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a b s t r a c t

Self-controlled case series methods for events that may be classified as one of several types are described. When the event is non-
recurrent, the different types correspond to competing risks. It is shown that, under circumstances that are likely to arise in practical 
applications, the SCCS multi-type likelihood reduces to the product of the type-specific likelihoods. For recurrent events, this 
applies whether or not the marginal type-specific counts are dependent. As for the standard SCCS method, a rare disease 
assumption is required for non-recurrent events. Several forms of this assumption are investigated by simulation. The methods are 
applied to data on MMR vaccine and convulsions (febrile and non-febrile), and to data on thiazolidinediones and fractures (at different 
sites).

1. Introduction

The self-controlled case series (or SCCS) method is an alternative to other study designs, such as cohort or case-control
methods, to investigate the potential temporal association between a transient exposure and an event of interest (Farrington, 
1995; Whitaker et al., 2006). Estimation is conditional on the total number of events observed for each individual over a pre-
defined observation period (time over which a full event and exposure history is available). As a result, only cases (that is, 
individuals who have experienced at least one event) are included in the analysis, and all time-invariant confounders that 
act multiplicatively on the baseline incidence are automatically controlled for. It yields estimates of relative incidence; that 
is, the incidence in pre-defined exposure risk periods relative to all other time within the observation period.

The SCCS method is used with a single event type—which may be independently recurrent, or rare and non-recurrent. In 
this paper, extending the SCCS method to events which may be classified as one of several types is investigated. These 
events may be recurrent or non-recurrent. For example, when investigating possible associations between vaccination 
and convulsions, one might distinguish between febrile and non-febrile convulsions: in this case the event of interest is 
convulsion, and the two types are febrile and non-febrile. The analysis of non-recurrent events of multiple types is usually 
referred to as ‘competing risks’ (Aalen et al., 2008, pages 114–117). The most common instance of competing risks relates to 
death, the event of interest, the different event types corresponding to different and mutually exclusive causes of death. 
The SCCS method is not best suited for analysing deaths, or other events that affect subsequent exposures (Farrington 
et al., 2009). However, one can also envisage non-terminal competing risks, for example the first occurrence of a potentially 
recurrent multi-type event. In this case, event types are mutually exclusive.
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In this paper, the analysis of events of multiple types is investigated. The questions of interest are whether the SCCS
method requires any modification or additional assumptions to handle multiple event types; whether it is best to analyse
different event types separately or together; and what degree of confounder control the SCCS method provides.

Section 2 discusses the SCCS method for multiple event types for independently recurrent events. Considered in Section 3 
are competing risks—that is, terminal events of multiple types, or unique events of which only one type of event can occur. 
Section 4 presents simulations to investigate the scenarios discussed in Sections 2 and 3. Section 5 presents an application 
of the method to data on febrile convulsions and fractures.

2. Independently recurrent multi-type events

Suppose that the event of interest can take one of several, mutually exclusive types labelled k = 1, . . . ,m. The event
is potentially recurrent and, for each event type, recurrences are independent and arise over time as non-homogeneous
Poisson processes. In this context, an individual can experience more than one event type, but cannot experience different
event types simultaneously. All event types are of interest. Two cases were considered, according to whether the marginal
counts of each type of event are independent or not.

2.1. Marginally independent event types

In this setting, the type-specific event processes are independent non-homogeneous Poisson processes. Let λk(t|xt , y)
denote the incidence of events of type k, which may depend on time-varying exposures xt = {x(s) : s ≤ t} and time-
constant variables y. The risk periods may or may not be the same for all event types. Without loss of generality, take the
covariates to be the same for all types. The incidence rate of the event, irrespective of event type, is

λ+(t|xt , y) =

m
k=1

λk(t|xt , y).

Suppose an individual i experiences nik events of type kwithin the observation period (ai, bi]. The total number of events
experienced by individual i is ni =

m
k=1 nik. If nik > 0, denote the event times by tijk, j = 1, . . . , nik, for k = 1, . . . ,m.

Assuming a Poisson process, the likelihood contribution for individual i within the entire cohort including cases and non-
cases, is then

Li =

m
k=1

nik
j=1

λk(tijk|x
tijk
i , yi) exp


−

 bi

ai
λ+(t|xti , yi)dt


, (1)

with the convention that if for any event type k, nik = 0, then the corresponding term in the product is replaced by 1. Now
condition on the total numbers of events of each type experienced by individual i, that is, on the vector (ni1, ni2, . . . , nim) (as
well as the exposure history and the observationperiod). This gives the followingproduct conditional likelihood contribution
for each individual:

Lmci =

m
k=1

nik
j=1

λk(tijk|x
tijk
i , yi) bi

ai
λk(t|xti , yi)dt

nik .

Note that if ni = 0, then Lmci = 1 and hence only cases (that is, individuals with ni ≥ 1 irrespective of event type) need be
sampled. From now on, it is assumed that ni ≥ 1. Let Ek = {i : nik > 0}, the subset of individuals who have experienced
events of type k. Thus

m
k=1 Ek = {1, 2, . . . ,N}; note that the Ek may overlap. The conditional likelihood may be rewritten

as

Lmc =

m
k=1


i∈Ek

nik
j=1

λk(tijk|x
tijk
i , yi) bi

ai
λk(t|xti , yi)dt

nik .

The SCCS likelihood is just the product of the m type-specific SCCS likelihoods. As in the standard case, only cases (that
is, individuals with ni > 0) need be sampled, and time-invariant confounders y acting multiplicatively on any of the m
type-specific incidence rates λk(t|xt , y) are automatically adjusted.

Note that if ni were conditioned on, rather than (ni1, . . . , nim), an extra term would appear in the conditional likelihood,
representing the relative marginal abundances of the different types. This term is of the form

N
i=1

m
k=1

 Λik

Λi+

nik
,



where

Λik =

 bi

ai
λk(t|xit , yi)dt, Λi+ =

 bi

ai
λ+(t|xit , yi)dt.

Multiplicative confounders for specific event types do not generally factor out of this term, whence the preference for the
analysis conditional on individual type-specific event counts.

The likelihood Lmc offers the opportunity to test whether age and exposure effects (provided the risk periods are the same
for all event types) differ between event types. This may be achieved by including interactions between a factor coding the
event types, and the exposure and age effects. If they do not differ significantly, it may be reasonable to conclude that

λk(t|xt , y) = αkλ+(t|xt , y)

for some constants αk, k = 1, . . . ,m. In this case, event types can be combined. The multi-type SCCS likelihood Lmc is then
equivalent to the standard SCCS likelihood for the combined event types, namely

Lc =

N
i=1

ni
j=1

λ+(tij|x
tij
i , yi) bi

ai
λ+(t|xti , yi)dt

ni ,
where the tij, j = 1, . . . , ni are the event times for individual i.

2.2. Marginally dependent type-specific counts

In this setting, the marginal counts nik of the different event types are correlated, but the type-specific event times
remain independent within individuals. Consider the following framework for such a scenario, which allows for a wide
range of correlation structures, both positive and negative. Suppose that, for individual i, events of type k arise according to a
non-homogeneous Poisson process with rate

λik(t|xti , yi) = Uikµk(t|xti , yi)

for k = 1, . . . ,m, where Uik is a positive random variable, k = 1, . . . ,m, and (Ui1, . . . ,Uim) has some m-variate density.
Conditioning on (Ui1, . . . ,Uim), the analysis in the previous subsection is retrieved. The multi-type likelihood contribution
for individual i is

Lmci =

m
k=1

nik
j=1

λik(tijk|x
tijk
i , yi) bi

ai
λik(t|xti , yi)dt

nik

=

m
k=1

nik
j=1

µk(tijk|x
tijk
i , yi) bi

ai
µk(t|xti , yi)dt

nik ,

which is of the same form as in the previous subsection: the random effects Uik are time-constant and act multiplicatively,
and hence factor out.

3. Competing risks

The analyses described in the previous section apply when recurrences of event types within an individual are indepen-
dent. Typically, the SCCS method is only used for rare events, and recurrences tend to be uncommon. However, in some 
situations the independent recurrences assumption is clearly invalid. This is the case for myocardial infarction, for example. 
An SCCS model has been proposed to allow the event rate to depend on the previous number of events (Simpson, 2013). How-
ever, a simple alternative is to analyse just the first events. More generally, the SCCS method can be used for non-recurrent 
events, but then requires a rare disease assumption.

In the present section, we assume that the event is unique, but may still arise asm distinct, mutually exclusive, types: in
this setting them event type hazards may be regarded as competing risks.

The cohort likelihood contribution of an individual i with nik events of type k, k = 1, . . . ,m, with ni =
m

k=1 nik = 0 or
1, arising at time ti, in that individual’s observation period (ai, bi], is

Li =

m
k=1

λk(ti|x
ti
i , yi)

nik exp

−

 ti

ai
λ+(t|xti , yi)dt


.



Conditioning on (ni1, . . . , nim), yields the conditional likelihood contribution

Lci =

m
k=1

λk(ti|x
ti
i , yi)

nik exp

−
 ti
ai

λ+(t|xti , yi)dt


 bi
ai

m
k=1

λk(s|xsi , yi)nik exp

−
 s
ai

λ+(t|xti , yi)dt

ds

.

In the context of SCCS analyses, where interest primarily focuses on rare events, there are two main cases of interest to
consider, corresponding to different rare disease assumptions.

3.1. All event types are rare

In this setting, write λ+(t|xt , y) = φν+(t|xt , y) and consider the limit as φ → 0. The exponential terms in Lci tend to 1.
Thus, for a sample of N cases, the multi-type conditional likelihood is retrieved:

Lmc =

N
i=1

m
k=1


λk(ti|x

ti
i , yi) bi

ai
λk(t|xti , yi)dt

nik

,

with nik = 0 or 1 for unique events. If Ek is the subset of {1, 2, . . . ,N} corresponding to individuals experiencing event type
k, this likelihood may be rewritten as

Lmc =

m
k=1


i∈Ek

λk(ti|x
ti
i , yi) bi

ai
λk(t|xti , yi)dt

.

Thus, the analysis can proceed for independently recurrent multi-type events, as described in Section 2.

3.2. Only rare event types are of interest

In this setting, primary interest focuses on the association with the exposure xt for m0 < m rare event types, labelled k = 
1, . . . , m0. The remaining event types k = m0 + 1, . . . , m are not associated with the exposure, and are not of primary 
interest; for this reason only events of type k ≤ m0 are sampled. If the ‘nuisance’ event types k = m0 + 1, . . . , m are rare, 
they can be ignored, and the same analysis as described in the previous subsection can be used with m0 in place of m. If they 
are not, then the analysis has to be modified, as indicated by Andersen (2006).

Situations in which this scenario applies are not common. It may be relevant for studies of mortality due to one specific 
uncommon cause, in elderly populations in which mortality due to other causes cannot be ignored. For example, Hubbard 
et al. (2005) analysed sudden deaths after Bupropion. Sudden deaths are uncommon, and deaths due to other causes are 
competing events which may or may not also be uncommon. Note that because death is a terminal event, observation 
periods in this SCCS study all started at the first Bupropion dose.

In order to accommodate event types that are not of primary interest, the notation used hitherto is adapted slightly.
Write λk(t|xt , y) = φνk(t|xt , y) for k ≤ m0, and consider the limit as φ → 0. The ‘nuisance’ hazards no longer depend on xt
and so are now written λk(t|y), k > m0. Let

λ++(t|y) =

m
k=m0+1

λk(t|y).

Finally, only individuals for whom nik > 0 for k = 1, . . . ,m0 are sampled. Recall that events are unique, an individual
cannot experience more than one event type. Individuals for whom nik > 0 for k > m0 are ignored.

In the limit as φ → 0,

exp

−

 ti

ai
λ+(t|xti , y)dt


→ exp


−

 ti

ai
λ++(t|y)dt


.

Thus, the conditional likelihood contribution for individual i becomes

Lci =

m0
k=1

λk(ti|x
ti
i , yi)

nik exp

−
 ti
ai

λ++(t|yi)dt


 bi
ai

m0
k=1

λk(s|xsi , yi)nik exp

−
 s
ai

λ++(t|yi)dt

ds

.

The integrals involving λ++(t|y) do not disappear in general, because the nuisance events may not be rare. Suppose now
that

λk(t|xt , y) = µ(t|y) exp(βT xt).



Since λ++(t|y) does not involve the exposure of interest, redefine

λ∗

k(t|x
t , y) = µ∗(t|y) exp(βT xt)

with

µ∗(t|y) = µ(t|y) exp

−

 t

0
λ++(s|y)ds


.

With this substitution, the likelihood now takes the standard multi-type event form:

Lmc =

N
i=1

m0
k=1


λ∗

k(ti|x
ti
i , yi) bi

ai
λ∗

k(t|x
t
i , yi)dt

nik

=

m0
k=1


i∈Ek

λ∗

k(ti|x
ti
i , yi) bi

ai
λ∗

k(t|x
t
i , yi)dt

.

Note that if the combined nuisance hazard λ++(t|y) ismultiplicative in the fixed covariates y, the baseline event rateµ∗(t|y)
may no longer be so. As a result, the effects of the fixed covariates ymay not factor out fully. In this case, it may be necessary
to stratify the analysis by the levels of the covariates y to avoid residual confounding.

4. Simulations

We conducted a simulation study related to the rare nuisance disease assumptions and residual confounding explained
in Section 3.

4.1. Rare nuisance disease assumption

In this subsection, the effect of a nuisance event, with varying degrees of rarity, on the age specific relative incidence
estimates related to the event of interest is investigated using simulations. We first simulated a population of 20,000
individuals with start and end of observation periods of 0 and 730 days, respectively. Ages at start of a single exposure
were generated from a uniform distribution between 0 and 730 days for the entire population. Individuals who experienced
the event of interest were randomly selected with an incidence rate of p1 = 0.01, equivalent to 1% of the population. To
identify individuals that experienced the nuisance event, we used incidence rates (p2) of 0.01, 0.05, 0.08, 0.10 0.15, 0.2, 0.3,
0.4 and 0.5.

The true age-related relative incidence parameters for both the event of interest and the nuisance event were taken to 
be 1 (baseline), 2, 5, 3 and 2, respectively over the following age groups (0, 150], (150, 300], (300, 450], (450, 600] and (600, 
730]. The true exposure-related relative incidence for the event of interest was taken to be 4, over a risk period of 20 days. 
The nuisance event was not assumed to be associated with the exposure and hence its exposure-related relative incidence 
was taken to be 1. Based on these age and exposure groups, the observation periods of all cases were divided into intervals. 
A multinomial distribution was used to simulate the interval in which an event occurred for each case, given the event 
type and specified age- and exposure-related relative incidences. Age at event was simulated using a uniform distribution 
within the given interval. If, according to the simulation, an individual happened to experience both event types, the event 
that occurred second was removed, in line with the theory based on unique terminal events. Then the analysis suggested 
in Section 3.2, that is, a standard SCCS analysis that considers only event types of interest and ignores the nuisance event 
types, was applied to the generated data. Each scenario was replicated 500 times.

The bias and Mean Square Error (MSE) were used to evaluate the effects of the nuisance event on the age-related relative 
incidence estimates. The bias was computed as the difference between the mean of the 500 log relative incidence estimates 
and the true log relative incidence value. The MSE was computed as the sum of the variance of the estimated log relative 
incidences and the square of the bias. Results are presented in Table 1. The mean number of events of interest remaining in 
the sample after those who experienced the nuisance event first were removed is also given.

From Table 1, it can be seen that the bias in estimating the age-related relative incidence increases as the nuisance event 
becomes more common, while the exposure-related relative incidence estimates remain unbiased, as expected. When both 
event types are rare, for example when p1 = p2 = 0.01, the absolute value of bias in estimating the age effects is negligible; 
all are less than 0.005 except for the fifth age group which is 0.013. Similarly the MSE values increase as the nuisance event 
becomes less rare.

4.2. Residual confounding

In this subsection, we explore via simulation the effect of ignoring fixed covariates associated with non-rare competing 
events on the association between exposure and the events of interest. We considered one event of interest and one nuisance 
event with a confounding covariate: gender. All individuals in the population were randomly assigned a gender, 50% male 
and 50% female. The data sets were largely simulated in the same way as in Section 4.1, with the following differences. We



Table 1
Results of the rare disease assumption simulation study: Bias andMean Square Error (MSE) of exposure- and age-related relative incidence.
p1 and p2 are the rarity of the event of interest and nuisance event in the population, respectively.

Rarity No. cases Exposure Age
p1 p2 Bias MSE (150, 300] (300, 450] (450, 600] (600, 730]

Bias MSE Bias MSE Bias MSE Bias MSE

0.01 0.01 200 −0.04 0.06 0.004 0.12 0.01 0.09 0.003 0.10 −0.01 0.11
0.01 0.05 195.0 −0.01 0.06 0.002 0.10 −0.003 0.08 −0.02 0.09 −0.05 0.11
0.01 0.08 192.0 −0.01 0.06 −0.01 0.10 −0.01 0.09 −0.04 0.10 −0.08 0.11
0.01 0.10 190.4 −0.03 0.06 0.02 0.12 −0.01 0.09 −0.05 0.12 −0.08 0.13
0.01 0.15 185.2 −0.03 0.06 −0.02 0.11 −0.04 0.09 −0.09 0.12 −0.15 0.13
0.01 0.2 180.3 −0.03 0.07 −0.01 0.10 −0.06 0.08 −0.15 0.11 −0.19 0.15
0.01 0.3 170.1 −0.03 0.07 −0.003 0.11 −0.10 0.1 −0.22 0.16 −0.30 0.21
0.01 0.4 159.9 −0.03 0.08 −0.03 0.11 −0.14 0.12 −0.30 0.19 −0.42 0.31
0.01 0.5 149.8 −0.01 0.08 −0.04 0.12 −0.20 0.13 −0.45 0.32 −0.60 0.5

Table 2
Simulation results. Bias and mean square error (MSE) of the exposure related relative incidence, Analysis with and with out a confounder
gender.

Rarity No. cases No confounder Confounder included
p1 p2 Female Male Bias MSE Bias MSE

0.01 0.1 233.334 244.096 −0.0145 0.0251 −0.0136 0.0252
0.01 0.15 225.592 240.298 −0.0124 0.023 −0.0115 0.023
0.01 0.2 218.978 236.138 −0.0185 0.022 −0.0176 0.0226
0.01 0.3 203.296 229.060 −0.0142 0.0322 −0.0128 0.0321
0.01 0.4 186.756 224.004 −0.0039 0.0272 −0.0031 0.0273
0.01 0.5 171.540 216.216 −0.0124 0.0296 −0.0108 0.0295

explored only the higher incidence rates for the nuisance event, p2 = 0.1, 0.15, 0.2, 0.3, 0.4 and 0.5. Females were assumed 
to have a greater chance of experiencing the nuisance event than males, of those experiencing the nuisance event 70% are 
female. The true exposure and age related relative incidence parameters were same as for Section 4.1.

For each simulated data set a standard SCCS model was fitted with and without the confounder gender. The confounding 
covariate was taken into account by including it as an interaction with age (age*gender). The bias and MSE in estimating 
the relative incidences related to the association between exposure and the event of interest are presented in Table 2.

The reduction in the number of female cases of interest relative to males is apparent. The results show that the bias
when the confounder gender is ignored is slightly higher than the bias for when the confounder is included. This indicates
the presence of a residual confounder effect, though the effect is very small.

5. Examples

As shown in Sections 2 and 3, the multi-type SCCS likelihood is simply the product of the type-specific SCCS likelihoods.
The standard parametric method of fitting an SCCS model is to subdivide the observation period of each case into age 
and exposure categories, and fit a log-linear Poisson model with piecewise constant effects for age (Age) and exposure 
(Exposure), and a (nuisance) individual effect to mimic the product multinomial likelihood (Indiv). The standard model 
formula is thus Age + Exposure + Indiv. In applications involving a large number of cases, it is desirable to absorb the 
nuisance factor Indiv which has a large number of levels, depending on study size; see Whitaker et al. (2006).

Suppose that the age and exposure categories are the same for all event types. A simple way to analyse multi-type data
using the SCCS method is to concatenate the data sets prepared for a standard SCCS analysis of each of the m types, and
define a new factor Type taking levels 1 to m for each of these data sets. The factors Age and Exposure are defined in
the same way, and concatenated. The individual factor, however, should not be concatenated, but replaced by a new factor
Indiv2. Let Nk = |Ek| denote the number of individuals with event type k; note that

m
k=1 Nk ≥ N: the inequality is strict if

some individuals experience events of more than one type. The cases of type kwill correspond to levels of Indiv2 ranging
from N1 + · · · + Nk−1 + 1 to N1 + · · · + Nk, with multiplicities nik. The new individual factor Indiv2 thus has levels 1 tom

k=1 Nk. This nuisance factor simply ensures that marginal totals are correctly constrained for each event type.
A variety of models can then be fitted. The model formula Age + Exposure + Indiv2 corresponds to the model for

all event types combined; the model Age + Exposure * Type + Indiv2 allows for different exposure effects for the
different types, but a common age effect. The model Age * Type + Exposure * Type + Indiv2 allows for different
exposure and age effects. As these models are nested, tests to assess the need for type-specific parameters may be based on
the difference in deviances.

We present two examples of analyses based on thesemodels, using data on convulsions andmeasles, mumps and rubella
vaccination, and data on fractures and thiazolidinediones.



Table 3
Exposure-related relative incidence (RI), with 95% confidence interval (CI) with−2∗ logLikelihood and degrees of freedom (df) from various
analyses of MMR vaccine and different types of convulsion.

Exposure Recurrences included First convulsions only
RI CI −2logL (df) RI CI −2logL (df)

Common exposure and age effects
All convulsions 1.76 (1.44, 2.15) 1295.8 (5029) 1.90 (1.55, 2.33) 1225.5 (4529)

Common age effects
Febrile 1.84 (1.47, 2.30) 2.00 (1.59, 2.51)
Non-febrile 1.51 (0.98, 2.32) 1.58 (1.004, 2.49)

1295.1 (5028) 1224.7 (4528)

Different exposure and age effects
Febrile 1.84 (1.47, 2.31) 2.00 (1.59, 2.51)
Non-febrile 1.50 (0.98, 2.32) 1.58 (1.003, 2.49)

1295.0 (5022) 1224.6 (4522)

Type specific separate analyses
Febrile 1.84 (1.47 2.31) 2.00 (1.59, 2.51)
Non-febrile 1.50 (0.98 2.32) 1.58 (1.003, 2.49)

5.1. Convulsions and MMR vaccine

Here, we investigate the association between convulsions and measles/mumps/rubella (MMR) vaccine. The adverse
event, convulsions, is of two types, febrile and non-febrile. The data set comprises of 894 cases, of age 1–2344 days, who
experienced 988 convulsion events, of which 755 are febrile and 233 are non-febrile.

The data were analysed using the multiple event type SCCS method proposed in Section 2. The risk periods for both febrile 
and non-febrile events were defined as 0–25 days after MMR vaccination. Seven age groups with end dates at 365, 730, 1096, 
1461, 1827 and 2192 days of age were used. Analyses both including the recurrences and using only first convulsions were 
performed. Three models were fitted for each analysis: (1) a model including both an exposure*event type interaction 
and an age*event type interaction, that is allowing different exposure and age effects for the different event types, (2) a 
model including an exposure*event type interaction but with the same age effect and (3) a model with no interactions, 
with same age and exposure effects for both event types. Separate models for febrile and non-febrile event types were also 
fitted. Results are presented in Table 3.

With a difference in deviance of 0.1 on 6 degrees of freedom from the two models including different exposure and age
effects to the model including different exposure effects only, the results indicate that there is no need to allow different
age effects in either model. Likewise, the difference in deviances (0.7 and 0.8 on 1 degree of freedom) from the models
including different exposure effects and the model with the same exposures effect indicate that the exposure effects for
febrile and non-febrile convulsions can be combined. Relative incidences estimates when only first event is considered
are all higher than the corresponding estimates when recurrences are allowed. The combined analysis results in slightly
narrower confidence intervals as compared to type-specific separate analyses.

5.2. Fractures and thiazolidinediones

In this subsection, similar analyses to 5.1 are performed but there are more than two event types. The aim is to investigate 
whether there is an increased risk of fracture associated with the use of thiazolidinediones, a class of medicines used to treat 
type 2 diabetes. The data are primary care computerized clinical records from the United Kingdom-based General Practice 
Research Database (GPRD). 1819 patients aged 40 years or older prescribed at least one thiazolidinedione and with at least 
one fracture were included in the analysis. The event types are classified based on the site where the fracture occurred. 
There are three fracture sites; hip, spine and ‘FAWH’ (foot, arm, wrist or hand). In the data set there are 158, 70, and 1025 
events (fractures) on hip, spine and FAWH, respectively. However, there were 11 occurrences of individuals experiencing 
two events on the same day, we reduced these to one event in the following order of precedence: spine, hip, FAWH.

Douglas et al. (2009) investigated the effect of thiazolidinediones on fracture by site using separate SCCS models for 
each site. We analyse the same data using both separate models and a combined analysis. Three combined analyses, as 
in Section 5.1, were performed with common exposure and age effects, common age effect but different exposure effects, 
and different age and exposure effects. The exposure risk period began with the start of exposure (first thiazolidinedione 
prescription) and ended at the end of the observation period, so the baseline/control period only included time before the 
start of exposure. 42 age groups were defined: the first age group was less than 14 610 days (40 years) of age, followed by 5 
age groups of length two years, 28 groups of length one year, 7 groups of length two years and the last age group with age 
greater than 33 603 days. The 42nd age group was taken as a reference group in the analysis. Results are given in Table 4.

Allowing different age effects was found to be important with a difference in deviance of 122.1 on 82 degrees of freedom,
p = 0.002 (and 109 on 82 d.f. for the first fractures analysis p = 0.025), therewas a very apparent difference in exposure risk



Table 4
Relative incidence (RI), 95% confidence interval (CI) of FAWH (Foot, arm, wrist, or hand) Hip, and Spine fractures, with −2 ∗ logLikelihood
and degrees of freedom (df).

Exposure Recurrences included First fractures only
RI CI −2logL (df) RI CI −2logL (df)

Common exposure and age effects
Any fracture 1.36 (1.13, 1.62) 5529.8 (13482) 1.44 (1.19, 1.75) 4785.9 (11591)

Common age effects
FAWH 1.12 (0.93, 1.36) 1.23 (1.00, 1.51)
Hip 3.50 (2.35, 5.21) 3.40 (2.18, 5.30)
Spine 2.41 (1.36, 4.29) 2.52 (1.37, 4.63)

5496.6 (13480) 4763.6 (11589)

Different exposure and age effects
FAWH 1.26 (1.03, 1.54) 1.36 (1.10, 1.69)
Hip 1.79 (1.07, 3.00) 1.77 (1.00, 3.14)
Spine 2.19 (0.99, 4.85) 2.17 (0.95, 4.98)

5374.5 (13398) 4656.0 (11507)

Site specific separate analyses
FAWH 1.26 (1.03, 1.54) 1.36 (1.10, 1.69)
Hip 1.79 (1.07, 3.00) 1.77 (1.00, 3.14)
Spine 2.19 (0.99, 4.85) 2.17 (0.95, 4.98)

Fig. 1. Age related relative incidence functions for Foot, arm, wrist or hand (FAWH) (solid line), Hip (dashed line) and Spine (dotted line) fractures.

effects with andwithout common age effects. Allowing different exposure effects was also found to be important p < 0.001
for first and all fractures. In this case, separate site specific analyses coincide with the combined analysis. There was a
significant increased risk of hip and foot, arm, wrist or hand fracture during the exposure risk period. Spine fracture had
the highest, but non significant, exposure-related relative incidence estimate of 2.19(0.99, 4.85); the large standard error
is due to the small number of spine events. The relative incidence estimates for FAWH fractures increased when only first
fractures per individual are used in the analysis. Hip related relative incidences are larger when recurrences are allowed.

Age related site specific relative incidence estimates are presented in Fig. 1. Generally, the age related relative incidence 
of all types of fractures increases with age. The baseline relative incidence of FAWH fracture is higher than hip and spine 
fractures. However, hip and spine fractures seem to have similar baseline relative incidences.

6. Discussion

The SCCSmethod has been extended to situations in which events may be classified as different types. It has been shown
that, quite generally, the multi-type likelihood is just the product of the type-specific likelihoods. Hitherto, analyses of
different event typeswere done separately.While thismay often remain a reasonable approach, this paper offers the further
opportunity formally to investigate several types in the same analysis, with potential gains in parsimony and efficiency, for
example in the analysis of MMR convulsions we have a slight gain in efficiency when using the new method.

The equivalence of the multi-type likelihood with the product of type-specific likelihoods holds under a broad range
of scenarios which are likely to arise in practice. Thus, it holds for recurrent event types, both when the marginal type-
specific counts are independent, orwhen they are dependent throughmultiplicative random type-specific individual effects.
It also holds for rare non-recurrent events—a special case of competing risks. We investigated rare non-recurrent events,
when competing events that are not of primary interest may not be rare. The general model also holds in this case, though
the interpretation of the age effect differs, provided that the competing events not of primary interest are not associated



with the time-varying exposure under study. Bias in estimates of the exposure-related relative incidence was unaffected
by the presence of a nuisance event, even when the nuisance event affected half of the population. We struggle to think of
circumstances in which we would be interested in common competing events that did depend on the exposure of interest:
in such circumstances, designs other than the SCCS should probably be used.

The original SCCS method requires that event times (of a single event type) are independent within individuals. The only 
context in which the SCCS method has been extended to handle dependence between events is that in which the event 
rate depends on the previous number of events (Simpson, 2013). A common solution is to analyse only first events. This 
paper does not explore possible dependence in the timing of multi-event types, only dependence in the marginal counts of 
event types. Using fractures and thiazolidinediones as an example, it is possible that all three fracture types: hip, spine and 
FAWH, could happen simultaneously, or notionally, as a direct result of one fracture type occurring or in its healing, another 
fracture type could be either more or less likely to occur in the short term. The first scenario of simultaneous fractures can 
be handled easily in the framework presented, either by defining a new event type ‘multiple fractures’, or by allocating a 
multiple fracture to the type of its most serious component. The second scenario of short-term dependence in timing of 
events is not straight forward, but an analysis of first events only would be valid. Dependence of an event of interest on a 
measured nuisance events could be allowed for by including ‘nuisance risk periods’ as covariates in the model, similar to 
the exposure risk periods, but any such dependence could only be one-way: the event of interest must not influence the 
occurrence of nuisance events.

The rare nuisance disease assumption was investigated in more detail than hitherto by simulation, in order to provide
guidance as towhen the SCCSmethodmay be usedwith non-recurrent events. Only bias in the age-related relative incidence
was apparent.
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