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Highlights

• We perform mesoscale simulations of the water cycle in a region around Gale crater

• Regolith interaction reduces vapour abundances at crater floor by factors of 2-3

• Nighttime subsurface ice amounts are small in all seasons

• Diffused vapour is transported up into the atmosphere at convergence boundaries

• Results at Gale crater are representative of other craters in the mesoscale domain
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The water cycle and regolith-atmosphere interaction

at Gale crater, Mars
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Abstract

We perform mesoscale simulations of the water cycle in a region around Gale crater, including

the diffusion of water vapour in and out of the regolith, and compare our results with

measurements from the REMS instrument on board the Curiosity rover. Simulations are

performed at three times of year, and show that diffusion in and out of the regolith and

adsorption/desorption needs to be taken into account in order to match the diurnal variation

of relative humidity measured by REMS. During the evening and night, local downslope flows

transport water vapour down the walls of Gale crater. When including regolith-atmosphere

interaction, the amount of vapour reaching the crater floor is reduced (by factors of 2–3

depending on season) due to vapour diffusing into the regolith along the crater walls. The

transport of vapour into Gale crater is also affected by the regional katabatic flow over the

dichotomy boundary, with the largest flux of vapour into the regolith initially occurring on

the northern crater wall, and moving to the southern wall by early morning. Upslope winds

during the day transport vapour desorbing and mixing out of the regolith up crater walls,

where it can then be transported a few hundred metres into the atmosphere at convergence

boundaries. Regolith-atmosphere interaction limits the formation of surface ice by reducing

water vapour abundances in the lower atmosphere, though in some seasons ice can still form

in the early morning on eastern crater walls. Subsurface ice amounts are small in all seasons,

with ice only existing in the upper few millimetres of regolith during the night. The results

at Gale crater are representative of the behaviour at other craters in the mesoscale domain.

Keywords: Mars, Mars, atmosphere, Mars, climate, Mars, surface

1. Introduction1

Spacecraft observations, beginning with those by the Mars Atmospheric Water Detector2

instruments aboard the Viking orbiters (Farmer et al., 1977; Jakosky and Farmer, 1982)3

and followed by instruments on more recent missions (e.g. Smith, 2004; Tschimmel et al.,4
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2008; Smith et al., 2009; Pankine et al., 2010; Maltagliati et al., 2011, 2013), have revealed5

that Mars has an active water cycle. More recently, observations by the Gamma Ray Spec-6

trometer suite of instruments aboard Mars Odyssey (Boynton et al., 2002; Feldman et al.,7

2004; Maurice et al., 2011) have shown that large reservoirs of water reside in the Martian8

subsurface.9

The regolith-atmosphere interaction of water has been studied for many decades, mainly10

with one-dimensional models (e.g. Smoluchowski, 1968; Fanale and Jakosky, 1982; Mellon11

and Jakosky, 1993, 1995; Mellon et al., 2004; Aharonson and Schorghofer, 2006; Chamberlain12

and Boynton, 2007), but also with global circulation models (Tokano, 2003; Böttger et al.,13

2004, 2005). However, these studies lack comparisons with observations to constrain the14

diurnal and seasonal variations in the regolith-atmosphere exchange of water. While the15

Imager for Mars Pathfinder was the first instrument to measure atmospheric water from16

the surface of Mars, by imaging the Sun in the morning and evening when it was close to17

the horizon (Titov et al., 1999), the thermal and electrical conductivity probe (TECP) on18

the Phoenix lander was the first to take in-situ measurements using a relative humidity19

sensor (Zent et al., 2010; Rivera-Valentin and Chevrier, 2015; Zent et al., 2016). Revised20

results from the Phoenix TECP show that water vapour diffuses into the regolith mainly21

in the late afternoon, and that early mornings are the most humid part of the day due to22

the sublimation of surface ice formed at night (Zent et al., 2016). However, the Pathfinder23

and Phoenix landers were only operational for 85 and 152 sols respectively, and were not24

equipped with the necessary instrumentation to perform detailed studies of the near-surface25

water distribution. Additionally, the topography of Gale crater is likely to result in a more26

complex water cycle than that experienced by Phoenix in the northern plains.27

The Curiosity rover landed on the floor of Gale crater in late northern hemisphere summer28

(LS = 151◦) of Mars Year (MY) 31. Since LS = 154◦, the Rover Environmental Monitoring29

Station (REMS) has been providing hourly measurements of, amongst other quantities,30

relative humidity, temperature and surface pressure (Gómez-Elvira et al., 2012, 2014; Harri31

et al., 2014a). This dataset, covering more than one Mars year, is ideal for investigating32

the regolith-atmosphere exchange of water. REMS observations from MSL sols 15–17 and33

80–82 have recently been interpreted using a one-dimensional subsurface-atmosphere model34

(Savijärvi et al., 2015, 2016), while temperature and relative humidity data have been used35

to infer the presence of nighttime transient liquid brines (Mart́ın-Torres et al., 2015). The36

seasonal variation of the circulation in and around Gale crater has been investigated in detail37

through mesoscale modelling studies (Tyler and Barnes, 2013, 2015; Guzewich et al., 2016;38

Pla-Garcia et al., 2016; Rafkin et al., 2016) and analysis of REMS pressure data (Haberle39

et al., 2014; Harri et al., 2014b), though these simulations have not modelled the water cycle.40

In this paper we use a three-dimensional mesoscale model of the Martian atmosphere,41

coupled to a sub-surface regolith model, and focus on the regolith-atmosphere interaction42

of water, as well as the effects of the atmospheric circulation on the water distribution. The43

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

goal of the paper is not to provide the best possible match to individual REMS measure-44

ments, through constant refining of surface and atmospheric properties. It is to understand45

the interaction between the surface and atmosphere on a regional scale, with the REMS46

measurements acting as a way of validating the regolith model results.47

2. Model description and simulations performed48

2.1. Mesoscale model49

The mesoscale model we use was developed at the Laboratoire de Météorologie Dy-50

namique (Spiga and Forget, 2009). It is based on the Weather Research and Forecasting51

dynamical core (Skamarock and Klemp, 2008), and uses the same physical parameteriza-52

tions (radiative transfer, turbulent mixing, cloud formation) as the ones developed for global53

circulation model (GCM) studies (e.g. Forget et al., 1999; Spiga and Forget, 2009).54

As Gale crater lies on the dichotomy boundary, it is affected by large-scale slope flows55

associated with this dichotomy (e.g. Tyler and Barnes, 2013; Rafkin et al., 2016). In order56

to capture these flows, we use a nested grid configuration, with a parent domain (domain57

1) and two nested domains (domains 2 and 3); see Figure 1. Each domain has 146×14658

grid points in latitude and longitude. At the location of Gale crater, the resolution is 54 km59

for the parent domain, and 18 km and 6 km for the two nests. (Due to the large areas of60

domains 1 and 2, the resolution varies with latitude. For example, at the southern boundary,61

the grid box sizes in domains 1 and 2 are 25 km and 15.5 km respectively.) There are 5062

vertical levels, extending to an altitude of ∼50 km. Two-way nesting is used, in which the63

boundary conditions for each nest come from their parent grid, and the solution from each64

nest replaces that on its parent grid. The time steps for domains 1–3 are 20 s, 10 s and 5 s65

respectively. The static surface fields (topography, thermal inertia and albedo) are derived66

from spacecraft data at a resolution of 64 pixels per degree, and are the same as those used67

by Spiga and Forget (2009).68

Water vapour (referred to hereafter as simply vapour) and water ice mass mixing ratios69

are transported as tracers, with the microphysics scheme of Montmessin et al. (2004) used70

for the formation and sedimentation of ice particles (clouds are not radiatively active). If71

more than 5 pr-µm of water ice is deposited onto the surface, the albedo is changed to that72

of water ice (0.4). Dust particles are not transported, and instead we set the vertical profile73

of dust to follow a modified Conrath distribution (e.g. Lewis et al., 1999), with the altitude74

of the dust top varying with solar longitude and latitude as in Montmessin et al. (2004).75

Column dust opacities are obtained from daily maps produced by the binning and kriging of76

spacecraft data (Montabone et al., 2015). The scavenging of dust by water ice clouds is not77

taken into account, and any feedback between the dust and water cycles is not considered.78

The regolith model is an updated version of that used by Böttger et al. (2004, 2005),79

which was based on the one-dimensional model of Zent et al. (1993). Full details of the80

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TFigure 1: The three domains of the mesoscale model. Domain 3 is nested in domain 2, which is nested
in domain 1 (see the boxes with black and white borders for the nest locations). The grid spacing at the
location of Gale crater is 54 km, 18 km and 6 km in domains 1–3 respectively. Shading shows Mars Orbiter
Laser Altimeter (MOLA) elevation data. The black dashed lines in domain 3 show the locations of the
cross-sections in Figures 11, 15, 24 and 28, while the solid black line shows the location of the cross-sections
in Figure 13.

scheme are given in Steele et al. (2017), so here we only give a brief overview. Diffusion of81

temperature and vapour, the phase changes of water, and adsorption/desorption of water82

vapour are calculated on 18 unevenly-spaced levels extending to ∼20 m below the surface.83

The concentration of water in a volume of regolith is decomposed into three states: vapour84

contained within the pore spaces (n), water adsorbed onto regolith grains (α) and pore85

ice. Both Fickian and Knudsen diffusion are accounted for, with the diffusion coefficient86

varying in time and space. We assume an ice-free porosity of 0.4, which was found to give87

a good match to REMS data in the one-dimensional simulations of Savijärvi et al. (2016),88

and a pore size of 10 µm. While the presence of surface CO2 ice or water ice shuts off the89

regolith-atmosphere exchange, redistribution of water in the regolith can still occur (though90

at a much slower rate) through diffusion and phase changes.91

2.2. Simulations performed92

We look at three different times of year, corresponding to southern hemisphere early93

spring (LS = 187.8–193.1◦), late summer (LS = 319.8–325.0◦) and around aphelion (LS =94

68.3–72.3◦). These periods were chosen as they encompass a range of atmospheric water95

contents around Gale crater, with atmospheric vapour column abundances roughly halving96

in each successive period. Early southern spring and aphelion are also around the times of97

the maximum and minimum annual vapour column abundances respectively.98

Each simulation lasts for 12 sols, with the results from the first two sols ignored, allowing99

time for the model to ‘spin up’. For each period, we perform mesoscale simulations using100

three different adsorption isotherms (detailed below), as well as simulations with no regolith-101

atmosphere interaction. Model results are compared with REMS measurements from MY102

31, 32 and 33, obtained at a height of ∼1.6 m above the ground. (The data are from the103

Planetary Data System atmosphere node.) We take the median of the first 10 humidity104
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Isotherm Ar/104 m2 kg−1 K0/10−9 Pa−1 ε ν
J97 10 15.7 2573.9 0.48
Z97 1.7 7.54 2697.2 0.4734

Table 1: Values used in the adsorption isotherms of Jakosky et al. (1997) and Zent and Quinn (1997).

measurements each hour, which are obtained when the sensor head is at roughly the same105

temperature as the air, and the mean of the first 10 air temperature measurements (to106

remove the effects of turbulence). This is the same as the procedure used by Savijärvi et al.107

(2015, 2016). The uncertainties in the relative humidity measurements are generally around108

±2% from midday to 18:00, and ±10% at other times of day. To calculate relative humidity109

in the model, the Goff-Gratch equation is used to obtain the saturation vapour pressure, es:110

log10(eS) = a− bT − c/T + d log10 T, (1)

with a = 2.07023, b = 0.00320991, c = 2484.896 and d = 3.56654. The relative humidity111

then follows via RH = e/eS, with e being the partial pressure of vapour (calculated from112

the vapour mass mixing ratio).113

For the adsorption of water onto regolith grains, we consider three adsorption isotherms.114

The first is that from basalt powder measurements by Fanale and Cannon (1971), which we115

refer to hereafter as the F71 isotherm. This is given by116

α(p, T ) = ρrβp
0.51 exp(δ/T ), (2)

where ρr = 1500 kg m−3 is the density of the regolith, p is the partial pressure of vapour, T117

is the temperature, β = 2.043× 10−8 Pa−1 and δ = 2679.8 K. This isotherm has been used118

extensively in previous studies of regolith diffusion (Zent et al., 1993; Mellon and Jakosky,119

1993, 1995; Mellon et al., 1997; Böttger et al., 2004, 2005). The remaining two adsorption120

isotherms use the Freundlich isotherm for adsorption onto palagonite, which, for the low121

vapour pressures encountered on Mars, can be simplified to122

α(p, T ) = ρrArMi(pK
∗)ν , (3)

where Ar is the specific surface area of the regolith, Mi = 2.84× 10−7 kg m−2 is the surface123

mass density of a monolayer of water molecules, and K∗ = K0 exp(ε/T ). For the isotherms124

of Jakosky et al. (1997) and Zent and Quinn (1997), referred to hereafter as the J97 and125

Z97 isotherms respectively, the specific values used in Equation 3 are given in Table 1. The126

J97 isotherm has been used in one-dimensional simulations by Schorghofer and Aharon-127

son (2005) to study the stability of subsurface ice, while the Z97 isotherm has been used128

by Tokano (2003). Savijärvi et al. (2016) used the F71 and J97 isotherms in their one-129

dimensional simulations at the Curiosity rover location. Figure 2 shows how the amount130

6
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Figure 2: Amount of water adsorbed onto regolith grains for three different adsorption isotherms (coloured
lines) and relative humidity (black lines) as a function of temperature. Adsorbed values assume a water
vapour concentration of 10−6 kg m−3. Relative humidities are shown for three different water vapour
concentrations, corresponding to typical values (10−6 kg m−3, solid line) as well as peak daytime (2.5×10−6

kg m−3, dashed line) and minimum nighttime (5× 10−8 kg m−3, dotted line) values.

of water adsorbed onto the regolith grains varies with temperature for the three isotherms,131

assuming a vapour concentration of 10−6 kg m−3 (a typical near-surface value determined132

from GCM simulations, corresponding to ∼50 mg kg−1 or ∼100 ppmv).133

2.3. Initial and boundary conditions134

For comparison with the REMS measurements, we want the best possible representation135

of the atmospheric temperature and water distribution. As such, the initial and boundary136

conditions of the mesoscale model are provided by output from a GCM coupled with a137

data assimilation scheme. (Boundary conditions are provided at hourly intervals.) The138

GCM is thoroughly described elsewhere (Forget et al., 1999; Lewis et al., 1999, 2007) so we139

will not do so again here. Briefly, the GCM has a spectral dynamical core, an energy and140

angular momentum conserving vertical finite-difference scheme, a semi-Lagrangian advection141

scheme for tracers, and includes the physical schemes detailed in Spiga and Forget (2009).142

The regolith model detailed in Steele et al. (2017) is also included. The GCM was run at a143

resolution equivalent to 2.5◦ in latitude and longitude, which results in 43 and 53 GCM grid144

boxes spanning the east-west and north-south boundaries of the parent domain respectively.145

Assimilations were performed for the three periods studied, and were run for 60 sols prior146

to the required dates to allow the GCMs subsurface water content to reach equilibrium.147

The REMS measurements considered here are for MY 31 and 32, for which Mars Climate148

Sounder (MCS) temperature profiles are available. These profiles extend to an altitude of149

∼85 km, with a vertical resolution of ∼5 km, and comprise two sets of 12 strips of data150

7
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Figure 3: Water vapour column distributions in and around the parent domain (shown by the black and
white rectangle) for different Mars years. Data are from TES observations (Smith, 2004), and are binned
by 5◦ in latitude and longitude and 20◦ in LS (the Mars years and LS ranges are labelled above each plot).
Black contours show topography, while white regions show where no TES data are available.

per sol, separated by ∼30◦ in longitude. The data occur at local times of around 03:00 and151

15:00 away from the poles (McCleese et al., 2010). MCS temperature profiles have been152

successfully assimilated previously (Steele et al., 2014a,b), following the procedure outlined153

in (Lewis et al., 2007).154

For vapour, there are no data with suitable spatial and temporal coverage to assimilate155

for MY 31 and 32, but data are available for MY 24–27 in the form of vapour columns156

from the Thermal Emission Spectrometer (TES) instrument (Smith, 2004). The vapour157

distribution is mainly affected by the occurrence of dust storms during perihelion (Smith,158

2004). Figure 3 shows a comparison of the vapour distributions in different Mars years in a159

region surrounding Gale crater. The distributions are broadly similar in different Mars years,160

though there are some differences related to the dust distribution. As the dust distribution161

for MY 26 best represents that for the periods in MY 31 and 32 that we are studying here (see162

Figure 4), we assimilate the TES vapour column data from MY 26. The vapour assimilation163

procedure is described fully in Steele et al. (2014b). The only difference here is that we also164

include the regolith model described earlier. The adsorbed water content of the regolith was165

initialised at each grid point to speed up the spin-up process. Values of 1 kg m−3, 0.5 kg m−3
166
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Figure 4: Variation of the infrared dust optical depth over Gale crater for multiple Mars years. Lines show
the optical depth as determined from TES observations. Symbols show the optical depth for MY 31 and 32,
corresponding to the periods covered in the simulations. These optical depths are derived from MCS and
Thermal Emission Imaging System data (Montabone et al., 2015).

and 0.1 kg m−3 were used for simulations with the F71, J97 and Z97 isotherms respectively167

(corresponding to adsorbed values at ∼230 K; a mean daily temperature at Gale crater).168

Water is initially lost from the upper few centimetres of regolith to the atmosphere, but as169

vapour columns are being assimilated, the atmospheric vapour abundance remains in line170

with observations. By the end of the assimilations, the water distribution in the upper 10–171

15 cm of regolith in the region around Gale crater (the region which will interact with the172

atmosphere in the mesoscale simulations) reaches equilibrium, and a repeatable diurnal cycle173

occurs. Figure 5 shows a comparison between the TES water vapour column observations174

and the assimilation results around the three times of year the mesoscale simulations are175

performed.176

3. Comparison with REMS data177

Before we look at the water cycle both within Gale crater and in the surrounding area, we178

first compare the model predictions of pressure, temperature and wind with measurements179

from the REMS instrument. For each of the three periods we are investigating, REMS180

data are available for two different Mars years. These are MY 31 and 32 for the periods181

LS = 187.8–193.1◦ and LS = 319.8–325.0◦, and MY 32 and 33 for the period LS = 68.3–182

72.3◦. Figure 6 shows the location of the Curiosity rover, compared to the closest mesoscale183

model grid points in domain 3, for the time periods we are investigating. As can be seen,184

the rover is closest to the grid point at the top right between MSL sols 67–496, and closest185

to the grid point at the bottom left between MSL sols 736–1164 (where MSL sol represents186

the number of sols since the Curiosity rover landed). In the mesoscale model, there are only187

9
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Figure 5: Comparison between the MY 26 water vapour distributions, normalised to 610 Pa, from (a–c)
TES observations, and (d–f) GCM assimilation results for the three periods the mesoscale simulations are
performed for. The parent domain is shown by the black and white rectangle. TES data are averaged over
a longer time period (20◦ of LS) than the GCM results (5◦ of LS), to ensure there are enough observations
for full longitudinal coverage. Black contours show topography.

small differences in the thermal inertia and albedo values between these two grid points, due188

to the spacecraft data being averaged over the 6 km grid boxes. The thermal inertias of the189

top-right and bottom-left grid points are 295 tiu and 292 tiu respectively, while the albedos190

are 0.234 and 0.226. In reality, there will be much more variation in surface properties. For191

example, Mart́ınez et al. (2014) report thermal inertias ranging from 295 tiu on sol 82 to192

452 tiu on sol 139. As such, it is unlikely that we will be able to exactly match the REMS193

observations, but good agreement in the diurnal cycle of temperature and pressure should194

be expected. As the model grid points have similar surface properties, we show temperature195

and pressure results from the top right grid point in Figure 6 (137.45◦E, 4.59◦S). Winds196

are shown for both the top right and bottom left grid points, as these have more variation.197

Detailed comparison of mesoscale model output with REMS pressure, temperature and wind198

measurements have been made by Pla-Garcia et al. (2016), and many of the same arguments199

presented there apply here. As such, we will only briefly discuss the comparisons, and200

reference should be made to Pla-Garcia et al. (2016) for more detailed discussions.201

3.1. Pressure202

Figure 7 (first column) shows a comparison between REMS pressure measurements and203

mesoscale model output for the three different periods studied. Each panel shows REMS204

measurements for six sols in two different Mars years, and six sols of mesoscale data. The205

daily-mean pressure value is controlled by the CO2 cycle, and hence is inherited from the206
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Figure 6: Location of the Curiosity rover on six different sols (coloured circles) in relation to the landing site
(red cross). The grey squares show the four closest mesoscale model grid points. The sol numbers represent
the number of sols since the Curiosity rover landed.

initial conditions provided by the GCM. In order to best match the observed pressure cycle,207

we perform the same procedure as Pla-Garcia et al. (2016), wherein a fractional adjustment is208

applied to the GCM pressure field. This fractional adjustment is determined by dividing the209

mean pressure from REMS measurements with the mean pressure from initial test mesoscale210

simulations. The adjustment factors for the periods shown in Figure 7(a,d,g) were 1.06, 1.01211

and 1.02 respectively.212

From Figure 7, the mesoscale model results appear to be consistent with the REMS213

data. The primary sources of diurnal pressure variations are atmospheric tides, and the214

amplitude of the tidal contribution to the pressure cycle is correlated with the opacity of215

the atmosphere (e.g. Guzewich et al., 2016). The amplitudes of the diurnal pressure cycles216

for the three periods shown, averaged over six sols, are 87, 107 and 59 Pa in the REMS217

measurements, and 88, 110 and 63 Pa in the mesoscale model, showing good agreement.218

The largest amplitude occurs during the LS = 321◦ period (Figure 7d), which is the dustiest219

of the three periods (see Figure 4). The pressure variation at LS = 321◦ is relatively smooth,220

and matched well by the mesoscale model, while in the other two periods more complex221

structure is visible in the REMS measurements. At some times this complex structure is222

captured by the model, while at other times (e.g. between 18:00–20:00 at LS = 189◦ and223

23:00–02:00 at LS = 69◦) there are discrepancies between the model and REMS data. Similar224

discrepancies are evident in the simulations of Pla-Garcia et al. (2016), and may be caused225

by circulation patterns which are difficult to capture at the resolution used here.226

3.2. Surface and atmospheric temperature227

The middle column of Figure 7 shows comparisons between REMS surface temperature228

measurements and mesoscale model output for three different periods (the uncertainties in229
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Figure 7: Comparison between REMS measurements (symbols) and mesoscale model predictions (lines)
of pressure (left column) surface temperature (middle column) and air temperature (right column). Sol
numbers represent the number of sols since the Curiosity rover landed. REMS data are shown for six sols,
centred on the LS value labelled above each plot. Model data are at altitudes ranging between 2.4–3.4 m,
with REMS measurements at 1.6 m. The dashed black lines in the last column show the modelled surface
temperature.

the REMS data are around 5 K). The REMS measurements in Figure 7(b,e) clearly show the230

effects of changing thermal inertia between the measurements taken at the same times of year231

in MY 31 (circle symbols) and MY 32 (cross symbols), with a higher thermal inertia resulting232

in warmer nighttime temperatures and cooler daytime temperatures. The mesoscale model233

surface temperatures compare well with the REMS data (particularly around LS = 321◦ and234

LS = 69◦), generally falling within the 5 K uncertainty, though as the surface properties235

are fixed the temperatures cannot match the variation seen between Mars years. Around236

LS = 189◦ (Figure 7b) the nighttime (18:00–06:00) surface temperatures in the mesoscale237

model fall between the REMS measurements from different Mars years. During the morning,238

the REMS surface temperatures increase more quickly than in the mesoscale model, while239

during early afternoon the peak surface temperatures in the mesoscale model are around 10240

K too warm. Similar features were noted by Pla-Garcia et al. (2016), and may be the result241

of topographic orientation, or discrepancies in the thermal inertia, albedo or dust opacity.242

The last column of Figure 7 compares atmospheric temperatures. The REMS mea-243

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

surements are made at a height of ∼1.6 m above the surface, and we use the ambient air244

temperature values from the PDS. The mesoscale model results are from the lowest model245

layer, which varies in height with time of day as well as season. The layer midpoint is246

lowest at 06:00, where the height ranges from 2.4–2.6 m depending on season (with the247

lowest heights around LS = 68.3–72.3◦, and the greatest heights around LS = 187.8–193.1◦).248

The midpoint is highest at 16:00, where the height ranges from 3.0–3.4 m. As such, when249

comparing temperatures with REMS data, the mesoscale model temperatures correspond250

to altitudes around 1 m higher during the night, and 1.5–2 m higher during late afternoon.251

As was the case for surface temperatures, there is generally good agreement between252

REMS air temperature measurements and mesoscale model output during the night (18:00–253

06:00) in all three seasons. During the daytime, the mesoscale model results can be 10–15 K254

cooler than the REMS measurements, eventually reaching agreement by around 16:00–17:00.255

Taking into account the difference in height between the REMS measurements and mesoscale256

output, the temperature differences correspond to daytime lapse rates of around 5–7 K m−1.257

Superadiabatic lapse rates of this magnitude have been observed by Mars Pathfinder and the258

Mars Exploration Rovers (Schofield et al., 1997; Smith et al., 2004), so the mesoscale model259

temperatures are consistent with observations. REMS measurements often show variations260

associated with turbulent eddies, but due to the 6 km grid box sizes these cannot be captured261

by the mesoscale model (this would require large-eddy simulations), and the temperature262

variations in the model are generally a lot smoother.263

3.3. Wind264

Due to damage to one of the wind sensors, determination of the wind speed and direction265

from REMS data is difficult, and under the best conditions (temperatures above 213 K266

with wind blowing towards the front of the rover) the uncertainty is ∼50% for the wind267

speed, and ∼20◦ for direction (Gómez-Elvira et al., 2014). Additionally, the winds in the268

lowest layer of the mesoscale model correspond to altitudes around 1.5–2 m higher than the269

REMS wind sensor, and the results are averages over 6 km grid boxes. Nevertheless, for270

completeness, Figure 8 shows a comparison between the REMS measurements and mesoscale271

model predictions of wind speed and direction. REMS measurements are plotted for different272

Mars years, with faintly coloured lines representing observations which may be unreliable273

due to electronic noise, the wind sensor not being correctly configured, or a wind blowing274

towards the rear of the rover. Mesoscale model data are plotted for two different grid points.275

Looking at the mesoscale data first (panels d–f) it is clear that there is a general trend276

in all three periods for the wind to have a southerly component from 17:00–07:00 and a277

northerly component from 08:00–16:00, associated with downslope and upslope flows along278

Mount Sharp. Tyler and Barnes (2015) noted that around these two times of day (08:00 and279

17:00), the mass flux of air into craters reverses sign. The wind between 17:00–07:00 tends to280

be southerly or southeasterly in all three periods. Between 08:00–16:00, there are differences281
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Figure 8: Stick plots showing wind speed and direction from (a–c) REMS measurements, and (d–f) the
mesoscale model. The length of each stick represents speed, and the angle represents the incoming direction
of the wind, defined as clockwise with respect to the north. Results are shown for three sols centred on the
labelled LS values. REMS data from two Mars years are shown with different coloured lines. Faint lines
show data that may be unreliable. Mesoscale results from two different grid points are shown with different
coloured lines. REMS data are for an altitude 1.6 m, while model data range between 2.4–3.4 m.

in the behaviour of the wind in the three periods. Around LS = 189◦ (Figure 8d) the wind282

veers from a northerly to an easterly, while around LS = 321◦ and LS = 69◦ (Figure 8e,f) the283

winds tend to vary from northwesterly to northeasterly, though with periods of southerly or284

south-easterly winds.285

As noted earlier, it is difficult to compare 6 km average winds with those recorded at a286

single point, which will show much greater fluctuation. At around LS = 189◦, the model287

shows some agreement with the REMS data. Between 12:00–16:00, the REMS winds on the288

first two sols are in a west-northwest direction (Figure 8a), which is similar to the model289

results between ∼15:00–17:00. At other times of day there is less agreement, but it can be290

seen by comparing winds at similar times of day in different Mars years how varied they291

can be. Around LS = 321◦ the REMS data show winds ranging from west-southwesterly to292

east-southeasterly (Figure 8b), which is in general agreement with the model. The REMS293

data do not show any winds with a northerly component like those in the model between294

08:00–16:00. Around LS = 69◦ the number of REMS measurements is again low (Figure 8c),295

but some agreement with the model is seen. For example, between 09:00–13:00 on the first296

sol, and 12:00–16:00 on the third sol, the wind has a northerly component, as in the model.297

The winds at other times range from west-southwesterly to south-southeasterly, which is298

similar to the modelled winds.299

In terms of wind speed, the agreement is generally good, and within the ∼50% uncer-300

tainty of the REMS measurements. However, there are some periods where the REMS301
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Figure 9: Comparison between REMS data (symbols) and mesoscale model predictions (lines) of (a) relative
humidity (RH), and (b) volume mixing ratio (vmr). REMS data are shown for six sols in two different
Mars years, covering the period LS = 187.8–190.7◦ (see Figure 7 for sol numbers). The grey squares in (a)
show the RH uncertainty, which is around 2–10%. Mesoscale results are shown for no regolith-atmosphere
interaction, and for the F71, Z97 and J97 adsorption isotherms. Mesoscale results are averaged over six sols,
to make the figure clearer, and correspond to altitudes ranging from 2.4–3.4 m. The ‘J97 surface’ results
show the RH and vmr at the surface-atmosphere boundary from the simulation using the J97 isotherm.

measurements are around 8–10 m s−1 while the wind speeds in the model are around 2–3302

m s−1 (e.g. some of the measurements in the first two sols of Figure 8a and the first sol of303

Figure 8c). These may be caused by turbulent wind gusts, which cannot be captured at the304

6 km resolution of the model.305

The comparisons of pressure and temperature shown here suggest the mesoscale model is306

successfully capturing the main features of the Gale crater circulation. The wind comparison307

shows that the broad characteristics of the mesoscale circulation are correct, though it is308

not possible for the model to resolve the short-term fluctuations of winds that can be seen309

in the REMS data. With confidence that the model is capturing the true nature of the310

mesoscale circulation, we now go on to look at the water cycle in and around Gale crater at311

three different times of year.312

4. The water cycle in southern hemisphere early spring313

4.1. Comparison with REMS measurements314

First we look at southern hemisphere spring (LS = 187.8–193.1◦), which is when vapour315

columns in the Gale crater region are at their largest for the year (∼15 pr-µm) due to316

transport of vapour from the subliming north polar ice cap (Smith, 2004). Figure 9 shows a317

comparison of relative humidity (RH) and water vapour volume mixing ratio (vmr) between318

REMS measurements and the model output. Again, it must be remembered that the REMS319

measurements are at an altitude of ∼1.6 m, while the model values correspond to altitudes320

ranging from 2.6–3.4 m, and so there are likely to be differences in the temperatures and321

water vapour values. Additionally, REMS vmr measurements are only shown when they are322

less than 400 ppmv, as values above this are unreliable.323
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Compared to REMS RH measurements, the simulation with no regolith-atmosphere324

interaction appears too wet between around 23:00–09:00 (Figure 9a). The vmr, which varies325

between 100–200 ppmv between 00:00–06:00, is also larger than determined from REMS326

measurements (Figure 9b), which has mean values varying between 30–60 ppmv. (Note that327

REMS vmr values are not measured, but determined from RH, temperature and pressure328

measurements.) The diurnal variation of vmr is also markedly different than that determined329

from REMS, with the peak value occurring at around 08:00, a relatively constant vmr for330

much of the day thereafter, and a slow early morning decrease, due to condensation onto331

ground frost. The early morning peak is due to the sublimation of surface ice, and is similar332

to the behaviour seen in some Phoenix TECP measurements (Zent et al., 2016). A better333

agreement with the REMS measurements is achieved when including the regolith diffusion334

model. The J97 isotherm best matches the decrease in RH between 06:00–10:00, though335

the vmrs between 00:00–06:00 are larger than those determined from REMS measurements.336

This is similar to the results of the 1D simulations of Savijärvi et al. (2016). However these337

vmrs correspond to an altitude of ∼2.6 m. At the atmosphere-surface boundary, the vmrs338

between 00:00–06:00 are lower than those determined from REMS measurements (only the339

J97 results are shown for the atmosphere-surface boundary, to make the plot clearer). As340

the REMS sensor height falls in between these two altitudes, the model results are consistent341

with the measurements.342

While the vmr values in the lowest atmospheric layer and the surface bound the REMS343

measurements, the RH values for both cases are on the lower end of the REMS measurement344

range. However, the RH is very sensitive to the temperature in the cold nighttime conditions.345

For example, assuming the vmr values in the model are correct, then a temperature reduction346

of around 5 K between 00:00–05:00 increases the RH by around 3.5–4.5%, bringing the values347

in line with REMS data. Thus, while there are differences present, they do not signify a348

large departure from reality in the model. The F71 simulation has the largest daytime vmr349

value, while the values in the J97 and Z97 simulations are similar. This is because the F71350

isotherm holds more adsorbed water than the other isotherms (see Figure 10), and there are351

therefore larger fluxes of vapour in and out of the regolith over the course of a sol.352

From around 17:00–00:00, the REMS measurements show RH increasing more quickly353

than in the simulations which include the regolith diffusion model. As the vmr values are354

determined from the RH, these are also larger than in the model. Looking at Figure 7(a–c),355

the temperatures and pressures are generally in good agreement between REMS and the356

model. Thus, if correct, the higher RH and vmr values in the REMS data suggest a wetter357

atmosphere in the late evening than in the model. This may be due to vapour diffusing into358

the regolith more slowly than the model predicts, or due to peak daytime vapour abundances359

being larger than in the model. However, the RH values at this time have large uncertainties,360

and so both the REMS RH and vmr values may be too high. A similar disagreement between361

model results and REMS vapour mixing ratios over the 17:00–00:00 period occurs in the 1D362
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Figure 10: Diurnal variation of water adsorbed onto regolith grains at the Curiosity rover location at
LS = 189◦. Results are shown for three simulations with different adsorption isotherms (see text for details).

simulations of Savijärvi et al. (2016).363

In terms of the spatial distribution of water in and around Gale crater, the results are364

similar in all the simulations that include water vapour exchange with the subsurface. It is365

largely just the amount of water vapour in the atmosphere that differs slightly. Thus, we use366

the results of the simulation with the J97 adsorption isotherm, along with those from the367

simulation with no regolith-atmosphere interaction, to look in more detail at the behaviour368

of vapour in and around Gale crater. First we describe the diurnal variation of the vapour369

distribution for the case of no regolith-atmosphere interaction, and then we see how diffusion370

into and out of the regolith affects the vapour distribution.371

4.2. The water distribution without regolith-atmosphere interaction372

Figure 11 shows the vapour distribution as a function of both latitude-altitude (panels373

a–d) and longitude-altitude (panels e–h) at LS = 189◦. These cross sections pass through the374

location of the Curiosity rover, which is marked with a grey triangle. The vapour distribution375

varies on different sols, due to the transport of vapour from regions surrounding Gale crater,376

but the behaviour shown in Figure 11 is representative of the sols in this period. As well as377

these cross-sections, Figure 12 shows the temperature and wind in the lowest model layer378

at six different times of day.379

Vapour is generally well mixed in the lowest few kilometres of the atmosphere by late380

afternoon (Figure 11a,e). At this time, the large-scale flow in the lowest few kilometres of381

the atmosphere over the dichotomy boundary is upslope in a deep layer, i.e. from north to382

south (see Figure 13a). This is in the same direction as the mean surface winds in the lower383

branch of the Hadley cell at this time (Figure 14a). As such, the meridional flow within384

Gale crater is also generally in a southwards direction (Figure 11a, Figure 12a). However,385

the upslope winds on the northern crater wall are opposite to the generally southwards flow,386

and result in a convergence boundary on the north crater rim (Figure 12a). The wind in the387

zonal direction is weaker than in the meridional direction. At the east and west crater walls388

there are mesoscale upslope flows, while the return flow, due to the conservation of mass,389

results in downslope winds over Mount Sharp (Figure 11e).390
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Figure 11: Water vapour distribution at four different local times, as a function of (a–d) latitude and altitude,
and (e–h) longitude and altitude. Vectors show the magnitude and direction of the wind in the plane of
the image. Results are from a simulation with no regolith-atmosphere interaction, and are for LS = 189◦.
The local times correspond to those at the Curiosity rover location (grey triangle). White shading shows
topography.

By midnight the atmosphere has cooled, and downslope (katabatic) flows develop more391

widely (Figure 12c). As the large-scale flow across the dichotomy boundary has advected392

drier near-surface air from the north towards Gale crater, the transport of vapour downslope393

is larger on the southern crater wall (Figure 11b). In the zonal direction, the near-surface394

vapour abundance to the east of Gale crater has been reduced by surface ice formation,395

so downslope winds on the western crater wall transport more vapour to the crater floor396

(Figure 11f).397

By 06:00 the large-scale flow across the dichotomy boundary has changed direction, and398

is now flowing downslope near the surface, from south to north (Figure 13d), which is in399

the opposite direction to the mean surface winds in the lower branch of the Hadley cell400

(Figure 14a). These winds occur over a much smaller vertical range (∼1 km compared to401

3–4 km at 18:00). As the slope of the southern crater wall is in the same direction as the402

slope of the dichotomy boundary (and hence the same direction as the prevailing wind)403

the downslope flows are strongest here (Figure 11c, Figure 12d). However, the near-surface404

vapour abundance has been depleted due to the formation of surface ice around the rim of405

the crater, so little vapour is transported into the crater. Additionally, as noted by Rafkin et406

al. (2016), the air flowing down the crater walls tends to flow over the cold air on the crater407

floor. Near-surface vapour amounts at the base of the crater at 06:00 are around half their408

value at 17:00. The downslope winds continue in the zonal direction, with the formation of409
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Figure 12: Temperatures (shading) and winds (vectors) in the lowest atmospheric layer for 6 different times
of day at LS = 189◦. Note the temperature range changes with each plot. Grey contours show heights above
the areoid.

surface ice outside the crater again depleting the near surface of vapour (Figure 11g).410

At 08:00 there are still downslope flows on the southern crater wall (Figure 12e), but by411

10:00 the atmosphere has warmed and upslope flows develop (Figure 12f). By midday, these412

upslope flows advect relatively dry air from the crater floor up the sides of the crater, which413

then mixes into the atmosphere around the crater rim (Figure 11d,h). At this time, the414

large-scale dichotomy boundary flow is again upslope, from north to south, and as such the415

mesoscale upslope flow on the southern wall of Gale crater is stronger than on the northern416

crater wall. Daytime mixing continues, until the vapour distribution again resembles that417

in Figure 11a,e. The near-surface circulation at LS = 189◦ is in good agreement to that at418

LS = 180◦ in the work of Rafkin et al. (2016), and at LS = 151◦ in the work of Tyler and419

Barnes (2013).420
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Figure 13: Meridional winds along the dichotomy boundary at 135.7◦E (to the west of Gale crater); see
Figure 1. Results are shown for three different periods at local times of (a–c) 18:00, and (d–f) 06:00. A
positive wind speed occurs when the wind is blowing from south to north (i.e. downslope). Black contours
show topography.

4.3. The water distribution with regolith-atmosphere interaction421

We now look at the effect that including regolith-atmosphere interaction has on the422

water distribution, as this was shown in Section 4.1 to lead to better agreement with REMS423

RH and vmr data. Figure 15 shows results in the same format as Figure 11, but for the424

simulation using the J97 adsorption isotherm. The temperature, pressure and circulation are425

exactly the same between the runs both with and without regolith-atmosphere interaction, as426

vapour has little impact on the thermal structure of the atmosphere in the small abundances427

present.428

At 16:00 the vapour is well mixed in the lowest few kilometres (Figure 15a,e). By mid-429

night, the near-surface vapour abundance (particularly in the lowest few hundred metres)430

is reduced when including regolith-atmosphere interaction (compare Figure 15b,f with Fig-431

ure 11b,f). In the near-surface layer at the location of the Curiosity rover (at a height of432

∼2.7 m), the vapour mass mixing ratio is around 3.5 times smaller than when ignoring433

regolith-atmosphere interaction, with a value of ∼28 mg kg−1 (66 ppmv) compared to ∼100434

mg kg−1 (242 ppmv). The flux of vapour into the regolith is greater on the upper slopes of435

the crater walls, and decreases in magnitude while approaching the crater floor. This can436

be seen in Figure 16, which shows the flux of vapour out of the regolith (panels a–c) and the437

vapour mass mixing ratio at 40 m above the surface (panels d–f) for three different times of438

day.439

The flux at 00:00 is greatest on the southern crater wall, where vapour diffuses into the440
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Figure 14: Mean meridional circulation in the lower atmosphere over three 30-sol periods. Results are
from the GCM simulations used for the mesoscale initial and boundary conditions. Blue shading and
dotted contours represents anticlockwise circulation. Red shading and solid contours represents clockwise
circulation. White shading shows zonally-averaged topography.

regolith at a rate of 2–3 pr-µm sol−1 (Figure 16a). The flux is largest here at this time as441

the vapour values are large (see Figure 15b) and the near-surface winds are strong, resulting442

in increased turbulence. This can be seen in the parameterization of the flux of vapour from443

the surface to the atmosphere, which is determined via a balance of the fluxes at the regolith-444

atmosphere boundary: Fatm = −Freg. For the atmosphere, the flux is Fatm = ρkatm(q1− qb),445

where the subscript ‘1’ represents the first atmosphere layer, the subscript ‘b’ represents the446

regolith-atmosphere boundary, q is the water vapour mass mixing ratio in the atmosphere447

and ρ is the atmospheric density at the surface. The coefficient is given by katm = Ch|u|,448

where Ch is the wind-dependent scalar transfer coefficient and |u| is the magnitude of the449

near-surface wind (for full details see Steele et al., 2017). As the strength of the wind450

increases, near-surface turbulence mixes the vapour distribution, resulting in larger vapour451

abundances close to the surface than would be the case for stable conditions. This allows452

more vapour to diffuse into the regolith.453

Vapour continues to diffuse into the regolith during the night, with the near-surface454

atmosphere above the floor of Gale crater becoming increasingly depleted of vapour. The455

majority of the vapour becomes adsorbed onto regolith grains. By 06:00 the vapour mass456

mixing ratio at the location of the Curiosity rover is 20 mg kg−1 (50 ppmv), compared to 40457

mg kg−1 (100 ppmv) when ignoring regolith-atmosphere interaction (see Figure 9b). As the458

dichotomy boundary flow at this time is downslope, i.e. from south to north, more vapour is459

advected into Gale crater down the southern crater wall (Figure 15c). Downslope winds on460

the southern wall of the crater have strengthened compared to at 00:00, so there is increased461

vapour flux into the regolith (Figure 16b). As Curiosity is located at the base of Mount462

Sharp it is affected by nighttime downslope flow, but this flow is relatively weak, and vapour463

abundances above Mount Sharp are relatively small during the night (see Figure 15). As464
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Figure 15: As Figure 11, but for a simulation with regolith-atmosphere interaction using the J97 isotherm.

such, little vapour is transported in this flow, and the vapour abundance at the Curiosity465

location is only a few percent larger than that a few kilometres away at the lowest point of466

the crater floor. This difference increases to ∼20% at 40 m above the surface (Figure 16e).467

Vapour continues to diffuse into the regolith until around 09:00, when the rapidly-468

warming atmosphere and subsurface results in a large flux of vapour out of the regolith469

(due to desorption of vapour from the regolith grains). By 12:00, this flux is strongest on470

the southern crater wall (Figure 16c) as the relatively strong upslope winds act to trans-471

port the vapour away, allowing more to diffuse out of the regolith. By midday, vapour is472

diffusing out of the regolith at a rate of around 4–5 pr-µm sol−1. This results in a three-473

layer structure in the vapour distribution (Figure 15d,h). Close to the surface there are474

relatively large vapour abundances caused by the vapour diffusing from the regolith. This475

vapour is generally in the lowest tens of metres, but can extend to a few hundred metres476

at convergence boundaries (such as to the west of Gale crater in Figure 15h). Above this477

is a drier layer, extending a few kilometres in height, caused by the advection of dry air478

from within the crater by the daytime upslope winds. Above the drier layer, the vapour479

values increase again. Anabatic winds have previously been shown to transport vapour from480

the base of Olympus Mons to above the caldera (Michaels et al., 2006; Spiga and Forget,481

2009), but while the transport mechanism here is the same, the source of the vapour is not.482

Here, the vapour has diffused out of the regolith during the day (due to desorption in the483

warmer daytime temperatures), rather than pre-existing at lower levels. The three-layer484

structure remains for the next few hours, until eventually daytime mixing brings the vapour485

distribution back to that seen at 16:00 in Figure 15a,e).486
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Figure 16: (a–c) Water vapour flux out of the regolith, and (d–f) water vapour mass mixing ratios at an
altitude of 40 m, for three different local times of day. Data are from the simulation using the J97 adsorption
isotherm, and are for LS = 189◦. Vectors show the wind in the lowest model layer, and grey contours show
heights above the areoid. Local times correspond to those at the location of the Curiosity rover (white
triangles).

Between 00:00–12:00 there is little cloud cover, but from 12:00 clouds begin to build,487

and are thickest between around 15:00–20:00 (Figure 17). Infrared absorption-only optical488

depths vary between 0.03–0.08. As the clouds are present during the day, they have the489

ability to reduce surface temperatures through a reduction in the radiation reaching the490

ground (though in these simulations clouds are not radiatively-active). However, Wilson491

et al. (2007) showed that clouds with infrared absorption-only optical depths of ∼0.2–0.4492

are required to reduce daytime surface temperatures by 2–5 K. The cloud optical depths493

here are at least 2.5 times lower than this, and hence little reduction in surface temperature494

is expected.495

There is typically a single cloud layer present, with its base varying between 30–40 km,496

depending on time of day. There is also sometimes a two-layer structure visible, with the base497

of the upper layer at around 40 km, and a lower layer ∼5 km thick centred around 30 km.498
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Figure 17: (a–d) Latitude-altitude, and (e–h) longitude-altitude cross sections showing ice clouds (shaded)
and temperature (coloured contours) at four different times of day. Black contours show topography. Results
are from a simulation with regolith-atmosphere interaction using the J97 adsorption isotherm, and are for
LS = 189◦. The local times correspond to those at the Curiosity rover location (grey triangle).

Such a two-layer structure has been observed in NavCam images from the Curiosity rover,499

as well as in MCS observations (Moores et al., 2015). The ice particles are generally ∼2–4500

µm in size, and are consistent with values determined from spacecraft observations (Clancy501

et al., 2003; Glenar et al., 2003; Madeleine et al., 2012). The peak opacities of the clouds502

(infrared extinction opacity per kilometre) range from 10−2 between 20–30 km, to 10−3.5–503

10−2.5 at ∼40 km. While these clouds are likely to have little effect on surface temperatures,504

they have the ability to locally heat the atmosphere both at and above cloud-forming height505

by ∼5–15 K sol−1 (Steele et al., 2014a), which may have an impact on circulation patterns506

over Gale crater.507

While the discussion above has focused on Gale crater, the same features (nighttime508

diffusion of vapour into the regolith on crater walls, dry nighttime crater floors and diffusion509

out of the crater walls during the morning and afternoon) are ubiquitous for the different510

sized craters in the mesoscale domain. This can be seen in Figures 18 and 19, which show511

the flux of vapour out of the regolith and the vapour mass mixing ratio at 100 m above the512

surface respectively, at eight local times of day. In the afternoon, there are increased vapour513

abundances in the afternoon, corresponding to the locations of crater walls, hilltops and514

other topographic features (Figure 19b,c). These increases are caused by vapour diffusing515

out of the regolith (Figure 18b,c), being advected up crater walls by upslope winds, and then516

being transported upwards at convergence boundaries. Eventually this vapour is advected517

by the large-scale horizontal winds (Figure 19d), which in this case are northerly winds518
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flowing up the dichotomy boundary. During the late evening and night it can be seen that519

crater floors become drier than their surroundings (Figure 19e–h). This is due to diffusion520

of vapour into the regolith on the crater floors themselves, and a lack of vapour being521

transported in downslope flows, as the water diffuses into the regolith along the crater walls522

and becomes adsorbed onto the regolith grains (Figure 18e–h).523

In terms of the overall loss or gain of subsurface water, Figure 20 shows the change in524

the total subsurface water content over the last five sols of the simulations for each period.525

Looking at the results for southern hemisphere early spring (Figure 20a) it can be seen that526

in general mass is being lost from the subsurface. This is because the regolith was initialised527

with output from a GCM, which cannot account for the small-scale circulation patterns and528

temperature variations resolved by the mesoscale model, which affect transport of water in529

and out of the regolith. The mass loss is greatest on crater floors as little water is available530

here during the night to diffuse into the regolith (see Figures 18 and 19). The maximum mass531

loss over five sols is ∼0.15 pr-µm, which is around one hundredth of the atmospheric water532

vapour column value at this time. As noted earlier, this vapour diffuses out of the regolith533

during the afternoon, and is transported away by the wind. Thus, this should not affect the534

comparison with REMS RH and vmr data, which is focussed on nighttime measurements.535

Regions around the rims of craters, and around the raised topographic features to the536

north and east of Gale crater, experience either smaller amounts of mass loss, or mass gain.537

These are the regions where strong nighttime winds increase the flux of vapour into the538

regolith. This vapour diffuses down to depths of ∼5–10 cm, and becomes adsorbed onto539

the regolith grains. At these depths, the diurnal temperature variation is greatly reduced540

compared to at the surface, and so less of the water diffuses back to the surface during the541

day, and the mass of water at depth increases.542

Regolith-atmosphere interaction also has an effect on the formation of surface ice. Fig-543

ure 21 shows the maximum depth of surface ice, in microns, over the course of one sol at544

LS = 189◦. When regolith-atmosphere interaction is ignored (Figure 21a) surface ice forms545

in most locations during the night, except those with relatively high thermal inertia values546

(> 315 tiu). In these regions the nighttime temperatures are ∼10 K warmer than in the547

surrounding areas, which prevents the formation of surface ice. When regolith-atmosphere548

interaction is included, the depletion of vapour in the near-surface atmosphere (through549

diffusion into the regolith and adsorption onto regolith grains during the evening and night)550

greatly reduces the extent of surface ice cover (Figure 21b). Now there is no surface ice on551

the floor of any craters, though ice does form in the early morning on the eastern walls of552

the Lasswitz and Wien craters (to the south of Gale crater). The main area of surface ice is553

to the east of Gale crater, as vapour values are higher in this region (see Figure 3a–c). The554

distribution of subsurface ice is also limited to a few locations to the south and east of Gale555

crater (Figure 21c). Only small values of ice form at depths of a few millimetres below the556

surface, and sublime completely during the day.557
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Figure 18: Diurnal variation of the flux of vapour out of the regolith in an area centred on Gale crater.
Results are shown over one sol at LS = 189◦. The local times are given for the location of the Curiosity
rover. White shading shows where surface ice has formed, which stops vapour transport between the regolith
and atmosphere.
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Figure 19: As Figure 18, but for the diurnal variation of water vapour at 100 m above the surface.
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Figure 20: Change in the total subsurface water mass (in precipitable microns) over the last five sols of
each simulation. Results are shown for three different periods. The white triangle shows the location of the
Curiosity rover, while grey contours show topography.

5. The water cycle in southern hemisphere late summer558

5.1. Atmospheric circulation around Gale crater559

By late summer in the southern hemisphere (LS = 319.8–325.0◦) peak daytime tempera-560

tures are around 8–10 K lower than at LS = 187.8–193.1◦, while nighttime temperatures are561

only around 2 K cooler. Water vapour columns are around half the early spring value. Look-562

ing at Figures 13 and 14, it can be seen that there are similarities between the large-scale563

meridional circulations in early spring and late summer. During the day, the near-surface564

meridional winds are upslope across the dichotomy boundary (Figure 13a,b), while at night565

they are downslope (Figure 13d,e), in the opposite direction to the lower branch of the566

Hadley cell (Figure 14b). As the mean meridional circulation in late summer is stronger567

than in early spring due to the dustier atmosphere (Figure 14a,b), the nighttime regional568

downslope winds are weaker.569

Figure 22 shows the temperature and wind in the lowest model layer at six different times570

of day at LS = 321◦. Compared with early spring (Figure 12) there are many similarities in571

the near-surface circulation. By the afternoon, winds around Gale crater are blowing in a572

southerly direction, with upslope flows along the crater walls being stronger to the south of573

the crater (Figure 22a). On the north west walls of the crater, the upslope flows meet the574

north-westerly wind, resulting in a convergence boundary. As night approaches, downslope575

flows develop, which are initially strongest on the northern crater wall (Figure 22b). As the576

nighttime wind down the dichotomy boundary is weaker than in early spring, the downslope577

crater wall winds are also weaker (Figure 22c–d). This is particularly noticeable at 08:00,578

where downslope winds continue on the southern crater wall in early spring (Figure 12e),579

but in late summer upslope flows are beginning to develop (Figure 22e). The near-surface580
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Figure 21: (a) Maximum depth of surface ice over the course of one sol from a simulation without regolith-
atmosphere interaction. (b,c) Maximum depth of surface ice and maximum mass of subsurface ice over the
course of one sol from a simulation with regolith-atmosphere interaction using the J97 adsorption isotherm.
Results are shown for LS = 189◦. Black contours show topography, and white shading shows locations where
no surface or subsurface ice forms at any time of day.

circulation at LS = 321◦ is in broad agreement to that at LS = 0◦ in the work of Rafkin581

et al. (2016). As the circulation patterns are similar in early spring and late summer, the582

diurnal variation of water in and around Gale crater is similar. As such, here we look more583

briefly at the water cycle in late summer.584

5.2. Comparison with REMS measurements585

Figure 23 shows a comparison of RH and water vapour vmr between REMS measure-586

ments and the model output. The corresponding temperature and pressure comparisons are587

shown in Figure 7d–f, where it can be seen that there is generally good agreement between588

the model and REMS data. As in early spring, the simulation with no regolith-atmosphere589

interaction appears too wet between around 00:00–09:00 (Figure 23a). Also, the vmr values590

do not show the same diurnal variation as the REMS measurements (Figure 23b), remaining591

fairly constant throughout the day, except for decay to ground frost between 04:00–06:00,592

and a morning peak related to surface ice sublimation. A better agreement with the REMS593

measurements is achieved when including the regolith diffusion model, with the J97 isotherm594

again providing the best match in RH between 06:00–10:00. As was the case for early spring,595

there is general agreement in the 00:00–06:00 vmr values between REMS measurements and596

model output, but from 18:00–00:00 the model’s vmr values are too low. As noted earlier,597

this could be due to the near-surface being wetter in reality than in the model, or the REMS598

values could be too high, due to the large uncertainties at this time.599

5.3. The water cycle around Gale crater with regolith-atmosphere interaction600

Figure 24 shows latitude-altitude (panels a–d) and longitude-altitude (panels e–h) cross601

sections passing through the location of the Curiosity rover, showing the vapour distribution602
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Figure 22: As Figure 12, but for LS = 321◦.

from the simulation using the J97 isotherm. As before, the vapour distribution varies on603

different sols, but the behaviour shown in Figure 24 is representative of this period. At 16:00604

(Figure 24a,e), the distribution is similar in the simulations with and without the regolith605

diffusion model, though the simulation using the J97 isotherm has larger near-surface vapour606

abundances around the rim of Gale crater due to diffusion from the regolith. By midnight607

(Figure 24b,f) downslope flows have developed widely. These are strongest on the southern608

wall of the crater, and hence diffusion into the regolith is largest here, with a peak rate of609

around 1.5 pr-µm sol−1 (Figure 25a). This rate is less than in early spring (see Figure 16a),610

as the atmospheric vapour abundance is lower.611

By 06:00 the large-scale flow across the dichotomy boundary has changed direction, and612

is now flowing downslope, from south to north (Figure 13e). However, this flow is weaker613

than in early spring (compare Figure 12d and Figure 22d), and hence the downslope flow on614

the southern crater wall is not as enhanced (Figure 24c). As such, the flux of vapour into615

the regolith on the southern crater wall is less than it was at midnight (Figure 25b) whereas616
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Figure 23: As Figure 9, but for LS = 319.8–322.7◦.
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Figure 24: As Figure 15, but for LS = 321◦.

in early spring it is larger (Figure 16b). Although the flux is reduced, little of the vapour617

in the downslope flows reaches the crater floor. In the near-surface layer at the location of618

the Curiosity rover (at a height of ∼2.7 m), the vapour mass mixing ratio is around 3 times619

smaller than when ignoring regolith-atmosphere interaction, with a value of ∼13 mg kg−1
620

(32 ppmv) compared to ∼41 mg kg−1 (100 ppmv).621

Vapour continues to diffuse into the regolith until around 09:00, when the rapidly-622

warming atmosphere and subsurface results in a large flux of vapour out of the regolith623

(due to desorption of vapour from the regolith grains). As in early spring, this flux is624

strongest on the southern and eastern crater walls as the strong upslope winds transport625

the vapour away, allowing more to diffuse out of the regolith. By midday the flux out of626

the regolith in these regions is around 2.5–3 pr-µm sol−1 (Figure 25c). This is lower than627
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Figure 25: As Figure 16, but for LS = 321◦.

in early spring, as the flux into the regolith during the night was lower. Again, the flux out628

of the regolith results in a three-layer structure in the vapour distribution (Figure 24d,h)629

with relatively large vapour values in the lowest few hundred metres, a drier layer around630

1–2 km deep above, and then increased vapour amounts above. When regolith interaction is631

not taken into account, there is only a two-layer structure present, as the large near-surface632

vapour abundances are not present. Additionally, the dry layer is less dry when ignoring633

regolith interaction, as the air within the crater at night has a larger vapour abundance.634

Unlike early spring, there is little cloud cover in the mesoscale domain during late summer635

due to the warmer atmospheric temperatures. Surface ice is also reduced in terms of both636

spatial coverage, and depth. When ignoring regolith interaction, peak nighttime ice depths637

to the east of Gale crater are around 0.3 µm, compared to 0.8 µm in early spring. Inclusion638

of regolith interaction causes a large reduction in surface ice formation, as it did in early639

spring, with ice only present to the north and east of Gale crater, with thicknesses of around640

0.1 µm. Subsurface ice is almost non-existent, with only a couple of patches of ice in the641
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upper few millimetres of regolith to the east of Gale crater.642

In terms of the overall loss or gain of subsurface water, Figure 20b shows the change643

in the total subsurface water content over the last five sols of the simulation with the J97644

isotherm. The results are similar to the early spring case, where in general mass is being lost645

from the subsurface, though certain locations on topographic slopes are gaining mass. As646

noted earlier, this is because the initial regolith water distribution came from GCM output,647

which cannot account for the small-scale circulation patterns and temperature variations648

resolved by the mesoscale model.649

6. The water cycle during aphelion650

6.1. Atmospheric circulation around Gale crater651

Finally we look at the water cycle around aphelion season (LS = 68.3–72.3◦). Compared652

to late summer, temperatures are around 15–20 K lower, and water vapour column values653

have roughly halved. The meridional circulation around aphelion is different to the two654

periods considered previously. There are still upslope winds across the dichotomy boundary655

during the day, and downslope winds at night (Figure 13c,d), but now the lower branch of656

the Hadley cell is transporting air downslope across the dichotomy boundary (Figure 14c).657

As such, the upslope daytime flow is weaker, and downslope nighttime flow is stronger, than658

in the previous two periods.659

Figure 26 shows the temperature and wind in the lowest model layer at six different times660

of day at LS = 69◦. The near-surface circulation resembles that in early spring (Figure 12)661

more closely than that in late summer (Figure 22) due to the stronger nighttime downslope662

flows across the dichotomy boundary. This results in strong downslope winds on the southern663

and western crater walls from 21:00–08:00 (Figure 26c–e). During the afternoon, the weaker664

upslope flows across the dichotomy boundary result in weaker upslope flows on the southern665

wall of the crater (Figure 26a,f) compared to the other periods. The near-surface circulation666

at LS = 69◦ is in broad agreement to that at LS = 90◦ in the work of Rafkin et al. (2016).667

6.2. Comparison with REMS measurements668

Figure 27 shows a comparison of RH and water vapour vmr between REMS measure-669

ments and the model output. The corresponding temperature and pressure comparisons670

are shown in Figure 7g–i. At this time, peak RH values are ∼35%, which is larger than in671

the two periods considered previously (∼15% in early spring and ∼10% in late summer).672

During the early morning (00:00–06:00) all of the simulations produce RH and vmr results673

comparable to the REMS measurements, even the simulation with no regolith-atmosphere674

interaction. REMS measurements suggest that surface frost could have formed during this675

period (Mart́ınez et al., 2015), as it did in the simulation with no regolith-atmosphere in-676

teraction. However, diffusion of vapour into the regolith is required to avoid the RH ‘jump’677

seen at 08:00 in the simulation without regolith-atmosphere interaction, which is caused by678
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Figure 26: As Figure 12, but for LS = 69◦.
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Figure 27: As Figure 9, but for LS = 68.3–70.5◦.
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Figure 28: As Figure 15, but for LS = 69◦.

the sublimation of surface ice. The J97 isotherm provides the best match to the decreasing679

RH between 06:00–12:00. Between 18:00–00:00, the simulations with regolith interaction680

show an increase in RH comparable to the REMS data, though the RH values are around681

4% too low (and the vmr values are thus also too low). This behaviour is similar to that seen682

in the previous two periods, and could be due to the near-surface atmosphere in the model683

being too dry in the late evening, or the REMS measurements being larger than reality.684

6.3. The water cycle around Gale crater with regolith-atmosphere interaction685

Figure 28 shows latitude-altitude (panels a–d) and longitude-altitude (panels e–h) cross686

sections passing through the location of the Curiosity rover, showing the vapour distribution687

from the simulation using the J97 isotherm. Unlike the previous two periods (early spring688

and late summer) the vapour distributions are similar in the simulations with and without689

regolith interaction. This is due to the lower temperatures at this time of year. At night,690

the cold temperatures result in widespread ice formation (see Figure 29), which reduces the691

near-surface vapour values and hence reduces the flux of vapour into the regolith. During692

the day, peak temperatures are around 25–35 K lower than in the other two periods, which693

results in less diffusion of vapour from the regolith, as less vapour is desorbed from the694

regolith grains.695

At 16:00 (Figure 28a,e) vapour is generally well mixed in the atmosphere. By midnight696

(Figure 28b,f) downslope flows have developed widely. These are strongest on the southern697

wall of the crater, and hence diffusion into the regolith is largest here, with a peak rate of698

around 1 pr-µm sol−1 (Figure 30a). In the simulation with no regolith-atmosphere interac-699
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Figure 29: As Figure 21, but for LS = 69◦.

tion, similar behaviour as in Figure 28b,f is seen, but the reduction in near-surface vapour700

is caused by ice formation on the surface, rather than diffusion into the regolith. By 06:00,701

extensive surface ice has formed in all simulations. When regolith-atmosphere interaction is702

ignored, surface ice forms everywhere (Figure 29a), which results in depleted near-surface703

vapour values. When including the regolith diffusion model, no surface ice forms on the floor704

of Gale crater (Figure 29b), and the low vapour values here are due to diffusion into the705

regolith and adsorption onto regolith grains. The thickness of the surface ice is a few tenths706

of a micron, which is in agreement with the values determined from REMS measurements707

(Mart́ınez et al., 2015).708

Once surface ice has formed, diffusion into the regolith is stopped (Figure 30b). Thus,709

the subsurface ice deposits which form (Figure 29c) do so between around 22:00–06:00.710

This subsurface ice rapidly disappears at around 07:00, as temperatures begin to rise. By711

midday, upslope flows have developed on the walls of Gale crater, with the strongest winds712

on the southern crater wall. The flux out of the regolith in these regions is around 1.5–2713

pr-µm sol−1 (Figure 30c). This results in a three-layer structure in the vapour distribution714

(Figure 28d,h), though not as pronounced as in the other seasons (as less vapour diffused into715

the regolith during the night). A three-layer structure is also seen in the simulation without716

regolith interaction, with large near-surface vapour abundances caused by the surface ice717

deposits subliming.718

At LS = 69◦, cloud cover is much more extensive than at LS = 189◦ due to the colder719

temperatures, with clouds present at all times of day. The cloud formations have slight720

variations depending on the sol, but those shown in Figure 31 are representative of the721

general behaviour. Peak optical depths occur between 21:00 and midnight depending on722

the sol, with the infrared absorption-only optical depths varying between 0.1–0.15. As was723

the case at LS = 189◦, the optical thickness of the clouds is not large enough to lead to724

any appreciable daytime cooling of the surface. The clouds generally have a greater vertical725
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Figure 30: As Figure 16, but for LS = 69◦.

extent than those at LS = 189◦. In the late evening and early morning, a two-layer structure726

is seen, with one cloud layer between 10–25 km, and another with a base at around 30 km.727

(Figure 31a,e). Near-surface ‘fogs’ also form in the early morning in locations to the south728

and east of Gale crater, with ice particles ∼5–8 µm in size. As the morning progresses the729

cloud splits into three layers, with a thicker cloud at around 10 km, and thinner clouds above730

at around 20 km and 30 km (Figure 31c,g). By late afternoon, the lower cloud layer has been731

affected by wave activity associated with the topography around Gale crater (Figure 31d,h).732

As evening progresses, the cloud layers thicken again, and resemble those in Figure 31a,e.733

The peak opacities of the clouds (infrared extinction opacities per kilometre) range from734

10−1.5 at 10 km to 10−4.5 at 40 km. These opacities are potentially large enough for heating735

of ∼8 K sol−1 during the day, and cooling of ∼2–4 K sol−1 at night both at and above736

cloud-forming height (Steele et al., 2014a). The heating rates are lower than at LS = 189◦,737

as the thickest clouds form lower in the atmosphere where the density is larger.738

In terms of the loss or gain of subsurface water, Figure 20c shows the change in the total739
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Figure 31: As Figure 17, but for LS = 69◦.

subsurface water content over the last five sols of the simulation with the J97 isotherm.740

Unlike the early spring and late summer cases, where in general mass is being lost from741

the subsurface, there are large areas where the subsurface water mass is increasing, which742

is particularly noticeable on crater walls. This mass corresponds to increases in adsorbed743

water at depths of 2–3 cm, where peak temperatures, which range from 230–240 K, are not744

large enough to cause a loss of water to the surface through desorption. Away from the745

crater walls, the mass gain/loss is typically around 0.025 pr-µm, which is 200 times smaller746

than the typical atmospheric water vapour column values at this time.747

7. Conclusions748

We have performed mesoscale simulations of the water cycle in a region around Gale749

crater, both with and without regolith-atmosphere interaction. While not covering exactly750

the same periods, the near surface circulations in our simulations around LS = 189◦, LS =751

321◦ and LS = 69◦ are in broad agreement with those of Rafkin et al. (2016) at LS = 180◦,752

LS = 0◦ and LS = 90◦ respectively, and that of Tyler and Barnes (2013) at LS = 151◦.753

When comparing our results with measurements from the REMS instrument on board the754

Curiosity rover, there is good agreement in terms of pressure and temperature, while the755

broad wind patterns are also captured. In terms of the water cycle, it is clear that diffusion756

of vapour in and out of the regolith, and adsorption/desorption onto regolith grains, needs757

to be taken into account in order to match the diurnal variation in relative humidity, as was758

the case in the 1D simulations of Savijärvi et al. (2016). When ignoring regolith interaction,759

the water vapour volume mixing ratio displays a decline after midnight with a morning760

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

peak, but is then fairly constant for the remainder of the day. This is due to the formation761

and sublimation of surface ice, and is similar to the behaviour seen in some Phoenix TECP762

measurements (Zent et al., 2016). The best agreement between the model and REMS occurs763

when using the adsorption isotherm from Jakosky et al. (1997).764

In all of the three periods considered (covering southern hemisphere early spring, late765

summer and around aphelion) vapour is generally well mixed within Gale crater by late766

afternoon. Throughout the evening and night, flows down the crater walls and down Mount767

Sharp transport vapour into the crater. When including regolith-atmosphere interaction,768

the amount of vapour reaching the crater floor is reduced due to the diffusion of vapour769

along the crater walls, where it becomes adsorbed onto regolith grains. At the location of770

the Curiosity rover, the inclusion of regolith-atmosphere interaction reduces the nighttime771

vapour mass mixing ratios by factors of 2 and 3 during southern hemisphere early spring772

and late summer respectively. Around aphelion, nighttime vapour values at the location773

of the Curiosity rover are similar in simulations with and without regolith interaction. In774

the simulations without regolith interaction, the reduction of near-surface vapour at night775

is caused by the formation of surface ice, rather than diffusion into the regolith.776

The transport of vapour into Gale crater is affected by the atmospheric flow over the777

dichotomy boundary. In the evening the regional wind blows up the dichotomy boundary778

(from north to south), and as the northern wall of Gale crater slopes downwards in the779

direction of this wind, the downslope winds are initially stronger on the northern crater780

walls. These winds transport vapour from above the rim of Gale crater, and hence the flux781

of water into the regolith is initially largest on the northern crater wall. By early morning782

the direction of the dichotomy boundary flow has reversed, and now the southern wall of783

Gale crater slopes downwards in the direction of the wind, leading to larger fluxes of water784

into the regolith here. As Curiosity is located at the base of Mount Sharp it is affected785

by the nighttime downslope flow, but this flow is relatively weak, and vapour abundances786

above Mount Sharp are relatively low. As such, the vapour abundance at the Curiosity rover787

location is only a few percent larger than that a few kilometres north at the lowest point of788

the crater floor. (This difference increases to ∼20% at 40 m above the surface.)789

During the morning and afternoon, desorbed vapour diffuses out of the regolith and is790

transported in winds up the crater walls. As the dichotomy boundary flow travels from791

north to south, winds are strongest towards the southern rim of the crater. These winds792

advect the diffusing vapour up the crater walls, allowing more vapour to be released from793

the subsurface and hence leading to larger fluxes here. The vapour at the crater rims can be794

transported a few hundred metres into the air at the locations of convergence boundaries,795

where it is eventually advected by the large-scale wind. However, as the regions of large796

vapour abundance at the crater rim are accompanied by regions of relatively low vapour797

abundance in a layer above (from the transport of dry air from within the crater) these798

features are almost undetectable when looking at the column vapour abundance. While the799
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discussion above has focused on Gale crater, similar phenomena appear at the majority of800

craters resolvable in the mesoscale domain.801

Regolith-atmosphere interaction limits the formation of surface ice in the Gale crater802

latitudes by reducing the nighttime vapour amounts in the lower atmosphere. In southern803

hemisphere early spring and late summer no surface ice forms on the floors of craters, though804

ice still forms in the early morning (between 05:00–07:00) on eastern crater walls (particularly805

in the Lasswitz and Wien craters) as these are ∼10 K colder at this time than the western806

crater walls. Surface ice is much more abundant around aphelion. At this time, the REMS807

relative humidity measurements between 00:00–06:00 can be matched by simulations with808

and without a regolith diffusion model. In the latter case, it is the formation of surface ice on809

the crater floor that reduces the near-surface vapour abundance, as opposed to adsorption810

and diffusion of vapour into the regolith.811

REMS measurements suggest that surface frost could only have formed between sols812

400–710 of the first 1000 sols of the mission (Mart́ınez et al., 2015). During this time, the813

estimated thermal inertias of the ground were ∼200 tiu. In the mesoscale model, the thermal814

inertias are larger at ∼290 tiu. In the simulations with regolith-atmosphere interaction,815

this larger thermal inertia value limits the formation of surface ice due to the resulting816

warmer model nighttime ground temperatures. However, the simulations around aphelion817

(corresponding to MSL sols 496–501) do show much more extensive surface ice, so a reduction818

in the thermal inertia in the mesoscale model would likely lead to frost formation on the819

floor of Gale crater, as suggested by the REMS measurements. Subsurface ice is sparsely820

distributed in southern hemisphere early spring and late summer, but is more extensive821

around aphelion. However, the ice amounts are small, only exist in the upper few millimetres822

of regolith, and completely sublime during the day.823
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