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Abstract 27 

Caribbean D. antillarum populations crashed following a mass-mortality event in 28 

1983-4 with cascading effects on reef health. Population restoration efforts may be hampered 29 

by unknown effects of short and long-term elevated sea surface temperature (SST). We 30 

investigated how a key behavioural trait, predator avoidance behaviour (PAB; percentage of 31 

long defensive spines that moved in response to shadow stimuli), was affected by elevated 32 

SST in 180 individuals from two contrasting Honduran reefs; Utila (flattened reef structure, 33 

dearth of predation refugia), and Banco Capiro (complex reef structure, abundant refugia). 34 

Initiation of PAB is mediated by melanin, which breaks down at elevated water temperatures, 35 

so, as SST rises, D. antillarum may become vulnerable to predation. We compared local 36 

current SST (CSST; 29.7C) with two IPCC predicted long-term climate change scenarios 37 

under laboratory conditions. PAB decreased by 13.98-15.37% at CSST +1.4C and 31.67-38 

42.44% at CSST +3.1C. Trial temperatures were similar to maxima recorded in the 39 

Caribbean during the 2016 El Niño, therefore our results also represent likely responses to 40 

worst-case short-term acute temperature anomalies. Juveniles maintained higher PAB than 41 

adults, indicating increased reliance on anti-predation behaviours. White phenotypes from 42 

Utila’s flattened reef maintained higher PAB than black counterparts, likely due to increased 43 

conspicuousness to visual predators. Habitat complexity may mitigate temperature-driven 44 

losses in natural behavioural defences. D. antillarum may be resilient to near-term (<2039) 45 

SST increases and periodic temperature stresses but may struggle under long-term, worst-46 

case scenario conditions. Restoration of D. antillarum populations must be coupled to 47 

augmented reef complexity to improve future resilience.  48 



Introduction 49 

As architects of tropical reef ecosystems (Aronson and Precht 2001; Alvarez-Filip et 50 

al. 2009), much global attention is given to the impacts of elevated temperatures in driving 51 

the breakdown of symbiosis between scleractinian coral hosts and their photosynthetic 52 

zooxanthellae (Hoegh-Guldberg 1999; Kramer and Kramer 2000; Aronson et al. 2002; 53 

Sheppard 2003; Donner et al. 2005; De’ath et al. 2009; Cantin et al. 2010). However, acute 54 

and long-term temperature increases will also interact with other factors, such as habitat 55 

degradation, to affect other reef taxa (Przeslawski et al. 2008), and these effects remain 56 

largely unstudied.  57 

Diadema antillarum, the long-spined sea urchin, is an important coral reef herbivore 58 

whose prolific grazing ability is essential for the maintenance of scleractinian coral 59 

domination throughout the Caribbean (Carpenter 1984; Liddell and Ohlhorst 1986; Macia et 60 

al. 2007). Between 1983 and 1984 a disease epidemic reduced populations by 95-100% (from 61 

1.06-14.38m-2 to <0.01m-2) across the 3.5 million km2 area of the Caribbean (Bak 1984; 62 

Lessios et al. 1984a; Lessios et al. 1984b; Hughes et al. 1985; Lessios 1988ab; Levitan 1988; 63 

Carpenter 1990; Betchel 2006), and populations remain significantly depressed across the 64 

region to this day (Chiappone et al. 2002; Edmunds and Carpenter 2001; Weil et al. 2005; 65 

Debrot and Nagelkerken 2006; Bologna et al. 2012; Bodmer et al. 2015). This mass-mortality 66 

event is closely associated with macroalgal phase shifts and subsequent habitat flattening 67 

(Alvarez-Filip et al. 2009; Roff and Mumby 2012), which has decreased the availability of 68 

refugia (Alvarez-Filip et al. 2009) and potentially left D. antillarum vulnerable to predation. 69 

Models produced by Mumby et al. (2006) predict that D. antillarum population densities 70 

>1m-2 are required for the maintenance of reef health throughout the Caribbean, therefore, 71 

augmentation of their populations, possibly through the deployment of artificial reef 72 

structures to replace lost habitat complexity, is a conservation priority throughout the region.  73 



Under natural conditions, it is likely that D. antillarum is afforded a degree of 74 

environmental protection from predation by the complex structure of the reef (Ogden et al. 75 

1973). However, individuals living on flattened contemporary Caribbean reefs with low 76 

percent cover of hard coral are likely to be more heavily reliant on direct predator avoidance 77 

behaviours; a role fulfilled by movement of their longest spines which have defensive barbs 78 

directed towards the distal end (Randall et al. 1964). Here, D. antillarum predator avoidance 79 

behaviour (PAB) is defined as the percentage of long predatory spines that move in response 80 

to a shadow stimulus. Decreases in light intensity, indicating the potential presence of a 81 

predator, evoke an excitatory response in the spines, making the individual hard to capture 82 

(Millott and Yoshida 1960a). However, PAB has an energetic cost and should be reduced in 83 

the absence of a predation threat (Millott and Yoshida 1960b), therefore increases in light 84 

intensity have an inhibitory effect on spine movement (Millott and Yoshida 1960a).  85 

The underlying physiological mechanism for this behaviour is well understood: a 86 

layer of melanin-containing photosensitive melanophores, which give D. antillarum its 87 

characteristic black colouration, surrounds the test and enables changes in the light 88 

environment to be detected (Millott 1954; Millott and Yoshida 1959). This photic response is 89 

a direct result of interactions between light and the melanophore, as light stimuli cause 90 

expansion of the melanosomes, which in turn induces a nervous signal controlling spine 91 

movement (Yoshida 1956). However, melanin loses its structure at high temperature (Millott 92 

and Jacobson 1952; Sawhney 1994), suggesting elevated sea surface temperatures (SSTs) 93 

may cause a breakdown in these essential anti-predator light-detecting mechanisms. 94 

Significant increases in SST are expected to occur on a decadal timescale and may 95 

reach values >3.5C higher than current averages by 2100 (Collins et al. 2013). Additionally, 96 

the often catastrophic thermal anomalies of El Niño Southern Oscillation (ENSO) are also 97 

predicted to become biennial events of increasing severity by 2050 (Donner et al. 2005). 98 



With a lifespan of up to 8 years (Randall et al. 1964), D. antillarum has relatively long 99 

generation times, and their capacity to adapt to both long-term gradual, and short-term acute, 100 

SST increases is likely to be limited. However, there is well documented phenotypic 101 

plasticity associated with D. antillarum melanin production (Millott 1954), and numerous 102 

ecological factors, such as wave exposure and water clarity, have been found to alter melanin 103 

distribution and concentration within an individual’s test and spines (Kristensen 1964). This 104 

phenotypic plasticity may afford individuals with a degree of resilience to rising SST via 105 

upregulation of melanin to counter breakdown associated with thermal stress. 106 

We use laboratory manipulations on natural populations to investigate how D. 107 

antillarum PAB is affected by increases in water temperature, and how this subsequently 108 

interacts with habitat and phenotype. We compare two separate populations from contrasting 109 

reef systems, representing both structurally complex and structurally simple ‘flattened’ 110 

habitat types, in order to address whether habitat complexity influences PAB. Given that D. 111 

antillarum colouration and light-detecting mechanisms are both controlled by phenotypically 112 

plastic melanin regulation, we also explore whether PAB varies between phenotype (black- 113 

and white-spined) and life-history stage (juvenile or adult) in relation to the individual’s site 114 

of origin. White-spined individuals are defined as adult urchins whose complete complement 115 

of predatory defence spines are white in colouration. Theoretically, restoration of D. 116 

antillarum is an obvious conservation target, however, to date, no studies have investigated 117 

how they will respond to predicted environmental change. The results of this study will allow 118 

conservation managers to gain better understanding of the interactions between PAB and 119 

temperature, and make decisions on population restoration initiatives based on their future 120 

survival potential. 121 

  122 



Materials and Methods 123 

Study sites 124 

Data were collected on the Honduran island of Utila and nearby mainland reef system 125 

of Banco Capiro located within Tela Bay (fig 1). Full details of study sites can be found in 126 

Bodmer et al 2015. Banco Capiro (fig 2) has a mean scleractinian coral cover of 62%, which 127 

creates a structurally complex habitat that supports one of the highest contemporary D. 128 

antillarum population densities ever recorded. Utila (fig 3), by contrast, is a typical 129 

‘flattened’ Caribbean reef system with low percentage scleractinian coral cover (15-20%) and 130 

consequently structural complexity is 25% less than at Banco Capiro (Bodmer et al 2015). 131 

Crucially, the abundance of key D. antillarum predators is similar between these two sites 132 

(Bodmer et al. 2015). 133 

 134 

Future climate change predictions 135 

The Intergovernmental Panel on Climate Change (IPCC) has recently described four 136 

new climate change scenarios, known as Representative Concentration Pathways (RCPs). 137 

Each RCP uses a different value of radiative forcing, dictated by the specific greenhouse gas 138 

(GHG) accumulation scenario being modelled, to predict the climatic changes that might 139 

occur by 2100 (Arora et al. 2011). Radiative forcing is measured in Wm-2 and is determined 140 

by the proportion of solar insolation that is trapped in the atmosphere relative to the energy 141 

radiated back into space and is, therefore, influenced by rates of GHG emission and 142 

accumulation (Van Vuuren et al. 2011). The four Representative Concentration Pathways 143 

(RCPs) are modelled on assumptions of socio-economic activity that are used to predict the 144 



extent of GHG accumulation in 2100, and they have been designed to represent a range of 145 

possible future climate change scenarios (table 1). 146 

 147 

Specimen collection and acclimatisation 148 

Trials were run between March and August 2015. 30 individuals in each of three 149 

categories (black-spined adult, white-spined adult, juvenile; Fig 4) were collected from each 150 

site giving a total sample size of 180 urchins over the six-month sampling period. Juveniles 151 

were identified by their distinctive black and white banded spines, and their possession of a 152 

test diameter <20mm (Randall et al. 1964). Four D. antillarum individuals were collected 153 

each day by a combination of snorkelling and SCUBA, and trials conducted on the same day. 154 

All individuals were returned alive to the reef within 24 hours of collection. 155 

Pseudoreplication was avoided by collecting from a different sub-site each day. When 156 

removing individuals from the reef, care was taken to ensure that minimal damage was 157 

caused to the spines and test. Once an individual was located, a 50cm length of PVC pipe 158 

(outside diameter = 2.6cm) was used to coerce them into the open. The PVC pipe was then 159 

used to lift the individual off the reef and into a container for safe storage. 160 

On returning to the laboratory, individuals were placed in to a 200L plastic holding 161 

tank where they were allowed to acclimatise for a minimum of 8 hours before trials were 162 

conducted. This short acclimatisation period was chosen to minimise stress and maximise 163 

survivorship to reduce adverse effects on populations of this key reef herbivore. Thus our 164 

trials tested the shock responses of D. antillarum to increased water temperature, and did not 165 

account for the possibility of potential short or long-term adaptation/phenotypic plasticity and 166 

our results must be interpreted in that light.  167 

 168 



Experimental setup and climate change scenarios 169 

Experimental manipulations were conducted in three transparent 64L plastic trial 170 

tanks. All tanks underwent 100% water changes daily with fresh seawater collected from the 171 

specimen collection sites. Aquarium filters (Eheim Pick Up) were installed in the holding 172 

tanks to maintain water quality overnight, but were not included in trial tanks due to the short 173 

time urchins were housed within them, and to ensure no external stimuli were present which 174 

may have influenced urchin responses. Aquarium heaters (Aquael Easy Submersible 175 

Aquarium Heater 150w) and digital thermometers (Aqua One ST-3 Electronic Thermometer) 176 

were used to achieve and maintain the required water temperature in each trial tank. 177 

Trial temperatures were based on recently described climate change scenarios from 178 

the Intergovernmental Panel on Climate Change (IPCC). They described four new scenarios, 179 

(Representative Concentration Pathways, RCPs), to predict the climatic changes that might 180 

occur by 2100 (Arora et al. 2011). Table 1 outlines the four RCPs, which range from a best-181 

case scenario (RCP 2.6) to a worst-case scenario (RCP 8.5). SST increases are subsequently 182 

expected to range from 1°C (under RCP 2.6) to >3°C (under RCP 8.5) (Collins et al. 2013). 183 

We used predicted SST increases for the Caribbean Sea/Gulf of Mexico under each 184 

RCP (Table 1; Hoegh-Guldberg et al. 2014), with one trial tank maintained as a control at 185 

29.7°C; the current annual mean peak SST (CSST) recorded off the Caribbean coast of 186 

Honduras (http://www.seatemperature.org). Experimental temperatures were then calculated 187 

by adding predicted SST increases to this CSST. The second trial tank was used to represent 188 

an intermediate/stabilising pathway (RCP 4.5; 31.1°C), while the final tank was used to 189 

represent a worst case pathway (RCP 8.5; 32.8°C). 190 

Having access to D. antillarum from both Utila and Banco Capiro also enabled us to 191 

evaluate whether the effects of rising SST are likely to be universal, or affected by the 192 

structural complexity of the population’s site of origin. It is possible that temperature and site 193 

http://www.seatemperature.org/


interact to affect PAB, which has major implications for D. antillarum restoration initiatives 194 

aiming to provide artificial reef structure to stimulate recovery. 195 

 196 

Trial protocol 197 

Trials were conducted at night in a laboratory setting under artificial lighting 198 

maintained at an intensity of ca. 20 lm. The phenotype of each individual urchin was 199 

recorded and the total number of long defensive spines counted, along with individual weight 200 

(to the nearest mg) and test diameter (to the nearest mm) using long-jaw callipers. These 201 

measurements were recorded immediately after collection before individuals were placed in 202 

the holding tank to avoid inducing stress immediately prior to the trials. The predation 203 

avoidance behaviour (PAB) of each individual was then tested under each temperature 204 

scenario. Individuals were acclimated to each temperature for at least 30 mins before trials 205 

began, or until they had settled in a corner of the tank for a period of at least 10 minutes. This 206 

was done to ensure that urchins were adjusted to the heat shock and were therefore 207 

responding to the shadow stimulus and not the change in temperature.  208 

At the start of each trial a GoPro Hero 3 underwater video camera was placed in the 209 

trial tank facing the urchin and set to record for the duration of the trial. Urchins were 210 

initially exposed to ambient light conditions for 30s. A shadow was then created over the 211 

urchin using an opaque wooden board to simulate the presence of a predator, and maintained 212 

for 30s before returning the urchin to ambient light.  This was repeated three times for each 213 

urchin under each temperature scenario. The order in which individuals were exposed to the 214 

different temperature treatments was randomised ahead of each trial.  215 

 216 

Quantifying predator avoidance behaviour (PAB) 217 



Predator avoidance behaviour (PAB) was defined here as the percentage of an 218 

individual’s total spines that move in response to a shadow stimulus, and quantified visually. 219 

Test diameter was measured in order to account for any confounding effect of body size on 220 

PAB. Only the movements of the longest spines were counted because the main function of 221 

these is known to be predatory defence whereas the shorter spines are used predominantly for 222 

feeding and locomotion (Randall et al. 1964).  223 

Prior to their analysis, all 540 videos were renamed using RandomNames software. 224 

The video analyst was therefore unaware of the site of origin and climate change scenario of 225 

the urchin they were processing, thus removing any potential observer bias from the data. 226 

Video recordings were replayed in slow motion allowing accurate counts of the number of 227 

long defensive spines that moved in response to the shadow stimulus. The PAB for each 228 

simulated ‘attack’ was calculated and the means of these PAB values were used for statistical 229 

analysis.  230 

 231 

Statistical Methods 232 

PAB data were normally distributed and its relationships with climate change 233 

scenario, site and phenotype were analysed using a three-way repeated measures ANOVA 234 

with urchin number nested within climate change scenario. PAB was the continuous 235 

dependent variable, site and phenotype were nominal, fixed-effect between subject variables, 236 

and climate change scenario was a nominal, fixed-effect within subject variable.  237 

We investigated the relationship between D. antillarum body size (test diameter) and 238 

PAB in order to control for this as a confounding variable, since smaller individuals are more 239 

vulnerable to predation, and predation threats are generally considered more relevant to 240 

juveniles than adults (Clemente et al. 2007; Jennings and Hunt 2010). All data were analysed 241 

using R. 242 



 243 

Results 244 

Establishing a baseline PAB 245 

The mean PAB of black-spined adult urchins at CSST on Banco Capiro (17.39 ±0.68%) is 246 

used as a baseline for comparisons of different combinations of climate change scenario 247 

(CSST, RCP 4.5, or RCP 8.5), site (Utila, or Banco Capiro), and phenotype (black, or white). 248 

This is because black individuals on Banco Capiro are living in conditions that are most 249 

similar to those under which D. antillarum existed prior to the mass-mortality event, i.e. they 250 

are the most common phenotype, living within a dense population (>2m-2) on a reef system 251 

with a high percentage cover of hard coral (>60%). There is debate in the literature about the 252 

population densities under which D. antillarum evolved, and their relative importance as 253 

macroalgal herbivores over evolutionary timescales has been called into question (Jackson 254 

and Kaufmann 1987). However, countless studies conducted throughout the 20th century 255 

clearly document high D. antillarum population densities, and demonstrate the importance of 256 

this species for maintaining reef health on the overharvested Caribbean coral reefs of the 257 

Anthropocene. 258 

Effects of temperature, site and phenotype on PAB 259 

There was a significant negative relationship between PAB and urchin test diameter 260 

for juveniles (F1 = 4.993, p = 0.027) but not for adults (F1 = 1.808, p = 0.18) (Fig 5); 261 

therefore, all subsequent analyses dealt with these two groups separately. Juvenile analysis 262 

included test diameter as an independent variable while the analysis of adults did not. 263 

Increasing water temperature caused a decline in PAB in both age categories of 264 

urchins (Fig 6; Juveniles F2 = 4.86, p = 0.0091; Adults F2 = 15.37, p = 3.9 x 10-7) and 265 



juvenile urchins had higher PAB than adults in all temperatures. Mean juvenile PAB declined 266 

from 24.54% (SE = 1.28) at CSST to 21.1% (SE = 1.45) under RCP 4.5 and 15.19% (SE = 267 

1.22) under RCP 8.5. Repeated measures ANOVA revealed that there was no difference in 268 

PAB of juveniles between sites overall (F1 = 0.303, p = 0.58) but the data for RCP 8.5 269 

suggested lower PAB at Utila than Banco Capiro (Fig 6). Black-spined adult PAB declined 270 

similarly to juveniles from 17.66% (SE = 0.76) at CSST to 15.09% (SE = 0.9) at RCP 4.5 to 271 

10.80% (SE = 0.87) at RCP 8.5. The percentage declines in PAB from CSST to RCP 8.5 272 

were proportionately similar: 38.1% for juveniles and 38.8% for black-spined adults. 273 

Interestingly, PAB of juveniles under RCP 4.5 was still 21.33% higher than that of black-274 

spined adults under CSST. 275 

There was no evidence of between-site differences in PAB or its response to 276 

temperature for black-spined adult urchins but the pattern differed for white-spined adults, 277 

reflected by a significant interaction between phenotype and site (F1 = 8.96, p = 0.003). 278 

White urchins from Banco Capiro (14.35 ±0.58%) displayed lower PAB than those from 279 

Utila (19.50 ±1.34%), and mean white urchin PAB on Banco Capiro (14.35 ±0.58%) was 280 

lower than that of their black counterparts (17.39 ±0.68%). However, the inverse was true on 281 

Utila where mean white-spined adult D. antillarum PAB (19.50 ±1.34%) was higher than that 282 

of the black population (17.93 ±0.84%). However, these differences were less apparent at 283 

RCP 8.5 (Fig 6). At CSST mean PAB of white-spined adults on Utila (19.50%, SE = 1.34) 284 

was almost 36% higher than those on Banco Capiro (14.35%, SE = 0.58). This difference 285 

was maintained at RCP 4.5 (15.49%, SE = 0.91, and 11.20%, SE = 0.47 respectively) but was 286 

roughly halved at RCP 8.5 (11.44%, SE = 0.92, and 9.70%, SE = 0.49). See table 2 for 287 

complete breakdown of results. 288 

 289 



Discussion 290 

Demographic influences on PAB 291 

At CSST, mean juvenile PAB is 41.12% greater than black-spined adults on Banco 292 

Capiro, and the higher PAB value is maintained even under moderate thermal stress (RCP 293 

4.5). This is not surprising, as juvenile test diameters are typically smaller than the 40mm 294 

predator escape threshold above which vulnerability is believed to decrease (Clemente et al. 295 

2007; Jennings and Hunt 2010). The need for juveniles to maintain high PAB, even under 296 

physiological stress, is far greater than for their adult counterparts. This is supported by the 297 

negative relationship observed between juvenile body size and PAB magnitude; larger 298 

juveniles can partially relax PAB in favour of the energetic benefits associated with reduced 299 

spine movement (Millott and Yoshida 1960b). However, juveniles living within the complex 300 

structure of Banco Capiro still maintain similar PAB to those on the flattened reefs of Utila, 301 

despite potentially being able to gain energetic benefits from reducing PAB on a reef that 302 

provides individuals with environmental protection. The risk of death under any given attack 303 

is much higher for juveniles than adults, and thus the energetic benefits of reducing PAB on 304 

Banco Capiro are likely to be outweighed by the ultimate price of failing to respond to a 305 

potential predation threat.  306 

On Banco Capiro, white-spined adult D. antillarum individuals have a significantly 307 

lower PAB than black-spined adults. One possible explanation relates to the developmental 308 

and environmental processes driving these phenotypic differences. Experimental 309 

manipulations have shown that adult D. antillarum will develop white spines if reared in low-310 

light environments, while also favouring shaded areas of reef during adulthood (Kristensen 311 

1964; Growns 1989). Due to reduced energy content in algae growing on shaded compared to 312 

light-exposed reef areas (Carpenter 1985; McCook et al. 2001), white-spined adult sea 313 



urchins are likely to be nutrient-limited and may therefore be unable to invest in 314 

metabolically expensive melanin production. Whilst white-spined adults appear to be less 315 

sensitive to predation stimuli, their overall vulnerability may be unaffected by this decreased 316 

PAB ability because they favour shaded, and presumably more complex, habitats. 317 

Conversely, juveniles develop black spines when reared in high-light environments 318 

(Kristensen 1964), typically when individuals settle on more exposed areas rather than within 319 

the complex coral framework. It is therefore likely that black-spined adult D. antillarum are 320 

grazing algae from light exposed reefs that have greater energy availability per unit area 321 

(Ogden and Lobel 1978) than their white-spined counterparts. Black-spined individuals may 322 

therefore be able to invest more heavily in melanin production. This investment in their light-323 

detecting sensory systems is further justified in black-spined adults because their more 324 

exposed lifestyle leaves them vulnerable to predation. 325 

For black-spined adults and juveniles the magnitude of PAB does not differ between 326 

sites, but for white-spined adults PAB is significantly greater on Utila. Unlike on Banco 327 

Capiro, white urchins on Utila are living in a flattened habitat and therefore lack abundant 328 

predation refugia. The major fish predators of D. antillarum (Ballistidae, Haemulidae and 329 

Labridae) all possess typical vertebrate visual systems comprised of image-forming eyes 330 

(Lamb et al. 2007), which rely, at least partially, on contrast for prey detection (Schuster et al. 331 

2011). Against the darker backdrop of the reef, white individuals are likely to be more 332 

conspicuous to predators in a habitat where they are less able to hide. Therefore, while black 333 

individuals on Utila are less conspicuous to predation, and both adult phenotypes on Banco 334 

Capiro are afforded environmental protection by the reef structure, white-spined adults on 335 

Utila must invest more heavily in the maintenance of their innate behavioural PAB.  336 

 337 



Elevated SSTs and their implications for restoration 338 

Across all combinations of site and phenotype, mean D. antillarum PAB was 339 

negatively affected by increases in water temperature, with the greatest reductions under the 340 

most extreme temperature trials (RCP 8.5). This suggests that D. antillarum is likely to 341 

become increasingly vulnerable to predation as climate change progresses, especially if 342 

‘worst case’ temperature models arise. Subsequent increased predation vulnerability will 343 

further hinder population recovery from the 1983-84 mass mortality event, and potentially 344 

hamper current conservation initiatives as seas warm. We find that, under RCP 8.5 345 

conditions, D. antillarum PAB will be reduced by between 32.44% and 41.33% relative to 346 

CSST. However, it is generally accepted that RCP 4.5 is a much more likely future 347 

temperature scenario (Masui et al. 2011; Thomson et al. 2011). According to our results, 348 

under RCP 4.5, smaller PAB decreases of between 14.55% and 21.95% will be seen; 349 

although this still represents a significant loss of anti-predation capability in such a threatened 350 

species.  351 

Unfortunately, our results indicate that juvenile urchins will be similarly affected by 352 

rising SST as black-spined adults. Given that juveniles are more vulnerable to predation due 353 

to their small size below the predation threshold (Clemente et al. 2007; Jennings and Hunt 354 

2010), it is likely that this decrease in PAB will translate into elevated mortality rates among 355 

younger cohorts. Previous research has already identified maturation as the key life history 356 

bottleneck to D. antillarum recovery (Williams et al. 2010 & 2011; Bodmer et al. 2015), 357 

meaning any further reduction in juvenile survival will ultimately drive Allee effects and 358 

eventual extinction. However, it is important to remember that this study has tested responses 359 

to sudden and acute thermal stress, using similar approaches to much other ecophysiology 360 

research, e.g. Eme and Bennett (2009), Eme et al. (2001) and Dabruzzi et al. (2012), and thus 361 

our results do not account for phenotypic plasticity associated with the D. antillarum 362 



melanin-regulatory system (Millott 1954). This may serve to mitigate the negative effects of 363 

rising SST on PAB, meaning this study represents a worst-case scenario and not the end of 364 

the road for conservation efforts throughout the Caribbean.  365 

It is also important to consider the temporal scale over which ocean warming will 366 

actually occur. We show that under the long-term water temperatures predicted by RCP 4.5 367 

(CSST +1.43°C), D. antillarum will likely be partially resilient with respect to the detection 368 

of, and reaction to, predators. With long-term temperature increases under RCP 4.5 greater 369 

than short-term increases under RCP 8.5 (CSST +0.83°C), we can assume that D. antillarum 370 

will be resilient to near-term SST increases across the severity range. This suggests that, at 371 

least until 2039, incremental ocean warming is unlikely to negatively impact the success of 372 

D. antillarum restoration initiatives. 373 

However, increases in the frequency and severity of El Niño anomalies means that 374 

long-term warming is not the only thermal threat to be faced. In winter 2016, average 375 

Caribbean SST was 0.5-1.5C higher than the 1981-2010 average (NOAA). Fortunately, our 376 

focus on acute temperature increases, similar to those experienced during El Niño, indicate 377 

that D. antillarum will be able to maintain PAB provided that sudden increases do not exceed 378 

~3C. In general, the severity of El Niño in the Caribbean is less than other global coral reef 379 

hotspots, and this ~3C threshold falls outside the temperature anomalies previously 380 

experienced in the region (NOAA). 381 

It has been suggested that D. antillarum conservation efforts should focus on 382 

reintroduction coupled with artificially augmented structural complexity (Bodmer et al. 383 

2015). Our results suggest that conservation interventions seeking to increase structural 384 

complexity will reduce the reliance of D. antillarum on innate behavioural PAB, and increase 385 

survivorship even in the face of worst-case scenario increases in SST. In essence, structural 386 



complexity may provide a buffer against the increased threat of predation caused by reduced 387 

PAB via melanin breakdown. Stakeholders can use this information to make informed 388 

decisions about strategies to increase the health of Caribbean coral reef ecosystems by 389 

focusing on this important species. This is in line with the IPCC’s goal of “working with 390 

scenarios…in order to consider how robust decisions or options may be under a wide range 391 

of possible futures” (Moss et al. 2010). Our results indicate that, if D. antillarum is going to 392 

recover and aid the reversal of ubiquitous macroalgal phase-shifts, they require urgent 393 

conservation attention to be buffered from climate change induced thermal stressors. 394 
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Table 1. Data extracted from table SM30-4, section 7 “Coral Reef Provinces”, row 1 558 

“Caribbean Sea/Gulf of Mexico” (Hoegh-Guldberg et al. 2014).  559 
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Climate Change 

Scenario 

Predicted near-

term (2010-2039) 

increases in SST 

(°C) 

Predicted long-

term (2010-2099) 

increases in SST 

(°C) 

Pattern of radiative forcing value 

increase 

Likelihood of occurrence 

RCP 2.6 (best-case) 0.48 0.68  Mid-century peak at 3.1Wm-2 

 Decrease to 2.6 Wm-2 by 2100  

 Unlikely 

 Requires immediate GHG emission 

reduction on a global scale 

RCP 4.5 (stabilising) 0.64 1.43  Rise to 4.5Wm-2 by 2100 

 No further increases 

 Moderately likely; radiative forcing 

peaks in 2040 and then plateaus 

 Would require immediate 

cooperation and coordination 

between the world’s governments 

RCP 6.0 (stabilising) 0.61 1.87  Rise to 6.0Wm-2 by 2100 

 No further increases 

 Most likely; radiative forcing peaks 

in 2080 and then plateaus 

 Pressure put on governments to 

address climate change issues will 

likely cause GHG emission 

reductions, but time is required to 

coordinate the effort 

RCP 8.5 (worst-case) 0.83 3.14  Rise to 8.5Wm-2 by 2100 

 Continue unabated into 22nd 

century 

 Unlikely 

 Requires GHG emissions to 

continue at current rates; concerted 

efforts are already being made to 

reduce them 

573 



Figure 1. Site map showing the locations of Utila and Tela Bay, Honduras. 574 

 575 

Figure 2. Landscape photograph of Utila showing ‘typically’ low hard coral cover and 576 

associated lack of habitat structure. Photo credit: Adam Laverty. 577 
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Figure 3. Landscape photograph of Banco Capiro showing the high percent cover of hard 579 

coral and resultant architectural complexity. Photo credit: Dan Exton. 580 

 581 

Figure 4. Panel photograph of D. antillarum adult and juvenile phenotypes. Far-left = black-582 

spined adult, bottom-right = white spined adult, top-left = juvenile. 583 
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Figure 5. Relationship between urchin body (test) size and predator avoidance behaviour 585 

(PAB) in juvenile (black points) and adult (grey points) urchins. Plotted lines are least-586 

squares regression lines.  587 
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Figure 6. Predator avoidance behaviour (PAB) of Diadema antillarum of three categories 598 

(black-spined adult phenotype, white-spined adult phenotype and juvenile), across two sites 599 

(Utila: flattened reef and Banco Capiro: complex reef), under conditions simulating three 600 

different IPCC climate change scenarios (CSST = 29.7C, RCP 4.5 = 31.13C, and RCP 8.5 601 

= 32.84C). Grey horizontal lines represent a baseline for comparison set as the mean PAB of 602 

black-spined adult D. antillarum on Banco Capiro under CSST. Vertical lines represent 603 

±1SE. 604 
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