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Abstract 

Effect of a pulsed electric current on the distribution of Al2O3 inclusions in liquid steel is 

explored; these inclusions ranged in size from microns to nanometres. When no electric 

current was applied the inclusions were randomly distributed in the steel. However, when an 

electric current was applied the inclusions were found in highly-populated regions near the 

various interfaces. Moreover, this process applies to a wide range of inclusion diameters, in 

contrast to conventional inclusion removal methods which tend to apply to larger (>20 μm) 

particles only. Consequently, the application of pulsed electric current provides a method of 

removing inclusions from the steel and thereby, improving the mechanical, physical and 

corrosion resistance properties of the steel. 
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1. Introduction 

It is widely recognized that, the defects, caused by non-metallic inclusions are detrimental to 

both the mechanical properties and the casting reliability of clean steels.
1
 With the increasing 

demand for high-performance products, it is important to minimise the level of inclusions in 

steel melts. Therefore, it is necessary to control and improve the operating practices during 

the steel manufacturing process to improve the cleanness of the steel. Molten steel becomes 

contaminated with inclusions at various stages in the production route, e.g. during tap, ladle 

treatment, and during continuous casting. Large inclusions (>10 μm) have a deleterious effect 

on the mechanical properties with toughness decreasing with increasing inclusion size. Fine 

dispersions (< 10 μm) can be either helpful or harmful.
2,3

 However, the limit for acceptable 

inclusion size tends to decrease every year and inclusions of 2 μm or less are required to the 

high performances expected. There have been efforts to apply various melt treatments in 

industries to extract inclusions from molten metals, including electromagnetic separation 

(utilizing the difference in the electrical conductivity between the particle and the melt, which 

induces a force driving the motion of particle in the melt under an applied external force 

field)
4-8

 and Ar bubbling
9
. These methods are generally applicable for elimination of 

inclusion particles above 20 μm in diameter, and require significant energy consumption and 

cost.
2,4-9

 Removal of inclusions of less than 20 μm may be accomplished by filtration using 

ceramic foam filters,
10

 but with limited (and controversial) filtration efficiency.
11

 Inclusion 

levels can be reduced in steelmaking by careful manipulation of the inclusion chemistry (with 

Ca and Al) to produce a liquid inclusion which is easier to remove at steelmaking 

temperatures.
12

 However, if calcium treatment is not controlled well, solid calcium aluminate 

and sulphide particles with higher melting points can be formed leading to a deterioration of 

mechanical properties.
13

 For these reasons, the development of a novel method to remove 

inclusions from the melts is important in green processing of steel.  

 

Pulsed electric current, as an instantaneous high-energy input method with high efficiency 

and low energy consumption, has been developed to affect the microstructure of the metals. 

More importantly, pulsed electric current-based processing consumes significantly less 

electrical energy compared with electromagnetic-stirring. Thus pulsed electric current may be 

used to manipulate the transport of electrically-neutral non-metallic inclusions in a 
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conductive liquid with less energy consumption and high efficiency. Further, pulsed electric 

current can prevent Ohmic heating, whereas a large amount of Joule heat is produced by 

continuous electric current (AC or DC). Recently, inclusion removal has been reported by the 

present authors,
14-16  

however, the removal efficiency for the alumina need to be further 

clarified for the possible commercial operation. 

 

In summary, the removal efficiency of inclusions in molten steel is still well below target and 

involves significant energy consumption and high cost. In this study an investigation has been 

carried out into how electric current induces inclusions to separate from molten steel. These 

results have enabled us to develop a novel clean steel green processing method.  

 

2. Experimental Procedure 

The investigated steel containing alumina inclusions was melted in a graphite crucible by an 

induction furnace. In order to apply the electric current into the liquid, a pair of steel bars was 

submerged into the liquid steel to act as the electrodes. The chemical compositions (wt.%) of 

both the investigated steel and the steel electrode were listed in Table 1. The electrode is 300 

mm long, 5 mm wide and 5 mm high. The mass of the investigated steel is 300 g. In order to 

confirm the difference in melting point, the phase diagrams of both steels were calculated 

using Thermo-Calc software. From the calculated diagrams, the melting temperature of the 

liquid steel at 1469 
o
C is lower than that of the steel bar at 1520 

o
C. Therefore, it seems 

feasible that the electrode will remain solid in molten steel (the electrode will dissolve in the 

molten steel but it can still keep solid in short time) and this requires careful adjustment of 

the output power of the induction furnace. In order to determine the effect of electric current, 

two sets of experiments were carried out, one without electric current and the other with 

electric current. The experimental procedures were identical except for the application of 

electric current. The process and specimen dimensions are illustrated schematically in Fig. 1. 

The direction of the applied electric current, the current-induced magnetic field and the 

possible direction of migration of the particles are indicated in the figure. Pulsed electric 

current with square-wave form rather than continuous electric current (AC or DC) was 

applied to prevent Ohmic heating. The parameters of the experiment were given as: 1 Hz of 

frequency, 60 μs of pulse duration, 1.610
6
 A/m

2
 of current density, and 8 minutes of 
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processing time. The average electric power in electric current pulse processing for a 300 g 

melt was 0.0012 Watts, which was much less than the power of a household fluorescent light. 

Furthermore, no skin effect was noted in the experimental analysis. Here, more than three 

experiments were performed to test its reproducibility. The pulsed electric current is also 

applied in the solidification process after the furnace is turned off. 

 

The furnace-cooled samples were longitudinally sectioned and polished for metallographic 

examination. The composition of the inclusions in the steels was analyzed with a scanning 

electron microscope using a microscope equipped for energy-dispersive spectroscopy (SEM-

EDS). The distribution of the inclusions across the sample was examined by automated 

inclusion analysis using field emission gun-scanning electron microscope (FEG-SEM). This 

technique combines the advantages of EDS with that of digital image analysis of 

backscattered electron micrographs. It provides fast measurements of composition, size and 

morphology for thousands of particles embedded in the steel matrix, giving a more 

statistically-sound inclusion size distribution in the sample compared with manual inclusion 

size measurements. The size resolution of the FEG-SEM is 500 nm, but in this experiment we 

only analyze inclusions larger than 1 μm because inclusions less than 1 μm are considered to 

be negligible for damage to the products in engineering. The collected data were analyzed 

and plotted using in-house developed MatVisual software.  

 

3. Results and Discussion 

Preliminary examination of the chemical composition and morphology of inclusions was 

carried out using SEM-EDS. A typical result is shown in Fig. 2; this indicates an alumina 

inclusion. The angular particle in the steel matrix, shown in Fig. 2a, was found by EDS to be 

rich in aluminium and oxygen (Fig. 2b). This indicates that the angular region consisted of an 

Al2O3 inclusion. Both the point analysis and line scanning show that all the inclusions, 

regardless of the size, are chemically homogenous and chemical segregation is absent. The 

relative proportion of the major elements varied slightly from inclusion to inclusion but the 

elements are distributed quite uniformly throughout the inclusion.  

 

The number distributions of Al2O3 inclusions for both untreated- and treated- steels are 

compared in Fig. 3a and b. Here, individual Al2O3 features with their equivalent circular 
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diameter were recorded. In Fig. 3, the yellow dot represents the position of the inclusion. It 

can be clearly seen that the number of the particles in the interior of the treated-steel is much 

lower than those in the untreated-steel. It is strikingly obvious that the distribution of the 

inclusions has been greatly affected by the application of an electric current. Fig. 4 shows the 

population distribution of the Al2O3 particles as a function of distance from the centre. The 

uncertainty in values of the inclusion number for each datum point is ±3. There are virtually 

no particles in the interior of the treated-steel. The particles have been pushed towards the 

surface and the population density is much greater near the surface. In contrast, the inclusions 

keep a random distribution through the steel in the untreated-steel.  

 

The size of the inclusions for the untreated- and treated- steels is counted based on 389 

individual Al2O3 features. The average size of the Al2O3 in the untreated steel is about 4.5 μm, 

which is similar to that in the treated-steel (2.2 μm). The maximum recorded size for particles 

was found to be proximately 11 μm. It seems that the electropulsing technique can separate 

particles > 2 μm from the molten steel.  

 

A numerical calculation has been performed by the present authors to investigate the particles 

separation from the liquids by electric current. Fig. 5a considers a spherical inclusion 

suspended at the position m in the molten steel. Let's assume that the electrical conductivity 

of the molten steel is 10
3
 times larger than that of the inclusion. This assumption is applicable 

to this study, because the conductivities of the molten steel and Al2O3 above 1273K are 10
5
 

Ω
−1

m
−1

 and 10
-2

 Ω
−1

m
−1

,
17-19

 respectively. The free energy G associated with the electric 

current can be calculated by the following equation:
14 

rdrd
rr

rjrj
G 
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where μ is the magnetic permeability, r and rˊ are two different positions in space, 

respectively. )(rj


is the current density at position r.  
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Fig. 5b shows the change of the free energy when an inclusion moves from the centre of 

matrix toward the top surface. It is found that free energy decreases with the distance from 

the centre. From the thermodynamics, the system at lower free energy is more stable. It 

suggests that the inclusion tends to move from the position m to the position n, that is, the 

inclusions are expelled to the surface of the molten steel by electric current. Based on the 

calculation, the separation of  inclusions in molten steel by electric current can be clarified. 

Here, in order to simplify the calculation we assume that inclusions are in a stagnant liquid, 

but in fact, molten steel is in a fluid state. In addition, in a strong convection environment, the 

inclusion removal can also be achieved by application of pulsed electric current, which shows 

pulsed electric current is effective for the purification of molten steel in a more complex 

environment. In the future, we will take the circulation into consideration to more precisely 

explain this separation mechanism. 

 

As mentioned above, the inclusions were moved in molten steel by the application of an 

electric current; these inclusions were driven from the interior of the steel to the surface of the 

steel. More importantly, the electropulse technique works for inclusions with sizes less than 

20 μm and thus has advantages over conventional techniques which can only effectively 

remove inclusions of > 20 μm. It is currently difficult to achieve these cleanness standards 

with the conventional methods used for inclusion removal. For instance, the diameter of tyre 

wire steel is normally 150 μm. Thus an inclusion of 10 μm, can cause catastrophic failure in 

the wire. Thus, the production of such materials to meet special standards must rely on novel 

green processing techniques. Furthermore, this current-driven technique requires low power 

consumption; accordingly its production cost is low.  

 

4. Conclusions 

The size and number distribution of the alumina inclusions in steels have been determined for 

electropulsed steels and were then compared with data for blank samples where no pulse was 

applied. The removal efficiency of inclusions in molten steel was derived from a comparison 

of the solidified steels for the pulsed- and nonpulsed- samples. This is essential in the search 

for high-performance clean steel products.  
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Figure and Table captions 

 

Table 1 Chemical composition (wt.%) of investigated steel and steel electrode 

 

Fig. 1 Experimental setup for pulsed electric current experiments. B is magnetic field, I is 

electric current, and v is the migration of the particle. 

 

Fig. 2 SEM-EDS showing the type and shape of the inclusions. (a) The morphology of the 

Al2O3 inclusion, (b) The EDS pattern of Al2O3 inclusion.   

 

Fig. 3 Automated inclusion analysis by FEG-SEM was applied to detect the distribution of 

Al2O3 inclusions in the untreated as-solidified steel and electric-current-treated steel. (a) 

Untreated as-solidified steel, (b) Electric-current-treated steel.  

 

Fig. 4 Number distribution of inclusions in liquid metal without and with electric current 

treatment.  

 

Fig. 5 (a) A spherical inclusion at the position m tends to be expelled toward position n by 

electric current; (b) Free energy change when the inclusion is located at different positions. 

 

 

 

 

 

Table 1 Chemical compositions (wt.%) of investigated steel and steel electrode 
 

Sample C Si Mn S Cr Ni Cu Fe 

Steel 0.74 0.27 0.99 0.019 0.016 0.015 0.008 Bal. 

Electrode 0.12 0.17 0.53 0.021 0.075 0.152 0.494 Bal. 

 
 

 


