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A Confident Information First Principle for
Parameter Reduction and Model Selection

of Boltzmann Machines
Xiaozhao Zhao, Yuexian Hou, Dawei Song, and Wenjie Li

Abstract— Typical dimensionality reduction (DR) methods are
data-oriented, focusing on directly reducing the number of
random variables (or features) while retaining the maximal
variations in the high-dimensional data. Targeting unsupervised
situations, this paper aims to address the problem from a
novel perspective and considers model-oriented DR in para-
meter spaces of binary multivariate distributions. Specifically,
we propose a general parameter reduction criterion, called
confident-information-first (CIF) principle, to maximally pre-
serve confident parameters and rule out less confident ones.
Formally, the confidence of each parameter can be assessed by its
contribution to the expected Fisher information distance within a
geometric manifold over the neighborhood of the underlying real
distribution. Then, we demonstrate two implementations of CIF
in different scenarios. First, when there are no observed samples,
we revisit the Boltzmann machines (BMs) from a model selection
perspective and theoretically show that both the fully visible BM
and the BM with hidden units can be derived from the general
binary multivariate distribution using the CIF principle. This
finding would help us uncover and formalize the essential parts
of the target density that BM aims to capture and the nonessential
parts that BM should discard. Second, when there exist observed
samples, we apply CIF to the model selection for BM, which is
in turn made adaptive to the observed samples. The sample-
specific CIF is a heuristic method to decide the priority order
of parameters, which can improve the search efficiency without
degrading the quality of model selection results as shown in a
series of density estimation experiments.

Index Terms— Boltzmann machine (BM), Fisher information,
information geometry (IG), parametric reduction.
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I. INTRODUCTION

RECENTLY, deep learning models (e.g., deep belief net-
works (DBNs) [1], stacked denoising autoencoder [2],

and deep Boltzmann machine (DBM) [3]) have drawn increas-
ing attention due to their impressive empirical performance
in various application areas, such as computer vision [4]–[6],
natural language processing [7], information retrieval [8], [9],
and other classification problems [10]–[12]. Despite of these
practical successes, there have been debates on the funda-
mental principle that governs the design and training of those
deep architectures. In most situations, searching the parameter
space for deep learning models is difficult. To tackle this
difficulty, unsupervised pretraining has been introduced as an
important process. In [13], it has been empirically shown that
the unsupervised pretraining could fit the network parameters
in a region of the parameter space that could well capture the
data distribution, thus alleviating generalization error of the
trained deep architectures.

From the density estimation point of view, the unsuper-
vised learning can be interpreted as an attempt to discover a
set of parameters for a generative model that describes the
underlying distribution of the observed data. In real-world
applications, the data sets are often high-dimensional and we
would need a model with high-dimensional parameter space
in order to effectively depict the underlying distribution. How-
ever, when the model becomes excessively complex, the model
would easily overfit the limited training data. This leads to the
issue of model selection, i.e., selecting a subset of parameters
in an attempt to create a model of optimal complexity for the
given data (a comprehensive review of model selection can be
found in [14] and [15]).

Targeting unsupervised situations, this paper aims to address
this issue by considering model-oriented dimensionality reduc-
tion (DR) in parameter spaces of binary multivariate distri-
butions. Since BMs are fundamental building blocks for a
number of widely used deep architectures (e.g., DBN and
DBM), we will focus on a formal analysis of the essential
parts of the target density (a multivariate binary distribution)
that the BM aims to capture in terms of model selection.

Here, finding the essential parts for the underlying distrib-
ution is the main objective of model selection, which has two
implications: 1) the choice of the number of free parameters
and 2) the choice of parameters given that number. The former
has been studied by classical model selection approaches
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(such as Akaike information criterion (AIC) [16] and Bayesian
information criterion (BIC) [17]), where the number of free
parameters is adopted as a model complexity measure. How-
ever, the model complexity is a complicated quantity which
should take into account the effectiveness of the selected free
parameters (e.g., as illustrated in Section 3.5.3 of Bishop’s
book [18] and the curvature measure [19] ). Therefore, the lat-
ter problem (i.e., choice of parameters given a model com-
plexity) is also of great significance for the model selection
purpose and should be thoroughly studied.

Various model selection procedures have been proposed
in the literature. In general, the model selection problem is
tackled by the combination of a model selection criterion
that allows comparison of alternative models and a search
strategy that allows us to find the optimal model according
to that criterion. Typical model selection criteria include
P-value [20] that is based on the hypothesis test of the likeli-
hood ratio [21] between two nested models; the information-
theoretic approaches that estimate the expected information
distance based on the empirical log-likelihood function when
a certain model is used [14]. For the latter, the expected
information distance can be estimated by different techniques,
such as bootstrap methods using bootstrap samples [22],
cross-validation methods that average the log likelihoods on
validation samples [23], and asymptotic methods aiming to
find an (asymptotically) unbiased estimator for the expected
information distance that takes into account the log likelihood
of the data under a candidate model and a penalty related to the
effective number of parameters in the model (the well-known
examples are the AIC that penalizes the number of parameters
at the rate of O(1) and BIC that penalizes at the rate of
O(log N), N is the number of samples). In addition to the
above model selection criteria, the L1 regularization methods
can also be used for the model selection purpose by jointly
minimizing the empirical error (or negative log likelihood)
and penalty [24], [25], where the parameters with significant
absolute values after training are selected to create the optimal
model.

As described earlier, the model selection problem in high-
dimensional parameter space can be divided into the choice of
the number of free parameters and the choice of parameters
given that number. The classical model selection criteria can
be seen as the integration of the two, formalized by a single
optimization objective.1 However, the existing model selection
approaches are insufficient when the model’s parameters do
not have a priority order, which is the case for BM.

First, the lack of an explicit priority order of parameters
would lead to serious efficiency issues. Assuming there exists
a universal parametric probabilistic model S (with K free
parameters) that is general enough to represent all system phe-
nomena. Consequently, there exist (2K ) candidate submodels,
corresponding to different choices of parameters. When K is
large, it is computationally intractable to exhaustively test all
submodels in classical model selection methods. By using a

1For example, AIC [16] aims to reach a tradeoff between the model
complexity and its fitness to the sample data by minimizing the equation
AIC = −2 log L + 2k, where log L is the maximum log likelihood and k is
the number of the selected parameters.

stepwise greedy search strategy [26], the number of tested
submodels can be reduced to O(K 2), which is often time-
consuming in practice. Although L1 regularization could avoid
the heavy combinatorial search, the regularization coefficient
needs to be determined through cross validation, which may
also be time-consuming in practice.

Second, for BM, the lack of an explicit priority order of
parameters would lead to a comparison among nonnested
models. For P-value, since the likelihood ratio tests exist only
for nested models, the tests of hypotheses within a data set are
not independent (called multiple testing problem). As a result,
it is difficult to make inferences [26]. For information criteria,
there exist considerable controversies about their applicability
for nonnested models. Burnhan and Anderson [26] argued that
the information criteria make no assumptions about nested
candidate models and the order in which the information
criterion is computed over the set of models is not relevant,
while Ripley [27] stated that the differences in AIC for pairs
of nested models can be much more precisely estimated than
those for some nonnested pairs, and the sampling error can
make comparisons of AIC meaningless unless the differences
are large.

In summary, although the classical methods have demon-
strated a sound theoretical basis for choosing suitable
model complexity, they suffer from limitations in parameter
choice when the model’s parameters do not have a priority
order, especially for models involving a large number of
parameters.

In this paper, we focus on addressing the parameter choice
problem, for density estimation on the parameter space of mul-
tivariate distributions under a given number of free parameters.
Note that the parameter reduction is related but different from
the traditional DR. Traditional DR techniques are often data-
oriented and focus on directly reducing the number of random
variables (features) while retaining the maximal variations in
the high-dimensional data, e.g., feature selection [28], [29] and
feature extraction [30], [31]. Generally speaking, they cannot
be applied to the parametric reduction problem that this paper
aims to tackle.

We propose a general parameter reduction criterion, namely
the confident-information-first (CIF) principle, to maximally
preserve confident parameters and rule out less confident
ones. Formally, the confidence of each parameter can be
assessed by its contribution to the expected Fisher informa-
tion distance (FID) within a geometric manifold over the
neighborhood of the underlying real distribution, based on the
theoretical framework of information geometry (IG) [32].

A. Motivation of CIF Under IG

In IG, the general model S can be seen as a K -dimensional
manifold and the goal of the parametric reduction is to derive
a lower dimensional submodel M by reducing the number
of free parameters in S. M is a smoothed submanifold of S.
The number of free parameters in M is restricted to be a
constant k (k � K ). A more detailed introduction to IG is
given in Section II.

The major difficulty in the parametric reduction procedure
is the choice of parameters to keep or to remove. In this paper,
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Fig. 1. Illustration of parametric reduction. Let S be a 2-D manifold with
two free parameters θ1 and θ2. M1 with a free parameter θ1 and M2 with
a free parameter θ2 are the submanifolds of S. As an illustration in the
Euclidean space, we show Bs (on which the true distribution pt is located on)
as the surface of a hyperellipsoid centered at sample distribution ps , which
is determined by the Fisher–Rao metric. Only part of the original distance
between pt and ps (pt , ps ∈ S) can be preserved after they are projected
onto a submanifold M. The preferred M is the one that maximally preserves
the original distance after projection. Note that the scale of the distances
in Fig. 1 is shown as a demo, and is not exactly proportional to the real
Riemann distances induced by Fisher–Rao metric.

we propose to reduce parameters, such that the original
geometric structure of S can be preserved as much as possible
after projecting on the submanifold M .

Let pt , ps ∈ S be the true distribution and the sam-
pling distribution (maybe perturbed from pt by sampling
bias or noises), respectively. It can be assumed that the true
distribution pt is located somewhere in a ε-sphere surface Bs

centered at ps , i.e., Bs = {pt ∈ S|D(pt , ps) = ε}, where
D(·, ·) denotes some distance measure on the manifold S, and
ε is a small number. This assumption is made without losing
generality, since the ε is a small variable. For a distribution p,
the best approximation of p on M is the point q that belongs
to M and is the closest to p in terms of the distance measure,
i.e., q = arg minq ′∈M D(q ′, p), which is defined as the
projection of p onto M [denoted by �M (p)].

Then, the parametric reduction can be defined as an opti-
mization problem to maximally preserve the expectation of the
squared FID with respect to the constraint on the number of
free parameters, when projecting distributions of S onto some
submanifold M

maximize
M

EBs [D2(�M (pt), �M (ps))]
subject to M has k free parameters (1)

where pt ∈ Bs and the expectation is taken on the surface Bs .
Here, the FID, i.e., the Riemannian distance induced by

the Fisher–Rao metric [33], is adopted as the distance mea-
sure between two distributions. It has been shown that the
Fisher–Rao metric could uniquely meet a set of natural
axioms for distribution distance metric [32], [34], [35], e.g.,
the reparametrization invariant property and the monotonicity
with respect to the random maps on variables. Let ξ be the
distribution parameters. For two close distributions p1 and p2

with parameters ξ1 and ξ2, the FID between p1 and p2 is

D(p1, p2) =
√
(ξ1 − ξ2)T Gξ (ξ1 − ξ2) (2)

where Gξ represents the Fisher information matrix [32].
The rationality of maximally preserving the FID can also be

interpreted from the maximum-likelihood (ML) estimation’s
point of view. Let ξ̂ be the ML estimators for ξ . The
asymptotic normality of ML estimation implies that the density
of ξ̂ is the normal distribution with mean ξ and covariance �,
that is

f (ξ̂ ) ∼ N (ξ,�) = 1

Z
ex p

{
−1

2
(ξ − ξ̂ )T�−1(ξ − ξ̂ )

}
(3)

where the inverse of � can be asymptotically estimated
using the Fisher information matrix Gξ , as suggested by the
Cramér–Rao bound [36]. From the FID given in 2, the expo-
nent part of 3 is just the opposite of the half squared FID
between two distributions p and p̂ determined by the close
parameters ξ and ξ̂ , respectively. Hence, a larger FID means
a lower likelihood. It turns out that, in density estimation,
maximally preserving the expected FID after the projection
�M (1) is equivalent to maximally preserving the likelihood
structure among close distributions. In supervised learning
tasks (e.g., classification), maximally preserving FID can also
effectively preserve the likelihood structure among different
class densities (the generative distributions of classes), which
helps prevent the interference of sample noises. Recall that
sample noises always reduce the FID among class densities
in a statistical sense, leading to a reduced discrimination
marginality between two class densities. Hence, for noisy data,
the model that maximally preserving FID will have a better
discriminative capability.

To solve the optimization problem in 1, we propose a para-
meter reduction criterion called the CIF principle, described
as follows. For multivariate binary distributions, the squared
FID D2(pt , ps) can be decomposed into the distances of two
orthogonal parts by using the dually orthogonal coordinates
in IG [32]

D2(pt , ps) = D2(�M (pt ), �M (ps))+ D2(�M (pt), �M (ps)).

Here, the submanifold M is complementary to M , i.e., the
free parameters in M are nonfree in M , and vice versa. Thus,
it is possible to categorize the system parameters of S into two
sets, i.e., the set of parameters in M with “major” variations
and the set of parameters in M with “minor” variations, based
on their contributions to the whole information distance. The
former refers to parameters that are important for reliably dis-
tinguishing the true distribution from the sampling distribution,
thus considered as “confident.” Meanwhile, the parameters
in M with minor contributions can be regarded as less reliable.
Hence, the CIF principle can be stated as parametric reduction
that preserves the confident parameters and rules out less
confident parameters.

B. Outline and Contributions

The CIF principle is a general parametric choice framework
that can be used to determine the optimal choice of submodel’s
free parameters. There exist different implementations of CIF
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with respect to different underlying distributions and/or their
coordinate representations. The implementation of CIF can be
analogized to some general inference objectives, e.g., the ML,
which can achieve solutions in different senses (e.g., globally
optimal or locally optimal) with respect to different application
contexts. In this paper, we demonstrate two kinds of imple-
mentation of the CIF principle in two different application
scenarios.

First, when ps is unknown, i.e., there is no observed
information, the CIF principle could be used to derive an
optimal probabilistic model in an expectation sense. If the
l-mixed ζ -coordinates [ζ ]l (8) is adopted, we theoretically
show that CIF could lead to an optimal submanifold M for
k = ∑l

i=1 Ci
n in terms of the optimization problem in 1

(see Section III). For l = 2, we further show that the
optimal submanifold M derived by CIF is exactly the BM
(see Section IV). Note that CIF may be used to derive other
useful models if different coordinate systems are employed.

Second, when ps is known, the CIF principle is applied
in the model selection for BM as a heuristic method to
decide the priority order of parameters, which can improve
the search efficiency without degrading the quality of model
selection results. For a given number of free parameters k,
we can directly deduce a set of preferred parameters from
all k-dimensional submodels by selecting the top-k confident
parameters, where the confidences can be precalculated for
efficiency. Then, by integrating the information criteria (such
as AIC) with CIF, we can alleviate the possible bias of the
model complexity when AIC is used to compare nonnested
models and improve the computational efficiency of the model
selection procedure. In this case, we only need to calculate the
AIC for K submodels to obtain a solution. Moreover, we have
further developed separate hypothesis tests on the confidences
of parameters to decide whether certain parameters should be
preserved or not (see Section V-A), where the significance
level α used in a hypothesis test can be considered as a
heuristic threshold for the confidences of parameters.

II. THEORETICAL FOUNDATIONS OF IG

In this section, we introduce and develop the theoretical
foundations of IG [32] for the manifold S of binary multivari-
ate distributions with a given number of variables n, i.e., the
open simplex of all probability distributions over binary vector
x ∈ {0, 1}n. This will lay the foundation for our theoretical
deviation of CIF.

A. Notations for Manifold S

In IG, a parametric family of probability distributions is
regarded as a differentiable manifold equipped with certain
coordinate systems. In the case of binary multivariate
distributions, there exist four commonly used coordinate
systems [32], [37]: p-coordinates, η-coordinates, θ -coordi-
nates, and the mixed ζ -coordinates. The ζ -coordinates is very
important for the analysis in this paper.

For the p-coordinates [p], the probability distribution over
n binary variables can be completely specified by a vector of
2n − 1 positive numbers, corresponding to the probability of

any 2n − 1 exclusive states of x . For example, when n = 2,
the p-coordinates could be [p] = (p01, p10, p11). Note that
all probability terms need to be strictly positive as required
by IG [32]. For simplicity, the p-coordinates are indexed by
capital letters I, J, . . . , where an index I denotes a subset of
{1, 2, . . . , n}. pI is defined as the probability that all variables
included in I are one and the complemented variables equal
to zero. For example, if I = {1, 3} and n = 3, we have

pI = p101 = Prob(x1 = 1, x2 = 0, x3 = 1).

Note that the null set I = {} is also valid for the [p] and p0...0
denotes the probability that all variables are zero.

The η-coordinates [η] are defined by

ηI = E[X I ] = Prob

{∏

i∈I

xi = 1

}
(4)

where X I = ∏
i∈I xi and E[·] denotes the expectation

with respect to the probability distribution over x . The η-
coordinates can be grouped by coordinate orders and denoted
as [η] = (η1

i , η
2
ij, . . . , η

n
1,2...n), where the superscript represents

the order number of the corresponding parameter. For example,
η2

ij denotes the set of all η parameters with the order number
two.

The θ -coordinates (natural coordinates) [θ ] are defined by

log p(x) =
∑

I⊆{1,2,...,n}, I �=NullSet

θ I X I − ψ(θ) (5)

where ψ(θ) = log(
∑

x ex p{∑I θ
I X I (x)}) is the cumulant

generating function and its value equals to − log Prob{xi =
0,∀i ∈ {1, 2, . . . , n}}. By solving the linear system 5, we have
θ I = ∑

K⊆I (−1)|I−K |log(pK ). The θ -coordinate is denoted

as [θ ] = (θ i
1, θ

ij
2 , . . . , θ

1,...,n
n ), where the subscript represents

the order number of the corresponding parameter. Note that
the order indices locate differently in [η] and [θ ] by convention
in [33].

There exists bijective map between coordinate systems [η]
and [θ ], formally given by the Legendre transformation

θ I = ∂φ(η)

∂ηI
, ηI = ∂ψ(θ)

∂θ I
(6)

where ψ(θ) is specified in 5 and φ(η) =∑
x p(x; η) log p(x; η) denotes the negative entropy. It can

be shown that ψ(θ) and φ(η) satisfy the following
equation [32]:

ψ(θ)+ φ(η)−
∑

θ I ηI = 0. (7)

The l-mixed ζ -coordinates [ζ ]l are defined by

[ζ ]l = [ηl−, θl+] =
(
η1

i , η
2
ij, . . . , η

l
i, j,..., θ

i, j,...
l+1 , . . . , θ1,...,n

n

)

(8)

where l ∈ {1, . . . , n − 1}. The former part ηl− consists
of η-coordinates with order less or equal to l and the latter
part θl+ consists of θ -coordinates with order greater than l.
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B. Fisher Information Matrix for Parametric Coordinates

For a general coordinate system [ξ ], the i th row and j th
column element of the Fisher information matrix Gξ for [ξ ]
is defined as the covariance of the scores of ξi and ξ j [36]

gij = E

[
∂ log p(x; ξ)

∂ξi
· ∂ log p(x; ξ)

∂ξ j

]

where E[·] denotes the expectation with respect to the prob-
ability distribution over x . The Fisher information measures
the amount of information in the data that a statistic carries
about the unknown parameters [38]. The Fisher information
matrix is of vital importance to our analysis, since the inverse
of the matrix gives an asymptotically tight lower bound to
the covariance matrix of any unbiased estimators for the para-
meters under consideration [36]. Another important concept
related to our analysis is the orthogonality defined by Fisher
information. Two coordinate parameters ξi and ξ j are called
orthogonal if and only if their Fisher information vanishes, i.e.,
gij = 0, meaning that their influences on the log-likelihood
function are uncorrelated.

According to [32], the Fisher information for [θ ] can be
rewritten as gIJ = (∂2ψ(θ))/(∂θ I ∂θ J ), and for [η], it is gIJ =
(∂2φ(η))/(∂ηI ∂ηJ ). Let Gθ = (gIJ) be the Fisher information
matrix for [θ ] and Gη = (gIJ) for [η]. As shown in [32], Gθ

and Gη are mutually inverse matrices, i.e.,
∑

J gIJgJ K = δ I
K ,

where δ I
K = 1 if I = K and zero if I �= K . Next, we will

develop the two propositions to compute Gθ and Gη generally.
Note that Proposition 1 is a generalization of Theorem 2
in [33].

Proposition 1: The Fisher information between two
parameters θ I and θ J in [θ ] is given by

gIJ(θ) = ηI∪J − ηI ηJ . (9)

Proof: See Appendix A.
Proposition 2: The Fisher information between two para-

meters ηI and ηJ in [η] is given by

gIJ(η) =
∑

K⊆I∩J

(−1)|I−K |+|J−K | · 1

pK
(10)

where | · | denotes the cardinality operator.
Proof: See Appendix B.

We take the probability distribution with three variables for
example. Based on 10, the Fisher information between ηI

and ηJ can be calculated, e.g., gIJ = 1/(p000) + 1/(p010)
if I = {1, 2} and J = {2, 3}, gIJ = −(1/(p000)+ 1/(p010)+
1/(p100) + 1/(p110)) if I = {1, 2} and J = {1, 2, 3}, and
so on.

The next proposition shows that the Fisher informa-
tion matrix Gζ for the [ζ ]l can be calculated based
on Gη and Gθ .

Proposition 3: The Fisher information matrix Gζ of [ζ ]l is
given by

Gζ =
(

A 0
0 B

)
(11)

where A = ((G−1
η )Iη )

−1, B = ((G−1
θ )Jθ )

−1, Gη and Gθ are
the Fisher information matrices of [η] and [θ ], respectively,

Iη is the index set of the parameters shared by [η] and [ζ ]l ,
i.e., {η1

i , . . . , η
l
i, j,...}, and Jθ is the index set of the parameters

shared by [θ ] and [ζ ]l , i.e., {θ i, j,...
l+1 , . . . , θ1,...,n

n }.
Proof: See Appendix C.

III. GENERAL CIF PRINCIPLE

The general manifold S of all probability distributions over
binary vector x ∈ {0, 1}n could be exactly represented using
2n − 1 parametric coordinates. Given a target distribution
q(x) ∈ S, we would like to realize it by a distribution
in some lower dimensional submanifold M . This is defined
as the parametric reduction problem for multivariate binary
distributions.

In this section, we will formally illuminate the general
CIF for parametric reduction. Assume we can construct a
coordinate system whose parameters entail a natural hierarchy
according to their confidences, meaning that high confident
parameters are significantly distinguished from and orthogo-
nal to lowly confident ones. Then, we could implement the
CIF conveniently by assigning the lowly confident parameters
to neutral values and keeping the high confident parameters
unchanged. As described in Section I, we should assess
the confidence of parameters according to their contributions
to the expected information distance. Therefore, the choice
of coordinates is crucial for the CIF principle. This strat-
egy is infeasible in terms of p-coordinates, η-coordinates,
or θ -coordinates for two main reasons: first, the orthogonality
does not hold in those coordinates, and hence, we cannot safely
prune some parameters without affecting the values of others;
second, in those coordinate systems, highly confident para-
meters cannot be significantly distinguished from lowly ones.
In this section, we will focus on the l-mixed coordinates [ζ ]l
and show how [ζ ]l meets all requirements of CIF.

We will first show that [ζ ]l meets the requirements of CIF
in typical distributions that generate real-world data sets, so as
to grasp an intuitive picture for the general CIF strategy.
Then, we will prove that CIF could lead to an optimal
submanifold with respect to the parametric reduction problem
in 1, in general cases.

A. CIF in Typical Distributions

In this section, we consider the typical situation in real-
world data collections to facilitate our analysis, where there
are only a small fraction of all system states are frequent
and meaningful patterns [39]. More formally, the underlying
distributions q(x) is assumed to have at least (2n − 2n/2)
p-coordinates of the scale ε, where ε is a sufficiently small
value. Therefore, the residual at most 2n/2 p-coordinates is of
scale �(1/2(n/2)), and their sum approximates 1.

Next, for the true distribution q(x), we introduce a small
perturbation �p to the p-coordinates [p], and the perturbed
distribution is denoted by q ′(x). For those p-coordinates
with a sufficiently small value, we assume that the scale of
the fluctuation �pI for pI is proportional to a · pI , where
a is a small constant coefficient. For p-coordinates that are
significantly larger than zero, the scale of the fluctuation
�pI for pI is assumed to be proportional to the standard
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TABLE I

SIMULATION ON THE FID PRESERVED BY [ζ ]lt (l = 2)

deviation of the estimate of the corresponding pI . According
to the Cramér–Rao bound theory, the standard deviation can be
approximated by the inverse of the square root of the Fisher
information. After some algebra, we can hence assume the
perturbation �pI to be a(pI )

1/2.
In our previous work [40], we have analyzed the l-mixed

coordinates [ζ ]l = (ηl−; θl+), where l = 2. The incremental
of mixed coordinates caused by perturbation �p is denoted
as �ζq = (�η2−;�θ2+). By decomposing the squared FID
D2(q, q ′) = (�ζq)

T Gζ�ζq into the direction of each coordi-
nate in [ζ ]l , we have shown that the scale of the FID in each
coordinate of ηl− is significantly larger than that of θl+ (refer
to our previous paper for more details [40]).

As described earlier, the confidences of coordinate para-
meters (measured by the decomposed FID) in [ζ ]l entail
a natural hierarchy. Moreover, the parameters in [ηl−] are
orthogonal to the ones in [θl+] [37]. Additionally, those low
confident parameters [θl+] have the neutral value of zero.
Hence, we can perform parametric reduction in [ζ ]l using
the CIF principle by setting low confident parameters to
be 0 and reconstructing the distribution according to the new
coordinates. The resulting submanifold M tailored by CIF
becomes [ζ ]lt = (η1

i , . . . , η
l
i j...k , 0, . . . , 0), which is called

[ζ ]lt the l-tailored-mixed coordinates.
To verify our theoretical analysis, we conduct a simulation

on the ratio of FID that is preserved by the l-tailored-mixed-
coordinates [ζ ]lt (l = 2) with respect to the original mixed-
coordinates [ζ ]. We also show the corresponding ratio of
preserved parameters: number of free parameters/total number
of parameters. First, we randomly select real distribution pt

with n variables, where the distribution satisfies the basic
assumption that we make in the beginning of this section. The
2n/2 significant p-coordinates are generated based on Jeffery
prior (the Dirichlet distribution with alpha parameters set
to 0.5), and the left p-coordinates are set to a small constant.
Then, we generate the sample distribution ps based on random
samples drawn from the real distribution. Last, we calculate
the FID between pt and ps in terms of the [ζ ] and [ζ ]lt ,
respectively. The result is shown in Table I. We can see that
[ζ ]lt can indeed preserve most of the FID, which is consistent
with our theoretical analysis.

B. CIF Leads to an Optimal Submanifold M

Let Bq be a ε-sphere surface centered at q(x) on manifold S,
i.e., Bq = {q ′ ∈ S|‖K L(q, q ′) = ε}, where K L(·, ·) denotes
the KL divergence and ε is small. Let q ′(x) be a close neighbor
of q(x), which is uniformly sampled from the surface Bq ,
as shown in Fig. 2. Recall that, for a small ε, the KL diver-
gence can be approximated by half of the squared FID. Thus,

Fig. 2. By projecting a point q(x) on S to a submanifold M, the l-tailored
mixed-coordinates [ζ ]lt gives a desirable M that maximally preserves the
expected FID when projecting a ε-neighborhood centered at q(x) onto M.

using the parameterization of [ζ ]l , Bq is indeed the surface of
a hyperellipsoid determined by Gζ with the center at q(x). The
next proposition shows that the general CIF would lead to an
optimal submanifold M , which could maximally preserve the
expected squared FID. Note that the expectation is computed
with respect to the uniform density on Bq .

Proposition 4: Consider the manifold S in l-mixed-
coordinates [ζ ]l . Let k be the number of free parameters in the
l-tailored-mixed-coordinates [ζ ]lt , i.e., k = C1

n +C2
n · · · +Cl

n .
Then, among all k-dimensional submanifolds of S, the sub-
manifold determined by [ζ ]lt can maximally preserve the
expected squared FID induced by the Fisher–Rao metric.

Proof: Assume IT = {i1, i2, . . . , ik} is the index of k
coordinates that we choose to form the tailored submanifold T
in the mixed-coordinates [ζ ]. This proof comes in three
parts.

1) According to the fundamental analytical properties
of the surface of the hyperellipsoid, we show that
there exists a strict positive monotonicity between the
expected information distance for T and the sum of
eigenvalues of the submatrix (Gζ )IT .

2) To maximize the preserved information distance,
we should choose IT to preserve the top-k eigenvalues
of Gζ , i.e., λ1, . . . , λk .

3) Actually IT = {ηl−} gives the maximum FID.
See Appendix D for the detailed proof.

IV. INTERPRETATION OF BOLTZMANN

MACHINE USING CIF

In Section III, an implementation of CIF is uncovered in
the [ζ ]l coordinates for multivariate binary distributions. Next,
when l equals to 2, we show that the optimal submanifold M
derived by CIF is exactly the BM. This can help us uncover
and formalize the essential parts of the target density that BM
aims to capture and the nonessential parts that BM discards.

A. Introduction to the Boltzmann Machines

In general, a BM [41] is defined as a stochastic neural
network consisting of visible units x ∈ {0, 1}nx and hidden
units h ∈ {0, 1}nh .
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The energy function is defined as follows:
EBM(x, h; ξ) = −1

2
x T U x − 1

2
hT V h − x T Wh − bT x − dT h

(12)

where ξ = {U, V ,W, b, d} are the free parameters. U, V , and
W represent the visible–visible, hidden–hidden, and visible–
hidden interactions, respectively. b and d represent the visible
and hidden self-connections, respectively. The diagonals of U
and V are set to zero. The joint Boltzmann distribution of x
and h can be expressed as follows:

p(x, h; ξ) = 1

Z
exp{−EBM(x, h; ξ)} (13)

where Z is a normalization factor.
1) Coordinates for Boltzmann Machines: Let B be the

set of Boltzmann distributions realized by BM. Actually,
B is a submanifold of the general manifold Sxh over {x, h}.
From (12) and (13), we can see that ξ = {U, V ,W, b, d} plays
the role of B’s coordinates in θ -coordinates (5) as follows:

θ1 : θ
xi
1 = bxi , θ

h j
1 = dh j (∀xi ∈ x, h j ∈ h)

θ2 : θ
xi x j
2 = Uxi ,x j , θ

xi h j
2 = Wxi ,h j ,

θ
hi h j
2 = Vhi ,h j , (∀xi , x j ∈ x; hi , h j ∈ h)

θ2+ : θ
xi ...x j hu ...hv
m = 0, m > 2,

(∀xi , . . . , x j ∈ x; hu, . . . , hv ∈ h). (14)

So the θ -coordinates for BM is given by

[θ ]BM = (θ xi
1 , θ

h j
1︸ ︷︷ ︸

1−order

, θ
xi x j
2 , θ

xi h j
2 , θ

hi h j
2︸ ︷︷ ︸

2−order

, 0, . . . , 0︸ ︷︷ ︸
orders>2

). (15)

The fully visible BM (VBM) and restricted BM (RBM) are
special cases of the general BM. Since VBM has no hidden
units (nh = 0) and all the visible units are connected to each
other, the parameters of VBM are ξvbm = {U, b} and {V ,W, d}
are all set to zero. For RBM, it has connections only between
hidden and visible units. Thus, the parameters of RBM are
ξrbm = {W, b, d} and {U, V } are set to zero.

2) Gradient-Based Learning of BM: Given the sample x
that generated from the underlying distribution, the ML is
a commonly used gradient ascent method for training BM
in order to maximize the log likelihood log p(x; ξ) of the
parameters ξ [42]. Based on (13), the log likelihood is given
as follows:

log p(x; ξ) = log
∑

h

e−E(x,h;ξ) − log
∑

x ′,h′
e−E(x ′,h′;ξ).

Differentiating the log likelihood, the gradient with respect
to ξ is as follows:
∂ log p(x; ξ)

∂ξ
=

∑

h

p(h|x; ξ)∂[−E(x, h; ξ)]
∂ξ

−
∑

x ′,h′
p(h′|x ′; ξ)∂[−E(x ′, h′; ξ)]

∂ξ
(16)

where (∂E(x, h; ξ))/(∂ξ) can be easily calculated from (12).
Then, we can obtain the stochastic gradient using Gibbs

sampling [43] in two phases: sample h given x for the first
term, called the positive phase, and sample (x ′, h′) from the
stationary distribution p(x ′, h′; ξ) for the second term, called
the negative phase. Now with the resulting stochastic gradient
estimation, the learning rule is to adjust ξ by

�ξml = ε ∂ log p(x; ξ)
∂ξ

∝ −
〈
∂E(x, h; ξ)

∂ξ

〉

0
+

〈
∂E(x ′, h′; ξ)

∂ξ

〉

∞
(17)

where ε is the learning rate, 〈·〉0 denotes the average using
the sample data, and 〈·〉∞ denotes the average with respect to
the stationary distribution p(x, h; ξ) after the corresponding
Gibbs sampling phases.

To avoid the difficulty of computing the log-likelihood
gradient, the contrastive divergence (CD) [42] optimizes a
different objective function based on KL divergence, shown
as follows:

�ξcd = −ε ∂(K L(p0||p)− K L(pm ||p))
∂ξ

∝ −
〈
∂E(x, h; ξ)

∂ξ

〉

0
+

〈
∂E(x ′, h′; ξ)

∂ξ

〉

m
(18)

where K L(·||·) denotes the KL divergence, p0 represents the
sample distribution, and pm denotes the distribution sampled
from the Markov chain after running m steps (begins with the
sample data). CD can be seen as an approximation to ML by
replacing the last expectation 〈·〉∞ with 〈·〉m .

B. Fully Visible Boltzmann Machine

Consider the parametric reduction on the manifold S
over {x} and result with a k-dimensional submanifold M of S,
where k � 2nx − 1. M is set to be the same dimensionality
as VBM, i.e., k = (nx (nx + 1))/2, then all candidate M are
comparable to the submanifold Mvbm endowed by VBM.

In the following corollary, we theoretically show that the
CIF principle leads to the optimal submanifold that is exactly
the submanifold specified by Bolzmann machines.

Corollary 1: Given the general manifold S in 2-mixed-
coordinates [ζ ]2, VBM (with coordinates [ζ ]2t ) defines an
k-dimensional submanifold of S that can maximally preserve
the expected squared FID induced by Fisher–Rao metric.

Proof: See Appendix E.
To learn such [ζ ]2t , we need to learn the parameters ξ

of VBM, such that its stationary distribution preserves the
same coordinates [η2−] as target distribution q(x). Actually,
this is exactly what traditional gradient-based learning algo-
rithms intend to do. Proposition 5 shows that the ML learning
of VBM is equivalent to learn the coordinates [ζ ]2t : 1) high-
order (θ2+) components are set to zero and 2) low-order
(η1

i , η
2
ij) components are unchanged comparing to the original

distribution.
Proposition 5: Given the target distribution q(x) with

2-mixed coordinates

[ζ ]2 = (η1
i , η

2
ij, θ2+)
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the coordinates of the stationary distribution of VBM trained
by ML are uniquely given by [ζ ]2t

[ζ ]2t = (η1
i , η

2
ij, θ2+ = 0)

Proof: See Appendix F.

C. Boltzmann Machine With Hidden Units

In section IV.B, the CIF principle is applied to mod-
els without hidden units and leads to VBM by preserv-
ing the first-order and second-order η-coordinates. In this
section, we will investigate the cases where hidden units are
introduced.

Let Sxh be the manifold of distributions over the joint space
of visible units x and hidden units h. A general BM produces
a stationary distribution p(x, h; ξ) ∈ Sxh over {x, h}. Let
B denote the submanifold of Sxh with probability distributions
p(x, h; ξ) realizable by BM.

Given any target distribution q(x), only the marginal dis-
tribution of BM over the visible units is specified, leaving
the distributions on hidden units vary freely. Let Hq be the
submanifold of Sxh , consisting of probability distributions
q(x, h) that have the same marginal distribution as q(x) and
the conditional distribution q(h|x) of hidden units is realized
by the BM’s activation functions with some parameter ξbm .

Then, the best BM is the one that minimizes the distance
between B and Hq . Due to the existence of hidden units,
the solution may not be unique. In this section, the training
process of BM is analyzed in terms of manifold projec-
tion (described in Section I), following the framework of
the learning rule proposed in [33]. And we will show that
the learning of BM with hidden units can be interpreted
using CIF.

1) Iterative Projection Learning for BM: The learning algo-
rithm using the iterative manifold projection is first proposed
in [33] and theoretically compared with expectation and max-
imization algorithm in [44]. The learning of RBM can be
implemented by the following iterative projection (IP) process.
Let ξ0

p be the initial parameters of BM and p0(x, h; ξ0
p) be the

corresponding stationary distribution.
For i = 0, 1, 2, . . . , it has the following.
1) Put qi+1(x, h) = �H (pi(x, h; ξ i

p)).
2) Put pi+1(x, h; ξ i+1

p ) = �B(qi+1(x, h))
where �H (p) denotes the projection of p(x, h; ξp) to Hq , and
�B(q) denotes the projection of q(x, h) to B . The iteration
ends when we reach the fixed points of the projections p∗
and q∗, that is �H (p∗) = q∗ and �B(q∗) = p∗. The IP process
is shown in Fig. 3. The convergence property of this iterative
algorithm is guaranteed using Proposition 6.

Proposition 6: The monotonic relation holds in the iterative
learning algorithm

D[qi+1, pi ] ≥ D[qi+1, pi+1] ≥ D[qi+2, pi+1] (19)

where the equality holds only for the fixed points of the
projections.

Proof: See Appendix G.
The next two propositions show how the projection �H (p)

and �B(q) are obtained.

Fig. 3. Iterative learning for BM: in searching for the minimum distance
between Hq and B , we first choose an initial BM p0 and then perform pro-
jections �H (p) and �B (q) iteratively, until the fixed points of the projections
p∗ and q∗ are reached. With different initializations, the IP algorithm may
end up with different local minima on Hq and B , respectively.

Proposition 7: Given a distribution p(x, h; ξp) ∈ B ,
the projection �H (p) ∈ Hq that gives the minimum diver-
gence D(Hq, p(x, h; ξp)) from Hq to p(x, h; ξp) is the
q(x, h; ξbm) ∈ Hq that satisfies ξbm = ξp .

Proof: See Appendix H.
Proposition 8: Given q(x, h; ξq) ∈ Hq with mixed coordi-

nates: [ζ xh]q = (η1
xi
, η1

h j
, η2

xi x j
, η2

xi h j
, η2

hi h j
, θ2+), the coordi-

nates of the learned projection �B(q) ∈ B are uniquely given
by the tailored mixed coordinates

[ζ xh]�B(q) = (η1
xi
, η1

h j
, η2

xi x j
, η2

xi h j
, η2

hi h j
, θ2+ = 0) (20)

Proof: This proof comes in three parts.

1) The projection �B(q) of q(x, h) on B is unique.
2) This unique projection �B(q) can be achieved by min-

imizing the divergence D[q(x, h), B] using the radient
descent method.

3) The mixed coordinates of �B(q) are exactly the one
given in (20).

See Appendix I for the detailed proof.
2) Interpretation for BM Learning via CIF: The IP learn-

ing gives us an alternative way to investigate the learning
process of BM. Based on the CIF principle in Section III,
we can see that the process of the projection �B(qi ) can
be interpreted using CIF, i.e., highly confident coordinates
[η1

xi
, η1

h j
, η2

xi x j
, η2

xi h j
, η2

hi h j
] of qi are preserved, while lowly

confident coordinates [θ2+] are set to neutral value zero, given
in 20.

In summary, the essential parts of the real distribution that
can be learned by BM (with and without hidden units) are
exactly the confident coordinates indicated by the CIF princi-
ple. As a special kind of BM, the commonly used RBM can
be analyzed similarly.

V. EXPERIMENTAL STUDY ON SAMPLE-SPECIFIC CIF

In section III and IV, when ps is unknown and the
l-mixed ζ -coordinates [ζ ]l is adopted, we have shown that
there exist globally optimal solutions of CIF for k =∑l

i=1 Ci
n
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Algorithm 1 Adaptive Network Design for BM
Input: Samples D = {d1, d2, . . . , dN }; Significance level α;

Nodes V = {x1, x2, . . . , xn}; Edges U = {Uij,∀xi , x j };
Output: Set of confident edges Ucon f ⊂ U

Ucon f ← {};
for Uij ∈ U do

Estimate marginal distribution p(xi , x j ) from samples
** parameterize to ζ -coordinates: [ζ ] **
ηi ← E p[xi ]; η j ← E p[x j ]
θ ij← log p00 − log p01 − log p10 + log p11
[ζ ] ← {ηi , η j , θ

ij}

** Fisher information of θ ij in [ζ ] **
g← ( 1

p00
+ 1

p01
+ 1

p10
+ 1

p11
)−1

** confidence of θ ij in [ζ ] **
ρij ← θ ij · g · θ ij

** hypothesis test: ρij = 0 against ρij �= 0 **
π ← cd fχ2(1)(Nρij)
if (1− π) · 2 < α then

** reject null hypothesis: ρij = 0 **
Ucon f ← Ucon f ∪ {Uij}

end if
end for
return Ucon f

in terms of the optimization problem in 1. For l = 2, we further
show that the optimal submanifold M derived by CIF is
exactly the BM.

Given specific samples, can CIF further recognize less-
confident parameters in BM and reduce them properly? For
VBM, we will investigate how to use CIF to modify the
topology of VBM by reducing less confident connections
among visible units with respect to given samples. We will
empirically investigate this sample-specific CIF principle as a
heuristic method to decide the priority order of parameters,
so as to improve the search efficiency for the model selection
of BM without degrading the quality of model selection
results.

A. Sample-Specific CIF: Adaptive Model Selection of BM

The data constrain the state of knowledge about the
unknown distribution. Let q(x) denote the sampling distrib-
ution (representing the data). In order to force the estimate
of our probabilistic model [denoted by p(x; ξ)] to meet the
data, we could incorporate the data into CIF by recognizing
the confidence of parameters ξ in terms of q(x). Then,
parametric reduction procedure can be further applied to
modify the topology of VBM adaptively according to the
data, as shown in Algorithm 1 and explained as in the
following.

As a graphical model, the VBM comprises a set of vertices
V = {x1, x2, . . . , xn} together with a set of connections
U = {Uij,∀xi , x j , i �= j}. The confidence for each connection
parameter Uij can be assessed by the parameter choice criterion

in CIF, i.e., the contribution to the FID. Based on [33, Th. 1],
Uij could be expressed as follows:

Uij = log
p(xi = x j = 1|A) · p(xi = x j = 0|A)

p(xi = 1, x j = 0|A) · p(xi = 0, x j = 1|A)
where the relation hold for any conditions A on the rest
variables. However, it is often infeasible for us to calculate
the exact value of Uij because of data sparseness. To tackle
this problem, we propose to approximate the value of Uij by
using the marginal distribution p(xi , x j ) to avoid the effect of
condition A. To estimate p(xi , x j ), we need to go through
all N samples and count the number of samples for each
assignment of xi and x j . For example, p(xi = 0, x j = 0) =
(count(xi = 0, x j = 0))/N , and and so on.

Let [ζ ]ij = (ηi , η j , θ
ij) be the mixed-coordinates for the

marginal distribution p(xi , x j ) of VBM. Note that each θ ij

corresponds to one connection Uij. Since θ ij is orthogonal to
ηi and η j , the FID between two distributions can be decom-
posed into two independent parts: the information distance
contributed by {ηi , η j } and {θ ij}. For the purpose of parameter
reduction, we consider the two close distributions p1 and p2
with coordinates ζ1 = {ηi , η j , θ

ij} and ζ2 = {ηi , η j , 0},
respectively. The confidence of θ ij, denoted as ρ(θ ij), can be
estimated by its contribution to FID between p1 and p2

ρ(θ ij) = (ζ1 − ζ2)
T Gζ (ζ1 − ζ2) = θ ij · gζ (θ ij) · θ ij (21)

where Gζ is the Fisher information matrix in Proposition 3 and
gζ (θ ij) is the Fisher information for θ ij. Note that the second
equality holds, since θ ij is orthogonal to ηi and η j .

For a given number of free parameters k, we can directly
decide the optimal subset of connections for VBM by selecting
the top-k confident parameters. In principle, this solution could
be globally optimal in the sense of preserving the Fisher–Rao
distance, since the orthogonality of the fractional mixed coor-
dinates [45]. However, a global solution is time-consuming.
In this paper, we use a greedy heuristic to “approximate”
the global solution. Our heuristic separately evaluates the
confidence of each parameter Uij with respect to the marginal
distribution p(xi , x j ), instead of the whole joint distribution
p(x1, x2, . . . , xn). Then, to decide whether the FID in the
coordinate direction of θ ij is significant or negligible, we set
up the hypothesis test for ρ, i.e., null hypothesis ρ = 0
versus alternative ρ �= 0. Based on the analysis in [46],
we have Nρ ∼ χ2(1) asymptotically, where the χ2(1) is
chi-square distribution with degree of freedom 1 and N is
the sampling number. In this way, by setting the signifi-
cant level α, we can simply determine the threshold for ρ,
i.e., only those parameters with confidence value greater than
the threshold are selected. For example, when α = 0.05
and Nρ > 5.024, we can ensure that the FID in the
direction of θ ij (with respect to, the marginal distribution
p(xi , x j )) is significant with at least 95% confidence. This
model selection method is shown in Algorithm 1, called
the CIF + α.

B. Experiments With VBM

In this section, we investigate the density estimation per-
formance of CIF-based model selection methods for VBM,
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i.e., CIF + AIC and CIF + α. Two comparative model
selection methods are used.
• StepwiseAIC: The backward elimination approach is

adopted to select the subset of connections with the
optimal AIC: starting with all candidate connections,
testing AIC after the deletion of each connection, deleting
the connection with the lowest AIC, and repeating this
process until AIC stops decreasing.

• L1-norm: A full VBM is trained to minimize the
L1-regularization objective: − log L(ξ) + λ‖ξ‖1, where
ξ is the set of parameters, log L(ξ) denotes the
log likelihood, λ is the regularization coefficient, and
‖ · ‖1 represents the L1 norm. The optimal coefficient
λopt is chosen via fivefold cross validation. Then, those
connections with significant absolute values, i.e., |ξ | > ε,
are selected. Here, ε is certain small positive threshold.

In this paper, we adopt the AIC as −2 log L(ξk)+ 2 k, where
k is the number of selected parameters and L(ξk) represent
the ML of samples. For L1-norm, the threshold ε is searched
in the interval from 10−2 to 10−4, and it generally achieves
good performance at 10−3.

1) Experiment on Artificial Data Set—Density Estimation:
The artificial binary data set is generated as follows: we
first randomly select the target distribution q(x), which is
randomly chosen from the open probability simplex over the
n random variables using the Jefferys prior [47]. Since the
distribution over n binary variables belongs to the family
of multinomial distribution, we adopt the Jefferys prior for
the p-coordinates of q(x), i.e., the Dirichlet distribution with
all alpha parameters set to 0.5. Then, the data set with
N samples is generated from q(x). For computation simplicity,
the artificial data set is set to be 10-D. The CD learning
algorithm is used to train the VBMs.

The Full-VBM, i.e., the VBM with full connections is used
as baseline. The KL divergence is adopted to measure the
performances of the VBMs trained by various algorithms. For
each sample size N , 20 distributions are randomly generated
and the averaged KL divergence is reported. Note that this
experiment studies on the case that the variable number n=10,
which is relatively small. Because it is feasible to efficiently
evaluate the KL divergence analytically and hence study the
proposed algorithms in more details. Changing the number
of variables only offers a trivial influence for experimental
results, since we obtained similar observations on various
variable numbers (not reported here).

Results and Summary:
The averaged KL divergences between VBM and the

real distribution are shown in Fig. 4. We can see that all
model selection methods could improve density estimation
results of VBM, especially when the sample size is small
(N = 100–900). With relatively large samples, the effect of
parameter reduction gradually becomes marginal.

For the two methods that use AIC criterion, CIF + AIC
and StepwiseAIC achieve a similar performance, as shown
in Fig. 4. The StepwiseAIC is a strong baseline, since it
extensively searches candidate VBM topologies in a stepwise
approach. The result indicates that CIF could generally pro-
duce the set of connections which are also preferred in the

Fig. 4. Averaged density estimation results of VBM for artificial data set.

StepwiseAIC. To show this, we make comparison between the
topology of VBM selected by both methods in the first row
of Fig. 5. For all sample sizes (from 100 to 3000), we can
see that the majority of preserved connections are shared for
both methods. We also show how the AIC score changes when
different numbers of connections are preserved in the second
row of Fig. 5. Both methods achieve optimal AIC perfor-
mance at the (almost) same k. In terms of time complexity,
CIF + AIC is a linear time algorithm, while StepwiseAIC
is O(K 2).

For the two methods that use thresholds to control the
choice of parameters, CIF + α shows a better performance
than L1-norm when sample size is small. We check the
connection weights in L1-norm, and our experiment shows a
significant consistency between CIF + α and L1-norm. That
is, the parameters selected by CIF + α would also have higher
significant absolute values in L1-norm. This observation can
be regarded as a mutual confirmation of the CIF principle
and the L1-regularization method. Note that, there is a lack
of an analytical method to adaptively set the threshold ε in
L1-norm for different sample sizes and parameters. That
maybe the main reason that the more principled CIF + α
achieves superior performance.

We also compare CIF and L1-norm when the number of free
parameters k is fixed. For CIF, we simply sort the confidence
of connections in descend order, select the top k connections
as free parameters and set the weight of residual connec-
tions to zero. For L1-norm, we first train the VBM using
L1-regularization and then select the k connections with top
absolute weights. The result is shown in Fig. 6. We can see that
the CIF outperforms L1-norm on most model complexities k,
which indicates the effectiveness of CIF.

For the two CIF-based method, CIF + α shows a better
performance than CIF + AIC when sample size N is small
and gradually achieves similar performance along with the
increasing N . We observe that the CIF + α tends to preserve
less connections than CIF + AIC when the sample size is
relatively small. This indicates that the AIC criterion may
need to increase the penalty term for small sample sizes so as
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Fig. 5. Illustration on the behavior of CIF + AIC and StepwiseAIC for different sample sizes (N = {100, 900, 3000}). The first row shows the topology of
VBM selected by both methods; the second row compares the AIC criterion of both methods in different model complexities.

Fig. 6. Density estimation results of CIF and L1-norm when the number of parameters is fixed for different sample sizes (N = {500, 1000, 3000}).

to achieve a better performance, which will not be explored
further in this paper.

2) Experiments on Real Data Sets—Information Retrieval:
In this section, we empirically investigate how the CIF-based
model selection algorithm works on real-world data sets in
the context of information retrieval. In particular, we use the
VBM to learn the underlying probability density of terms in
the document [48], which is further used to rank document
based on the query likelihood in information retrieval.

Experiments are conducted on three standard TREC col-
lections: WSJ8792 (topics 151–200), ROBUST04 (topics
601–700) and WT10G (topics 501–550). The WSJ and
ROBUST collections are relatively small and consist of news
articles, science and technology reports, and government docu-
ments, whereas WT10G is a larger Web collection. Collections
are indexed by Indri 5.3 with Porter stemming and stopwords
removed. For each topic, both the title field and desc field are
used to generate queries.

We compare six document models: VBM (baseline),
VBM + Smooth (use the smoothing approach in [48]),
VBM + L1-norm, VBM + StepwiseAIC, and VBM + CIF
(apply CIF + AIC or CIF + α). Mean average precision is
used as the evaluation metric, which is the mean of average
precision scores over all the queries. The result is shown
in Table II.

For short queries (title field), CIF-based VBM shows a
similar performance compare to the VBM without model
selection. This is because short query usually contains
only 1–4 terms which leads to relatively simple VBMs with
respect to training samples in one document, and there is no
need to do model selection.

However, for long queries (desc field) with 8–16 terms, all
model selection methods show significant improvements over
VBM on WSJ and ROBUST04, except for WT10G. Note that
the documents length of WT10G (about 380 words) are much
longer than that of WSJ and ROBUST04 (about 250 words),
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TABLE II

APPLY CIF ON DOCUMENT BOLTZMANN MACHINE IN IR

Fig. 7. Performance changes on real data set with respect to number of free
parameters.

leading to a larger training set. It is the main reason that the
improvement becomes less significant on WT10G.

Comparing CIF + AIC with StepwiseAIC, CIF + AIC
achieves similar or slightly better performance on all collec-
tions. This indicates that CIF could effectively determine the
set of connections that are also preferred by StepwiseAIC.
CIF + α outperforms L1-norm on all collections, which
shows that Algorithm 1 provides a reasonable way to balance
between the model complexity and limited training samples.

3) Experiments on Real Data Sets—Density Estimation:
In particular, we use the VBM to learn the underlying probabil-
ity density over 100 terms of the 20 News Groups binary data
set, with different model complexities. There are 18 000 docu-
ments in 20 News Groups in total, which is partitioned into two
set: train set (80%) and test set (20%). The learning rate for CD
is manually tuned in order to converge properly and set to 0.01.
Since it is infeasible to compute the KL devergence due to the
high dimensionality, the averaged Hamming distance between
the samples in the test data set and those generated from VBM
is used to evaluate the performance. Let D = {d1, d2, . . . , dN }
denote the data set of N documents (each document di

is a 100-D binary vector). For the VBM to be evaluated,
we first randomly generate N samples from its stationary
distribution p(x; ξvbm), denoted as V = {v1, v2, . . . , vN }.
Then, the averaged Hamming distance Dham is calculated as

follows:
Dham[D, V ] =

∑
di∈D(minv j∈V (Ham[di , v j ])

N
where Ham[di , v j ] is the number of positions where the
corresponding values are different.

Due to high dimensionality, it is infeasible to compute the
AIC criterion. Therefore, we compare four kinds of VBMs.

1) Full-VBM: The VBM with all connections.
2) Rand: Randomly select k connections to build the VBM.
3) L1-norm: k connections are selected in descend order

based on their absolute values of weights trained with
L1-norm.

4) CIF: Select the k connections in descend order based
on their confidences [see 21].

After training all VBMs on the training data set, we evaluate
the trained VBMs on the test data set. We search for the best
performances with respect to different model complexities,
by varying k from 0 to 4950. We also mark the VBM that
is automatically selected by CIF + α and the best k for
L1-norm and CIF. The result is shown in Fig. 7.

We can see that the parameter reduction criteria
(CIF, L1-norm, and Rand) significantly improve the perfor-
mance of the Full VBM, which indicates the existence of over-
fitting. Comparing the best performances, CIF significantly
outperforms Rand and achieves slightly a better performance
than L1-norm The performance of CIF + α is close to the
optimal solution of CIF. These reflect the effectiveness of
CIF to select suitable VBM with respect to given samples.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the parametric reduction and
model selection problem for BMs from both theoretical and
application perspectives, and proposed a CIF principle as a
general framework for the parametric reduction to maximally
preserve the confident parameters and ruling out less confident
ones. On the theoretical side, we showed that CIF could
lead to an optimal submanifold for binary multivariate dis-
tributions in terms of 1. Furthermore, we illustrated that the
BMs (with or without hidden units) can be derived from the
general manifold based on the CIF principle. In the future,
CIF could be the start of an information-oriented interpretation
of deep learning models where BM is used as building
blocks. For DBM [3], several layers of RBMs compose a
deep architecture in order to achieve a sufficiently abstract
representation at a certain level. The CIF principle can be used
to describe how the information flows in the transformations
of representation across layers. Each layer of DBM determines
a submanifold M of S, where M could maximally preserve the
highly confident information on parameters. Then, the whole
DBM can be seen as the process of repeatedly applying CIF
in each layer, achieving a tradeoff between the abstractness of
representation features and the intrinsic confidence of infor-
mation preserved on parameters. The more detailed analysis
and CIF-based designs on deep models will be left as future
work.

On the application side, we proposed two sample-specific
CIF-based model selection methods for BM, i.e., CIF + AIC
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and CIF + α, which can independently select model para-
meters, or integrate with information criterion, e.g., AIC,
by providing a heuristic way to decide the priority order of
parameters and improve the search efficiency without degrad-
ing the quality of model selection results. In the future, we plan
to incorporate the CIF into deep learning models (e.g., DBM)
to modify the network topology, such that the most confident
information in the data can be well captured.
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