 2.9 16.6 2.7 22.5 1.7 28.7

Table 1 shows the simulation results for ν1 = 2 and 4, and ν2 = 10. When ν1 = 2,Pχ2 ,PQ4 andPT are the best three
estimators in terms of the bias and root mean square error.Pχ2 is slightly better thanPQ4 andPT up to P = 10%, but for
P = 20% and 40%, the estimatorsPQ4 andPT are remarkably better thanPχ2 in terms of their bias, withPQ4 being the best.
At ν1 = 4, the table shows thatPχ2 ,PQ4 andPT are again the best three estimators, withPQ4 showing less bias thanPχ2 for
true values of P of 10% or more. This suggests that, at small values of ν2, the best two competitor estimates arePχ2 andPQ4,
where the former is doing better at smaller values of the true probability P .

An important point from Table 1 is the cautionary message that each of the methods shows noticeable bias for some
values of P at some combinations of ν1 and ν2. Four methods perform particularly poorly:PF ,PBY ,PM ,PR.

Table 2 shows the simulation results at ν1 = 2, 4 and 8, and ν2 = 20. For all listed values of ν1, the three estimatesPχ2 ,PQ4 andPQ7 are doing better than the others. For small values of P , the bias of bothPQ4 andPQ7 is generally less than that ofPχ2 , while the root mean square error ofPχ2 is always less than those ofPQ4 andPQ7. ComparingPQ4 toPQ7, it can be seen in
Table 2 thatPQ7 is better thanPQ4 in terms of bias, although the root mean square error ofPQ4 is slightly greater than that
ofPQ7 for all values of the true probability except P = 1%. This suggests thatPQ7 is the best estimate at ν2 = 20 as it has
rather small values of both bias and root mean square error for all values of the true probability P .

Simulation results for ν2 = 80 (ν1 = 2, 4 and 8) are presented in Table 3. This value of ν2 is large enough for the estimatorsPQ10 andPB10 to be computed. All estimators are doing well at this very large sample size and all have similar bias and root
mean square error. However, the estimators based on polynomial approximations are still slightly better than the others.
Specifically, the quadrature based estimatorsPQ4,PQ7 andPQ10 have very low bias as shown in Table 3, with the bias ofPQ10

always less than or equal to those ofPQ4 andPQ7.

5. Feasibility of estimates and absolute error

5.1. Ranges of estimates

The simulations in Section 4 show that the estimators based on polynomial approximations performed well, in that they
had the minimum bias among the reported estimators. However, this does not mean that the estimates they produce are
always sensible. Specifically, when λ0 is very small they can give estimates of the proportion that are greater than 100%, and
when λ0 is very big they can give estimates that are less than zero. This problem comes to light by studying the behavior of
the proposed estimators at different values in the domain of λ0.
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Table 2
Bias and root mean square error (SE) of the proposed estimates of P at ν2 = 20.

ν1 1% 2.5% 5% 10% 20% 40%
Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

2 PF 2.2 3.8 3.1 5.6 3.7 7.4 4.1 9.6 3.5 12.2 1.2 14.6Pχ2 0.2 1.8 0.1 3.1 −0.3 4.8 −1.1 7.4 −2.6 11.2 −5.1 15.9PD 0.9 2.6 1.3 4.3 1.6 6.2 1.8 8.8 1.3 12.1 0.0 15.5PMD 0.9 2.6 1.4 4.3 1.7 6.2 1.8 8.8 1.4 12.1 −0.3 15.0PBY 2.2 3.8 3.2 5.8 3.8 7.3 4.1 9.4 3.4 12.0 1.5 14.7PM 1.5 3.3 2.3 5.3 3.0 7.4 3.8 10.2 4.2 13.5 3.6 16.3PR 2.4 4.4 3.7 6.6 4.9 8.9 6.2 11.8 6.8 14.5 5.6 16.0PT 0.3 2.1 0.4 3.8 0.5 5.8 0.6 8.8 0.5 12.8 0.4 16.5PB4 0.9 2.6 1.3 4.4 1.7 6.4 2.0 9.2 1.9 12.7 1.4 16.2PQ4 0.2 2.0 0.2 3.7 0.3 5.8 0.4 8.8 0.3 12.7 0.2 16.6PB7 0.6 2.4 0.9 4.1 1.2 6.1 1.4 9.0 1.3 12.7 0.9 16.3PQ7 −0.1 1.9 −0.1 3.6 −0.1 5.7 0.0 8.8 −0.1 12.9 0.0 16.7

4 PF 3.5 5.7 4.7 8.0 5.6 10.1 6.0 12.4 5.1 14.8 1.3 16.8Pχ2 −0.1 1.8 −0.5 3.2 −1.3 5.1 −3.1 8.1 −6.3 13.1 −11.4 20.3PD 1.4 3.9 2.1 6.0 2.6 8.3 2.8 11.4 2.3 15.0 −0.1 18.4PMD 1.4 3.9 2.1 6.1 2.7 8.4 2.9 11.3 2.1 14.7 −1.0 17.3PBY 3.2 5.4 4.8 7.9 5.7 9.8 5.4 11.6 4.5 15.2 2.2 16.8PM 2.2 4.9 3.4 7.5 4.5 10.1 5.4 13.4 5.7 16.9 4.1 19.2PR 3.6 6.5 5.4 9.5 7.0 12.4 8.6 15.7 9.4 18.8 7.5 19.5PT 0.5 3.1 0.8 5.3 1.0 7.9 1.3 11.6 1.3 16.3 0.8 20.5PB4 1.4 3.8 2.0 6.1 2.6 8.5 3.0 11.8 2.8 15.8 1.2 19.3PQ4 0.2 2.8 0.4 5.0 0.5 7.6 0.6 11.3 0.5 16.1 0.0 20.7PB7 0.9 3.4 1.4 5.6 1.8 8.1 2.1 11.6 2.0 15.9 0.8 19.8PQ7 −0.1 2.6 −0.1 4.9 0.0 7.6 0.0 11.5 0.1 16.5 0.0 21.0

8 PF 5.6 8.9 7.3 11.6 8.5 14.0 9.0 16.4 7.5 18.4 2.1 19.7Pχ2 −0.6 1.4 −1.5 2.8 −3.1 4.9 −6.3 8.7 −12.3 15.7 −22.2 27.4PD 2.4 6.1 3.4 8.9 4.2 11.8 4.6 15.2 3.8 19.1 0.4 22.6PMD 2.4 6.1 3.4 8.9 4.2 11.7 4.5 14.8 3.2 17.8 −1.5 20.2PBY 5.7 9.3 7.4 11.7 8.2 13.8 8.4 16.0 7.1 18.4 2.8 19.2PM 3.6 7.9 5.3 11.2 6.8 14.5 8.1 18.1 8.2 21.7 5.5 23.7PR 5.7 10.5 8.2 14.4 10.4 17.9 12.5 21.7 13.3 24.7 10.6 24.8PT 1.0 5.1 1.6 8.2 2.3 11.6 2.8 16.1 3.0 21.6 2.0 26.3PB4 2.2 6.0 3.2 8.9 4.1 11.9 4.6 15.6 4.2 19.9 1.3 23.4PQ4 0.5 4.4 0.8 7.3 1.1 10.6 1.2 15.0 0.8 20.6 −0.7 25.6PB7 1.6 5.4 2.3 8.3 3.0 11.4 3.4 15.4 3.0 20.3 0.9 24.6PQ7 0.1 4.2 0.2 7.2 0.4 10.8 0.5 15.6 0.6 22.0 0.4 27.7

For example, at ν1 = 4 and ν2 = 24, Fig. 6(a) shows that the twelve estimators all have similar patterns for 0 < λ0 < 30.
But a closer look at the part of the domain where 0 < λ0 < 0.5 (Fig. 6(b)) reveals that PB4, PB7, PQ4 and PQ7 are not
monotonically decreasing with λ0 and they exceed 100% at some values of λ0. With the same degrees of freedom, another
problem appears in Fig. 6(c), where bothPQ4 andPQ7 are below zero for some values of 12 < λ0 < 30.

Similar problems appear at large sample sizes as well. For example, at ν1 = 4 and ν2 = 80,PQ4 is slightly below zero for
some values of 22 < λ0 < 32 and as shown in Fig. 6(d),PQ4,PQ7 andPQ10 all exceed 100% for some values of 0 < λ0 < 0.2.
The problem does not arise with other estimators—estimates are always in the range 0%–100% forPF ,Pχ2 ,PD,PMD,PBY ,PM ,PR
andPT . However, as Fig. 6(b) shows, the estimate of P approaches 100% as λ0 approaches 0. This is clearly unrealistic as the
case’s value x∗ will not equal the population mean µ, even if x∗ equals the sample mean x̄. As in Section 3.1.2, a pragmatic
approach is to treat the case’s profile as that of a randomly chosen control when the case’s profile seems nearer to µ than
would be expected of a control’s profile.
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Table 3
Bias and root mean square error (SE) of the proposed estimates of P at ν2 = 80.

ν1 1% 2.5% 5% 10% 20% 40%
Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

2 PF 0.5 1.2 0.8 2.0 1.0 3.1 1.2 4.5 1.0 6.4 0.3 8.1Pχ2 0.1 0.8 0.0 1.6 0.0 2.6 −0.3 4.2 −0.8 6.2 −1.4 8.3PD 0.2 1.0 0.3 1.8 0.5 2.8 0.5 4.4 0.4 6.4 0.0 8.2PMD 0.2 1.0 0.4 1.8 0.4 2.9 0.5 4.4 0.4 6.4 0.0 8.2PBY 0.6 1.2 0.8 2.0 1.1 3.2 1.2 4.3 0.9 6.4 0.2 8.1PM 0.3 1.1 0.5 1.9 0.8 3.0 1.0 4.6 1.1 6.6 0.9 8.3PR 0.5 1.2 0.8 2.1 1.1 3.2 1.4 4.8 1.6 6.7 1.3 8.2PT 0.0 0.9 0.0 1.7 0.0 2.8 0.1 4.4 0.0 6.5 0.0 8.4PB4 0.2 0.9 0.3 1.8 0.4 2.8 0.4 4.4 0.4 6.5 0.3 8.3PQ4 0.0 0.8 0.0 1.7 0.0 2.8 0.0 4.4 0.0 6.5 0.0 8.4PB7 0.1 0.9 0.2 1.7 0.2 2.8 0.3 4.4 0.3 6.5 0.2 8.3PQ7 0.0 0.8 0.0 1.7 0.0 2.8 0.0 4.4 0.0 6.5 0.0 8.4PB10 0.1 0.9 0.1 1.7 0.2 2.8 0.2 4.4 0.2 6.5 0.1 8.3PQ10 0.0 0.8 0.0 1.7 0.0 2.8 0.0 4.4 0.0 6.5 0.0 8.4

4 PF 0.8 1.7 1.3 2.8 1.6 4.1 1.8 5.8 1.5 8.0 0.4 9.8Pχ2 0.0 1.0 −0.1 1.9 −0.4 3.1 −1.0 5.0 −2.0 7.7 −3.5 10.5PD 0.4 1.3 0.6 2.4 0.7 3.7 0.8 5.5 0.6 8.0 −0.1 10.1PMD 0.4 1.3 0.6 2.4 0.7 3.7 0.8 5.6 0.6 8.0 −0.1 9.9PBY 0.8 1.7 1.2 2.8 1.6 4.1 1.6 5.8 1.3 7.8 0.4 9.9PM 0.5 1.4 0.8 2.6 1.1 3.9 1.4 5.8 1.5 8.3 1.0 10.2PR 0.7 1.6 1.1 2.8 1.5 4.2 2.0 6.1 2.2 8.5 1.7 10.2PT 0.0 1.1 0.1 2.1 0.1 3.5 0.1 5.5 0.1 8.2 0.0 10.4PB4 0.3 1.2 0.4 2.3 0.6 3.6 0.6 5.6 0.6 8.1 0.3 10.3PQ4 0.0 1.1 0.0 2.1 0.0 3.5 0.0 5.5 0.0 8.2 0.0 10.4PB7 0.2 1.2 0.3 2.2 0.4 3.6 0.4 5.5 0.4 8.1 0.1 10.3PQ7 0.0 1.1 0.0 2.1 0.0 3.5 0.0 5.5 0.0 8.2 0.0 10.4PB10 0.1 1.1 0.2 2.2 0.3 3.5 0.3 5.5 0.3 8.2 0.1 10.4PQ10 0.0 1.1 0.0 2.1 0.0 3.5 0.0 5.5 0.0 8.2 0.0 10.4

8 PF 1.4 2.6 2.0 4.1 2.6 5.7 2.9 7.8 2.6 10.3 0.6 12.3Pχ2 −0.2 1.1 −0.6 2.1 −1.3 3.6 −2.6 6.0 −4.9 9.9 −8.1 14.6PD 0.6 1.9 0.9 3.3 1.2 5.0 1.4 7.3 1.1 10.3 0.0 13.0PMD 0.6 1.9 0.9 3.3 1.2 5.0 1.4 7.3 1.1 10.3 −0.3 12.5PBY 1.4 2.6 1.9 3.9 2.3 5.6 2.8 7.9 2.3 10.1 0.9 12.2PM 0.8 2.1 1.3 3.6 1.7 5.4 2.1 7.8 2.2 10.7 1.4 13.1PR 1.0 2.3 1.7 4.0 2.3 5.8 3.0 8.3 3.3 11.1 2.5 13.2PT 0.1 1.5 0.2 2.9 0.2 4.6 0.3 7.2 0.3 10.7 0.1 13.7PB4 0.5 1.8 0.7 3.2 0.9 4.9 1.1 7.3 0.9 10.5 0.3 13.3PQ4 0.0 1.5 0.0 2.8 0.0 4.6 0.0 7.2 0.0 10.7 0.0 13.7PB7 0.3 1.6 0.5 3.0 0.6 4.7 0.7 7.2 0.6 10.5 0.1 13.5PQ7 0.0 1.4 0.0 2.8 0.0 4.6 0.0 7.2 0.0 10.7 0.0 13.8PB10 0.2 1.6 0.4 3.0 0.5 4.7 0.5 7.2 0.4 10.6 0.1 13.6PQ10 0.0 1.4 0.0 2.8 0.0 4.6 0.0 7.2 0.0 10.7 0.0 13.8

5.2. Performances as measured by absolute error

In Section 4, mean square error and average error (bias) were used to evaluate the performance of the various estimators
considered in this paper. Alternative evaluation criteria include average absolute error (AAE =

N
i=1 |Pi−P|/N) andmedian

error (ME = median(P1 −P, . . . ,PN −P)). Here, we briefly examine the performance of our estimators under these criteria.
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Fig. 6. Estimates of P given by different methods for various combinations of ν1 and ν2 .

In theory, the median estimator PD should give a median error of 0 and have a lower AAE than other estimators whose
median error is small. Its closely related estimator,PMD, should also perform well.

Results for ν1 = 8 and ν2 = 40 are presented in Table 4. It can be seen that the median error in estimating P is 0.0 for
bothPD andPMD for each of the tabulated values of P . In contrast, the median error of every other estimator is never 0.0
except forPB10 when P = 40%; otherwise the median error of the other estimators is typically quite marked.

A fuller examination of the median errors given byPD andPMD is provided in Table 5, where results are given for these
estimators for all the combinations of ν1 and ν2 thatwere considered in Tables 1–3. The two estimators give identicalmedian
error for every combination and that error is very small in every case. Hence, if we want an estimator that has very small
median error, then bothPD andPMD can fill that role. The average absolute error is marginally better with thePMD estimator,
but the differences are very slight. However,PMD is the preferable estimator because it will not give unrealistic estimates of
P , whilePD will sometimes estimate P as 100% when that is not a credible estimate. Consequently, if a point estimator of P
is required, one reasonable choice is to givePMD as the estimator and say that it gives small median error without making
any claim about its bias (average error).

6. Concluding comments

The task that motivated this paper seemed straightforward: find a good point estimator of the abnormality of a
Mahalanobis index. The answer is less straightforward, as the best choice of estimator will depend on the purpose for which
the estimator is required. The following summarizes our findings.

1. The most common criteria used to choose an estimator are bias andmean square error; the minimum variance unbiased
estimator is often the preferred estimator if such an estimator can be found. Under these criteria the best estimators are
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Table 4
Median error (ME) and average absolute error (AAE) of the median estimates of P at ν1 = 8 and ν2 = 40.

1% 2.5% 5% 40%
ME AAE ME AAE ME AAE ME AAEPF 1.6 3.0 2.3 4.6 2.9 6.2 1.1 13.3Pχ2 −0.8 0.9 −1.9 2.1 −3.6 3.7 −16.0 17.8PD 0.0 1.8 0.0 3.3 0.0 5.1 0.0 14.5PMD 0.0 1.8 0.0 3.3 0.0 5.1 0.0 13.7PBY 1.4 2.8 2.2 4.8 2.9 6.5 1.1 13.2PM 0.3 2.2 0.6 3.9 1.0 5.8 3.0 14.9PR 0.8 2.7 1.4 4.6 2.3 6.7 5.6 15.1PT −0.7 1.4 −1.3 2.9 −2.0 4.9 0.4 16.1PB4 −0.1 1.7 −0.3 3.2 −0.4 5.0 0.4 15.1PQ4 −0.9 1.3 −1.7 2.9 −2.5 4.8 −0.3 16.2PB7 −0.4 1.5 −0.8 3.0 −1.1 4.9 0.1 15.5PQ7 −1.0 1.3 −1.9 2.8 −2.8 4.9 −0.1 16.4PB10 −0.5 1.5 −1.1 2.9 −1.5 4.9 0.0 15.8PQ10 −0.9 1.3 −1.8 2.8 −2.8 4.8 −0.1 16.4

Table 5
Median error (ME) and average absolute error (AAE) of the median estimatesPD andPMD of P .

ν2 ν1 1% 2.5% 5% 40%
ME AAE ME AAE ME AAE ME AAE

10 2
PD 0.0 2.5 0.0 4.2 0.0 6.3 −0.1 17.1PMD 0.0 2.5 0.0 4.2 0.0 6.3 −0.1 16.1

4
PD 0.0 3.6 0.0 5.8 0.0 8.3 0.0 20.2PMD 0.0 3.6 0.0 5.8 0.0 8.2 0.0 17.8

20 2
PD 0.0 1.6 0.0 2.8 0.0 4.4 0.0 12.6PMD 0.0 1.6 0.0 2.8 0.0 4.4 0.0 12.3

4
PD 0.0 2.1 0.0 3.7 0.0 5.7 0.0 15.3PMD 0.0 2.1 0.0 3.7 0.0 5.7 0.0 14.3

8
PD 0.0 3.1 0.0 5.2 −0.1 7.6 −0.1 19.1PMD 0.0 3.1 0.0 5.2 −0.1 7.5 −0.1 17.1

80 2
PD 0.0 0.7 0.0 1.3 0.0 2.2 0.1 6.6PMD 0.0 0.7 0.0 1.3 0.0 2.2 0.1 6.6

4
PD 0.0 0.9 0.0 1.7 0.0 2.8 0.0 8.2PMD 0.0 0.9 0.0 1.7 0.0 2.8 0.0 8.1

8
PD 0.0 1.2 0.0 2.2 0.0 3.6 0.0 10.6PMD 0.0 1.2 0.0 2.2 0.0 3.6 0.0 10.2

those based on a quadrature polynomial approximation,PQ4,PQ7 andPQ10, provided occasional negative estimates are
not a problem. (The negative estimates would presumably be set to 0.) OnlyPQ4 can be used for ν2 = 10;PQ7 is best for
ν2 = 20;PQ10 andPQ7 are marginally the best (PQ4 is almost as good) for ν2 = 80.

2. If mean square error is to beminimized and bias is unimportant, thenPχ2 is the best estimator, but it displays substantial
bias even when ν2 is large.

3. Sometimes, an estimate of P is to be used as an input into further analysis. Commonly though, an estimate of P is to
be communicated to others (perhaps in a journal paper or a technical report) and then a good descriptive statistic is
required. In that context, the best estimator would seem to be the modified median estimator,PMD. It should be referred
to as the median estimator as that is accurate: it is designed to give low median bias rather than low average bias and,
indeed, its median bias is very low. It is preferable to themedian estimate (PD) because it always gives sensible estimates
whilePD sometimes gives estimates that are unrealistically small when judged by common sense.
Based on our simulation results, we recommend thatPMD should generally be used as the point estimator of P . However,
if unbiasedness of the required estimate is crucially important we recommend thatPQ4 should be used for ν2 < 20 andPQ7 should be used for ν2 ≥ 20. Out-of-range values of these two estimators need to be artificially constrained so as not
to lie outside the interval [0, 1].
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This work is part of an on-going project that develops statistical methods for analyzing single patient data, and these
recommendations are implemented in software formaking inferences fromMahalanobis distance about the abnormality
of an individual’s test score profile. Previous methods that we have developed are well-used by neuropsychologists (see,
for example, papers that cite Crawford and Garthwaite, 2002, 2005, 2007) so it is likely that the recommendations will
influence practice. The work in this paper makes these recommendations well-informed.
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