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Introduction. Ultraviolet (UV) photochemical oxi-

dation of aqueous ferrous iron (Fe(II)aq) has been pro-

posed as an effective pathway to the precipitation of 

banded iron formations (BIFs) [1, 2]. The rationale is 

that in the early Precambrian more high-energy UV 

sunlight could reach the seawater surface, because in 

absence of O2, the atmosphere was more transparent to 

UVs. The other two possible alternatives are: (i) O2-

mediated oxidation, in which local “O2 oasis” are cre-

ated during photosynthesis by microorganisms such as 

cyanobacteria [3, 4], and (ii) anoxygenic photosynthe-

sis in which bacteria could use Fe(II)aq instead of H2O 

as the electron donor to produce the oxidized byprod-

uct Fe(III) rather than gaseous oxygen [5, 6]. However, 

compared to these alternative mechanisms, UV photo-

oxidation does not require involvement of any gaseous 

oxygen or biology, and the oxidation rate has been 

calculated to be high enough to account for the exten-

sive occurrence of BIFs [2, 7].   

The principal argument against photo-oxidation is 

based on the experimental observation that Fe(II)aq in 

solution tends to combine with bicarbonate and silicon 

to form insoluble minerals [8], but the experimental 

setup may not have been completely relevant to the 

conditions that prevailed at that time and it posed in-

stead the question of Fe(II) solubility regardless of the 

process responsible for its oxidation. There is no direct 

evidence for the involvement of biology in the for-

mation of BIFs as they lack microfossils [9]. The only 

indirect evidence comes from carbon and iron stable 

isotope signatures of BIF-associated carbonates, which 

point to dissimilatory iron reduction associated with 

respiration of organic carbon [10, 11]. To examine the 

role of UV photo-oxidation in BIF formation and to 

differentiate between the three scenarios, we performed 

photo-oxidation lab experiments and analyzed the iso-

topic compositions of the products to a very high preci-

sion. In particular, the mass fractionation law govern-

ing the photo-oxidation process was investigated. 

Methods. Our experimental procedure has already 

been described in detail previously [12] and so is only 

outlined here in brief. Oxygen is evacuated from a 

closed reaction system with high-purity Ar gas (O2 < 

0.1 ppm). The system consists of a reactor containing 

350 mL H3BO3-NaOH buffer, and an iron introduction 

section and a sampling section, both connected to the 

reactor. Ferrous iron as (NH4)2Fe(SO4)2.6H2O salt is 

dissolved in absence of oxygen and Fe(II)aq is trans-

ferred to the reactor before the UV lamp is turned on. 

During the reaction, products are taken at 30 min time 

intervals. For each, product Fe(III) precipitate and 

Fe(II)aq solution are separated from each other with a 

0.1 µm syringe filter. 

Experiments for iron and oxygen isotope analyses 

were performed seperately. For iron analysis (experi-

ment #1; [12]), the volume of each sampled Fe(II)aq –

Fe(III) precipitate mixture was about 7 mL (not enough 

for oxygen isotope measurement). Oxygen was meas-

ured on Fe(III) precipitate in experiment #2, which was 

similar to the experiment #1 except that more iron was 

introduced and larger aliquots of 18 mL were sampled. 

Both Fe(III) solid and Fe(II)aq solution from experi-

ment #2 were also analyzed for their iron isotopic 

composition. The iron isotopic composition was meas-

ured with a Thermo Scientific Neptune Plus MC-

ICPMS at the university of Chicago as described in 

[13], while the oxygen isotope measurements were 

performed at the Open University using the procedures 

outlined by [14].   

Results. Preliminary data of iron isotope analysis ( 

δ-values in experiment #1) have been reported previ-

ously [12], the data show that the Fe(III) precipitate is 

enriched in heavier iron isotopes relative to the initial 

composition, while the Fe(II)aq solution has a lighter 

composition, and all of them plot on a mass-dependent 

isotope fractionation line. The newly obtained data, 

acquired in order to determine the iron isotope frac-

tionation law during photo-oxidation, are expressed as 

ɛ'- values (ɛ' iFe = 10000* ln (Ri/54/Ri/54, std )). The most 

fractionated samples have non-zero ɛ'- values. Since 

the ɛ'- values were calculated by normalizing 57Fe/54Fe 

ratio to a fixed value of 0.3625492 using the exponen-

tial law, the non-zero values indicate that the photo-

oxidation process follows a mass fractionation law that 

differs from the exponential law.  

For the experiment #2, there is no clear correlation 

between iron and oxygen isotopic compositions. The 

change of iron isotopic composition as a function of 

time follows the same trend as in the experiment #1 

[12]. Oxygen isotopic composition of the precipitate is 

heavier (ranges from -0.14‰ to +0.80‰ with an aver-

age of +0.33‰ in terms of δ18OVSMOW) compared to 

Chicago tap water which is about -0.5‰ [15]. 

Discussion.  The δ-values of photo-oxidation ex-

periment #1 follow a Rayleigh distillation model with 

an isotope fractionation factor of 1.0012, that is, 
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+1.2‰ instantaneous isotope fractionation between 

Fe(III) precipitate and Fe(II)aq solution at 45 °C [12]. A 

plot of ɛ'56Fe vs. δ'57Fe (calculated as 1000*ln 

(δ57Fe/1000 + 1)) shows that the products of photo-

oxidation follow the equilibrium law (n=-1) within 

error. Data with high enough precision is missing to 

compare the mass-fractionation law documented here 

with the other two processes (O2-mediated oxidation 

and anoxygenic photosynthesis) that could have been 

involved in BIF formation, but it is likely that those 

would follow the equilibrium law as well. 

The BIF sample measured at very high precision, 

IF-G, agrees with the experimental Fe(III) precipitate 

and the equilibrium law. However, in the experiments 

the data points providing better leverage in determining 

the law are Fe(II)aq solution. The counterpart to Fe(II)aq 

solution during BIF formation would be seawater, the 

composition of which may have been recorded in 

shales [16]. If that is true, measuring shales would be a 

promising way to further test the photo-oxidation hy-

pothesis. 

Unlike iron, where the solution and precipitate 

evolved in the course of photo-oxidation, no systematic 

trend of δ18O as a function of time is seen, implying 

that the solution effectively acted as an infinite reser-

voir in terms of oxygen. The oxygen isotopic composi-

tion is consistent with equilibrium isotope fractionation 

between Fe(III) oxides and waters from previous ex-

periments which found little fractionation (Fig. 1). Alt-

hough it has been well known that UV light irradiation 

can cause photo-chemical reactions featuring mass-

independent isotope fractionation, such as photolysis of 

ozone [17] and of SO2 [18], no clear mass-independent 

isotope signature was found for photo-oxidation.  The 

△17O values of Fe(III) precipitate (calculated from 

measured δ-values) range between -0.133‰ and -

0.048‰ with an average of -0.078‰, where the refer-

ence mass fractionation line is the terrestrial fractiona-

tion line with a slope of 0.5247 [19], are not outside 

the range of terrestrial materials. 

In conclusion, the isotopic compositions of iron and 

oxygen measured in BIFs are consistent with the results 

from photo-oxidation experiments and therefore photo-

oxidation remains a viable pathway to BIF formation. 
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Fig. 1: Oxygen isotopic fractionation between Fe(III) 

minerals and water. Yellow points are experimental 

data of geothite [20] and orange squares are from this 

study. Lines a, b, c, and d are experimental determina-

tions while e is a theoretical calculation. a. Goethite 

[21]; b. Hematite [22]; c. Akaganeite [22]; d. Goe-

thite [22]; e. Hematite [23]. 
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