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Orientably regular maps with given exponent group

Marston D. E. Conder and Jozef Širáň

Abstract

We prove that for every integer d � 3 and every group U of units mod d, there exists an orientably 
regular map of valency d with exponent group U .

1. Introduction

An orientably regular map M is a 2-cell embedding of a connected graph in an orientable 
surface, such that the group of all orientation-preserving automorphisms Aut+M of the 
embedding acts as regularly (sharply transitively) on the set of arcs of the graph. It follows 
that every vertex of M has the same valency, say d, and every face of M is bounded by a closed 
walk of the same length, say m.

If e is an arc at any vertex v of M , then regularity implies that Aut+M contains an involution 
x acting like a 180-degree rotation of M about the centre of e, and an element y of order d acting 
like a d-fold rotation of M about v. Then by connectivity, the group Aut+M is generated by x 
and y, and admits a presentation of the form Aut+M = 〈x, y | x2 = yd = (xy)m = · · ·  = 1〉. The  
pair (d, m) is called the type of the map. Conversely, given any generating pair (x, y) for  a group  
G with the above form, one may construct an orientably regular map M with Aut+M = G 
by taking edges, vertices and faces of M as the (right) cosets in G of the subgroups 〈x〉, 〈y〉 
and 〈xy〉, respectively, and with incidence given by non-empty intersection of cosets. (Also the 
arcs may be taken as the elements of G.) Thus, orientably regular maps of valency d and face 
length m may be identified with 2-generator group presentations of the form 〈x, y | x2 = yd = 
(xy)m = · · ·  = 1〉.

Fundamentals of the theory of maps and orientably regular maps are explained in [8], some 
deep connections between such maps, Riemann surfaces and Galois groups are described in 
detail in [9], and a recent survey containing a large number of facts about regular maps is 
given in [11].

Next, let M and G = Aut+M = 〈x, y〉 be as above. An integer j relatively prime to d is said 
to be an exponent of M if the assignment (x, y) �→ (x, yj ) extends to an automorphism of G. 
Algebraically, this means that (x, y) and (x, yj ) satisfy the relations as each other, while from 
the point of view of maps, it means that if a new map M j is constructed from M by replacing
the clockwise local cyclic order πv of arcs at each vertex v by πv

j , then resulting map M j is 
isomorphic to M . Orientably regular maps admitting the exponent −1 are isomorphic to their 
mirror image, and are therefore called reflexible.

The collection of all exponents of M forms a subgroup of the group of units Z∗
d, and is called 

the exponent group of M . The notion of an exponent was introduced in [10], with applications 
in the classification of orientably regular maps with a given underlying graph. Previously, the
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mapping M → M j (even in the case when the two maps may not be isomorphic) was known
as a hole operator, and studied by Wilson [14], but this mapping has also been attributed to
Coxeter.

For the exponents of an orientably regular map of given valency d, there are two ‘extremes’:
one where the exponent group is trivial, or consists only of 1 and −1, and the other where the
map admits the ‘full’ exponent group Z∗

d.
In [2], it was shown that for every d � 3 there are infinitely many finite orientably regular

maps of valency d with trivial exponent group. This was done with the help of a method that
allows one to forbid the creation of new automorphisms in lifted maps, but unfortunately the
method offers no control over the face length. Also it was proved in [12] using residual finiteness
of triangle groups that for every pair of positive integers d and m with 1/d + 1/m � 1/2, there
exist infinitely many finite orientably regular and reflexible maps of type (d,m) that admit no
exponents other than 1 and −1.

At the other end of the spectrum, it was shown in [13] that for every integer d � 3 there exist
infinitely many finite orientably regular maps with exponent group Z∗

d. Again this was achieved
using residual finiteness of triangle groups, but this time losing control over the face length of
resulting maps. Such maps were called ‘kaleidoscopic’ in [1], where a covering construction was
given for a kaleidoscopic d-valent regular map invariant also under duality and Petrie duality,
for every even d. A different construction for such ‘super-symmetric’ d-valent maps was given
for an infinite set of odd values of d in [6].

In this paper, we deal with the ‘intermediate’ cases, by considering arbitrary subgroups of the
group of units modulo the valency d. We prove that for every d � 3 and every given subgroup
U of Z∗

d, there exist infinitely many finite orientably regular maps of valency d with exponent
group equal to (and not just isomorphic to) U .

2. The main result

Theorem 1. For every d � 3 and every subgroup U of Z∗
d, there are infinitely many finite

orientably regular maps of degree d with exponent group equal to U .

Proof. Let G be the free product Z2 ∗ Zd of the cyclic groups of order 2 and d � 3, with
presentation 〈X,Y |X2 = Y d = 1〉, and let D = G′ be the derived subgroup of G, of index 2d
in G, with quotient G/D ∼= Z2 × Zd. By Reidemeister–Schreier theory [5], the group D is free
of rank d − 1, generated by the commutators Wj = [X,Y j ] for j ∈ {1, 2, . . . , d − 1}.

We will construct for any given subgroup U of Z∗
d an infinite family of quotients of G that

give rise to orientably regular maps of degree d with exponent group U .
For any prime p, let Np = D′D(p) be the subgroup of D generated by the commutators and

pth powers of all elements of D. This subgroup is characteristic in D and hence normal in G,
and the quotient D/Np is isomorphic to the direct product Zd−1

p of d − 1 copies of Zp. Also
G/Np is an extension of D/Np

∼= Zd−1
p by (G/Np)/(D/Np) ∼= G/D ∼= Z2 × Zd, and hence G/Np

has order 2dpd−1.
Next, for any u ∈ Z∗

d, let ku be the automorphism of G that takes the generating pair
(X,Y ) to the generating pair (X,Y u). Note that this permutes the generators Wj = [X,Y j ]
of D among themselves, and therefore preserves D, and its characteristic subgroup Np, and so
induces an automorphism hu of Gp = G/Np, with (Ng)hu = N(gku) for all g ∈ G.

Now, let U be any subgroup of Z∗
d. Then, KU = {ku : u ∈ U} and HU = {hu : u ∈ U} are

groups of automorphisms of G and Gp (respectively), both isomorphic to U .
We will show that if the prime p is congruent to 1 mod d, then there exists a normal subgroup

LU of Gp = G/Np contained in D/Np such that LU is preserved by HU , and furthermore,
that LU can be chosen so that it is not preserved by hr for any r ∈ Z∗

d \ U . Under these
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circumstances, the quotient Gp/LU determines a finite orientably regular map M of valency d
with exponent group containing U , and then finally, we will show that the exponent group of
M is equal to U . We break this up into three steps below.

Step 1. Let x and y be the images of X and Y under the natural quotient homomorphism
from G to G/Np = Gp, and let wj = [x, yj ] = xy−jxyj , which is the image of Wj = [X,Y j ],
for j ∈ {1, 2, . . . , d − 1}. Then, these wj are elements of the elementary abelian p-group Vp =
D/Np

∼= Zd−1
p , and so commute with each other. Moreover, it is easy to see that xwjx =

y−jxyjx = w−1
j and y−1wjy = y−1xy−jxyj+1 = y−1xyxxy−(j+1)xyj+1 = w−1

1 wj+1, for all j ∈
{1, 2, . . . , d − 1}, if we define also wd = [x, yd] = 1.

Next, suppose p ≡ 1 mod d, and let t be any non-trivial dth root of 1 mod p, so that
1 + t + t2 + · · · + td−1 ≡ 0 mod p. Define

vt = wt
1w

t2

2 · · ·wtd−2

d−2 wtd−1

d−1 ,

which is an element of the abelian p-group Vp = D/N . Conjugation by x inverts vt, while

y−1vty = (y−1w1y)t(y−1w2y)t2 · · · (y−1wd−2y)td−2
(y−1wd−1y)td−1

= (w−1
1 w2)t(w−1

1 w3)t2 · · · (w−1
1 wd−1)td−2

(w−1
1 )td−1

= w
−(t+t2+···+td−2+td−1)
1 wt

2w
t2

3 · · ·wtd−3

d−2 wtd−2

d−1

= w1w
t
2w

t2

3 · · ·wtd−3

d−2 wtd−2

d−1

= (vt)t−1
.

It follows that the cyclic subgroup Lt of Vp = D/Np generated by vt is normal in Gp.
Now, take LU = 〈Lhu

t : u ∈ U〉. Since Lt is a normal subgroup of Gp, the image Lhu
t of Lt

under each automorphism hu is also a normal subgroup of Gp, and hence LU is normal in Gp.
Moreover, LU is clearly preserved by HU , as required.

Step 2. Suppose further that t is a primitive dth root of 1 mod p, and for each j ∈ Z∗
d, define

the element v
(j)
t of Vp by

v
(j)
t = hj−1(vt) =

∏
i∈Z∗

d

hj−1

(
w ti

i

)
=

∏
i∈Z∗

d

(wj−1i)ti

=
∏

�∈Z∗
d

w
(tj)�

� .

We claim that these φ(d) = |Z∗
d| elements v

(j)
t generate a subgroup of order pφ(d) in Vp, or

equivalently, that they are linearly independent over Zp when Vp is considered as a vector space
over Zp of dimension d − 1. To see this, if we take the set {w1, w2, . . . , wd−1} as a basis for
Vp, and write any element wa1

1 wa2
2 · · ·w ad−1

d−1 of Vp as a (d − 1)-tuple (a1, a2, . . . , ad−1), then
by its definition above, v

(j)
t can be written as the (d − 1)-tuple (tj , t2j , . . . , t(d−1)j). Hence,

the set {v(j)
t : j ∈ Z∗

d} can be represented by a φ(d) × (d − 1) sub-matrix of the Vandermonde
matrix ⎛

⎜⎜⎜⎜⎝

t t2 t3 . . . td−1

t2 t4 t6 . . . t2(d−1)

t3 t6 t9 . . . t3(d−1)

: : : : :
td−1 t2(d−1) t3(d−1) . . . t(d−1)(d−1)

⎞
⎟⎟⎟⎟⎠

.

This matrix has determinant
∏

1�i<j�d−1(t
j − ti), which is non-zero in Zp since t is a primitive

dth root of 1 mod p, and it follows that for any subset S of Z∗
d, the rows with first entry tj with

j ∈ S are linearly independent over Zp. In particular, taking S = Z∗
d, we see the above claim is

true.
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But also this shows that hr(LU ) 
= LU for any r ∈ Z∗
d \ U , because if hr(LU ) = LU , then

LU = hr−1(LU ) and so the vector corresponding to v
(r)
t = hr−1(vt) is a linear combination of

the vectors corresponding to the elements v
(u)
t for u ∈ U , which is impossible.

Step 3. It remains to show that the exponent group of the orientable-regular map M arising
from the quotient Gp/LU of G is equal to U . By Step 1, we know that this exponent group
contains U . To prove the reverse inclusion, suppose that j is any exponent of this map M .
Then also j−1 is an exponent of M , and hence there exists an automorphism θ of Gp/LU that
fixes the element xLU and takes yLU to yj−1

LU . But now vt ∈ Lt ⊆ LU , so the coset vtLU

is trivial in Gp/LU , and it follows that the coset containing v
(j)
t = hj−1(vt) is trivial as well.

Thus v
(j)
t lies in LU , and by Step 2, we deduce that j ∈ U .

This completes the proof.

3. Concluding remarks

The method we have used does not enable control over the face length of the resulting maps.
This is no accident, as it is not true that there exist orientably regular maps of given type
(d,m) with 1/d + 1/m � 1

2 and having a given exponent group. For example, in the case of
triangulations (with m = 3), it was shown in [13] that an orientably regular map of type (d, 3)
with valency d ≡ ±1 mod 6 cannot have more than φ(d)/2 exponents, and that if d is a prime
such that d ≡ −1 mod 8 and (d − 1)/2 is also prime, then such a triangulation cannot have
exponents other than ±1.

Finally, for completeness, we mention some interesting connections with the case where the
exponent group U does not contain −1. Orientably regular maps with this property are known
as chiral. In [4], it was shown by a direct permutation construction that for every pair (d,m)
such that 1/d + 1/m � 1

2 , there exist infinitely many finite orientably regular but chiral maps
of type (d,m). The same thing was proved in [7] by a different method, with the help of
holomorphic differentials.
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