View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Open Research Online

iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

DevOps for the Urban loT

Conference or Workshop Item

How to cite:

Moore, John; Kortuem, Gerd; Smith, Andrew; Chowdhury, Niaz; Cavero, Jose and Gooch, Daniel (2016).
DevOps for the Urban loT. In: Proceedings of the Second International Conference on loT in Urban Space - Urb-loT
16, ACM, New York, NY, pp. 78-81.

For guidance on citations see FAQs.

© 2016 ACM
Version: Version of Record

Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.1145/2962735.2962747

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

https://core.ac.uk/display/82983441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/2962735.2962747
http://oro.open.ac.uk/policies.html

DevOps for the Urban loT

John Moore Gerd Kortuem Andrew Smith
The Open University The Open University The Open University
Milton Keynes, UK Milton Keynes, UK Milton Keynes, UK
john.moore@open.ac.uk gerd.kortuem@open.ac.uk andrew.f.g.smith@open.ac.uk
Niaz Chowdhury Jose Cavero Daniel Gooch
The Open University The Open University The Open University
Milton Keynes, UK Milton Keynes, UK Milton Keynes, UK
niaz.chowdhury@open.ac.uk jose.cavero@open.ac.uk daniel.gooch@open.ac.uk

ABSTRACT

Choosing the right technologies to build an urban-scale
IoT system can be challenging. There is often a focus
on low-level architectural details such as the scalability of
message handling. In our experience building an IoT in-
formation system requires a high-level holistic approach
that mixes traditional data collection from vendor-specific
cloud backends, together with data collected directly from
embedded hardware and mobile devices. Supporting this
heterogeneous environment can prove challenging and lead
to complex systems that are difficult to develop and deploy
in a timely fashion. In this paper we describe how we ad-
dress these challenges by proposing a three-tiered DevOps
model which we used to build an information system that
is capable of providing real-time analytics of Electric Ve-
hicle (EV) mobility usage and management within a smart
city project.

CCS Concepts

*Applied computing — Enterprise computing; *Computer
systems organization — Real-time systems; *Software
and its engineering — Designing software;

Keywords
DevOps; Urban IoT; Smart City; Solar Energy; EV Mobility

1. INTRODUCTION

Many cities around the world are expected to grow sig-
nificantly over the coming years, creating unsustainable
pressure on key local infrastructure, particularly transport,
energy and water. The objective of a smart city initiative
such as MK:Smart, is to develop novel approaches to man-
age future growth and to make Milton Keynes more sus-
tainable. The MK:Smart project contains work streams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.
Urb-10T’16, May 24-25, 2016, Tokyo, Japan
© 2016 ACM. ISBN 978-1-4503-4204-9/16/05. .. $15.00

DOL: http://dx.doi.org/10.1145/2962735.2962747

such as Energy, Citizen engagement and Education. As
part of the Energy stream we have a goal to research and
gain an understanding of the concept of self-sufficient mo-
bility. More specifically, we wish to examine how Electric
Vehicle (EV) owners use solar energy to fulfill their trans-
portation needs. To achieve this we have built a system to
collect and examine the use of stored solar energy within
a home and EV.

The technology required to support this effort is com-
plex and involves staged deployment starting with a select
number of trial participants. Figure 1 plots the households
taking part in the energy trial within MK:Smart across the
city of Milton Keynes. A key challenge for any smart city

Milton Keynes Urban Area

® Households

Figure 1: Household participation within the trial

initiative is being able to scale up a trial infrastructure to
an urban scale and sustain this growth during deployment.
In this paper we focus on this challenge from a technolog-
ical perspective and describe an approach to scaling up
a real-time information system from its trial deployment.
Our approach is based on a layered model influenced by
the practice of DevOps within enterprise computing. Ac-
cording to Gartner [4], "DevOps emphasizes people (and
culture), and seeks to improve collaboration between oper-
ations and development teams. DevOps implementations
utilize technology - especially automation tools that can
leverage an increasingly programmable and dynamic in-

frastructure from a life cycle perspective." Some popular
DevOps technologies include Docker [8, 7] for software de-
ployment, Jenkins [11] for continuous integration and Pup-
pet [6] for configuration management. We will focus on
Docker because we are most interested in how to deploy
software in a scaleable way.

2. BACKGROUND AND RELATED WORK

It is now possible to purchase IoT devices which con-
tain embedded networking stacks that connect directly to
publisher/subscriber service provider companies such as
PubNub !. However, it is unlikely that a large IoT project
will be able to exclusively adopt this approach. Within our
project, we can classify data as originating from either
physical hardware such as a mobile phone or software-
oriented sources such as cloud APIs provided by the man-
ufacturers of the hardware used. Furthermore, the data
that is collected comes in a range of formats from semi-
structured text in flat files to more structured data such
as XML retrieved over web protocols. Managing the col-
lection of this data per user in a scalable way requires a
systematic approach or methodology. However, current lit-
erature within the field of IoT tends to focus on low-level
details such as the physical layer communication, messag-
ing protocols used [3, 14, 10] and how to scale the com-
munications architecture [1, 2]. At the other end of the
spectrum, there has been research conducted on design-
ing technology-oriented frameworks and architectures to
support the development of smart cities [5, 13, 9]. Rather
than base our work on these contrasting approaches, we
demonstrate how DevOps can be applied to turn tradi-
tional information systems into IoT information systems.
We achieve this by combining well known IoT implementa-
tion techniques into a simple three-tiered model.

3. ARCHITECTURE

We will describe in detail what we consider are the three
key components when building a real-time IoT system us-
ing a DevOps approach. Namely, containerisation, publish-
er/subscriber messaging and unified logging.

3.1 Containerisation

Containerisation can be viewed as a more lightweight
alternative to virtualisation popularised by the technology
Docker. In Docker terminology, a container is a sandboxed
environment for running software. Multiple containers can
be built based on different operating systems and can be
deployed on a single host machine. A container can run
on any machine which supports Docker which makes mi-
grating software from different hosting solutions straight-
forward. Containerisation eliminates the need for running
and maintaining a complete operating system and kernel
which is required when a virtual machine is deployed. In
addition to this simplification, Docker provides a complete
ecosystem for easily managing and working with contain-
ers. Figure 3 summarises some of its key features. A
Docker image is described in a Dockerfile file which de-
tails its build requirements. This includes what operating

thttp://pubnub.com

system to use as well as what software packages to add
and what scripts to execute. A registry exists containing a
wealth of predefined build configurations. By issuing com-
mands such as those shown in figure 3, it is possible to
build an image and run it on the host system as a container.
Although each container runs in its own secure sandbox it
is possible to link containers so that they can share infor-
mation. In our system each user can provision and con-
figure their own container to act as a virtual hub that can
collect the data and send it to our publisher/subscriber in-
frastructure. This container also provides code to carry
out event processing on the data stream with the results
being communicated back to the user. This is implemented
in a traditional DevOps fashion by writing a series of small
scripts per event stream that are managed within a tra-
ditional Unix-style environment. Once we have a working
system for a single user we simply need to replicate this
behaviour by building and running another container.

3.2 Publisher/Subscriber messaging

A key consideration when designing any pub/sub archi-
tecture is how you handle the server-side channel sub-
scriptions as this helps manage the overall complexity of
your server infrastructure. Ideally you will have a fixed
number of server-side channel subscriptions which do not
increase as the number of publishers joining the system in-
creases. We use a single server-side subscription to a log
channel. This channel is used to collect all household data
for every participant. If the volume of messages flowing
through this single channel becomes too high it is possi-
ble to scale this by introducing more log channels and/or
servers and reading the channel messages in a predeter-
mined fashion such as round-robin. The log channel can
be visualised as raw data coming into the system that will
processed and sent back out to an individual household as
high-level events. The information sent back takes place
over a channel supporting push notifications to services
such as those offered by Apple, Google and Microsoft. The
purpose of a push channel is to allow mobile platforms to
deliver messages in the form of notifications through to the
operating system when the client application is not run-
ning or suspended in the background.

3.3 Unified logging

Unified logging [12] abstracts the problem of routing
data received from multiple sources to multiple potential
consumers of the data. Technologies such as fluentd 2
achieve this by providing a consistent interface layer con-
trolled by a declarative language. This makes it possible to
write a single configuration file that works with numerous
technologies. Additional technologies can be supported by
developing plugins. In our system we route from a PubNub
log channel to MongoDB and the Elasticsearch, Logstach,
and Kibana (ELK) stack. MongoDB records all the JSON
received which is then processed in real-time to generate
events back out to users. ELK is used to provide real-time
data analytics on the log channel such as live heatmaps of
EV location events. The following section will showcase
some of this work.

Zhttp://fluentd.org

Il Dashboard - Kibana - x
« C | (1Mt 7:5601/# /dashboard?_g-=(refreshinterval:(display:Off,p

I) ana Discover Visualize Dashboar

Seftings

ction:0,value:0) time:(from:now-1M%2FM,mode:quick to:now-1M%2FM))8L_a=(filters:!(), panels:!((col:1,id:Location-6:77 | w® £E1 % =

Yionnf - O X
@ Previous month

Q] &5 2 ©

Location 6255d93d0b676fd3314762bc97c0b751 # %

A

& % Blaine export vs generation & x

€] Legend ©
Max owl.export

@ Max owl.generation

2016-01-0700:00 2016-01-1700:00 2016-01-27 00:00
@timestamp per 12 hours

a ~

Figure 2: Kibana dashboard

(Client}——————— [DOCKER_HOST Registry)

docker build -- -,‘-.,'7{

Docker daemon |

Y,
%,

1 \
. N [% 7
docker pull i Containers }— \.\ |mages)_._1_
‘~ T~ 1
o /
N !
=

A
Y%

NGinX

docker run = —

@
=

QQ8a¢

Figure 3: Provisioning services using Docker

4. TECHNOLOGY DEMONSTRATOR

Figure 2 is a screenshot of the data visualisation tool,
Kibana, which is built on top of Elasticsearch. We use this
tool to provide real-time data analytics of each participant
in the trial in the form of a dashboard. The information
shown is for a specific participant in our trial over the pe-
riod of one month. The tool provides flexibility to examine
data across different time periods as well as graph data as
it is received in real-time.

The first graph shows an EV mobility heatmap gener-
ated through the detection of an iBeacon situated in the
EV. Each time the driver enters or exits their vehicle we
are able to capture the location of this event using an ap-
plication running in the background of their mobile phone.
We can view the mobility habits of an individual participant
of the trial or plot the pattern of all participants within the
city. The second graph shown plots the state of a partici-
pant’s EV battery. Monitoring this data over time provides
us with information on EV charging habits. For example,
we can see that this particular EV owner tends to keep
their battery level above 50%. This data originates from
Nissan’s telematics service. The third graph shown plots
the amount of solar generation (shown in blue) and how

much of this is exported back to the grid (shown in green)
for a single home. This user is exporting back to the grid
as they have not yet been fitted with battery storage ca-
pability. The data is collected using OWL Intuition energy
monitoring hardware 3. By looking across all three graphs
we can answer questions such as: based on mobility habits
is it possible for this participant to power their EV by using
solar generation alone and can this be supported by adding
latent solar storage in the form of a battery in the home?
The technology we have described can not only help pro-
vide these kind of answers for one user but can also start
to provide answers for many users across the city.

5. CONCLUSIONS

DevOps is a hot topic within enterprise computing. We
believe this agile approach to building systems can equally
be applied to tackling development projects within the IoT
domain. To help with this, we defined a three-tiered ap-
proach to building a system which separates what we con-
sider are the fundamental building blocks of an IoT in-
formation system. If tasked with building an IoT system,
we believe this model provides a good starting point to
focus your design efforts. Our model comprises of con-
tainerisation, publisher/subscriber messaging and unified
logging. Containerisation is about employing technologies
such as Docker to manage building systems that scale from
one user to many. This is a key challenge that is encoun-
tered when scaling the deployment of a trial from a small
number of participants up to an urban scale. Publisher/-
subscriber messaging is about providing the underlying
communication system required. Finally unified logging
is about making sure the data is routed in the right direc-
tions so that it can be easily stored and analysed in real-
time. To demonstrate our model we built an information
system cable of providing real-time analytics on Electric
Vehicle (EV) mobility and behaviour that forms part of a
smart city project.

3http://www.theowl.com/owl-intuition/

6. REFERENCES consistent development and deployment. Linux J.,
[1] A. Cenedese, A. Zanella, L. Vangelista, and M. Zorzi. 2014(239), Mar. 2014.
Padova Smart City: An urban Internet of Things [9] L. Sanchez, V. Gutierrez, J. Galache, P. Sotres,

experimentation. In World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2014 IEEE 15th
International Symposium on a, pages 1-6, June 2014.
M. Collina, G. Corazza, and A. Vanelli-Coralli.
Introducing the gest broker: Scaling the iot by
bridging mqtt and rest. In Personal Indoor and
Mobile Radio Communications (PIMRC), 2012 IEEE
23rd International Symposium on, pages 36-41, Sept
2012.

K. Framling, S. Kubler, and A. Buda. Universal
messaging standards for the iot from a lifecycle
management perspective. Internet of Things Journal,
IEEE, 1(4):319-327, Aug 2014.

Gartner. Gartner IT Glossary > DevOps.
http://www.gartner.com/it-glossary/devops. (last
accessed: 04/02/2016).

[5] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami. An

information framework for creating a smart city
through internet of things. Internet of Things
Journal, IEEE, 1(2):112-121, April 2014.

[6] J. Loope. Managing Infrastructure with Puppet.

O’Reilly Media, Inc., 2011.
K. Matthias and S. P. Kane. Docker: Up & Running.
O’Reilly Media, Inc, 2015.

[8] D. Merkel. Docker: Lightweight linux containers for

J. Santana, J. Casanueva, and L. Munoz.
Smartsantander: Experimentation and service
provision in the smart city. In Wireless Personal
Multimedia Communications (WPMC), 2013 16th
International Symposium on, pages 1-6, June 2013.
Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. McCann, and
K. Leung. A survey on the IETF protocol suite for the
Internet of Things: standards, challenges, and
opportunities. Wireless Communications, IEEE,
20(6):91-98, December 2013.

J. E. Smart. Jenkins: the definitive guide. O’Reilly
Media, Inc., 2011.

K. Tamura. Unified Logging Layer: Turning Data into
Action.
http://www.fluentd.org/blog/unified-logging-layer,
Aug. 2014. (last accessed: 04/02/2016).

R. Wenge, X. Zhang, C. Dave, L. Chao, and S. Hao.
Smart city architecture: A technology guide for
implementation and design challenges.
Communications, China, 11(3):56-69, March 2014.
Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin. IOT
Gateway: BridgingWireless Sensor Networks into
Internet of Things. In Embedded and Ubiquitous
Computing (EUC), 2010 IEEE/IFIP 8th International
Conference on, pages 347-352, Dec 2010.

