

Open Research Online

The Open University's repository of research publications and other research outputs

Managing Conflicting Resource-based Requirements in Systems of Systems

Conference or Workshop Item

How to cite:

Viana, Thiago; Zisman, Andrea and Bandara, Arosha (2017). Managing Conflicting Resource-based Requirements in Systems of Systems. In: 6th Asian Workshop of Advanced Software Engineering (AWASE2017), 4-8 May 2017, Chongqing, China.

For guidance on citations see FAQs.

© [not recorded]

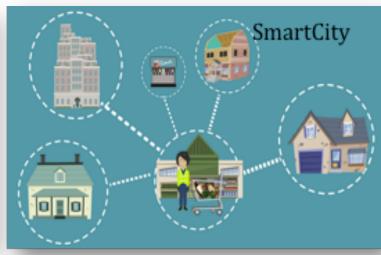
Version: Version of Record

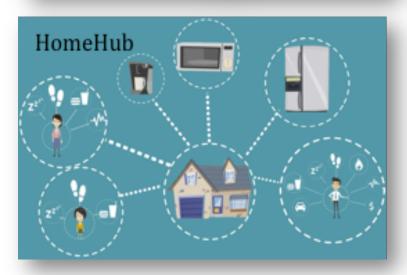
Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.

oro.open.ac.uk

Managing Conflicting Resourcebased Requirements in Systems of Systems

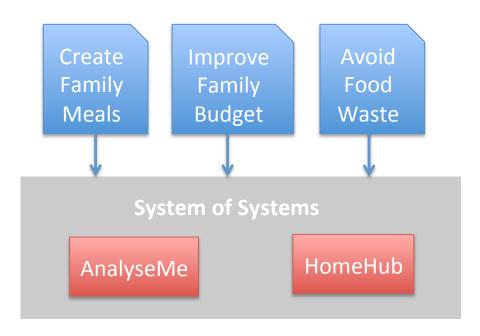
Thiago Viana, Andrea Zisman and Arosha Bandara


School of Computing & Communications


Adaptive Security and Privacy (ASAP) research programme

The Open University

Example of an SoS Feed Me Feed Me (Bennaceur *et al*, 2016)



Feed Me Feed Me - FmFm

New System, Same Old Problem...

 Conflicting requirements - a common problem present in all types of systems.

 Conflicts will arise within each component system and also across the SoS as a whole due to unexpected interactions.

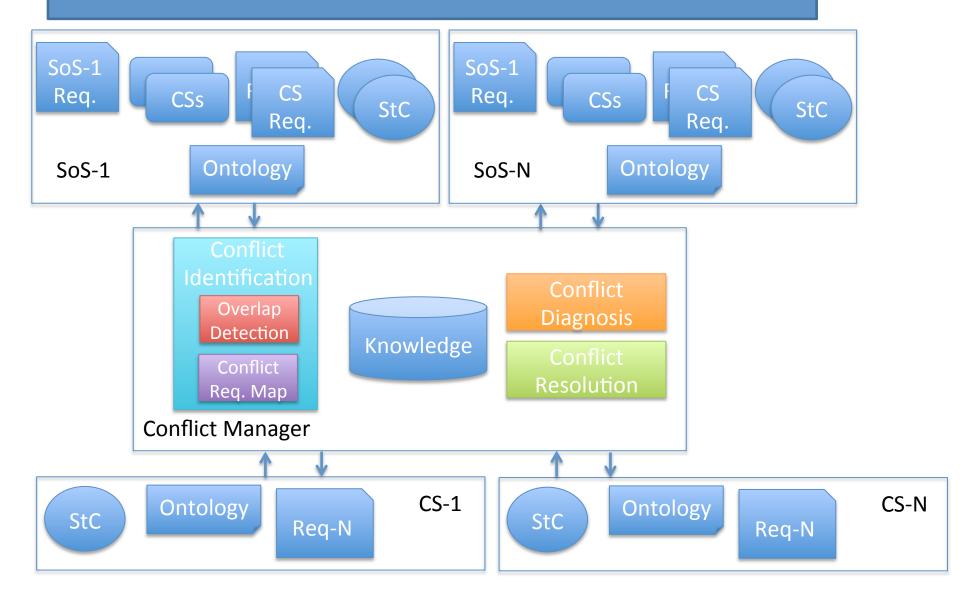
Resource-based Conflicting Requirements

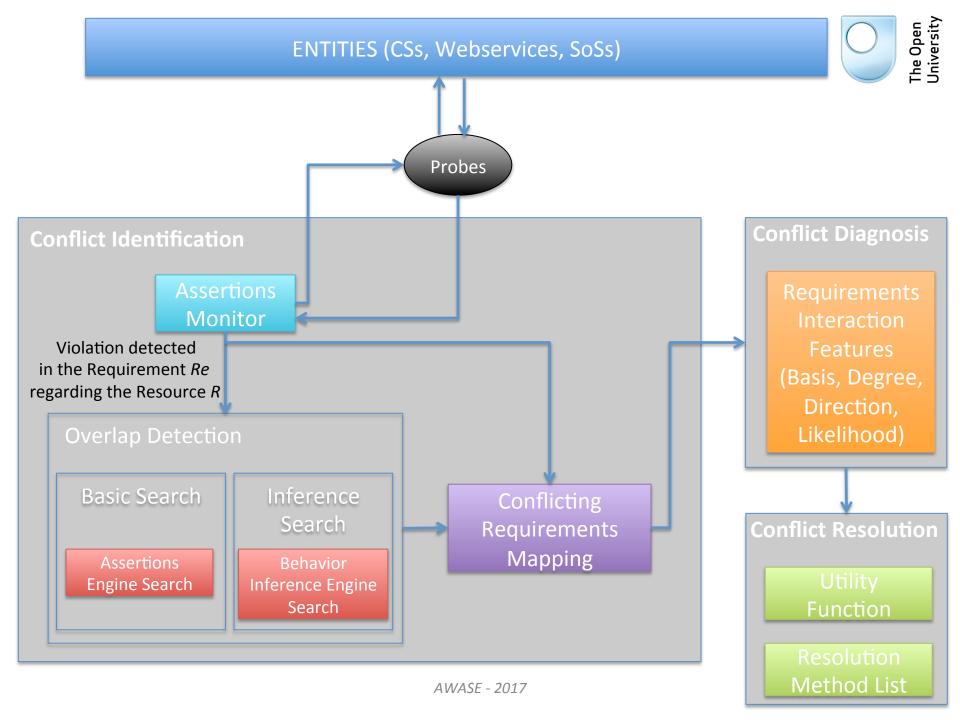
Resources

- Calories;
- Insulin;
- Food;
- Electricity;
- Budget.

Focus on Requirements Satisfaction

Relaxing requirements to manage conflicts.




Requirements Description: Structured RELAX

 AM_R5 - AnalyseMe SHALL suggest a <meal plan> with <total calories> AS CLOSE AS POSSIBLE TO <ideal calories level> AND <total insulin> AS CLOSE AS POSSIBLE TO <ideal insulin>.

Framework Overview

Assertions Monitor

- RELAX Grammar Expression:
 - SHALL (AS EARLY AS POSSIBLE AFTER q p)
 - q is (AS CLOSE AS POSSIBLE TO a b)
 - a is 20% x <total home food resource>
 - b is <food resource>
 - p is prevent food consumption>
- Formal FBTL expression:
 - -AGX>qp
 - $-q = AF(\Delta(b) a \subseteq S)$

Overlap Detection

Assertions Engine Search

- The assertions related to the same resource have overlapping elements, they might be:
 - Complementary (Disjoint), Mutually Exclusive, Subset,
 Cooperative, Opposite and Irrelevant;

Behavior Inference Search

 Inferences over the statechart and the RELAX requirement using ontology matching functions.

The Open University

Conflicting Requirements Mapping

- The requirement related to the violated assertion;
 - HH_R2
 - As an example, consider requirement HH_R2 with the actual value for <food resource> as 16 and that 20% of <total home food resource> is 20.
- The requirements related with the overlapped assertions;
 - AM_R5;
 - Inference search:
 - AnalyseMe <meal plan> contains elements that indicates the consumption of <food resource>.

Conflict Diagnosis

- Basis feature is the food resource, the HomeHub and the AnalyseMe system and the list of the identified conflicting requirements;
- Degree feature represents the requirement satisfaction level
 - Food resource should be >=20, however it is 16.
- Direction feature is positive (the food resource usage is higher than the expected);
- Likelihood feature is based on historical data of past conflict resolution associated with the involved requirements.

Conflict Resolution

Configurable Utility Function considering:

- Global X Local
 - Priorities
- Requirement Satisfaction Degree
- Resource Usage
 - Individual and/or Overall

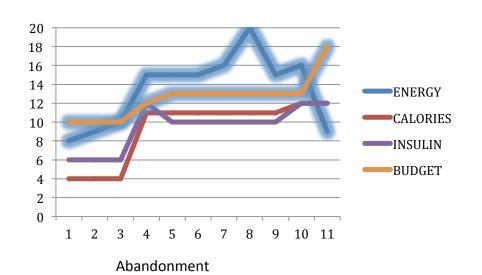
Resolution Method List (Robinson <i>et al.,</i> 2003)	
Relaxation	
Refinement	
Abandonment	
Compromise	
Postponement	
Restructuring	
Reenforcement	
Replanning	
Helping Hand	
Sacrifice	

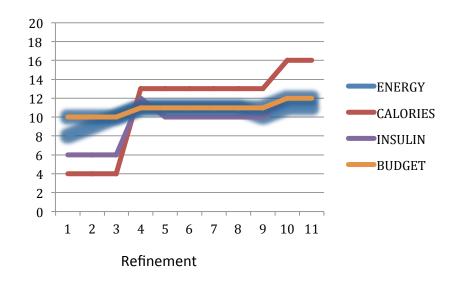
Conflict Resolution

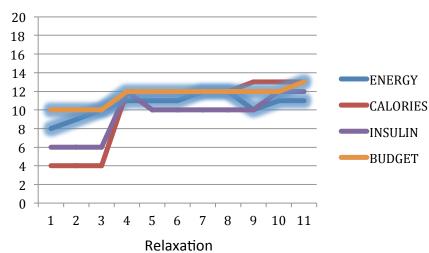
Considering the example:

- **1. Relaxation** over the food resource limit level from 20% to 15%;
- 2. Replanning using an alternative goal of AnalyseMe and generate a Meal Plan to consume less from food resource;
- 3. **Helping Hand** using a smart city level component and invoking a shopping list from a supermarket to increase the food level;

Resolution Method List (Robinson <i>et al.,</i> 2003)
Relaxation
Refinement
Abandonment
Compromise
Postponement
Restructuring
Reenforcement
Replanning
Helping Hand
Sacrifice




Initial Evaluation


- Exploring the effect of different conflict resolution methods on the utilization of the resources managed by the SoS.
 - Two Simulated Scenarios of FmFm;
 - Use of 3 Resolution Methods:
 - Abandonment;
 - Relaxation;
 - Refinement.

Initial Evaluation

Future Work

- Investigate and implement the diagnosis and resolution steps (e.g.: expand the utility function);
- Full implementation of the framework;
- Evaluation of the framework using realistic domains/case studies;

Thank you.

Thiago Viana, Andrea Zisman and Arosha Bandara

Faculty of Science, Technology, Engineering and Mathematics
School of Computing & Communications
Adaptive Security and Privacy (ASAP) research programme