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Abstract

Reiser (2001) proposes a method of forming confidence interval for a Maha-

lanobis distance that yields intervals which have exactly the nominal coverage,

but sometimes the interval is (0, 0). We consider the case where Mahalanobis

distance quantifies the difference between an individual and a population mean,

and suggest a modification that avoids implausible intervals.

Keywords: Credible interval; Noncentral F; Objective prior

1. Introduction

Suppose a set of measurements is made on an individual, recorded as a vector y.

For example, in a medical context where a patient might undergo a set of diagnostic

tests, each component of y might be the measurement on one test. In psychology, a

person might perform a number of tests and y could be the individual’s profile of test

scores. In commerce, y might be a number of measurements made on a manufactured

item. Mahalanobis distance can be used to calibrate the degree to which y differs

from the mean of a normative population. The squared Mahalanobis distance, δ2 say,

is defined by

δ2 = (y − µ)TΣ−1(y − µ), (1)

where µ and Σ are the mean and covariance matrix of the distribution of measure-

ments from the normative population. The squared Mahalanobis distance is some-
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times called the Mahalanobis index. We assume that observations from the normative

population follow a multivariate normal distribution.

A non-central F distribution can be used to form a confidence interval for δ

when µ and Σ are unknown and must be estimated from a normative sample. This

method of forming a confidence interval for a Mahalanobis distance was proposed by

Reiser (2001). It gives intervals that have the correct coverage so, for example, the

proportion of 95% confidence intervals that will contain the true value of δ is indeed

95 percent. However, as noted by Reiser (2001), sometimes both the lower and upper

limits of the confidence interval will equal 0. Such intervals are (of course) amongst

the 5 percent of intervals that do not contain δ. Thus, while coverage equals the

nominal level, there will be occasions when we know with absolute certainty that a

confidence interval does not contain the true value of the quantity of interest. This is

regrettable and the purpose of this note is to modify the method so that unreasonable

interval estimates are never constructed.

In Section 2 we first give the unmodified method of forming a confidence interval

and then develop our modification to the method. In Section 3 we examine the effect

of the modification and concluding comments are given in Section 4.

2. Construction of interval estimators

We will refer to the individual whose profile is of interest as the case and members

of the normative population as controls. Often the case has a distinguishing feature

as when, for example, (s)he has received treatment for an illness while the controls

are healthy volunteers. We assume a profile X is a k-dimensional vector and that

X ∼ MVN(µ,Σ) if X is the profile of a control. We also assume that a sample of n

controls has x as its sample mean and S as its sample variance.

Denote the profile of the case by y, where y is nonrandom. Then

δ̂2 = (y − x)TS−1(y − x), (2)

is the sample estimate of the squared Mahalanobis distance of the case. A general

result [see, for example, Mardia et al. (1979), Exercise 3.5.1 and Theorem 3.5.2] is

that if X ∼ MVN(µ,Σ) and M ∼ Wishart(Σ, n− 1), then {(n− k)/k}XTM−1X ∼
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Fk, n−k(µ
TΣµ), where Fk, n−k(µ

TΣµ) is a non-central F -distribution on k and n− k

degrees of freedom with non-centrality parameter µTΣµ. From this it follows that

D2 =

[
n(n− k)

(n− 1)k

]
δ̂2 ∼ Fk, n−k(nδ

2). (3)

Exploiting this result, Reiser (2001) proposed the following method of forming

confidence intervals for δ. Let (δl, δu) denote the interval. Provided D2 is not too

small, δl and δu are chosen to satisfy

Pr
[
Fk, n−k(nδ

2
l ) ≤ D2

]
= 1− α

2
(4)

and

Pr
[
Fk, n−k(nδ

2
u) ≤ D2

]
=
α

2
. (5)

If D2 is so small that Pr[Fk, n−k(0) ≤ D2] ≤ 1 − α
2
, then there is no δl that satisfies

(4) and δl is instead set equal to 0. If Pr[Fk, n−k(0) ≤ D2] ≤ α
2
, then there is no δu

that satisfies (5) and δu is also instead set equal to 0.

Wunderlich et al., (2015) prove that the interval (δl, δu) is an exact 1−α equal-

tailed confidence interval for δ. (This exactness result does not follow immediately

from equation (3) because equations (4) and (5) do not always have a solution.)

Nevertheless, the confidence intervals are not completely satisfactory as the interval

will sometimes be (0, 0), which, with probability 1, will not contain δ. (Since y is a

continuous variate, with probability 1, y ̸= µ and δ ̸= 0.)

Moreover, any method of forming exact confidence intervals will sometimes give

an interval of (0, 0) if intervals are determined by y−x and S. This follows from the

definition of a confidence interval. If we repeatedly take samples of size n from the

normative population then, for any specified case, for α/2 of the samples the upper

limit of the 1 − α confidence interval for δ must be below δ. This holds even when

the case’s profile (y) is very close to µ and δ → 0. Given S, let A(S) denote the

set of values of x − y for which the upper limit of the confidence interval is 0. Put

w = x− y. As y is a non-random vector, w ∼ MVN(µ− y,Σ/n). Let

h(y) =

∫ [∫
A(S)

| 2πΣ/n|−1/2 exp{−n
2
(w − (µ− y))TΣ−1(w − (µ− y))} dx

]
f(S) dS,

(6)
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where f(S) is the marginal distribution of S [f(S) is proportional to a Wishart dis-

tribution] and the outside integral is over the range of values of S. Then h(y) is the

probability that the upper confidence limit is 0. We have that h(y) equals α/2 when

y = µ and, from equation (6), it is clear that h(y) is a continuous function of y.

Hence, for some η > 0, we have that h(y) exceeds, say, α/4 for ||y − µ|| < η. Thus,

for a range of profiles there is a non-negligible probability that the sample data will

lead to a confidence interval of (0, 0), and this result holds for any method of forming

exact confidence intervals. To indicate the size of h(y) for the method proposed by

Reiser, suppose α = 0.05, k = 3 and n = 30. Then (δl, δu) is set equal to (0, 0)

when D2 < 0.071 which, for example, happens with probability 0.016 if Σ is the 3×3

identity matrix and y − µ = (0.1, 0.1, 0.1)T .

When D2 is small, a potentially attractive alternative to forming a confidence

interval is to form a Bayesian credible interval. The definition of a credible interval

does not involve repeated sampling. In principle each 1−α credible interval contains

the true value of the quantity of interest with probability 1 − α. Thus, a credible

interval for δ will not equal (0, 0), as that is implausible. The challenge to forming a

Bayesian credible interval is to find an appropriate prior distribution.

The vector y could be the profile of an individual from the control population,

rather than the profile of the case, so equation (1) defines δ for an individual control

as well as the case. Let π(δ) be the prior distribution for δ when δ is the Mahalanobis

distance of the case and let ψ(δ) be the prior distribution when δ is the Mahalanobis

distance of a randomly selected control. We do not intend to specify π(δ) but aim to

place bounds on quantiles of its resulting posterior distribution through consideration

of ψ(δ). As δ measures the difference between y and the mean of the controls, a priori

we would expect δ to generally be larger when it relates to the case than when it

relates to a control. Hence, if πq(δ) and ψq(δ) are the qth quantiles of π(δ) and ψ(δ),

respectively, it is reasonable to assume that πq(δ) ≥ ψq(δ) for any q ∈ (0, 1). We shall

assume that this relationship is passed on to the posterior distribution. Specifically,

we shall assume that for any given δ̂2 = (y − x)TS−1(y − x) and q ∈ (0, 1),

πq(δ | δ̂) ≥ ψq(δ | δ̂). (7)



5

We do not know π(δ), so π(δ | δ̂) is also unknown, but we can determine ψ(δ | δ̂)

(see below). Then ψα/2(δ | δ̂) and ψ1−α/2(δ | δ̂) are lower bounds for the lower and

upper endpoints of an equal-tailed (1 − α/2) credible interval for δ, where δ is the

Mahalanobis distance of the case.

Our modification to the Reiser’s method of forming confidence intervals is straight-

forward: If an endpoint of a 1 − α confidence interval for the case is less than the

lower bound of the corresponding endpoint of a 1 − α credible interval, set the end-

point equal to that lower bound. This treats the case like a control whenever the

case resembles the average control more closely than the great majority of controls

resemble their average. Usually, though, the modification is not applicable and the

confidence interval is unchanged.

To implement the modification requires ψ(δ | δ̂). It is easier to work in terms

of λ = δ2 and λ̂ = δ̂2, rather than δ and δ̂. Let ψ∗(λ) be the prior distribution that

corresponds to ψ(δ). If we let Λ denote the Mahalanobis index of a control, then

Λ = (X − µ)TΣ−1(X − µ) ∼ χ2
k, (8)

where χ2
k is a central chi-square distribution on k degrees of freedom. Consequently, if

λ is the value of Λ taken by a control that had been chosen at random then, a priori,

λ ∼ χ2
k. Thus λ ∼ χ2

k is an objective prior distribution for a control’s Mahalanobis

index, λ, and we take ψ∗(λ) as this chi-square distribution.

The likelihood for λ follows from equation (3), [n(n−k)/{(n−1)k}]λ̂ ∼ Fk, n−k(nλ).

We multiply the prior distribution by the likelihood, compute the normalising con-

stant through numerical integration, and hence obtain the posterior distribution,

ψ∗(λ | λ̂). Further details are given in the appendix. Let λq denote the qth quantile

of ψ∗(λ | λ̂). Then λ
1/2
q is a lower bound on the qth quantile of π(δ | δ̂), so λ1/2α/2 and

λ
1/2
1−α/2 are lower bounds on the lower and upper endpoints of a central 1−α posterior

credible interval for the Mahalanobis distance (δ) of the case. Our modification sets

δl equal to λ
1/2
α/2 if δl < λ

1/2
α/2 and puts δu = λ

1/2
1−α/2 if δu < λ

1/2
1−α/2.

3. Effects of the modification

The two main features of the modified method are:
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Fig. 1. Endpoints of the 95% confidence interval for δ and lower bounds on endpoints of

the corresponding credible interval are plotted against δ̂ for a normative sample with k = 5

and n = 25. The range of δ̂ is 0–4 in plot (a) and 0–1 in plot (b).

1. The modification only takes effect when δ̂ is small; when δ̂ is a modest size (or

bigger) the endpoints of the confidence interval are unchanged.

2. The method gives a plausible interval estimate of δ for all values of δ̂.

Consequently the modified method has precisely the characteristics that were sought.

These features are illustrated in Figure 1, where we plot the 95% confidence

interval endpoints and the credible interval lower bounds against δ̂ for k = 5 and

n = 25. Plot (a) in the figure is for values of δ̂ from 0 to 4, giving the broader picture,

while (b) focuses on the important region where δ̂ is small. The latter figure shows

that the upper limit of the confidence interval drops from 0.44 to 0 as δ̂ reduces from

0.3 to 0.19. When δ̂ > 3.02, the confidence interval endpoints (solid lines) are above

the corresponding credible interval lower bounds (dotted lines), so the confidence

interval would only be modified for δ̂ < 3.02, consistent with feature 1. Only the

lower endpoint is changed for 2.05 < δ̂ < 3.02. Hence the modified interval estimate

for δ is given by (i) the two dotted lines in the figures for δ̂ < 2.05, (ii) the lower

dotted line and upper solid line for 2.05 < δ̂ < 3.02, and (iii) the two solid lines for
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3.02 < δ̂. These all seem reasonable interval estimates of δ, consistent with feature 2.

When δ̂ = 0, the modified confidence interval for δ is (0.18, 0.70). As δ measures the

difference between a particular individual’s profile and the mean profile of the control

population, this is decidedly more plausible than the unadjusted confidence interval

of (0, 0).

We will refer to the values of δ̂ at which an endpoint of the confidence interval

and its lower bound are equal as transition values. The following are some other

features of the modification.

3. With the modified method (and also the unmodified method) each endpoint of

the confidence interval is a continuous monotonic increasing function of δ̂. The

modification does not introduce discontinuities at the transition values.

4. The effect of the modification on a confidence interval endpoint is small relative

to the sensitivity of the endpoint to the value of δ̂.

These features of the modified method are illustrated in Table 1 and Figure 2, using

n = 20 and 50 with k = 3 and 10. In the table the effect of the modification is

evaluated at half the transition value and ‘equivalent change in δ̂’ is the amount by

which δ̂ must be increased to have the same effect. For example, for n = 20 and

k = 3, the modified confidence limit at 1.125 (half the transition value) is the same

as the unmodified confidence limit at δ̂ = 1.125 + 0.22. The change of 0.22 in δ̂ is

small, as are the other values for equivalent change in δ̂ in Table 1. Figure 1 shows

more generally that the effect of the modification is small, and it also illustrates

that the modified method gives confidence intervals whose endpoints are continuous

monotonic increasing functions of δ̂.

Two different sets of simulations were conducted to examine the coverage of

confidence intervals formed using the modified and unmodified methods. In the first

set, a value of δ was fixed and 10,000 values were generated from Fk,n−k(nδ
2). Each

generated value was multiplied by k(n − 1)/{n(n − k)} to give 10,000 values of δ̂2

(c.f. equation (3)). From each δ̂ a 95% confidence interval was calculated using both

the modified and unmodified methods and the coverage of the intervals (i.e. the

proportion that contained the true value of δ) was determined. This was done for
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Table 1 Transition values, the effect of the modification on confidence interval

limits, and the increase in δ̂ that would have the same effect.

Lower limit Upper limit

n = 20 n = 50 n = 20 n = 50

k = 3 k = 10 k = 3 k = 10 k = 3 k = 10 k = 3 k = 10

Transition value 2.25 6.31 1.91 4.03 1.41 3.56 1.45 3.13

Effect of modification 0.18 0.74 0.06 0.24 0.10 0.50 0.05 0.19

Equivalent change in δ̂ 0.22 1.53 0.07 0.31 0.09 0.48 0.04 0.17
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Fig. 2. Endpoints of the 95% confidence interval for δ and lower bounds on endpoints of

the corresponding credible interval are plotted against δ̂ for (a) k = 3, n = 20, (b) k = 10,

n = 20, (c) k = 3, n = 50, and (d) k = 10, n = 50.
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Coverage of the confidence interval Coverage of the modified interval

Fig. 3. Coverage of 95% confidence intervals for the modified and unmodified methods,

plotted against the parameter value δ.

k = 3, 10 and n = 20, 50 and 100 different values of δ. Coverage is plotted against δ

for each combination of k and n in Figure 3. It can be seen that coverage is always

equal to 0.95 with the unmodified method, apart from simulation error, consistent

with theory. Coverage with the modified method can be much lower than 0.95 for

small δ, but is close to the nominal level when δ is above 0.75 for k = 3, or above

2.25 for k = 10. To give perspective on these values, only 7.8% of controls have a

value of δ less than 0.75 when k = 3, n = 20, and only 2.1% of controls have δ < 2.25

when k = 10, n = 20. Thus coverage for the modified method is low only when the

mean profile of controls is closer to the profile of the case than to the profile of the

vast majority of controls.
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For the second set of simulations, suppose a new treatment for a medical con-

dition is tested by giving it to one patient with the condition (the case), while the

controls are patients who have the condition but do not receive the new treatment.

If the new treatment has no effect, then the profile of the case is from the same pop-

ulation as the profiles of the controls. The second set of simulations examines this

situation and addresses the question:

“Suppose the case is picked at random from the controls and given a

treatment that has no effect. If δ̂ is the observed Mahalanobis distance of

the case, what is the probability for the modified and unmodified methods

that the 95% confidence interval will contain the true value, δ?”.

For a specified k and n (k = 3 or 10; n = 20 or 50), 500,000 values of δ were

generated from a χ2
k distribution (c.f. equation (1)). For each value of δ, a random

value from Fk,n−k(nδ
2) was multiplied by k(n − 1)/{n(n − k)} so as to obtain a

single random value for δ̂2 (c.f. equation (3)). Based on δ̂, 95% confidence intervals

for δ were formed using the modified and unmodified methods and it was ascertained

whether the true value of δ lay in the intervals. So far, this set of simulations is similar

to the first set. Indeed, if intervals were grouped according to the value of δ (so the

first group of intervals might arise from 0.00 ≤ δ < 0.025, the second group from

0.025 ≤ δ < 0.05, etc.) then a plot of the coverage for each group against the group’s

mid-point value of δ would be the same as Figure 3, apart from simulation variation.

However, for this second set of simulations the results were grouped according to the

value of δ̂. The range of δ̂ in each group was 0.025 for k = 3 and 0.07 for k = 10. The

coverages in the different groups are plotted against δ̂ in Figure 4. (For very small δ̂,

some groups contained very few items; coverages based on samples of fewer than 20

have not been plotted.)

For very small δ̂ the unmodified method gives an unrealistic interval of (0, 0)

and a coverage of 0. Figure 4 indicates that coverage of the method improves quickly

as δ̂ increases. However, its coverage is never better than the coverage of the modified

method, which has excellent coverage for small δ̂. Hence Figure 4 supports the view

that the modified method should be used to form interval estimates unless there are
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Fig. 4. Coverage of 95% confidence intervals for the modified and unmodified methods

when the case is from the same population as the controls, plotted against δ̂.

a priori reasons for expecting the average profile of the controls to be closer to the

case’s profile than to the profiles of most controls.

4. Discussion

We should stress that the method developed in this paper is only appropriate when

the quantity measured by the Mahalanobis distance is the discrepancy between an

individual (the case) and the mean of a control population. In this situation the

lower bounds of endpoints of a Bayesian credible interval can be obtained and these

form principled lower bounds for interval estimates of the Mahalanobis distance. Ma-

halanobis distance is also commonly used as a measure of the distance between two

population means or the distance between a population mean and some hypothesized
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values. In these contexts a confidence interval of (0, 0) may be reasonable since, for

example, two population would have identical population means if the characteristic

that defines the populations has no bearing on the variables of interest. In these same

contexts, a Bayesian analysis might use a prior distribution with a spike (point mass)

of probability at 0 for equality of the population means, when the posterior credible

interval could be (0, 0), which would place no lower bounds on confidence interval

endpoints.

The method developed here enables scientists to consistently report interval

estimates that are sensible. Software implementing it is freely available from

http://users.mct.open.ac.uk/paul.garthwaite. The software may be run over the web

without down-loading it to one’s computer, though the latter is an option.
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Appendix

The prior distribution of λ, ψ∗(λ), is a central chi-square distribution on k degrees of

freedom, so we have that

ψ∗(λ) =
1

Γ(k/2) 2k/2
λk/2−1 exp(−λ/2), λ ≥ 0.

Since [n(n− k)/{(n− 1)k}]λ̂ has a non-central F distribution on k and n− k degrees

of freedom with non-centrality parameter nλ, the likelihood for λ, say L(λ; λ̂), is

L(λ; λ̂) =
∞∑
r=0

(nλ/2)r exp(−nλ/2)
B[(n− k)/2, k/2 + r] r!

mk/2+r

(
1

1 +mλ̂

)n/2+r

λ̂k/2+r−1, λ ≥ 0,

where m = n/(n − 1) and B[ . , . ] is the beta function. Multiplying the prior distri-

bution by the likelihood, we obtain the posterior distribution of λ as

ψ∗(λ|λ̂) =1

c

∞∑
r=0

(nr/2) (λ/2)k/2+r−1 exp[−(n+ 1)λ/2]

B[(n− k)/2, k/2 + r] Γ(k/2) r!
×

mk/2+r

(
1

1 +mλ̂

)n/2+r

λ̂k/2+r−1, λ ≥ 0, (9)
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where the normalizing constant, c, is obtained through numerical integration of (9)

over 0 < λ <∞.

To compute the value of c, we use the Romberg’s numerical integration method

as a generalization of Simpson’s and the trapezoidal quadrature rules (Press, 1989,

p. 129). We divide the integration domain into two integrals over 0 < λ < λ̂ and

λ̂ < λ < ∞. A change of variables is applied to map the infinite range of the

second improper integral to a finite one by inverting the integration boundaries. The

qth quantile, λq, of the posterior distribution, ψ∗(λ|λ̂), are then computed through

a simple search procedure. Starting from λ̂ as an initial value, we search in both

directions for the quantile λq such that |
∫ λq

λ=0
ψ∗(λ|λ̂)dλ− q| < 10−6.
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