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Introduction:  The Dorsa Argentea (DA) are an 

assemblage of ridges in Mars’ southern high latitudes 

(70°-80°S, 56°W-6°E). Glacial eskers and inverted 

channels remain as active hypotheses for their for-

mation [1-11]. The esker interpretation is widely used 

as a basis for reconstructions of meltwater production 

beneath a putative former ice sheet  in the region of the 

DA during Mars’ Hesperian period, despite a lack of 

rigorous quantitative testing of the esker hypothesis 

[e.g. 7-8,10-12]. We undertake the first large-scale 

quantitative analysis of the plan view geometries of the 

DA [1] in a comparison to >5900 terrestrial esker sys-

tems in Canada [13-14]. Statistical tests for esker-like 

topographic relationships [1-3,15-16] are also complet-

ed. Our results support the esker hypothesis and high-

light that future studies of the DA and its parent ice 

sheet should more closely consider the ongoing debate 

over the spatio-temporal nature of terrestrial esker for-

mation [e.g. 13,17-18], and its implications for recon-

structions of ice sheet meltwater production. 

Methods: We digitized DA ridge segments (indi-

vidual, unbroken ridges) using ~115 and ~230 m/pixel 

MOLA DEMs and  ~6 m/pixel CTX [19] and 

~20 m/pixel HRSC [20] images. We conservatively 

grouped chains of related ridge segments, separated by 

gaps, into longer ridge systems. Standalone segments  

<10 km in length were excluded. 

Plan view ridge geometry: We calculated system 

length (Li) by linearly interpolating across gaps be-

tween segments. We calculated continuity as the ratio 

between the total length of segments comprising a sys-

tem and Li,, and sinuosity as the ratio between Li and 

the shortest linear distance between end points of the 

system. 

Longitudinal change in ridge height and bed slope: 

We obtained cross sectional (CS) topographic profiles 

at ~1 km spacing (within the 115 m/pixel DEM) along 

four major ridges (A-D) and calculated the down-ridge 

change in ridge height (dH). We used base elevations 

(average elevation of two base points on each CS pro-

file) to calculate longitudinal bed slope (θL) between 

successive CS profiles. Calculations were not per-

formed across ridge gaps or junctions. 

Results and analysis: In total, we mapped 

~7514 km of ridge systems (Fig. 1, n = 260), for which 

plan-view geometry data is displayed in Table 1.  

 
Figure 1. DA classified by system sinuosity. MOLA 

hillshade basemap. Adapted from [1]. 

 
Table 1. Plan view geometries of Dorsa Argentea and 

Canadian esker systems [13].  

 
Figure 2. System sinuosity and length of the DA and 

Canadian eskers [13]. Adapted from [1]. 

 Figure 3. dH against θL for Ridge A. Positive values 

of θL are uphill and negative values downhill. Adapted 

from [1]. 



 Gaps between segments account for ~10% of  Li. 

Some systems are more fragmented, with a minimum 

continuity of 0.59 ± 0.02. System sinuosity is con-

sistent with values obtained by previous workers 

[8,10]. Long systems are typically straighter than 

shorter ones (Fig. 2) and those at the entry to East Ar-

gentea Planum have higher sinuosity (~1.48-

1.7 ± 0.03) than those within the main valley (~1-

1.3 ± 0.03, Fig. 1). 

We observe increases in ridge height on downhill 

slopes and decreases on uphill slopes for ridges A (Fig. 

3) B, and C. Ordinary least squares regression analyses 

indicate that θL explains 47.81% (p = 0.000), 59.26% 

(p = 0.000), 18.27% (p = 0.001) of variance in dH on 

ridges A, B and C, respectively, confirming previously 

observed topographic relationships [2-3].  

Discussion: The lengths and sinuosity of the DA 

are consistent with >5900 Canadian eskers (Table 1, 

Fig 2). The great lengths and high continuity of the 

longest DA ridges, reconstructed ice surface slopes of 

~0.06° [11], a putative paleolake in Argentea Planum 

[7] and fan-forms at ridge termini in this region [11] 

may be consistent with synchronous formation (Fig. 

4b) in long, stable channels extending from the interior 

of a former, likely stagnant, ice sheet and terminating 

in a proglacial lake [10,17]. The consistently low sinu-

osity of ridges in the main basin (Fig.1) could support 

their formation beneath thick ice, while higher sinuosi-

ty of the northernmost ridges (Fig. 1) may result from 

their formation closer to a stable former ice margin 

where ice was thinner and subglacial water routing was 

more strongly controlled by local topography (Fig. 4b). 

However, Storrar et al. [13] attribute the length-

sinuosity relationship for the Canadian eskers (Fig. 2) 

to time-transgressive formation beneath thin ice at a 

retreating ice margin (Fig. 4a). A similar relationship 

for the DA highlights that further work is required to 

understand the spatio-temporal nature of their for-

mation and its implications for meltwater production in 

their parent ice sheet [e.g. 13,17-18].  Variations in 

ridge height along ridges A (Fig. 3), B and C adhere to 

topographic relationships observed for terrestrial es-

kers arising from variations in energy available for 

melting of roofs of subglacial esker-forming conduits 

[15-16]. 

Conclusions: (1) Statistical distributions of 

length and sinuosity of the DA are similar to those of 

terrestrial eskers in Canada. (2) The DA may have 

formed synchronously in conduits extending towards 

the interior of an ice sheet that thinned towards its 

northern margin, terminating in a proglacial lake. 

However, the ongoing debate over time-transgressive 

and synchronous deposition of terrestrial eskers [e.g. 

13,17-18] has implications for the nature of ice sheet 

meltwater production and retreat and should be consid-

ered more closely in future studies of the DA. (3) Sta-

tistical tests for esker-like relationships between ridge 

height and topography confirm the strength of these 

relationships for three of four major DA ridges. 

 
Figure 4. Schematic of the effect proposed by [13] of 

(a) time-transgressive and (b) synchronous esker sed-

imentation upon esker sinuosity-length relationships. 
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