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Abstract. The goal of this work is to learn a measure supporting the
detection of strong relationships between Linked Data entities. Such rela-
tionships can be represented as paths of entities and properties, and
can be obtained through a blind graph search process traversing Linked
Data. The challenge here is therefore the design of a cost-function that
is able to detect the strongest relationship between two given entities,
by objectively assessing the value of a given path. To achieve this, we
use a Genetic Programming approach in a supervised learning method to
generate path evaluation functions that compare well with human eval-
uations. We show how such a cost-function can be generated only using
basic topological features of the nodes of the paths as they are being
traversed (i.e. without knowledge of the whole graph), and how it can be
improved through introducing a very small amount of knowledge about
the vocabularies of the properties that connect nodes in the graph.

1 Introduction

The goal of the work here presented is to automatically discover what makes a
strong relationship between two entities of the Web of Linked Data. Identifying
the strength of the relationship between entities can have many applications,
the most common of which is to measure entity relatedness, i.e. identifying
how related two entities are. This is a well-known problem for a wide range
of tasks, such as text-mining and named-entity disambiguation in Natural Lan-
guage Processing, or ontology population and query expansion in Semantic Web
activities.

From a Web of Data perspective, a relationship can be identified in the graph
of Linked Data as a semantic path (expressed as a chain of entities and prop-
erties) between two given entities, and graph search techniques can be used to
reveal them. When applying such techniques to the Linked Data graph, how-
ever, the entities and properties included in the found paths might come from
a number of different, unknown data sources. In order to avoid having to index
and locally pre-process a necessarily partial subset of the graph, a natural app-
roach is to rely on link traversal, which allows to incrementally and agnostically
explore the graph from entity to entity until paths between them are found.
In other words, finding relationships between entities in the Linked Data graph
requires a uniformed (or blind) search, which does not need pre-computation or
c⃝ Springer International Publishing AG 2016
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knowledge over the entire graph. However, to drive such an uniformed search,
a function to measure the strength of the explored paths (a “cost-function”) is
necessary to ensure that only the most promising ones will be followed.

Our goal is therefore to figure out which of (and how) the features of the
Linked Data graph along the explored paths could be used by such cost-function.
While one could intuitively think that the shortest paths reveal the strongest
connections, this assumption does not necessarily hold within the Linked Data
space, where entities of different datasets are connected by multiple paths of sim-
ilar lengths. Our challenge is to find which Linked Data structural information
we need in order to design a cost-function that objectively assesses the value of
a path. More specifically, we aim at discovering which topological and seman-
tic features of the traversed entities and properties can be used to reveal the
strongest relationships.

To answer this question, the approachwe propose is to use a supervisedmethod
based on Genetic Programming whose scope is to learn the path evaluation func-
tion to integrate in a Linked Data blind search. Our idea is that, starting from a
randomly generated population of cost-functions created from a set of topologi-
cal and semantic characteristics of the Linked Data graph, the evolutionary algo-
rithm will reveal which functions best compare with human evaluations, and will
show us what is really important to assess strong relationships in Linked Data.
The learnt cost-functions are compared and discussed in our experiments, where
we show not only that good results are achieved using basic topological features
of the nodes of the paths as they are being traversed, but also how those results
can be improved through introducing a very small amount of knowledge about the
vocabularies used to label the edges connecting the nodes.

2 Related Work

As already mentioned, the goal of our work is to learn a measure to assess
strong Linked Data relationships, so that this can be integrated in an uninformed
graph search within Linked Data. For this reason, we divided this related work
section in three parts. First, we study works that focus on assessing Linked Data
entity relatedness, in order to discover which types of interestingness measures
have been proposed. Then, we analyse works based on Linked Data traversal,
to see how uninformed graph searches can be applied in the context of Linked
Data. Finally, we explore works that focused on designing a measure empirically,
namely by learning it through Genetic Programming.

Linked Data Entity Relatedness. There is a solid body of literature on entity
relatedness, which can be categorised according to the corpus used to assess
it [10,18]. Here, we focus mainly of approaches that compute the relatedness
based on Linked Data. A first area comprehends Linked Data-based metrics
to assess the strength of a relationship between entities quantitatively [10,14,
20,21,24]. They can be divided into entity-based approaches, which compute
the similarity between neighbouring concepts based on the entity description
(i.e. triples where the entity is involved as a subject or object) [14,21,24], and
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path-based metrics [10,20], which compute relatedness between concepts that
are not directly connected. As in our work, these approaches are motivated by
the idea of exploiting the rich resource descriptions existing in (and across)
Linked Data. From our perspective, these works are too restrictive for two main
reasons: first, they present ad-hoc measures, which have been either manually
designed based on the analysed datasets or adapted from existing information
theoretical measures; second, the strength of a relationship can only be assessed
quantitatively.

A second area includes works that define entity relationships qualitatively,
as Linked Data paths or subgraphs. The strongest relationships are identified
through information theoretical measures based on node centrality, node fre-
quency or edge informativeness applied on the paths retrieved from one or
more Linked Data datasets. We find in this category systems for data visual-
isation and exploratory searches, such as RelFinder [8], REX [5], Explass [1]
and, more recently, Recap [18]. These approaches first identify all possible rela-
tionships between two entities, either using SPARQL queries aiming at retrieving
paths up to a certain length [8,18], or by extracting them from a pre-computed
dataset [1,5], and then rank the results based on some predefined interesting-
ness measures. Pathfinding techniques have also been used to identify entity
relationships [3,12,15]: similar to our work is the use of cost-functions based on
the Linked Data graph structure to drive the informed searches (e.g. A*, ran-
dom walks), prioritising nodes and pruning the search space. With that said,
their major limitation consist in exploiting Linked Data with an a priori knowl-
edge, either by indexing and pre-processing datasets, or by using queries against
SPARQL endpoints, therefore pre-defining the desired portion of data to be
analysed.

Linked Data Traversal. The idea behind the Linked Data Traversal (link tra-
versal in short) is to exploit URI dereferencing1 to discover connections between
entities across datasets on-the-fly and in a follow-your-nose fashion, so that no or
very little domain knowledge has to be introduced. Link traversal relies on the fact
that if data are connected (through owl:sameAs, skos:exactMatch, rdfs:seeAlso or
simply by vocabulary reuse), then one can naturally span datasources and gather
new knowledge serendipitously. Various studies have shown that Linked Data can
be traversed agnostically in contexts such as SPARQL query extensions [7] or (cor-
)relation explanation [18,22]. So far, however, uninformed graph searches have
been only used for Linked Data crawling or indexing [9,20]. To the best of our
knowledge, no work has focused on identifying a cost-function suitable to be inte-
grated in an uninformed search over Linked Data.

Genetic Programming. Evolutionary algorithms have proven to perform well
in those tasks where it was necessary to identify suitable functions based on a
desired output. For instance, Genetic Programming has been successfully applied
in Information Retrieval to reveal the most appropriate document ranking func-
tions for search engines [2,4,13,23]. In the Linked Data context, Genetic Pro-

1 Retrieving a representation of a resource identified by a URI.
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gramming was used to identify similarity functions for discovering links [16,17],
instance clustering [6] or matching [11] across different datasets, but not, prior
to the work presented here, to assess relationship strength between Linked Data
entities.

3 Motivation, Challenges and Approach

Our motivating scenario is a uniform-cost search process which traverses Linked
Data on-the-fly with the aim of identifying the best relationship given two input
entities. Uniform-cost search (ucs) is an uninformed, non-greedy best-first search
strategy where a cost-function g(n) chooses the next node to expand based on
the cumulative cost of the edges from the start to that node n. When expanded,
new children are created and stored in the queue accordingly. Since the nodes
are generated iteratively, ucs does not require holding the whole graph in mem-
ory, which makes it suitable for large graphs; secondly, g(n) being cumulative
(i.e. paths never get shorter as the nodes are added), the search expands nodes
in the order of their optimal path, which guarantees search optimality. These
characteristics make ucs particularly suitable to a context such as Linked Data.

Our process is designed as a bi-directional search, whose aim is to find the
path p = ⟨nl . . . nr⟩ that best represents the relation between two entities nl and
nr. By “best”, it is intended that the relatedness between nl and nr, expressed as
a score assigned by the cost-function, is maximised. Because ucs does guarantee
optimality, but its bi-directional version does not, we use a maximum number
of node expansions to perform as a termination criterion. An example of such a
process, showing how different structural information might be needed to find the
best relationship, is presented below. Here, we used entities of the same dataset
for clarity purposes but, as demonstrated by the experiments, the process can
be applied on entities of two arbitrary datasets.

3.1 Example Scenario

Let us imagine that we want to identify the strongest relationship between two
DBpedia entities, e.g. n1=db:ASongOfIceAndFire(novel) and n2=db:GOT-TV-
series(episodes) of Fig. 1. The process consists in:
(1) Bi-directional search. Given the two nodes nl and nr, two uniform-cost

searches ucsl and ucsr are performed simultaneously. Their objective is to
iteratively build two search spaces, a left-directed one from nl and a right-
directed one from nr, to find a common node nc.

(2) Entity dereferencing. Each search space is expanded by dereferencing the
entity labelling the next node in the queue, and by finding all the entities
that are linked to it. We do consider as “link” any edge of the node, i.e. both
incoming and outgoing RDF properties of the dereferenced entity. In the
example, n1 is linked to 5 entities and n2 to 4. As said, nodes are queued
and dereferenced according to their cumulative cost from the start node nj

(with j ∈ {l, r}), which guarantees optimality to both ucsj . This step is
repeated until one or more common nodes nc are found.
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Fig. 1. Paths between db:ASongOfIceAndFire(novel) and db:GOT-TVseries(episodes)

(3) Path building. For each common node nc, we build the two subpaths pj =
⟨nj . . . nc⟩, and then merge them into a path p = ⟨nl . . . nc . . . nr⟩. Each path
then identifies a relationship between the initial two entities. For instance,
the graph of Fig. 1 represents all the paths existing between n1 and n2 after
a few iterations.

(4) Path scoring. The cost of each path is evaluated as an approximation (most
often, a sum) of the costs of the paths from nl to nc and from nr to nc.
The one with the highest score, highlighted in the Figure, is chosen as the
strongest relationship between the initial entities.

3.2 Challenge and Proposed Approach

From the process described above, it becomes clear that the problem to tackle
are how to find a good cost-function is necessary to choose among a set of alter-
native paths between two entities, and how to avoid computational efforts or
inconclusive searches. The question arising here is what is the best strategy to
find the most representative relationships, and if we can exploit the information
in the Web of Data to guide the two searches in Linked Data in the right direc-
tion, so that they can quickly get to convergence. When looking at the paths in
Fig. 1, an interesting observation can be made: the node corresponding to the
entity db:GameOfThrones-TVseries has a lower indegree, which is generally used
to measure the authority (its “popularity”) of a node, when compared to other
nodes, as the ones labelled as ASongOfIceAndFire(topic) or db:UnitedStates.
This information could be used to rank nodes so that the path that best specifies
the relation between n1 and n2 is soon revealed. In other words, the structural
features of the graph could be a good insight to drive a blind search in Linked
Data. Given this, our challenge is to answer the question: what makes a path
strong? Which are the topological or semantic features of a node or an edge,
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which can be used when deciding if a path is better than another? To reformu-
late the problem: can we use the structure of the Linked Data graph to assess
relationship strengths?

Our proposition is to use a supervised Genetic Programming (GP) approach
to identify the cost-function that best performs in ranking sets of alternative
relationship paths. Starting from a random population of cost-functions cre-
ated on a set of features related to possible topological or semantic features
of the nodes and edges of the path, the evolutionary algorithm will learn the
cost-function that best performs when compared to a benchmark of human-
evaluated relationship paths. The choice of Genetic Programming over other
supervised learning techniques (e.g. SVMs, Neural Networks, Linear Regression
or learning-to-rank) is motivated by three main reasons: first, its results are not
assessed by comparing directly the path scores, which are hardly comparable
to the human rankings provided in the benchmark, but by assessing the ade-
quacy of the cost-functions through a fitness function; secondly, these formulas
are human-understandable, which means that they can be used to identify the
structural features of Linked Data that matter for a successful search; finally,
because they are understandable, they can be directly implemented in a graph
search mechanism. Additionally, the GP learning process is flexible, so it allows
us to easily refine parameters and impose new constraints on the fitness func-
tion, and it comfortably deals with wide search spaces, so we can study large
populations of possible cost-functions without worrying about scalability issues.

The contributions of this work can be summarised as follows: (i) we present
a measure to detect strong entity relationships that can be integrated in unin-
formed searches over Linked Data, therefore avoiding data pre-processing; (ii) we
demonstrate that such function can be derived empirically, which improves over
the state-of-the-art approaches presenting domain-specific or manually-defined
measures; (iii) we show that good results are achieved using basic topological
features of the nodes of the paths as they are being traversed, and how those
results can be improved through introducing a very small amount of knowledge
about the vocabularies used to label the edges connecting the nodes.

4 Learning Functions to Evaluate Paths

In this section, we first give and overview of the Genetic Programming framework
and then present the supervised approach that we propose to discover the cost-
functions to assess entity relationships.

4.1 Genetic Programming Foundations

Inspired by Darwin’s theory of evolution, Genetic Programming is an Artifi-
cial Intelligence technique that aims at automatically solving problems in which
the solution is not known in advance [19]. The general idea is to create a ran-
dom population of computer programs, which are the candidate solutions for a
problem, that the algorithm stochastic transforms (“evolves”) into new, possibly
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improved, programs. The stochastic process guarantees that the GP proposes
diverse solutions to a given problem.

In GP, programs are generally represented as trees of primitive elements,
where the internal nodes (mathematical or logical operations) are called func-
tions, while the leaf nodes (constants or variables) are called terminals. A fitness
function measures how good each program is with respect to the problem to
be solved. Given a population, a new population is created by adding programs
using one of the three following genetic operations: (1) reproduction, in which a
new child program is generated by copying a randomly selected parent program;
(2) crossover, where a child program is generated by combining randomly chosen
parts from two randomly selected parent programs; (3) mutation, where a new
child program is generated by randomly altering a randomly chosen part of a
selected parent. This process is iterated until a termination condition is met:
typically either a maximum number of generations is reached, or a satisfying,
possibly optimal solution (i.e. a desired fitness) is found. Along with the prim-
itive set, the fitness and the termination condition, a set of parameters such as
the population size, the probabilities of performing the genetic operations, the
selection methodology or the maximum size for programs need to be decided to
control the GP process.

4.2 Preparatory Steps

The described framework can be used to learn the cost-function that best ranks
a set of alternative paths between two Linked Data entities. For a better under-
standing, we invite the reader to use as a reference the graph of Fig. 1 and the
three following paths:

p1 =

p2 =

p3 =

Process. Let Pi = {p1, . . . , p|Pi|} be the set of |Pi| alternative paths between
two Linked Data entities, with i being the ith pair in D = {P1, . . . , P|D|}, the
set of |D| examples that have been ranked by humans, and G = {g1, . . . g|G|} a
starting population of randomly generated cost-functions gj . The GP algorithm
iteratively evolves the population into a new, possibly improved one, until the
stopping condition is met. The evolution consists first in assigning a fitness score
to the cost-functions, which in our case reflects how “good” a cost-function is
in ranking paths compared to the human evaluators. For instance, assuming 3
users have agreed on ranking the paths as p2, p3 and p1, those functions scoring
the them in the same order will obtain the highest fitness. Then, reproduction,
mutation and crossover are applied to some randomly (with bias from fitness)
chosen individuals, and the generated children are added to the new population.
The current population is replaced by the evolved one once they reach the same
size, and a new generation starts.
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Primitives. Terminals and functions are called primitives. A terminal can be:
(i) a constant, i.e. a randomly chosen integer in the set Z = {0, . . . , 1000}, or
(ii) a combination of an edge weighting function w(e) (with e being the edge)
and one aggregator a. We call this combination a.w an aggregated terminal.

Edge weighting functions w(e) assign a weight to each edge of the path, based
on the information of its source. We define 10 edge weighting functions, that we
divide in topological and semantic terminals. Topological terminals focus on the
Linked Data graph structure, and are as follows.

• Fixed Weight (1): the edge is assigned a score of 1. This is equivalent to
performing a breadth-first search, where nodes are queued and explored in
the order they are found.

• Indegree (in): the edge is weighted according to the number of incoming
links of its source. For instance, the edge db:birthPlace(db:GeorgeRRMartin,
db:UnitedStates) of Fig. 1 has a weight of 2, since the source db:GeorgeRR-
Martin has 2 incoming links. This feature is chosen to understand the impor-
tance of “authority” nodes, i.e. the ones with many incoming links.

• Outdegree (ou): the edge is weighted according to the number of outgoing links
of its source, e.g. the weight in the previous example is 2. ou helps us study
the importance of “hub” nodes that point to many other nodes.

• Degree (dg): an edge is weighted based on the degree of the source, i.e. the
sum of in and ou. To the previous example, dg would assign a score of 4.

• Conditional Degree (cd): the weight attributed to the edge depends on the
RDF triple from which the edge has been generated. In fact, each edge
e(u, v) is generated from a dereferenced RDF triple, either ‹ u, e, v›, as in
the case of db:birthPlace(db:GeorgeRRMartin, db:UnitedStates), or ‹ v, e, u›,
as for db:pro- ducer(db:GeorgeRRMartin, db:GOT-TVseries). The cd termi-
nal returns either the indegree or the outdegree of the source depending on
whether the triple represents a back or a forward link. Therefore, cd would
return 2 in the former case (the indegree of the node for db:GeorgeRRMartin)
and 2 in the latter case (its outdegree). The conditional degree analyses the
importance of paths going through large hubs, that are also common to many
other paths.

We define semantic terminals those features that are more specific to Linked Data
than to common graphs. For that, we first considered the vocabulary usage, then
analysed the most frequent RDF properties, as provided by both Linked Open
Vocabularies2 and LODStats3. Note that, since we rely upon entity dereferencing
to traverse Linked Data, we only considered the most frequent object properties.

• Namespace Variety (ns): an edge is weighted depending on the number of
namespaces of its source node. For instance, the node db:GeorgeRRMartin
has the two namespaces owl: and db: for its three links, while the node
db:GOT-TVseries has the 3 namespaces dc:, db: and skos: for its 5 links.

2 http://lov.okfn.org/dataset/lov/terms.
3 http://lodstats.aksw.org/.

http://lov.okfn.org/dataset/lov/terms
http://lodstats.aksw.org/


Learning to Assess Linked Data Relationships Using Genetic Programming 589

Namespaces variety is intended to analyse the use of vocabularies when seman-
tically describing an entity. While initially we considered incoming and out-
going namespaces separately, we did not find any substantial difference in the
process, and eventually reduced the two terminals to one.

• Type Degree (td): the edge weight depends on the number of rdf:type declared
for the source entity. For example, db:ASongOfIceAndFire(novel) has a type
degree of 1 but, assuming this was declared as a skos:Concept too, its score
would be 2. td focuses on the taxonomical importance of an entity, with the
idea that the more a node is generic (i.e. the entity belongs to many classes),
the less informative the path might be. Since rdf:type is unidirectional, there
is no need to distinguish between in- and outdegree.

• Topic Outdegree (so): the edge weight is assigned by counting the number of
outgoing edges labeled as dc:subject, foaf:primaryTopic and skos:broader of the
starting node. The edge db:author(db:ASongOfIceAndFire(novel), db:George-
RRMartin) has a score of 2. The topic outdegree focuses on authority nodes
in topic taxonomies (controlled vocabularies or classification codes).

• Topic Indegree (si): similarly, the edge weight is assigned by counting the
number of incoming dc:subject, foaf:primaryTopic and skos:broader edges. The
same edge has a score of 1 in this case. si considers hub nodes on controlled
vocabularies.

• Node Equality (sa): the edge is weighted according to how much its source
is connected to the external datasets, based on the number of links labeled
as owl:sameAs, skos:exactMatch or rdf:seeAlso. For instance, db:UnitedStates
is connected to its Geonames4 corresponding entity gn:6252001 so, accord-
ing to the sa weight, the edge db:airedIn(db:UnitedStates, db:GOT-TVseries
(episodes)) is scored 1. sa considers the importance of the inter-dataset connec-
tions. Since those properties are bi-directional, we do not distinguish between
in- and outdegree.

Aggregators are functions to combine the weights of edges across the whole
path: sum returns the sum of the w(e) for each of the l edges of the path; avg
returns the average edge weight across the path; min and max the path minimal
an maximal w(e), respectively.

To generate an individual, the aggregated terminals are randomly combined
through the GP function set, composed of addition x + y, multiplication x ∗ y,
division x/y and logarithm log(x). For example, g1 = sum.1 + (1/avg.td) is
interpreted as a function acting almost as a depth-first search, with a small
added value from the average type degree of the nodes of the path.

Fitness Evaluation. The fitness of a cost-function is measured with the Nor-
malised Discounted Cumulative Gain (nDCG), generally used in Information
Retrieval to assess the quality of rankings provided by the web search engines
based on the graded relevance of the returned documents5. The closer it gets to 1,

4 http://www.geonames.org/.
5 https://www.kaggle.com/wiki/NormalizedDiscountedCumulativeGain.

http://www.geonames.org/
https://www.kaggle.com/wiki/NormalizedDiscountedCumulativeGain
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the more the engine judges the documents as relevant as the human evaluators
did. We apply the same idea by considering a path as a document, therefore
evaluating first the DCG for a path pk at rank k as:

DCG(pk) = rel1 +
k∑

m=2

relm
log2(m)

(1)

where relk is the average of the relevance scores given to pk by human evaluators.
The DCG(pk) is then normalised by comparing it to its ideal score iDCG(pk),
as assessed by the gold standard.

The function avg(Pi) then averages each nDCG(pk) in the set Pi, so that to
obtain the performance of the function for the i-th pair, as in Eq. 2. The overall
fitness of a function is obtained by averaging each avg(Pi) of all the |D| pairs of
the dataset as in Eq. 3.

avg(Pi) =

∑
pk∈Pi

nDCG(pk)

|Pi|
(2) f(gj) =

∑
Pi∈D

avg(Pi)

|D| (3)

We also add a penalty weight to avoid long and complex cost-functions, by
comparing the length l of a function with its ideal length L. The weighted fitness
of a function is defined as:

fw(gj) = f(gj) − (w × (l − L)2) (4)

where w is the penalty weight.

Genetic Operations. We perform the following genetic operations.

• Reproduction. Given a cost-function parent, a new individual is copied in the
new generation without alterations.

• Crossover. Given two parents, two children are generated by swapping two
random subtrees of the parents.

• Mutation. Given a selected parent, one node (the mutation point mp) is modi-
fied. We designed different kinds of mutations, as in Table 1, depending on the
type ofmp: if it is a constant x, the node is mutated with a new constant y that
is either higher (1) or lower (2) than x in the range of y = [x − 100, x+ 100];
if mp is an aggregated terminal, the node is mutated by either modifying its
aggregator (3), modifying its edge weighting function (4), or by replacing it
with a new constant (5); if mp is a function, it can be replaced either with a
new constant (7) an aggregated terminal (8), or with a new function (8), in
which case we might remove (9) or add (10) a child depending on the arity of
the new function.

Training and Testing. We randomly split the dataset into a training set and
a test set. Then, we run the GP process on the training set and store a small set
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Table 1. Mutation examples for g1 = sum.1 + (1/avg.td)

n mp Mutation type Example
1 Constant x< y < x+100 sum.1 + (18/avg.td)
2 Constant x −100< y < x sum.1 + (−18/avg.td)
3 Terminal New a sum.1 + (1/max.td)
4 Terminal New w sum.1 + (1/avg.in)
5 Terminal New x sum.1 + (1/20)
6 Function New a.w sum.1 +max.ns
7 Function New x sum.1 + 40
8 Function New function (same arity) sum.1 + (1 × avg.td)
9 Function New function (delete child) log(1/avg.td)
10 Function New function (add child) min.ou×(sum.1 + (1/avg.td))

of the fittest individuals, i.e. the cost-functions that performed better in ranking
paths, while the rest are discarded. Third, the surviving individuals are tested
on the test set, and if their fitness is not consistent with the one of the training
set, we screen them out. This helps in avoiding overfitting and in obtaining more
valid cost-functions. We then keep the best individual of each run.

5 Experiments

The section introduces our experimental scenario, describing the dataset we built
and the control parameters for the Genetic Programming learning process. Then,
it presents the obtained results, including the discovered cost-function6.

5.1 Experimental Setting

As previously mentioned, the fitness is assessed on a dataset composed by sets
of alternative paths between random pairs of entities. In order to create more
variety in the final dataset, so that the learnt functions would not be overfitted
to a specific type of data source, we used different types of entities, randomly
extracted from different Linked Data sources, namely: (i) 12,630 events (from
battles to sport to music events) from Yago7; (ii) 8,185 people from the Vir-
tual International Authority File (VIAF)8; (iii) 999 movies from the Linked
Movie Database9; and (iv) 1,174 countries and capitals from Geonames and the
UNESCO10 datasets.

6 Dataset and results are available online at http://linkedu.eu/dedalo/pathfinding/.
7 http://yago-knowledge.org.
8 http://viaf.org/.
9 http://www.linkedmdb.org/.

10 http://uis.270a.info/.html.

http://linkedu.eu/dedalo/pathfinding/
http://yago-knowledge.org
http://viaf.org/
http://www.linkedmdb.org/
http://uis.270a.info/.html
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To make sure to span at least to another dataset when finding paths, therefore
guaranteeing more path heterogeneity, we used the DBpedia SPARQL endpoint
as a pivot, i.e. we chose a desired ?_class (event, country, person etc.) and the
?_dataset we wanted to retrieve it from, and then ran the simple query:

select distinct ?same where {
?entity a ?_class. # select the entities of a desired class
?entity <http://www.w3.org/2002/07/owl#sameAs> ?same. # get owl:sameAs
FILTER(strStarts(str(?same), ?_dataset)). # filter by dataset

}
ORDER BY RAND() # make sure to get random entities

Next, given a random pair, we ran a bi-directional breadth-first search limited
to 30 iterations in order to find a set of possible paths between them. Note
that other iterations thresholds were also tested (between 20 and 50), and 30
cycles seemed the most reasonable trade-off between missing some relationships
and taking more time to obtain almost the same relationships. We discarded
the pairs for which no path was found. 8 judges were asked to evaluate each
set, assigning the paths rel scores between 2 (“highly informative”) and 0 (“not
informative at all”), and discarded the pairs whose agreement was below 0.1
according to the Fleiss’k rating agreement11. The choice of using different scores
was motivated to represent the gradation between meaningless relations, valide
but weak relations and strong relations. An example of a path to be ranked,
showing that the movie “The Skin Game” and the actress Dina Korzun are both
based in Europe, is presented in Fig. 2. The final dataset consisted of 100 pairs,
whose paths were assigned a score corresponding to the average of the scores
given by the users.

Fig. 2. A path example

Finally, Table 2 presents the control parameters we used during the GP
process. Because a perfect agreement between the functions with the users could

Table 2. Control parameters for the GP runs

Population size 100 individuals Reproduction 10% population size
Max generations 300 Elitism 10% population size
Termination Max generation Penalty weight w 0.001
Selection 5-sized tournament Ideal length L 3
Crossover rate: 0.65 Validation split 70% −30%
Mutation rate: 0.15 Num. individuals (testing) 5

11 https://en.wikipedia.org/wiki/Fleiss%27_kappa.

https://en.wikipedia.org/wiki/Fleiss%27_kappa
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not be reached, we use a maximum number of generations as a termination
condition. In order to not bias the generation process, we also generated trees
without limit in depth, and equally distributed the probability of functions, con-
stants and aggregated terminals being chosen. It is worth mentioning that other
parameters were also tested but, due to space limitation, we only present the
ones giving the best results according to our tests.

5.2 Results

First, we present the results of different runs of the Genetic Programming learn-
ing process presented in the previous Section. Table 3 shows the unweighted
fitness on training set (ftr) and test set (fts) of the best cost-functions learnt
during 3 different runs (therefore different dataset cuts). We divided the GP
runs depending on whether we used topological terminals only (T), or both
topological and semantic terminals (S).

Results show that some terminals, i.e. the conditional degree cd, the
namespace variety ns and the topic indegree si, are recurrent across different
runs of the same block, which demonstrate the stability of our learning process.
Given the regularity we noticed of the min.ns aggregated terminal, Table 3 also
includes a third block of experiments (N), in which we used only the topolog-
ical terminals and min.ns. We observe that both the T- and the N-functions,
based mostly on topological features, have a lower performance when compared
to the S-ones, that include semantic terminals too. Nevertheless, the S-functions
confirm the importance of min.ns.

We then performed a comparative evaluation between the learnt cost-
functions and some related work of the literature, namely RelFinder (RF [8]),
Recap [18] and the two measures presented by the Everything is connected
Engine (EICE [3]) and by Moore et al. (M&V [15]). Figure 3 presents the avg(Pi)
score (Y axis) that each of the functions obtained on each of the examples in D
(X axis).

Table 3. Best cost-functions for different runs

Run Fittest individual gj ftr fts

T1 log(log(min.cd × min.cd))/max.cd 0.79 0.79
T2 log(min.cd)/(avg.cd+ 87) 0.77 0.78
T3 min.cd × (min.cd/max.cd) 0.78 0.72
N1 (log((max.ns/max.cd))/avg.ns) +min.ns 0.82 0.81
N2 ((min.dg/sum.cd)/sum.ou) +min.ns 0.79 0.77
N3 min.ns/(log(max.cd)/avg.ns) 0.83 0.75
S1 min.ns+ (sum.ns/log(log(sum.si))) 0.88 0.83
S2 min.ns+ (min.cd/log(log(sum.si))) 0.88 0.86
S3 min.ns+ (log(max.in)/log(log(sum.si))) 0.87 0.86
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Fig. 3. avg(Pi) of each measure on the full dataset D

What can be noticed from the Figure is a considerable difference between the
existing approaches, which are based on ad-hoc information theoretical measures,
and the ones that were automatically learnt through Genetic Programming.
Indeed, the combination of several topological characteristics sensibly improves
a cost-function performance, as demonstrated by the overall fitness of f(gi) of
T1, T2 and T3 (also presented in Table 4, first row). This means that the rank-
ing the T-functions give for a set of path is much more similar to the ones of a
human evaluator than the ones attributed by hand-crafted measures. The low
performance of the existing measures suggests that they are not suitable to cor-
rectly evaluate paths that connect entities across several Linked Data datasets,
as the ones we have collected in our experiments. A slight improvement can also
be observed with the N-functions: the overall fitness f(gi) for them improves
roughly by 0.02-0.04 when compared to the T-functions. With that said, the
Figure clearly shows that adding some semantic information is the key to obtain
more precise results, as the S-function overall fitnesses f(S1)=0.86, f(S2)=0.88
and f(S3)=0.87 demonstrate (i.e. fitness improvement is ca. 0.09–0.11).

In Table 4, the cost-functions are compared to the baselines to assess if they
perform in a stable way across different datasets sources. We removed, in turn,
pairs whose entities belonged to one of the Linked Data sources presented in
Sect. 5.1, and then calculated the functions’ fitness f(gi) on the filtered dataset.
Results confirm that the S-functions are consistent even with different datasets.

We finally analyse the cost-function that reported the best performance:

S2 = min.ns+
min.cd

log(log(sum.si))
(5)

and observe that the terminals here included are the same that we had already
noted as being the most recurrent among the different runs of Table 3. As can
be seen from its shape, this function prioritises paths that:
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Table 4. Overall fitness of the functions across datasets. D\ indicates from which
dataset the entities were removed; s indicates the size of the filtered dataset

D\ s RF RECAP EICE M&V T1 T2 T3 S1 S2 S3
∅ (tot) 100 0.399 0.481 0.449 0.446 0.784 0.763 0.749 0.871 0.873 0.865
Geonames 23 0.455 0.457 0.584 0.605 0.756 0.710 0.641 0.909 0.911 0.887
Yago 77 0.371 0.513 0.432 0.424 0.819 0.820 0.819 0.883 0.881 0.880
VIAF 69 0.378 0.492 0.418 0.414 0.832 0.828 0.801 0.880 0.888 0.880
UNESCO 79 0.390 0.457 0.442 0.437 0.784 0.764 0.750 0.858 0.860 0.849
LMDB 73 0.439 0.382 0.438 0.435 0.740 0.728 0.705 0.846 0.847 0.843

• pass through nodes with rich node descriptions (the higher min.ns is, the
more relevant the path is considered);

• do not include high level entities (that have many incoming dc:subject/foaf:pri-
maryTopic/skos:broader links, since many other entities are also of the same
category), since the higher sum.si is, the lower the path score is;

• include only specific entities (not hubs) for paths with a small number of
topic categories. Indeed, because of the use of the double log function, the
ratio between min.cd and log(log(sum.si)) is negative if sum.si is lower than
10. However, min.cd becomes a positive factor when sum.si is above 10.

In other words, the function prioritises specific paths (e.g. a movie and a person
are based in the same region) to more general paths (e.g. a movie and a person
are based in the same country).

6 Conclusions

In this paper, we presented a supervised method based on Genetic Programming
in which we learnt a measure to detect strong relationships between entities in the
Linked Data graph. Such measure is a cost-function to be used in a blind graph
search over Linked Data, in which relationships between entities are identified
as Linked Data paths of entities and properties. With the assumption that the
topological and semantic structure of Linked Data can be used by a cost-function
to identify the strongest connections, we used Genetic Programming to generate
a population of cost-functions that was evolved iteratively, based on how well
the individuals compared with a human evaluated training data. The results
proved our idea that successful path evaluation functions can be built empirically
using basic topological features of the nodes traversed by the paths, and that a
little knowledge about the vocabularies of the properties connecting nodes in the
explored graph is fundamental to obtain the best cost-functions. We analysed the
obtained functions to detect which features are important in Linked Data to find
the strongest entity relationships, and finally presented the cost-function that
we learnt. As future work, we will integrate this cost-function in a Linked Data
pathfinding process that can be used in frameworks for on-the-fly knowledge
discovery over Linked Data.
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