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Introduction: NorthWest Africa (NWA) 6963 is an 

intriguing new coarse grained Martian meteorite that 

further extends our sample collection both composition-

ally and texturally [1]. It was originally documented as 

a basaltic shergottite because the pyroxene composi-

tions [2, 3] and modal abundances are similar to Sher-

gotty. However, recent work reclassified NWA 6963 as 

an intrusive, gabbroic Martian meteorite because of the 

large oriented pyroxene crystals [1]. This investigation 

will focus on NWA 6963 pyroxene zoning profiles and 

interpreting igneous processes related to its crystalliza-

tion history.  

Compositional zoning of pyroxene crystals in basal-

tic shergottites have previously been interpreted for pe-

trology [5] and degrees of undercooling [4]. In addition, 

cooling rates of Martian magmas have been determined 

experimentally to constrain volcanic processes based on 

both pyroxene [e.g., 6] and olivine zoning [e.g., 7]. 

These studies interpret crystallization histories of basal-

tic shergottites and provide valuble insight of volcanic 

flows on Mars. However, igneous conditions below the 

Martian surface can now be constrained with instrusive 

shergottite NWA 6963. The crystallization history of a 

gabbroic shergottite is expected to differ from basaltic 

Martian meteorites due to the nature of instrusive and 

extrusive igneous conditions. Determining rates of cool-

ing from pyroxene zoning will further constrain the 

petrogenetic history of NWA 6963. This will provide 

new information on the nature of instrusive igneous pro-

cesses within the shallow Martian subsurface.  

Sample NWA 6963: NWA 6963 was found in 2011 

in Guelmim-Es-Semara, Morocco near the river Oued 

Touflit [3]. It contains pyroxene and maskelynite grains 

up to 5 mm in length [1]. NWA 6963 is composed of 65 

± 5 %  pyroxene (25 ± 5 % augite and 40 ± 5 % pigeon-

ite), 30 ± 5 % maskelynite, and other minor phases [1]. 

The two pyroxene phases are in equilibrium with a high 

crystallization temperature of ~1250 °C and low of 

~1000 °C [1]. Therefore, this sample is ideal for inves-

tigating pyroxene zoning profiles.  

Methods:  Major element analyses were done using 

a Cameca SX 100 electron microprobe at the Open Uni-

versity, UK. Measurement lines were analyzed across 

twelve pyroxene grains using standard measurement 

conditions (20 kV, 20 nA; calibration against a standard 

set of minerals). A 1 μm spot size was used and each 

measurement was spaced ~5 ± 1 μm apart. Lines were 

comprised of 40 to 120 measured points depending on 

grain size. This method produced precise zoing profiles 

used to interpret NWA 6963 petrogenetic history. Meas-

urements too close to the edge of grains, melt inclusions, 

sulfides, fractures, or alteration were removed from zon-

ing profiles. Outliers were identified by obvious 

changes in bulk chemisty, poor oxide weight totals, and 

visual inspection of back scatter electron (BSE) images. 

Element maps of three pyroxene grains were produced 

to better interpret zoning profiles. 

Trace elements have recently been analyzed by laser 

ablation-ICPMS at the Open University, UK. The data 

is currently being reduced to further interpret pyroxene 

zoning profiles in NWA 6963. 

Pyroxene Geochemistry:  Major element data from 

this study and others show pyroxene chemistry to be au-

gites and pigeonites [2,1]. Pyroxene grains in NWA 

6963 have complex zoning profiles with step-function 

type patterns (Fig. 1). Some grains have sharp steps in 

composition while others are slightly smoothed out. 

None of the zoning profiles follow a simple decreasing 

or parabolic pattern as would be expected from con-

tinous in situ crystallization [8].  

 

 
Figure 1: Pyroxene zoning profile in NWA 6963. Meas-

urement line correlates with Fig. 2. 

Pyroxene Mg# (MgO wt% / (MgO wt% + FeO wt%) 

values range from 0.56 to 0.26 with an average of 0.42. 

Pyroxenes in NWA 6963 have Mg-rich cores and Fe-

rich rims similar to basaltic shergottites [5, 9]. SiO2, 

TiO2, and Cr2O3 wt% oxides mimick zoning trends of 
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MgO with concentrations decreasing from core to rim. 

CaO, Al2O3, and MnO wt% oxides are evenly distrib-

uted throughout each grain.  

Element and BSE maps: Element maps and BSE 

images were taken of pyroxene grains. Interpreting 

these maps provides additional insight to major element 

data lines across pyroxene grains. Examination of BSE 

images show dark areas across grains which correlate 

with the highest relative Mg#s.  

Pyroxene element maps reveal exosolution lamallae 

of Ca and Fe in sections of each grain. Lamallae are dis-

continuous and appear slightly wavy throughout the py-

roxene grains. Minor offset in lamellae is likely due to 

shock [4]. Zoning profile lines were carefully selected 

to best avoid exsolution lamellae and avoid the influ-

ence of secondary shock effects.  

 
Figure 2: Element map showing Ca composition across 

a pyroxene grain. Exsolution lamallae can be seen in 

the lower right side of the grain.  

Disscussion: Pyroxene zoning profiles in NWA 

6963 have step-function patterns, which suggests multi-

ple phases of cooling recorded in these grains. Unlike 

volcanic pyroxenes, intrusive minerals are not extruded 

and do not cool as quickly. Intrusive igneous conditions 

lead to different grain zoning and crystallization histo-

ries. Flat zoning profiles are interpreted to represent a 

time of very slow cooling and perhaps a long period of 

equilibrium between the grain and magma. Zoning pro-

file steps or jumps suggest relatively faster cooling rates 

between slower crystal growth periods. However, some 

grains have less sharp steps which may be due to diffu-

sion of elements over time [10]. Previous work with nu-

merical modeling of initial step-function zoning has 

been attributed to changing boundary conditions along 

a grain, such as magma mixing [10]. However, NWA 

6963 represents a partial cumulate rock [1, 11] and the 

step-pattern, and differences between grains, is presum-

ably related to the accumulation process. Pyroxene zon-

ing profiles in NWA 6963 provide new information on 

magmatic conditions below the Martian surface at the 

time of NWA 6963 formation and the cumulate process. 

The addition of trace element analyses may further con-

strain unknowns from this study. 
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