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Abstract

We consider the problem of an overdamped Brownian particle moving in multiscale potential

with N +1 characteristic length scales: the macroscale and N separated microscales. We show that

the coarse-grained dynamics is given by an overdamped Langevin equation with respect to the free

energy and with a space dependent diffusion tensor, the calculation of which requires the solution

of N fully coupled Poisson equations. We study in detail the structure of the bifurcation diagram

for one-dimensional problems and we show that the multiscale structure in the potential leads to

hysteresis effects and to noise-induced transitions. Furthermore, we obtain an explicit formula for

the effective diffusion coefficient for a self-similar separable potential and we investigate the limit

of infinitely many small scales.

PACS numbers: 05.45.-a, 05.45.Gg, 47.10.Fg, 47.27.De
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I. INTRODUCTION

Brownian motion in disordered media (or rugged energy landscapes) is a problem of

great scientific and technological interest, and applications are found in a wide range of

different areas, such as e.g. collective transport of particles in random media [16, 17, 21,

36, 39, 41], molecular motors [27, 37], and protein reaction dynamics and folding [43], to

name but a few. In the latter example in particular, proteins are dynamic macromolecules

that exhibit many scales of molecular motion which is governed by a hopping mechanism

through the local minima of the free-energy surface, the so-called conformational substrates

or microstates. Understanding the effect of the microstates on the large scale dynamics

of proteins is a problem of both theoretical and practical interest. At the same time, a

rugged energy landscape can introduce metastability in the system [11, 12] and the degree

of metastability can increase with the complexity of the landscape, invalidating predictions

based on thermodynamic arguments, e.g. [50]. In addition, other systems characterised by

the presence of rugged energy landscapes include flows in structured or disordered media

such as fluid flow in porous media [51–53] or contact line dynamics on chemically and/or

topographically heterogeneous substrates [46, 48–50, 57, 58]; while the understanding of

conformational changes in complicated multiscale energy landscapes can have significant

impact to technological applications such as crystallisation [56] and drug design [30].

The dynamics of a Brownian particle moving in a rugged energy landscape can be mod-

eled using the Langevin dynamics, either non-Markovian [38, Ch. 8], underdamped or the

overdamped (Smoluchowski) dynamics in a multiscale potential which can be taken to be

either deterministic or random. The main goal of the present work is to study in detail the

coarse-grained dynamics of the Smoluchowski dynamics in an N -scale periodic potential. In

particular, we will derive rigorously the coarse-grained dynamics and study the quantitative

and qualitative properties of the homogenized model. It is important to note that many

interesting phenomena, such as subdiffusion, may arise in the coarse grained dynamics sys-

tems with a multiscale potential, and, as it was shown in [59], the presence of a microscale

(“roughness”) in the potential increases the mean first passage time. In particular, given

a potential V (x) with two metastable states, perturbing V (x) with microscale fluctuation-

s would result in a decrease in the escape/reaction rate between the two states, see also

[22] (and a generalization of this would be finding the corresponding transition/relaxation
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times [34, 35]). Such results can be obtained in a systematic and rigorous way using ana-

lytical multiscale techniques. One can also approximate the effective dynamics numerically,

using methods such as heterogeneous multiscale methods [2], reduced basis finite element

heterogeneous multiscale methods, [1], as well as equation-free methods [20, 24].

Here, we further assume an overdamped Langevin dynamics of a Brownian particle mov-

ing in a multiscale periodic potential, where the macroscale is assumed to be confining (see

figure 1 for some examples of multiscale potentials). By carefully analysing the correspond-

ing effective (averaged) equation in different examples of potentials we are able to observe

nontrivial dynamics which emerges as a consequence of the interplay between noise level

and microscopic structure. In particular, we find that the microscopic fluctuations conspire

with the additive noise to produce noise-induced hysteresis and noise-induced stabilisation

depending on the particular choice of the potential. In all cases, we are able to fully char-

acterise the different state transitions in terms of critical exponents.

Our basic model will be the first-order Langevin equation

dXε
t = −∇Vε (Xε

t ) dt+
√

2σdWt, (1)

where Wt denotes standard Brownian motion on Rd and where the magnitude of the noise

intensity σ would typically be related to the inverse temperature. The potential depends on

N + 1 scale, the macroscale and N small scales:

Vε(x) = V
(
x,
x

ε
,
x

ε2
, . . .

x

εN

)
, (2)

and it is assumed to be confining at the macroscale and periodic in all small scales (detailed

assumptions on the potential will be presented in the next section). For the dynamics (1),

with the potential (2) tools from homogenization theory, in particular reiterated homoge-

nization [3] can be used in order to obtain an effective equation, valid in the limit of infinite

scale separation ε→ 0.

Several aspects of this problem have already been studied. First, for periodic potentials

with one characteristic length scale, under the diffusive rescaling Xε
t := εXt/ε2 the effective

diffusive dynamics becomes diffusive with an effective diffusion matrix D that can be cal-

culated by solving an appropriate Poisson equation, posed on the unit periodicity cell [42,

Ch. 13], [9, Sec. 3.4]. This result is a form of the functional central limit theorem for

diffusion processes with periodic coefficients [8]. Furthermore, diffusion is always depleted
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and it becomes exponentially small in the limit σ → 0 [25]. The case of Brownian dynamics

in a two-scale separable potential was studied in [40]. In particular, the dynamics (1) with

a potential V in (2) of the form V (x, y;α) = αV (x) + p(y), with p(·) a smooth periodic

function, was considered. It was shown in [40] that the maximum likelihood estimator for

the coefficients in the drift of the homogenized equation, given observations from the full

dynamics (1), is asymptotically biased.

On the other hand, the problem of homogenization for Brownian particles in periodic

potentials with N−scales, in the absence of a macroscopic/confining potential was studied

in [5, 33]. In these papers the overdamped Langevin dynamics in potentials of the form

V N(x) =
N∑
k=1

Uk

(
x

Rk

)
, (3)

where Uk, k = 1, . . . are Hölder continuous periodic potentials. Under the assumption

that the scale ratios Rk+1

Rk
are bounded from above and below (in particular, allowing the

possibility of a lack of scale-separation), it was shown that the eigenvalues of the effective

diffusivity tensor D(V N) decay exponentially quickly as the number of scales increases.

Using this result, the authors were able to show that in the limit of infinitely many scales the

effective behavior is characterized by anomalous slow behavior. This subdiffusive behavior

can be analyzed in a quantitative way by studying the mean exit time of the effective

dynamics from a ball whose radius is of O(1).

The potential (2) that we consider here can be thought of as a caricature of a disordered

medium. For self-similar potentials of the form

Vε(x) =
+∞∑
j=1

V
( x
εj

)
, (4)

where V (·) is a periodic function, it is possible, at least in one dimension, to obtain an

analytical formula for the effective diffusion coefficient.

Here we will show that the coarse-grained equation of (1) is reversible with respect to

an appropriate Gibbs measure and that the effective potential is given by a coarse-grained

free energy. In addition, an important point to note is that, even though the noise in

the full dynamics (1) is additive (since it is due to thermal fluctuations) the noise in the

coarse-grained model is multiplicative. It is well-known that multiplicative noise can lead

to noise-induced state transitions, both first- and second-order [29]. The fact that additive
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noise from the fast scales, combined with the multiscale nature of the dynamics, leads

to multiplicative noise and noise-induced transitions in the coarse-grained dynamics, was

shown rigorously and investigated in detail for the stochastic Kuramoto-Shivashinsky (sKS)

equation–an SPDE with no gradient structure [45, 47]. Specifically, as was shown in these

studies, the coarse-grained dynamics of the sKS equation near the instability threshold

is described by a low-dimensional stochastic differential equation (SDE) (an “amplitude

equation”) of the Landau-Stuart type with additive as well as multiplicative noise. For

particular choices of the spatial correlation structure of the noise, the amplitude equation

contains only multiplicative noise that leads to noise-induced stabilization and intermittent

behavior. The transition between the three possible states of the system–normal, Gaussian-

like behavior, intermittency and stabilization–depends on the strength of the noise.

One of our goals here is to investigate similar issues for the multiscale overdamped

Langevin dynamics. In particular, following the techniques developed in [29], see also [38,

Sec. 5.4], for non-multiscale SDEs with multiplicative noise in one dimension, we analyze the

effect of the multiscale structure on the bifurcation diagram of the coarse-grained dynamics

in one dimension. In particular, we show that the presence of several spatial scales leads to

hysteresis loops in the bifurcation diagram which we can characterize quantitatively in terms

of an appropriate critical exponent. We note the similarities between our findings and the

work on critical transitions and bifurcation theory for non-autonomous stochastic dynamical

systems, in particular the emergence of hysteresis phenomena in the study of the so-called

tipping points [26]. A similar numerical study of water molecules filling or emptying carbon

nanotubes was investigated in [55], where a coarse grained potential energy landscape was

derived computationally, using coarse-grained molecular dynamics, and use to investigate

the metastability and hysteretic parameter dependence of the dynamics.

The rest of the paper is organized as follows: In Section II we present the model that

we will be considering in detail and we also give our main results: the formula for the

homogenized equation and the main properties of the effective potential (free energy) and

of the effective diffusion tensor. The effect of the multiscale structure of the potential on

a pitchfork bifurcation is studied in Section III. Noise-induced stabilization phenomena for

multiscale potentials are considered in Section IV. In Section V we calculate the effective

diffusion coefficient for a Brownian particle moving in a piecewise linear self-similar potential

with infinitely many scales. Conclusions and a discussion are offered in Section VI and
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FIG. 1: (Color online) Examples of multiscale potentials. (a) A two-dimensional rough

surface which corresponds to the interfacial energy of a droplet on a chemical

heterogeneous substrate (see e.g. [57]). Panels (b) and (c) correspond to the case of a

one-dimensional (1D) periodic multiscale potential given by (25) with α = 0.5 (b) and (35)

(c). The inlet of panel (c) is a zoom into the area marked by a rectangle.

the derivation of the coarse-grained equation and the calculation of the effective diffusion

coefficient using multiscale techniques are outlined in the Appendices.

II. BROWNIAN MOTION IN A RUGGED ENERGY LANDSCAPE

We consider the overdamped Langevin dynamics in a multiscale potential with N + 1

characteristic length scales. The dynamics is given by the following SDE:

dXε(t) = −∇V ε (Xε(t)) dt+
√

2σdW (t), (5)

where the potential V ε(x) is of the form

V ε(x) = V
(
x,
x

ε
,
x

ε2
, . . . ,

x

εN

)
, (6)

where ε� 1 measures the degree of scale separation and where V (x, y1, . . . , yN) is a smooth

function which is periodic in all but the first variable. The variables y1, . . . , yN characterise

the microscopic scales of the potential while x represents the macroscale. So V is assumed

to have a fractal-like structure which is realistic and allows for analytical progress to be

made. Also, without loss of generality, we may also assume that V has period one in each
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microscopic variable. W (t) denotes standard Brownian motion in Rd and σ > 0 corresponds

to the temperature. We shall assume that the potential can be decomposed as follows:

V (x, y1, . . . , yN) = V0(x) + V1(x, y1, . . . , yN), (7)

where V0 is assumed to be confining potential, while V1 is assumed to be bounded uniformly

with respect to all parameters, and periodic with period 1 with respect to the variables

y1, . . . , yN . This ensures that both the full dynamics (5) and the coarse-grained dynamics,

(10) below, are ergodic [38, Sec. 4.5]. In particular, the process {Xε(t)} is (exponentially)

ergodic[60] with invariant distribution

ρε(x) =
1

Zε
e−V (x,xε ,

x
ε2
,..., x

εN
)/σ, Zε :=

∫
Rd
e−V (x,xε ,

x
ε2
,..., x

εN
)/σ dx. (8)

The dynamics {Xε(t)} given by (5) is reversible with respect to the distribution (8). In

particular, the generator of the process {Xε(t)} is self-adjoint in the space L2(Rd; ρε(x)) and

can be written in the form

Lε· = σ

ρε(x)
∇ ·
(
ρε(x)∇ ·

)
. (9)

Introducing the auxiliary variables yn = x
εn
, n = 1, . . . N and using the chain rule we can

write (5) as a system of interacting diffusions across scales:

dXε(t) = −∇xV (Xε(t), Y ε
1 (t), . . . , Y ε

N(t)) dt

−
N∑
`=1

1

ε`
∇y`V (Xε(t), Y ε

1 (t), . . . , Y ε
N(t)) dt+

√
2σ dW (t),

dY ε
n (t) = − 1

εn
∇xV (Xε(t), Y1(t), . . . , Y

ε
N(t)) dt

−
N∑
`=1

1

εn+`
∇y`V (Xε(t), Y ε

1 (t), . . . , Y ε
N(t)) dt+

√
2σ

ε2n
dW (t),

for n = 1, . . . N . The state space of the diffusion process {Xε(t), Y ε
1 (t), . . . Y ε

N(t)} is Rd ×
Td × · · · × Td where Td denotes the unit torus. This auxiliary diffusion process inherits

from (5) the properties of ergodicity and reversibility. Our goal is to eliminate the fast scales

{Y ε
1 (t), . . . Y ε

N(t)} and to obtain a closed equation for the macroscopic variable X(t). We

remark on the similarity between this homogenization/coarse-graining problem and that of

the derivation of a mean-field limit equation for interacting diffusions [15]. In Appendix A we

use homogenization theory [42] and in particular the theory of reiterated homogenization [3]

to derive such a closed, SDE for the macroscopic variable Xε(t), valid in the limit of infinite
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scale separation ε→ 0. In this section we present the coarse-grained model and we elucidate

some of its main properties. In particular, in Appendix A we derive the following result:

the solution Xε
t of (5) converges as ε→ 0 to the solution of the SDE

dXt = −M(Xt)∇Ψ(Xt) dt+∇ ·M(Xt) dt+
√

2M(Xt) dWt, (10)

where Ψ(x) denotes the free energy and M(x) the effective diffusion tensor:

Ψ(x) = − lnZ(x), Z(x) =

∫
Td
· · ·
∫
Td
e−V (x,y1,...,yN )/σ dyN . . . dy1, (11)

and

M(x) =
σ

Z(x)

∫
Td
· · ·
∫
Td

(I +∇yN θN) · · · (I +∇y1θ1)e
−V (x,y1,...,yN )/σ dyN · · · dy1. (12)

The corrector fields
{
θ1(x), . . . θN(x)

}
are defined recursively as follows: let θN−k be the

solution of

∇xN−k · (MN−k(x, y0, . . . , yN−k)(∇xN−kθxN−k(x, y1, . . . , yN−k) + I)) = 0, yN−k ∈ Td, (13)

where for 1 ≤ k < N :

MN−k(x, y1, . . . , yN−k) =

∫
Td
· · ·
∫
Td

(I+∇NθN) · · · (I+∇N−k+1θN−k+1)e
−V/σ dyN . . . dxN−k+1,

(14)

and MN(x, y1, . . . , yN) = e−V (x,y1,...,yN )/σI. It is possible to show that the effective diffusion

tensor is positive definite, uniformly in x ∈ Rd and to obtain upper and lower bounds on M .

The homogenized dynamics X(t) is exponentially ergodic and reversible with respect to

the invariant distribution

ρ(x) =
Z(x)

Z
, Z =

∫
Rd
Z(x) dx. (15)

The generator of the homogenized dynamics, which is a self-adjoint operator in L2(Rd, ρ(x))

can be written in the form

L· = 1

Z(x)
∇x · (Z(x)M(x)∇x·) . (16)

We remark that Z in (15) is the partition function of the full dynamics Xε
t , Y

ε
t and requires

the calculation of an integral over Rd × Td. It can be shown that invariant distribution of

the homogenized dynamics is the weak limit of the invariant distribution (8) of Xε(t). This

follows from properties of periodic functions [13, Ch. 2].
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The coarse-grained equation (10) that we derive here provides us with a rigorous deriva-

tion of the free energy (11) for systems with strong scale separation which can be used, in

turn, to compute equilibrium coarse-grained quantities [10]. On the other hand, the homog-

enized dynamics (10) is the most general form of a reversible diffusion process with respect

to the invariant distribution (15), see [38, Sec 4.6] and can be used to study time-dependent

phenomena such as bifurcations and noise-induced transitions. Indeed, an important point

to note is that for the case of nonseparable potentials, as given by (6), all scales are fully

coupled in the hierarchy of Poisson equations (13)-(14). As a result of this, even through the

noise in the original dynamics (5) is due to thermal fluctuations and is hence additive, the

noise in the coarse-grained dynamics is multiplicative, something which, as it is well known

and as was emphasized in the Introduction, can lead to noise-induced transitions [29]. These

points will be elucidated in Sections III and IV.

A final remark is that the noise in the coarse-grained dynamics becomes additive when

the potential (6) is separable, i.e.

V ε(x) =
N∑
n=0

Vn

( x
εn

)
, (17)

(a potential that could be achieved by design in a physical setting, and hence also realistic),

a surprising result and perhaps counterintuitive as one might expect that coarse graining

always leads to multiplicative noise in the effective description. In this case, the Poisson

equations (13)-(14) can be solved in a hierarchical fashion, and the homogenized equation

is of the form (10), but with a constant effective diffusion tensor. For illustrative purposes

we present the formulas for N = 1 [40], in which case the effective dynamics is given by the

SDE:

dXt = −M∇V0(Xt) dt+
√

2σM dWt, (18)

where

M =

∫
Td

(I +∇yθ(y)) (I +∇yθ(y))T µ(dy) (19)

and

µ(dy) = ρ(y)dy =
1

Z
e−σ

−1V1(y) dy, Z =

∫
Td
e−σ

−1V1(y) dy. (20)

The field φ(y) is the solution of the Poisson equation

−L0θ(y) = −∇yV1(y), L0 := −∇yV1(y) · ∇y + σ∆y, (21)

with periodic boundary conditions.
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A. The homogenized equation in 1D

It is well known that homogenized coefficients in 1D can be computed explicitly, up to

quadratures [42, Sec. 12.6.1, Sec. 13.6.1]. This is the case for the N−scale homogenization

problem that we consider in this study. In Appendix B we show how, by solving the family

of Poisson equations in (13)-(14) and by using formula (12) we obtain the following formula

for the effective diffusion coefficient

M(x) =
σ

Z+(x)Z−(x)
, Z±(x) =

∫
TN

e∓V (x,y1,...,yN )/σdy1 . . . dyN , (22)

see also [59]. Of course, the explicit calculation of the effective diffusion coefficient in one di-

mension using (22) requires the calculation of the partition functions Z±(x). In Section V we

show how these multiple integrals can be calculated analytically for the case of an N−scale

potential that is piecewise linear at all scales.

In the following sections we will consider different examples of multiscale potentials in

one dimension to study the interplay between noise and the multiscale structure of the

potential. Our goal, in particular, is to understand how the microscopic fluctuations can

affect the global dynamics of the system.

III. A PITCHFORK BIFURCATION: NOISE-INDUCED HYSTERESIS

Consider the following SDE:

dX(t) = (αX(t)−X(t)3)dt+
√

2σdW (t), (23)

the deterministic part of which is the normal form for a supercritical pitchfork bifurcation.

For α < 0 there is a single stable equilibrium at 0 while for α > 0 there is an unstable

equilibrium at x = 0 and two stable equilibria at x = ±√α. The system described by (23)

has a potential V0(x;α) = −α
2
x2 + 1

4
x4.

We define a two-scale potential by introducing a rapid fluctuation on the bifurcation

parameter α so the potential reads:

V (x, y;α) =
1

4
x4 −

[
α + gδ(x) sin (2πy)

2

]
x2, (24)

which in turn can be rewritten as:

V (x, y;α) = V0(x;α)− 1

2
gδ(x)x2 sin (2πy) , (25)
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FIG. 2: Bifurcation diagram of the two-scale potential given by (25) obtained by solving

(27) for (a) σ = 0.5, (b) σ = 0.2, and (c) σ = 0.1.

where we have introduced a decaying function with the properties gδ(0) = 1 and gδ(x �
δ) → 0. Note that the main purpose of this function is to ensure that the microscopic

fluctuations are confined within the region in which the macroscopic potential varies. An

illustation of the above potential for the case of α = 0.5 is shown in figure 1.

We start by studying the equilibrium properties of (23). The ergodic distribution of the

homogenised dynamics is given by (15), which after including the potential given by (25),

we obtain:

ρ(x) =
1

Z
e−V0(x;α)/σI0

(
gδx

2

2σ

)
, (26)

where I0(·) is the modified Bessel function of the first kind which depends on both the po-

sition x and the noise intensity σ, and it is a correcting term coming from the microscopic

fluctuations—note that if gδ = 0 we recover the Gibbs measure of the unpertubed macro-

scopic system. Therefore, we can see that the microscopic fluctuations are able to modify

the equilibrium points of the system (i.e. the maxima of ρ(x)) and these are controlled by

the noise intensity.

To quantify this effect, we construct the bifurcation diagram of the solution for different

values of σ. To this end we look at the equilibria xs of the above function ρ(x) which are

given by the solution of the following equation:

−x3s + xs

[
α +

I ′0(x
2
sgδ/2σ)

I0(x2sgδ/2σ)

]
= 0. (27)

The results are presented in figure 2 where we can see that for sufficiently large values of

the noise level, the long-time behaviour of the macroscopic system demonstrates the same
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qualitative behaviour as the unperturbed case with a supercritical pitchfork bifurcation

occurring when α = 0 [cf. Figure 2(a)]. However, as the noise intensity decreases, the

behaviour becomes qualitatively different. Indeed, for some critical value of σ the pitchfork

bifurcation becomes subcritical and two saddle-node bifurcations symmetric about the x-

axis arise along the negative axis, giving rise to three stable and two unstable branches. As

α passes 0 the central stable branch becomes unstable [cf. Figs. 2(b,c)]. In this scenario,

we can identify three different dynamic states: (I) for α < αc < 0 zero is a stable solu-

tion of the system, (II) for αc < α < 0, in addition to zero, there are two other non-zero

stable solutions, and (III) for α > 0, zero becomes unstable and there are two non-zero

stable solutions. We note that this system gives rise to a hysteresis loop and the macroscop-

ic system will not follow the same equilibrium branch for α increasing as when α is decreased.

To further illustrate the transitions that arise in our multiscale system, we simulate the

evolution of a Brownian motion in the two-scale potential (25). We choose σ = 0.1, ε = 0.1

and gδ to be a smooth mollification of the indicator function over [−10, 10]. We approxi-

mate the SDE numerically using a standard Euler-Maruyama discretisation with step size

∆t = 10−4. In Figure 3 we plot histograms generated from 10 independent runs each of

109 timesteps, for α = −0.5, −0.25 and 0.25, respectively. The choices of α correspond to

the dynamics before the bifurcation point, close to bifurcation point and after bifurcation,

respectively, as illustrated in the bottom panel of figure 3. They correspond to the three

dynamical states defined above. In each case, the red line denotes the exact stationary dis-

tribution ρ(x) given by (26). The thin gray line denotes a normalized histogram, generated

from the samples lying in [−2, 2] with the size of each bin taken to be 0.05. We see that

the approximated density exhibits large fluctuations around ρ(x). This is to be expected

since the stationary density ρε(x) does not converge pointwise to ρ(x), but only in the weak

sense. Indeed, increasing the size of the histogram bins 0.1, as depicted by the dashed blue

line, we see much better agreement in each case.
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FIG. 3: (Color online) Top panels show histograms generated over a long sample of the

SDE (23) with the two-scale potential (25) with σ = 0.1, ε = 10−1, and using bins of size

0.05 (thin gray line) and 0.1 (dashed blue line), for the three different dynamical states:

(a) State I with α = −0.5 < αc, (b) state II α = −0.25 ∈ [αc, 0], and (c) state III with

α = 0.25 > 0. In all three panels, the thick red line shows analytical homogenised solution

given by (26). Panel (d) shows the corresponding bifurcation diagram for reference with

the three states demarcated with vertical solid lines.

A. Extension to N scales

A natural extension in the two-scale potential of (25) is to add more microscopic scales,

say up to N , so that the new potential is of the form:

V (x, y;α) = V0(x;α)− 1

2
gδ(x)x2

N∑
n=1

sin (2πyn) . (28)

for yn = x/εn. In this case, the stationary distribution reads:

ρ(x) =
1

Z
e−βV0

[
I0

(
x2gδ
2σ

)]N
, (29)

and (27) becomes:

−x3s + xs

[
α +N

I ′0(x
2
sgδ/2σ)

I0(x2sgδ/2σ)

]
= 0. (30)
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FIG. 5: Results obtained by using the multiscale potential defined in (28). (a) Transition

from supercritical (|αc| = 0) to subcritical (|αc| > 0) as the noise intensity is decreased. (b)

Rescaled σ and |αc| show data collapse into a single curve. The inlet shows a log-log plot

where we can identify a power-law behaviour close to criticality with exponent γ = 1.6.

The corresponding bifurcation diagrams for the supercritical and subcritical cases are also

shown for reference.

By computing again the equilibrium points and constructing the corresponding bifurcation

diagram, we observe that the transition from supercritical to subcritical is in fact enhanced

with the number of scales N (see figure 4 for the case with σ = 0.1).

To quantify the transition from a supercritical to a subcritical pitchfork bifurcation ob-

served when the noise intensity is decreased (cf. figure 2), and how this depends on the

number of microscopic scales N , we take the absolute value of αc defined in the bottom panel
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(red), which are observed in the potential given in (28) and defined in figure 2 for two

values of the number of microscopic states N .

of figure 3 to play the role of an order parameter of the transition, such that the bifurcation

is supercritical for |αc| = 0 and subcritical for |αc| > 0. The results are depicted in figure

5(a), where we can observe that |αc| becomes zero at some critical value σc which depends

on the number of microscopic scales. Indeed, by considering values of xs � 1 in (30), we

can expand the Bessel functions (I ′0(x)/I0(x) ∼ x/2 for x� 1) and we can see that the two

non-zero solutions exist for values of σ which are below the critical value:

σc =
N

4
, (31)

which defines the critical point. By taking now the rescaled variables:

X ≡ σc − σ
σc

, Y ≡ |αc|
N

, (32)

we can observe that all data collapse into a single curve, and close to critical point the

transition is characterized by a power-law behaviour:

Y ∼ |X|γ, (33)

with γ = 1.6 [cf. figure 5(b)]. In addition, we present in figure 6 a phase diagram on the

plane (σ, α) where we can see how the different dynamical states (I), (II), and (III) defined

15



above depend on the number of microscopic scales N .

The manifestation of hysteresis in disordered systems at low temperatures (i.e. small σ) is

well known. Indeed, a similar phenomenon is observed in the Ising model of a ferromagnetic

material subject to an external magnetic field, where for temperatures lower than a critical

temperature Tc, the mean spin of the system exhibits hysteresis as the magnitude of the

external field is varied. This scenario is very much analogous to the model described in (23)

and (25), where the parameter α controls the strength of an external perturbation, and for

which hysteresis occurs only where the noise intensity σ is below a critical threshold. More

generally, the observation that roughness of the energy landscape can give rise to hysteresis

effects has been observed in various systems, for example hysteresis of contact angles at the

solid-liquid interface of fluids wetting rough surfaces [14, 46, 49, 58], hysteresis in loading and

unloading of rough adhesive surfaces [23] as well as folding-unfolding hysteresis in proteins

with complex energy landscapes [4].

IV. NOISE-INDUCED STABILIZATION

As one would expect, the manner in which the multiscale pertubation of the potential will

influence the equilibrium behaviour of Xε
t depends strongly on the nature of the coupling

between the the different scales in the energy potential. In particular, by introducing a

perturbation of the potential at a third lengthscale, the long term dynamics of the diffusion

process will be significantly alterted. To this end, we now consider a tilted three-scale quartic

potential of the form:

V (x, y1, y2;α) =
1

4
x4 −

[
α + gδ sin (2πy1)

2

]
x2 + gδλ sin (2πy2)x. (34)

which we rewrite as:

V (x, y1, y2;α) = V0(x;α)− 1

2
gδx

2 sin (2πy1) + gδλx sin (2πy2). (35)

An example of this potential is shown in figure 1. The parameter λ above has been introduced

to connect it with the potential presented in the previous section which is recovered when

λ = 0. As before, we start by looking at the stationary distribution which we find to be:

ρ(x) =
1

Z
e−βV0I0

(
x2gδ
2σ

)
I0

(
xgδλ

σ

)
. (36)
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FIG. 7: Numerical solution of the stationary distribution ρε(x) by solving the multiscale

SDE with the potential given in (35) and the analytical solution ρ(x) given by (36) (solid

red line) for different values of the noise strength and the parameter α. (a), (b), and (c)

correspond to σ = 0.2 for α = −1, −0.2 and 1, respectively. (d), (e), and (f) correspond to

σ = 0.5 for α = −1, −0.2 and 1, respectively; and (g), (h), and (i) correspond to σ = 1 for

α = −1, −0.2 and 1, respectively.

Figure 7 shows numerical computations of both the stationary distribution obtained by

solving the multiscale SDE with the potential given in (35) and the above analytical solution

ρ(x) for different values of σ and α, observing an excellent agreement in all cases. In addition,

we look at the equilibria of ρ(x) which are given by the following equation:

−x3s + xs

[
α +

I ′0(x
2
sgδ/2σ)

I0(x2sgδ/2σ)

]
+ λ

I ′0(xsgδλ/σ)

I0(xsgδλ/σ)
= 0, (37)

from which we construct the bifurcation diagram, shown in figure 8 for different values of

the noise level σ. It is interesting to note that the introduction of the additional multiscale

fluctuations in (35) gives rise to a significantly altered bifurcation structure. Indeed, the

transition to subcritical bifurcation is not observed but rather the supercritical pitchfork

bifurcation is being shifted to the left as the noise intensity is decreased. Moreover, it is

remarkable that the macroscopic unperturbed behaviour is only recovered for sufficiently

large values of σ. To make this statement more precise, we look at the value of α0 which is

defined as the value where the pitchfork bifurcation occurs (see figure 8) and which satisfies
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the following condition:

∂2xρ(x;α0)|x=0 = 0, (38)

giving rise to:

α0 = − λ

2σ
. (39)

We hence conclude that for the three-scale potential, the case α0 = 0, which corresponds to

the standard supercritical bifurcation, is only achieved when σ →∞ [we note also that for

the unperturbed macroscopic dynamics (gδ = 0) and for the case of a two-scale potential

analyzed in the previous section, λ = 0, we have α0 = 0 independently of σ].

An important consequence of the fact that α0 depends on σ is that the stability of the zero

solution can be tuned by changing the noise strength. Indeed, if we take a fixed (negative)

value α, the zero solution will be unstable for values of σ which are below the critical value:

σc =
λ

2|α| , (40)

and stable otherwise. How this transition is approached as we increase the value of σ can be

studied by looking at the position of the local maximum, say xc, of the stationary distribution

ρ(x) which is a solution of (37) [see figure 8(c) for the definition of xc for a given value of α].

For a fixed value of α we then have that the zero solution is stable when xc = 0 and unstable

when xc > 0. We can therefore define xc to be the order parameter of this transition. Figure

9 shows how the position of one of the two maxima of the PDF approaches the value of zero

as σ is increased and for different values of the chosen α, where we can see that near the
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the the rescaled variable (σc − σ)/σc. When the solution is plot in a log-log scale (inlet

panel) we can observe a power-law behaviour with exponent 1/2.

critical point the solution exhibits a power-law behaviour of the form:

xc ∼ |X|γ, (41)

with γ = 1/2. Indeed, we can verify this behaviour analytically if we look at the solu-

tions given by (37) in the limit of xc � 1 for which we can expand the Bessel functions

[I ′0(x)/I0(x) ∼ x/2 for x � 1]. Expanding around the critical point σ = σc − δσ yields to

leading order in δσ that xc ∼ |δσ/σc|1/2.

V. BROWNIAN MOTION IN A PIECEWISE LINEAR SELF-SIMILAR POTEN-

TIAL

In this section, we consider a piecewise-linear N -scale separable potential given by

V ε(x) = VN

(x
ε
, . . . ,

x

εN

)
= S

(x
ε

)
+ S

( x
ε2

)
+ . . .+ S

( x
εN

)
, (42)

where

S(x) =

 2x if x mod 1 ∈ [0, 1
2
);

2− 2x if x mod 1 ∈ [1
2
, 1),

(43)

for fixed N ∈ N and ε > 0. Since we are dealing with a separable potential with no large-

scale component, we know from the results presented in Section II that the coarse-grained
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dynamics is purely diffusive, i.e. the coarse-grained Fokker-Planck equation is the heat

equation:
∂F0(x, t)

∂t
= M(σ)

∂2F0(x, t)

∂x2
, (44)

where M is a constant effective diffusion tensor. Since the fast scale fluctuations in the

potential are separated, as it is described in B we can easily obtain the constant effective

diffusion from (B2):

M(σ) = σ

(∫
T
e−S(z)/σ dz ·

∫
T
eS(z)/σ dz

)−N
= σ

[
σ2
(
1− e−1/σ

)
·
(
e1/σ − 1

)]−N
=

σ[
2σ2

(
cosh

(
1
σ

)
− 1
)]N . (45)

The N -scale perturbations have a retarding effect on the motion which is amplified as N

increases, a consequence of the increased complexity of the potential. This is captured in the

scalar term KN(σ) =
[
2σ2

(
cosh

(
1
σ

)
− 1
)]−N

, which is plotted in figure 10(a) for varying

σ and for different values of N . We can see that, for each N , there is a neighbourhood

up to some finite value σc where it is vanishingly small, say KN(σ) < κ with κ being

an arbitrary small value. For σ outside this region, this coefficient rapidly transitions to

the value 1, implying that the overdamped Brownian motion is no longer inhibited by the

multiscale fluctuations. It is well known that Brownian motion in disordered media, in

particular, fractal-like media can be anomalously slow. Classical examples include diffusion

on the Sierpinski Carpet [7] and diffusions on comb-like structures [44]. In the physics

literature, the association of renormalization on multiple scales with anomalous dynamics

is well known and has been studied in various works, for example [54] where the anomalous

electric properties of fluid-saturated sedimentary rocks were studied and [6], where a rigorous

iterated effective medium approximation theory was developed and applied to study the

conductivity of various composite materials.

As can be seen in figure 10(a), increasing the number of scales N moves this transition

point to higher σ. One can estimate such a transition point by expanding the function

cosh ( 1
σ
) = 1 + 1

2
1
σ2 + 1

4!
1
σ4 +O(σ−6) so that at the transition point σc we have:

KN(σc) ∼
1(

1 + 1
12

1
σ2
c

)N . (46)
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Effective diffusion coefficient approximated from numerical simulations for N = 1, 2 and 3

compared to the homogenized diffusion coefficient M(σ) predicted by (45) (dashed lines).

We are interested in finding the value of σc for which KN(σc) = κ. By taking the logarithm

of the above expression we obtain at leading order:

σc(N) ∼ 1√
12| log κ|

N1/2, (47)

which is valid for sufficiently large values of N .

To further demonstrate the effect of the scales on the rate of diffusion of Xε(t), we

numerically simulate (5) for the piecewise potential (42) for different values of N . For

ε = 0.1 and σ = 1, we approximate the solution of (5) up to time T = 100, using an

Euler-Maruyama discretisation with step-size varying between 10−7 and 10−8. Given the

resulting approximation X1, X2, . . . , XM , the diffusion coefficient was approximated by using

the maximum likelihood estimator:

D̂({X1, . . . , XM}) =
1

bM/kc

bM/kc∑
i=1

(Xi+k −Xi)
2

2k∆t
, (48)

where k ∈ N controls the subsampling time δ = k∆t. As noted in [40], when inferring

transport coefficients from multiscale data, the subsampling rate must be chosen carefully

to ensure that the estimator converges to the diffusion coefficient of (5) on the O(1) timescale

(i.e. the effective diffusion coefficient). Based on short numerical experiments, k = 10−1/∆t

was used. The estimator (48) was then averaged over 100 independent realisations. In figure
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10(b) we show the average of this estimator over 100 realisations, as a function of time, for

N = 1, N = 2 and N = 3 scales respectively. The error bars denote 95% confidence intervals.

The dashed lines denote the homogenized effective diffusion coefficient M(σ) predicted by

(45). We see good agreement in each case, although the discrepancy between the simulated

diffusion coefficient and M(σ) increases as N increases. This discrepancy is likely caused

by discretisation error due to the increase in stiffness for larger values of N , as well as the

fact that the small scale parameter ε might not be sufficiently small to faithfully capture the

homogenized dynamics.

VI. CONCLUSIONS

We have analysed the overdamped Langevin dynamics of a Brownian particle moving in a

multiscale potential. Using multiscale techniques we derived a coarse-grained equation with

a space-dependent diffusion tensor (i.e. with multiplicative noise), driven by the system’s

free energy. The calculation of the diffusion tensor requires the solution of a coupled-system

of N Poisson equations. This system can be solved in one dimension and an explicit formula

(up to quadratures) for the diffusion coefficient can be obtained.

We demonstrated that the system can exhibit noise/multiscale-induced transitions and

these were analyzed in different types of multiscale potentials. In the case of a double well

potential with one non-separable microscopic scale, it was shown that the multiscale struc-

ture can induce hysteresis effects in the pitchfork bifurcation, something that was observed

to be enhanced as the number of microscopic scales was increased. For the case of a tilted

three-scale quartic potential we have shown that the presence of the microstructure is able

to change the bifurcation diagram such that the resulting effect is that the stability of the

zero solution can be tuned by changing the noise intensity. The diffusion coefficient was

calculated analytically for a piecewise linear potential at all scales and the transitions in the

limit of infinitely many scales were studied.

The present works opens up several new avenues for research. First, the study of

noise/multiscale induced transitions in higher dimensions and the construction of the cor-

responding bifurcation diagram would be a natural extension. Furthermore, it would be

interesting to study the effect of inertia on the coarse-grained dynamics. Homogenization

problems for the underdamped Langevin dynamics [21] or, even more so, for the generalized

22



Langevin equation [32] are technically more challenging due to the hypoelliptic nature of

the coresponding Fokker-Planck operator. In addition, the study of mean field limits for

interacting multiscale diffusions, in the sense of [15] is a very challenging problem. Finally,

it would be also interesting to consider the effect of nonreversible perturbations in the mul-

tiscale Brownian dynamics. Such a problem is relevant for developing improved sampling

techniques for multiscale diffusions [18, 28]. We shall consider these and related issues in

future studies.

ACKNOWLEDGMENTS

We are grateful to Prof. Yannis Kevrekidis for numerous stimulating discussions, in-

sightful comments and suggestions. We acknowledge financial support by the Engineering

and Physical Sciences Research Council of the UK through Grants Nos. EP/H034587,

EP/J009636, EP/K008595, EP/L020564, EP/L024926, EP/L025159, EP/L027186 and

EP/N005465 as well as European Research Council through Advanced Grant No. 247031.

[1] Assyr Abdulle and Yun Bai. Reduced basis finite element heterogeneous multiscale method

for high-order discretizations of elliptic homogenization problems. Journal of Computational

Physics, 231(21):7014–7036, 2012.

[2] Assyr Abdulle and Yun Bai. Fully discrete analysis of the heterogeneous multiscale method

for elliptic problems with multiple scales. IMA Journal of Numerical Analysis, page drt066,

2014.

[3] G. Allaire and M. Briane. Multiscale convergence and reiterated homogenisation. Proc. Roy.

Soc. Edinburgh Sect. A, 126(2):297–342, 1996.

[4] Benjamin T Andrews, Dominique T Capraro, Joanna I Sulkowska, José N Onuchic, and
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Appendix A: Brownian motion in an N−scale potential: Derivation of the homog-

enized equation

Consider the following Rd–valued overdamped Langevin diffusion process corresponding

to the multiscale potential V ε:

dxεt = −∇V ε(xεt) dt+
√

2σ dWt, (A1)

where Wt is a d-dimensional standard Brownian motion, and where the N–scale potential

V ε satisfies

V ε(x) = V (x, x/ε, x/ε2, . . . , x/εN), (A2)

for some smooth V : Rd × Td × . . .× Td → R. Given a smooth observable f : Rd → R, the

time evolution of the expectation F ε(x, t) = Exε0=x [f(xε(t))] satisfies the following backward

Kolmogorov equation (BKE)

∂tF
ε(x, t) = LεF (x, t), (A3)

where the operator Lε is the infinitesimal generator Lε is defined by

Lεf(x) = −∇V ε(x) · ∇f(x) + σ∆f(x), f ∈ C2
0(Rd).

We shall use reiterated homogenization to identify the behaviour of F ε(x, t) in the limit

as ε → 0. We shall follow the formal approach described in [9, Section 3.7], namely of

“freezing” the scales x, x/ε, . . . , x/εN−1 and studying the macroscopic effects of the O(ε−N)

oscillations using classical periodic homogenization. To this end, we shall formally assume

that the variable x/εN is independent from the variables x, x/ε, . . . , x/εN−1, writing V ε(x) =

V ε
N(x, x/εN), so that

∇xV
ε(x) =

(
∇x +

1

εN
∇z

)
V ε
N(x, z)

∣∣∣
z=x/εN

.

We shall look for solutions F ε(x, t) of the form F (x, x/εN , t) where

F (x, z, t) = F0(x, z, t) + εF1(x, z, t) + ε2F2(x, z, t) + . . . . (A4)

The Backward Kolmorogov equation can be rewritten as

∂tF (x, z, t) =−DNV
ε(x, z)DNF (x, z, t) + σDN ·DNF (x, z, t), (A5)
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where DN = (∇x + ε−N∇z). We now perform a standard homogenization procedure of the

above PDE to obtain the effective dynamics in the limit of ε→ 0. We substitute this ansatz

(A4) in (A5) and consider the leading order terms of the expansion in powers of ε−1. The

O(ε−2N) can be written as

∇z ·
(
e−V

ε
N (x,z)/σ∇zF0(x, z, t)

)
= 0, z ∈ Td (A6)

Since for fixed x, e−V
ε
N (x,z)/σ > 0 uniformly on Td, (A6) implies that F0 does not depend on

the fast variable, i.e. F0(x, z, t) = F0(x, t), ∀(x, t) ∈ Rd × [0,∞). The O(ε−N) equation is

given by

∇z ·
(
e−V

ε
N (x,z)/σ∇zF1(x, z, t)

)
= −∇z ·

(
e−V

ε
N (x,z)/σ

)
∂xF0(x, z, t), z ∈ Td. (A7)

Let θN(x, z) be the vector valued solution of the following Poisson equation:

∇z ·
(
e−V

ε
N (x,z)/σ (∇zθN(x, z) + I)

)
= 0, z ∈ Td, (A8)

where (∇zθN)ij = ∂ziθN,j, for i, j = 1, . . . , d. It is clear that F1(x, z, t) = θN(x, z)∇xF0(x, t)

satisfies (A7). Finally, consider the O(1) equation given by

∇z ·
(
e−V

ε
N (x,z)/σ∇zF2(x, z, t)

)
=−∇z ·

(
e−V

ε
N (x,z)/σ∇xF1(x, z, t)

)
−∇x ·

(
e−V

ε
N (x,z)/σ∇zF1(x, z, t)

)
−∇x ·

(
e−V

ε
N (x,z)/σ∇xF0(x, t)

)
− e−V

ε
N (x,z)/σ

σ
∂tF0(x, t).

A necessary and sufficient condition for F2 to exist, is that the RHS has integral zero with

respect to e−VN (x,z) dz, i.e.

ZN−1(x)∂tF (x, t) = σ∇x ·
(∫

e−V
ε
N (x,z)/σ∇zF1(x, z, t) dz

)
+σ∇x

(∫
e−V

ε
N (x,z)/σ dz∇xF0(x, t)

)
= σ∇x ·

(∫
e−V

ε
N (x,z)/σ(∇zθN + I) dz∇xF0(x, t)

)
= ∇x · (KN−1(x)∇xF0(x, t))

where

ZN−1(x) =

∫
e−V

ε
N (x,z)/σ dz,
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and

KN−1(x) = σ

∫
e−V

ε
N (x,z)/σ(∇zθN(x, z) + I) dz.

We now repeat the homogenization process, assuming that the O(ε−(N−1)) term is inde-

pendent from the coarser scales, by reintroducing the small scales the above coarse grained

PDE. To this end writing

ZN−1(x) = Zε
N−1(x, x/ε

N−1), and KN−1(x) = Kε
N−1(x, x/ε

N−1),

and DN−1 = (∇x + 1
εN−1∇z) the KBE after coarse-graining the O(ε−N) fluctuations can be

written as

∂tF
ε(x, z, t) =

σ

Zε
N−1(x, z)

DN−1 · (KN(x, z)DN−1F
ε(x, z, t)) ,

where DN−1 = (∇X+ 1
εN−1∇z). This can now be homogenized in an analogous manner. Sup-

pose now that this homogenization process has been repeated k times so that the resulting

coarse-grained PDE is given by

∂tF
ε(x, z, t) =

σ

Zε
N−k(x, z)

DN−k ·
(
Kε
N−k(x, z)DN−kF

ε(x, z, t)
)
, (A9)

where

Zε
N−k(x, z) =

∫
. . .

∫
e−V

ε
N−k(x,z,xN−k+1,...,xN )/σdxN . . . dxN−k+1.

and

Kε
N−k(x, z) = σ

∫
· · ·
∫

(I+∇xN θN) . . . (I+∇xN−kθN−k)e
−V εN−k(x,z,xN−k+1,...,xN

) dxN . . . , dxN−k+1.

and DN−k = ∇x + 1
εN−k∇z. Once again, we look for solutions of F ε(x, z, t) of the form

F ε(x, z, t) = F0(x, z, t) + εF1(x, z, t) + ε2F2(x, z, t) + . . . .

Substituting this ansatz in (A9) we obtain leading order equation:

∇z ·
(
Kε
N−k(x, z)∇zF0(x, z, t)

)
= 0,

and since for fixed x ∈ Rd, Kε
N−k(x, z) > 0 over Td, it follows that F0(x, z, t) = F0(x, t). The

next leading order equation is given by

∇z ·
(
Kε
N−k(x, z)∇zF1(x, z, t)

)
= −∇z ·

(
Kε
N−k(x, z)∇xF0(x, z, t)

)
. (A10)
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Letting θN−k be the solution of the cell equation

∇z ·
(
Kε
N−k(x, z) (∇zθN−k(x, z) + I)

)
= 0, (A11)

then choosing F1(x, z, t) = θN−k(x, z)∇xF0(x, t) satisfies (A10). The next equation in the

expansion is then given by

∇z ·
(
Kε
N−k(x, z)∇zF2(x, z, t)

)
=−∇z ·

(
Kε
N−k(x, z)∇xF1(x, z, t)

)
−∇x ·

(
Kε
N−k(x, z)∇zF1(x, z, t)

)
−∇x ·

(
Kε
N−k(x, z)∇xF0(x, t)

)
− Zε

N−k(x, z)∂tF0(x, t).

A necessary and sufficient condition for F2 to exist is that the RHS has integral zero with

respect to Zε
N−k(x, z) dz, i.e.∫

Zε
N−k(x, z) dz∂tF0(x, t) = ∇x ·

(∫
Kε
N−k(x, z) (∇zθN−k(x, z) + I)∇xF0(x, t)

)
Denote by

Zε
N−k−1(x) =

∫
Zε
N−k(x, z) dz =

∫
. . .

∫
e−V

ε
N−k(x,xN−k,xN−k+1,...,xN )/σ dxN−k dxN−k+1, . . . , dxN .

We can then choose

Kε
N−k−1(x) :=

∫
Kε
N−k(x, z) (∇zθN−k(x, z) + I) dz,

so that the PDE after coarse graining the (N − k − 1)th scale becomes

∂tF0(x, t) =
1

ZN−k−1(x)
∇x · (KN−k−1(x)∇xF0(x, t)) .

Following the above inductive scheme N times, we obtain the following coarse grained PDE

which is independent of ε:

∂tF
0(x, t) =

1

Z(x)
∇x ·

(
K(x)∇xF

0(x, t)
)
, (A12)

where

Z(x) =

∫
. . .

∫
e−V (x,x1,...,xN )/σ dx1 . . . dxN ,

and

K(x) = σ
∫
. . .
∫ ∏1

i=N(1 +∇xiθi(x, x1, . . . , xi))e
−V (x,x1,...,xN )/σ dxN . . . dx1,
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where the correctors θ1, . . . , θN are the solutions (known up to additive constants) of (A11).

We can observe that (A12) corresponds to the BKE of a diffusion process x0 described

by the following SDE:

dx0t = [−M(x0t )∇xΨ(x0t ) +∇x · M(x0t )] dt+
√

2M(x0t )dWt, (A13)

where we have defined:

M(x) =
K(x)

Z(x)
(A14)

and

Ψ(x) = − logZ(x), (A15)

One can moreover show that the matrixM(x) is symmetric positive definite, and therefore

a matrix square root
√
M(x) is guaranteed to exist.

This result suggests that the process xεt converges weakly to x0t as ε → 0. In [19] this

convergence is obtained rigorously, subject to assumptions on the range of the multiscale

fluctuations arising from V ε.

Appendix B: Calculation of the Effective Diffusion Coefficient in one dimension

In general, one is not able to obtain explicit expressions for the coefficients of the coarse-

grained SDE, and one typically must resort to computational methods to approximate M(x),

for example solving for θ1, . . . , θN using a numerical PDE solver. However, in the particular

case when d = 1, we can obtain closed-form solutions for the cell equations, from which

the effective diffusion coefficient can be readily calculated. Indeed, the cell equation for the

corrector θN in one dimension is given by

∂xN
(
e−V (x0,x1,...,xN )/σ (∂xN θN + 1)

)
= 0,

so that

∂xN θN(x0, . . . , xN) + 1 = C(x0, . . . , xN−1)e
V (x0,...,xN )/σ,

where

C(x0, . . . , xN−1) =

(∫
T
eV (x0,...,xN )/σ dxN

)−1
.
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The effective diffusion coefficient KN−1 obtained after homogenizing the N th scale is then

given by

KN−1(x0, . . . , xN−1) = σ

∫
T
(1 + ∂xN θxN (x0, . . . , xN)) dxN = σ

(∫
T
eV (x0,...,xN )/σ dxN

)−1
.

Proceeding inductively from N to 1, if we assume that KN−k has the form

KN−k(x0, . . . , xN−k) = σ

(∫
T
· · ·
∫
T
eV (x0,...,xN )/σ dxN . . . , dxN−k+1

)−1
,

then

1 + ∂xN−kθN−k(x0, . . . , xN−k) = C(x0, . . . , xN−k−1)K−1N−k(x0, . . . , xN−k)

where

C(x0, . . . , xN−k−1) =

(∫
KN−k(x0, . . . , xN−k)−1 dxN−k

)−1
so that

KN−k−1(x0, . . . , xN−k−1) =

∫
KN−k(x0, . . . , xN−k)

(
θxN−k(x0, . . . , xN−k) + 1

)
dxN−k

= σ

(∫
T
· · ·
∫
T
eV (x0,...,xN )/σ dxN . . . , dxN−k

)−1
= σ

(∫
T
· · ·
∫
T
eV (x0,...,xN )/σ dxN . . . dxN−k

)−1
.

Continuing this procedure inductively, it follows that the effective diffusion coefficient

M(x) = Z(x)−1K1(x) can be written as

M(x) =
σ

Z(x)Ẑ(x)
, (B1)

where

Ẑ(x) =

∫
· · ·
∫
eV (x,x1,...,xN )/σ dx1 . . . dxN .

In the special case where the scales in the potential are completely separated, i.e. when

V ε(x) = V0(x) + V1(x/ε) + . . .+ VN(x/εN),

for a smooth confining potential V0 and smooth periodic functions V1, . . . , VN , then one can

see from (B1) that the effective diffusion coefficient M(x) tensorises into a product of the

form

M(x) = σ
N∏
i=1

(∫
T
e−Vi(yi)/σ dyi

∫
T
eVi(zi)/σ dzi

)−1
. (B2)
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The contribution of each scale to the potential satisfies∫
T
e−Vi(ui)/σ dui

∫
T
eVi(vi)/σ dvi ≥

(∫
T
e(Vi(ui)−Vi(ui))/σ dui

)2

= 1,

by the Cauchy Schwartz inequality, with equality holding only when Vi = 0. This implies

that that adding increasingly fine scale fluctuations to V ε will always decrease the effective

diffusion coefficient, as one would expect.
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