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Abstract: Separating two probability distributions from a mixture model that is made up of the
combinations of the two is essential to a wide range of applications. For example, in information
retrieval (IR), there often exists a mixture distribution consisting of a relevance distribution that we
need to estimate and an irrelevance distribution that we hope to get rid of. Recently, a distribution
separation method (DSM) was proposed to approximate the relevance distribution, by separating
a seed irrelevance distribution from the mixture distribution. It was successfully applied to an
IR task, namely pseudo-relevance feedback (PRF), where the query expansion model is often a
mixture term distribution. Although initially developed in the context of IR, DSM is indeed a
general mathematical formulation for probability distribution separation. Thus, it is important
to further generalize its basic analysis and to explore its connections to other related methods.
In this article, we first extend DSM’s theoretical analysis, which was originally based on the Pearson
correlation coefficient, to entropy-related measures, including the KL-divergence (Kullback–Leibler
divergence), the symmetrized KL-divergence and the JS-divergence (Jensen–Shannon divergence).
Second, we investigate the distribution separation idea in a well-known method, namely the mixture
model feedback (MMF) approach. We prove that MMF also complies with the linear combination
assumption, and then, DSM’s linear separation algorithm can largely simplify the EM algorithm
in MMF. These theoretical analyses, as well as further empirical evaluation results demonstrate the
advantages of our DSM approach.

Keywords: information retrieval; distribution separation; KL-divergence; mixture model

1. Introduction

In information retrieval, a typical post-query process is relevance feedback, which builds a
refined query model (often a term distribution) based on a set of feedback documents, in order to have
a better representation of the user’s information need [1]. There are three types of relevance feedback
methods, i.e., explicit, implicit and pseudo-relevance feedback. Among them, pseudo-relevance
feedback (PRF) is a fully automatic approach to the query expansion, by assuming that the top ranked
documents returned by an information retrieval (IR) system are relevant. A widely-used PRF method
is the relevance model (RM) [2], which utilizes top ranked documents D to construct a relevance term
distribution R. One limitation of RM-based methods is that the feedback document set D is often
a mixture of relevant and irrelevant documents, so that R is very likely to be a mixture distribution
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rather than the true relevance distribution that is supposed to be derivable from the truly relevant
documents only.

Recent research on negative relevance feedback has attempted to make use of irrelevant
documents to improve the retrieval performance [3–5]. By assuming that a set of seed irrelevant
documents is available, a distribution separation method (DSM) has been proposed in our earlier
work [6]. Essentially, given a mixture distribution and a seed irrelevance distribution, DSM aims to
derive an approximation of the true relevance distribution, in other words to separate the irrelevance
distribution from the mixture one. It has been shown in [6] that, compared to the direct removal
of irrelevant documents, separating the irrelevance distribution from the mixture distribution is
theoretically more general and practically has led to a better performance.

The formulation of DSM was based on two assumptions, namely the linear combination
assumption and the minimum correlation assumption. The former assumes that the mixture term
distribution is a linear combination of the relevance and irrelevance distributions, while the latter
assumes that the relevance distribution should have a minimum correlation with the irrelevance
distribution. DSM provided a lower bound analysis for the linear combination coefficient, based on
which the desired relevance distribution can be estimated. It was also proven that the lower bound of
the linear combination coefficient corresponds to the condition of the minimum Pearson correlation
coefficient between DSM’s output relevance distribution and the input seed irrelevance distribution.

Although initially developed in the context of IR, DSM is indeed a general mathematical
formulation for probability distribution separation. The separation algorithm and analysis of DSM
are not restricted to query term distributions or any other distributions for IR tasks. It is thus
important to further investigate its theoretical properties and make it become more general.

In this article, we propose to generalize DSM’s theoretical analysis, which was originally
based on the Pearson correlation coefficient, to entropy-related measurements, specifically the
KL-divergence and two variants. In addition, we investigate the distribution separation idea in a
widely-used method, i.e., the mixture model feedback (MMF) approach [7]. Theoretical analysis has
shown that the linear separation algorithm in DSM can be applied to simplify the EM-algorithm in
MMF. The specific descriptions of the above contributions are as follows.

First, we explore the effect of DSM on the KL-divergence between the DSM’s estimated relevance
distribution and the seed irrelevance distribution. In Section 3, we prove that DSM’s lower bound
analysis can also be extended to KL-divergence, and the minimum correlation coefficient corresponds
to the maximum KL-divergence. We further prove that the decreasing correlation coefficient also
leads to the maximum symmetrized KL-divergence, as well as the maximum JS-divergence between
DSM’s output distribution and the seed irrelevance distribution. These extended analyses enrich
DSM’s own theoretical properties.

Second, we investigate the relationship between DSM and the mixture model feedback (MMF)
approach [7]. In Section 4, we show that the linear combination assumption is valid in MMF, and
the EM-based iterative algorithm of MMF is essentially a distribution separation process. Thus,
its iterative steps can be largely simplified by the linear separation algorithm (see Equation (2))
developed in DSM. Furthermore, compared to MMF with an empirically-assigned combination
coefficient, DSM’s combination coefficient is analytically derived and is adaptive for each query.
The experimental results in terms of the retrieval performance and running time costs have
demonstrated the advantages of our DSM approach.

2. Basic Analysis of DSM

In this section, we briefly describe the basic analysis of DSM [6]. Some basic notations are
summarized in Table 1. We use M to represent the mixture term distribution derived from all of
the feedback documents, where M is a mixture of relevance term distribution R and irrelevance term
distribution I. In addition, we assume that only part of the irrelevance distribution IS (also called the
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seed irrelevance distribution) is available, while the other part of irrelevance distribution is unknown
(denoted as IS).

Table 1. Notations.

Notation Description

M Mixture term distribution
R Relevance term distribution
I Irrelevance term distribution.
IS Seed irrelevance distribution
IS Unknown irrelevance distribution

F(i) Probability of the i-th term in any distribution F
l(F, G) Linear combination of distributions F and G

The task of DSM is defined as: given a mixture distribution M and a seed irrelevance distribution
IS, derive an output distribution that can approximate the R as closely as possible. Specifically, as
shown in Figure 1, the task of DSM can be divided into two problems: (1) how to separate IS from
M and derive a less noisy distribution l(R, IS), which is mixed by R and IS; (2) how to further refine
l(R, IS) to approximate R as closely as possible. In this article, we will be focused on the first problem
and the linear separation algorithm to derive l(R, IS). Note that l(R, IS) is also an estimate of R,
depending on how much irrelevance data are available. The theoretical analysis proposed in this
article will be mainly related to the linear separation algorithm and its lower bound analysis.
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Figure 1. An illustration of the linear combination l(·, ·) between two term distributions.

2.1. Linear Combination Analysis

DSM adopts a linear combination assumption, which states that the mixture term distribution
is a linear combination of the relevance and irrelevance distributions. Under such a condition, the
mixture distribution M can be a linear combination of R and I. As shown in Figure 1, M can also be
a linear combination of two distributions IS and l(R, IS), where l(R, IS) is a linear combination of R
and IS. We have:

M = λ× l(R, IS) + (1− λ)× IS (1)

where λ (0<λ ≤ 1) is the linear coefficient. The problem of estimating l(R, IS) does not have a unique
solution generally, since the value of the coefficient λ is unknown. Therefore, the key is to estimate
λ. Let λ̂(0 < λ̂≤ 1) denote an estimate of λ, and correspondingly, let l̂(R, IS) be the estimation of the
desired distribution l(R, IS). According to Equation (1), we have:

l̂(R, IS) =
1
λ̂
×M + (1− 1

λ̂
)× IS. (2)
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Once the right λ̂ is obtained, Equation (2) is the main equation to construct the distribution
separation in linear time. However, there can be infinite possible choices of λ̂ and its corresponding
l̂(R, IS). To get the solution of λ̂, we need to find its lower bound, by introducing a constraint that
values in the distribution should be nonnegative [6]. Based on this constraint and Equation (2),
we have:

λ̂× 1 < (1−M./IS) (3)

Effectively, Equation (3) sets a lower bound λL of λ̂:

λL = max (1−M./IS) (4)

where 1 stands for a vector in which all of the entries are one, ./ denotes the entry-wise division of M
by IS and max(·) denotes the max value in the resultant vector 1−M./IS. The lower bound λL itself
also determines an estimation of l(R, IS), denoted as lL(R, IS).

The calculation of the lower bound λL is critical to the estimation of λ. Now, we present an
important property of λL in Lemma 1. Lemma 1 guarantees that if the distribution l(R, IS) contains
a zero value, then λ = λL, leading to the distribution lL(R, IS) w.r.t. λL being exactly the desired
distribution l(R, IS) w.r.t. λ.

Lemma 1. If there exists a zero value in l(R, IS), then λ = λL, leading to l(R, IS) = lL(R, IS).

The proof can be found in [6]. In a density estimation problem or a specific IR model estimation
task, with a smoothing method used, there would be many small values instead of zero values, in
l(R, IS). In this case, lL(R, IS) is still approximately equal to l(R, IS), which guarantees that λL can
still be equal to λ. The detailed description of this remark can be found in [6].

2.2. Minimum Correlation Analysis

In this section, we go in-depth to study another property of the combination coefficient and
its lower bound. Specifically, we analyse the correlation between l̂(R, IS) and IS, along with
the decreasing coefficient λ̂. Pearson product-moment correlation coefficient ρ [8] is used as the
correlation measurement.

Proposition 1. If λ̂ (λ̂ > 0) decreases, the correlation coefficient between l̂(R, IS) and IS, i.e., ρ(l̂(R, IS), IS),
will decrease.

The proof of Proposition 1 can be found in [6]. According to Proposition 1, among all λ̂ ∈ [λL, 1],
λL corresponds to the minimum correlation coefficient between l̂(R, IS) and IS, i.e., min(ρ). We can
also change the minimum correlation coefficient (i.e., min (ρ)) to the minimum squared correlation coefficient
(i.e., min (ρ2)). To solve this optimization problem, please refer to [6] for more details.

3. Extended Analysis of DSM on Entropy-Related Measurements

As we can see from the previous section, although DSM was proposed in the pseudo-relevance
feedback scenario, its algorithm and analysis are not restricted to query term distributions derived by
PRF techniques. DSM is actually a mathematical formulation for probability distribution separation,
and it is important to further investigate its theoretical properties.

In this section, we describe the generalization of DSM’s analysis in terms of some entropy-related
measures. Specifically, we will extend the aforementioned minimum correlation analysis to the
analysis of the maximum KL-divergence, the maximum symmetrized KL-divergence and the
maximum JS-divergence.

3.1. Effect of DSM on KL-Divergence

Recall that in Section 2.2, Proposition 1 shows that after the distribution separation process, the
Pearson correlation coefficient between DSM’s output distribution l̂(R, IS) and the seed irrelevance
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distribution IS can be minimized. Here, we further analyse the effect of DSM on the KL-divergence
between l̂(R, IS) and IS.

Specifically, we propose the following Proposition 2, which proves that if λ̂ decreases, the
KL-divergence between l̂(R, IS) and IS will be increased monotonously.

Proposition 2. If λ̂ (λ̂ > 0) decreases, the KL-divergence between l̂(R, IS) and IS will increase.

Proof. Using the simplified notations in Table 2, let the KL-divergence of between l̂(R, IS) and IS be
formulated as:

D(l̂(R, IS), IS) =
m

∑
i=1

l̂(R, IS)(i) log(
l̂(R, IS)(i)

IS(i)
) =

m

∑
i=1

l̂(i) log(
l̂(i)
IS(i)

) (5)

Now, let ξ = 1/λ̂ as we did in the proof of Proposition 1 (see [6]). According to Equation (2), we
have l̂(R, IS) = ξ ×M + (1− ξ)× IS. It then turns out that:

l̂(i) = ξ × (M(i)− IS(i)) + IS(i). (6)

Based on Equations (5) and (6), we get:

D(l̂(R, IS), IS) =
m

∑
i=1

(ξ × (M(i)− IS(i)) + IS(i)) log(
ξ × (M(i)− IS(i)) + IS(i)

IS(i)
) (7)

Let D(ξ) = D(l̂(R, IS), IS). The derivative of D(ξ) can be calculated as:

D′(ξ) =
m

∑
i=1

[M(i)− IS(i) + (M(i)− IS(i)) log(
ξ × (M(i)− IS(i)) + IS(i)

IS(i)
)] (8)

Since ∑m
i=1 M(i) = 1 and ∑m

i=1 IS(i) = 1, ∑m
i=1[M(i)− IS(i)] becomes zero. We then have:

D′(ξ) =
m

∑
i=1

(M(i)− IS(i)) log(
ξ × (M(i)− IS(i)) + IS(i)

IS(i)
)

=
m

∑
i=1

(M(i)− IS(i)) log(
ξ × (M(i)− IS(i))

IS(i)
+ 1)

(9)

Let the i-th term in the summation of Equation (9) be:

D′(ξ)(i) = (M(i)− IS(i)) log(
ξ × (M(i)− IS(i))

IS(i)
+ 1)

It turns out that when M(i) > IS(i) or M(i) < IS(i), D′(ξ)(i) is greater than zero. When
M(i) = IS(i), D′(ξ)(i) is zero. However, M(i) does not always equal to IS(i). Therefore,
D′(ξ) = ∑m

i=1 D′(ξ)(i) is greater than zero.
In conclusion, we have D′(ξ) > 0. This means that D(ξ) (i.e., D(l̂(R, IS), IS)) increases after ξ

increases. Since λ = 1/ξ, after λ̂ decreases, D(l̂(R, IS), IS) will increase.

Table 2. Simplified notations.

Original Simplified Linear Coefficient

l(R, IS)(i) l(i) λ

l̂(R, IS)(i) l̂(i) λ̂ (estimate of λ)
lL(R, IS)(i) lL(i) λL (lower bound of λ̂)
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According to Proposition 2, if λ is reduced to its lower bound λL, then the corresponding
KL-divergence D(lL(R, IS), IS) will be the maximum value for all of the legal λ̂ (λL ≤ λ̂ < 1).
In this case, the output distribution of DSM will have the maximum KL-divergence with the seed
irrelevance distribution.

3.2. Effect of DSM on Symmetrized KL-Divergence

Having shown the effect of reducing the coefficient λ̂ on the KL-divergence between l̂(R, IS)

and IS, we now investigate the effect on the symmetrized KL-divergence between two involved
distributions by proving the following proposition.

Proposition 3. If λ̂ (λ̂ > 0) decreases, the symmetrized KL-divergence between l̂(R, IS) and IS will increase.

The proof of Proposition 3 can be found in Appendix A.1. According to the above proposition,
if λ is reduced to its lower bound λL, the corresponding symmetrized KL-divergence D(IS, l̂(R, IS))

will be the maximum value for all of the legal λ̂ (λL ≤ λ̂ < 1). This means that the output distribution
of DSM given this lower bound estimation has the maximum symmetrized KL-divergence with the
seed irrelevance distribution.

3.3. Effect of DSM on JS-Divergence

Now, let us further study the reduction of the coefficient λ̂ in terms of its role in maximizing the
JS-divergence between DSM’s output distribution l̂(R, IS) and the seed irrelevance distribution IS, by
presenting the following proposition.

Proposition 4. If λ̂ (λ̂ > 0) decreases, the JS-divergence between l̂(R, IS) and IS will increase.

The proof of Proposition 4 can be found in Appendix A.2. Based on the above proposition, if
λ is reduced to its lower bound λL, then the corresponding JS-divergence JS(l̂(R, IS), IS) will be the
maximum value for all of the legal λ̂ (λL ≤ λ̂ < 1).

In summary, we have extended the analysis of DSM’s lower bound combination coefficient,
from the minimum correlation analysis, to the maximum KL-divergence analysis, the maximum
symmetrized KL-divergence analysis and the maximum JS-divergence analysis. These extended
analyses enrich DSM’s own theoretical properties.

These above theoretical properties of DSM are based on one basis condition, i.e., the linear
combination assumption. In the next section, we will investigate how to apply the distribution
separation idea/algorithm in other methods. The main idea is to verify if the well-known mixture
model feedback (MMF) approach complies with this linear combination assumption. If yes, the idea
of DSM’s linear separation algorithm can be applied in MMF, and the associated theoretical properties
of DSM can be valid for MMF’s solution, as well.

4. Generalized Analysis of DSM’s Linear Combination Condition in MMF

Now, we will investigate the relation between DSM and a related PRF model, namely the mixture
model feedback (MMF) approach [7]. MMF assumes that feedback documents are generated from
a mixture model with two multinomial components, i.e., the query topic model and the collection
model [7].

The estimation of the output “relevant” query model of MMF is trying to purify the feedback
document by eliminating the effect of the collection model, since the collection model contains
background noise, which can be regarded as the “irrelevant” content in the feedback document [7].
In this sense, similar to DSM, the task of MMF can also be regarded as a process that removes
the irrelevant part in the mixture model. However, to our knowledge, researchers have not
investigated whether the linear combination assumption is valid or not in MMF. We will prove
that the mixture model in MMF is indeed a linear combination of “relevant” and “irrelevant” parts.
This theoretical result can lead to a simplified version of MMF based on the linear separation equation
(see Equation (2)) of DSM.
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4.1. Review of the Mixture Model Feedback Approach

Now, we first review the mixture model feedback approach, where the likelihood of feedback
documents (F ) can be written as:

log p(F|θF) = ∑
d∈F

∑
w∈d

c(w; d) log[λp(w|θF) + (1− λ)p(w|C)] (10)

where c(w; d) is the count of a term w in a document d, p(w|θF) is the query topic model, which
can be regarded as the relevance distribution to be estimated, and p(w|C) is the collection model
(i.e., the distribution of term frequency in the whole document collection), which is considered as
the background distribution/noise. The empirically-assigned parameter λ is the amount of the true
relevance distribution, and 1− λ indicates the amount of background noise, i.e., the influence of C in
the feedback documents. An EM method [7] is developed to estimate the relevance distribution via
maximizing the likelihood in Equation (10). It contains iterations of two steps [9]:

p(zw = 1|F , θ
(n)
F ) =

(1− λ)p(w|C)
λp(w|θ(n)F ) + (1− λ)p(w|C)

E step (11)

p(w|R(n+1)) =
∑d∈F (1− p(zw = 1|F , θ

(n)
F ))c(w, d)

∑d∈F ∑w∗∈V(1− p(zw∗ = 1|F , θ
(n)
F ))c(w∗, d)

M step (12)

where p(zw = 1|F , θ
(n)
F ) is the probability that the word w is from the background distribution,

given the current estimation of the relevance distribution (θ(n)F ). This estimation can be regarded as
a procedure to obtain relevant information from feedback documents while filtering the influence of
collection distribution, leading to a more discriminative relevance model. It should be noted that in
Equation (10), due to the log operator within the summations (i.e., ∑d∈F ∑w∈d c(w; d)), it does not
directly show that the mixture model is a linear combination of the collection model and the query
topic model. Therefore, an EM algorithm is adopted to estimate the query topic model θF.

4.2. The Simplification of the EM Algorithm in MMF via DSM’s Linear Separation Algorithm

Now, we explore the connections between DSM and MMF. In both methods, once λ is given
(either by the estimation in DSM or by an assigned value in MMF), the next step is to estimate the
true relevance distribution R. We will first demonstrate that if the EM algorithm (in MMF) converges,
the mixture model of the feedback documents is a linear combination of the collection model and the
output model of the EM iterative algorithm.

Proposition 5. If the EM algorithm (in MMF) converges, the mixture model of the feedback documents is a
linear combination of the collection model and the output relevance model of the EM iterative algorithm.

The proof of Proposition 5 can be found in Appendix A.3. Based on such a proof, it is shown
that:

λp(w|θ(n)F ) + (1− λ)p(w|C) = t f (w,F ) (13)

where t f (w,F ) is the mixture model, which represents the term frequency in the feedback
documents, p(w|C) is the collection model and p(w|θ(n)F ) is the estimated relevance model output
by the n-th step of the EM iterative algorithm in MMF. It shows that the mixture model t f (w,F ) is a
linear combination of the collection model p(w|C) and the output relevance model p(w|θ(n)F ) of the
EM iterative algorithm.
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The above equation can be changed to:

p(w|θ(n)F ) =
1
λ
· t f (w,F ) +

(
1− 1

λ

)
· p(w|C) (14)

Now, if we regard p(w|θ(n)F ) as an estimated relevance distribution, t f (w,F ) as a kind of mixture
distribution and p(w|C) as a kind of irrelevance distribution, then Equation (13) fits Equation (1),
and Equation (14) is the same distribution separation process as Equation (2), where l̂(R, IS) is the
estimated relevance distribution. It demonstrates that the EM iterative steps in MMF can actually
be simplified by the linear separation solution in Equation (14), which has the same distribution
separation idea in Equation (2).

5. Comparisons between DSM and Related Models

In this section, we will compare DSM with other related works, including mixture model
feedback (MMF) [7], fast mixture model feedback (FMMF) [10], regularized mixture model feedback
(RMMF) [11], as well as a mixture multinomial distribution framework and a query-specific mixture
modelling feedback (QMMF) approach [12]. Since the above models are implemented on two basic
relevance feedback models, i.e., relevance model (RM) and mixture model feedback (MMF), we will
also compare RM (we use RM to denote RM1 in [2]) and MMF. These comparative discussions and
analyses are described in the following, in order to clarify the position of DSM in the IR literature and
our contributions for the IR community.

5.1. DSM and MMF

As discussed in the previous section, DSM and MMF share a similar strategy that the irrelevant
part should be eliminated from the mixture model, and then, the output relevant query model can
be purified. In MMF, the collection model is considered as the irrelevance model that contains
background noise, and an EM iterative method [7] is developed to estimate the relevance distribution
via maximizing the likelihood in Equation (10).

To our knowledge, researchers have not investigated whether the linear combination assumption
is valid or not in MMF. We, for the first time, prove Proposition 5, which shows that if the EM
algorithm (in MMF) converges, the mixture model of the feedback documents is a linear combination
of the collection model and the output model of the EM iterative algorithm. This proposition directly
results in a simplified solution for MMF, by replacing the EM iterative steps in MMF with DSM’s
linear distribution separation solution (see Equation (14)).

Besides providing a simplified solution with linear complexity to the EM method in MMF, DSM
shows an essential difference regarding the coefficient λ. In MMF, the proportion of relevance model
in the assumed mixture model t f (w,F ) is controlled by λ, which is a free parameter and is empirically
assigned to a fixed value before running the EM algorithm. On the other hand, in DSM, as previously
mentioned in Section 2, λ for each query is estimated adaptively via an analytical procedure based on
its linear combination analysis (see Section 2.1), a minimum correlation analysis (see Section 2.2) and
a maximal KL-divergence analysis (described in Section 3.1).

5.2. DSM and FMMF

Another simplified solution to MMF was proposed in [10]. This solution is derived by the
Lagrange multiplier method, and the complexity of its divide and conquer algorithm is O(n) (on
average) to O(n2) (the worst case). On the other hand, our simplified solution in Equation (14) was
analytically derived from the convergence condition of the EM method in the MMF approach, and the
complexity of the linear combination algorithm in Equation (14) is further reduced to a fixed linear
complexity, i.e., O(n).
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5.3. DSM and RMMF

To deal with the problems of the manually-tuned interpolation coefficient λ in MMF (see also
the discussions in Section 5.1), Tao and Zhai [11] proposed a regularized MMF (RMMF), which yields
an adaptive solution for estimating λ and achieves good performance. Specifically, RMMF added a
conjugate Dirichlet prior function to the original objective function in MMF, and the original query
model is used as the prior. In RMMF, a regularized EM method is developed to adapt the linear
coefficients and the prior confident value. The main strategy in this EM method is to gradually lower
the prior confident value µ starting with a very high value, and the learned interpolation coefficient
λ (in [11], λ is denoted by αD) varies with different queries.

Although both RMMF and DSM can estimate an adaptive interpolation coefficient λ for the
mixture model MMF, their algorithms are quite different. In RMMF, an EM iterative algorithm is still
used, like in the original MMF. Therefore, the computational cost is relatively time consuming. On the
other hand, as described in Sections 5.1, the adaptive solution of the interpolation coefficient of MMF
can be obtained in linear time via an analytical procedure, with a minimum correlation analysis and
a maximal KL-divergence analysis guaranteed. Moreover, for the estimation of the output relevance
distribution, different from the iteratively-learned solution in RMMF, the solution of MMF can be
obtained by a closed-form solution in Equation (14).

5.4. DSM and Mixture Multinomial Distribution Framework

Chen et al. [12] proposed a unified framework by considering several query expansion models,
e.g., RM and MMF, as mixture multinomial distributions. In addition, they built a query-specific
mixture model feedback (QMMF) approach, which modifies RMMF by replacing the original query
model with the relevance model (actually RM1) in the prior function of RMMF. QMMF was then
successfully applied in speech recognition and summarization tasks.

Although Chen et al. have summarized RM and MMF in the mixture multinomial
distribution [12], they have not shown that both RM and MMF comply with the linear combination
assumption. With the proof in Appendix A.3, we demonstrate Proposition 5, which shows that MMF
complies with the linear combination assumption. This theoretical result leads to a simplified solution
for MMF (see Equation (14)). In Appendix A.4, we also show the validity of the linear combination
assumption in RM. Therefore, to some extent, DSM unifies RM and MMF from another point of view,
i.e., the linear combination assumption and DSM’s analysis and algorithm can be applied to both
of them.

With regard to QMMF, since it is actually based on RMMF and MMF, the difference between
QMMF and DSM is also related to the EM algorithm’s solution in MMF-based methods versus the
linear separation solution in DSM, as we discussed in Sections 5.1 and 5.3.

Indeed, in RMMF and QMMF, it brings obvious benefits to adopt the original query model or
the relevance model as a prior to constrain the estimation of the interpolation coefficient and the
relevance feedback distribution. In our future work, we are going to investigate if it is possible to
adopt similar relevance information to regularize the separation algorithm in DSM.

5.5. RM and MMF

Exploiting relevance feedback for query expansion [13] is a popular strategy in the information
retrieval area to improve the retrieval performance [14]. Many models with relevance feedback have
been proposed [2,7,11,15–17], among which the relevance model (RM) [2] and the mixture model
feedback (MMF) [7] are two basic models on which many other models are built.

RM extends the original query with an expanded term distribution generated from the feedback
documents. The resultant distribution of RM is calculated by combining the distributions of each
feedback document with the normalized query likelihood as its document weight. Therefore, the
effectiveness of RM is dependent on the quality of feedback documents. Since feedback documents
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may contain collection noise, which affects the quality of the relevance model, the mixture model
approach [7] is proposed to handle this problem. It assumes that the relevance documents are
generated from a mixture model of the relevance information and collection noise, and an EM
iterative method is used to learn a relevance feedback distribution.

Although empirical results have shown that MMF can perform better than RM on some
collections [14], we cannot say which one is definitely better or worse than the other, since the
retrieval performance of a feedback-based query model is dependent on the quality of the feedback
documents. Low quality feedback documents may not reflect the user’s information need well, which
affects the effectiveness of the feedback document-based models.

With respect to the time complexity, due to an EM learning procedure in MMF [7,9], MMF is
more time consuming than RM. In this paper, we provide a simplified solution for MMF in Section 4.2.
Equipped with this linear separation algorithm, MMF can be also implemented efficiently.

As discussed in Section 5.4, DSM’s generalized analysis can unify RM and MMF, since the linear
combination assumption holds in both models, and DSM’s analysis and algorithm can be applied to
both of them. Moreover, DSM can guide the improvements of both of them. Specifically, for RM,
DSM can separate an irrelevant distribution from the mixture model to approach the pure relevance
distribution, and for MMF, the linear separation algorithm of DSM can be utilized to simplify the
solution of MMF, significantly reducing its algorithm complexity.

5.6. Contributions of DSM in Information Retrieval

Based on the above comparisons between DSM and other related models, we summarize our
contributions as follows:

• We, for the first time, prove that mixture model feedback (MMF) complies with the linear
combination assumption.

• Based on the above proof, MMF’s EM algorithm can be simplified by a linear separation
algorithm in DSM.

• DSM can unify RM and MMF, in the sense that DSM’s analysis and algorithm can be applied to
both of them.

• The solution of DSM is associated with solid mathematical proofs in the linear combination
analysis, the minimum correlation analysis, as well the analyses with the maximal
KL-divergence, the maximal symmetric KL-divergence and the maximal JS-divergence.

We believe that compared to the empirical contributions on the retrieval performance
improvements, the theoretical contributions of DSM are also important in the IR community.
The generalized analyses of DSM are validated by the mathematical proofs, and its validity is
to some extent independent of different parameters or different test collections. Although many
feedback-based query expansion models have been proposed, relatively less attention has been
paid to the rigorous analysis (through the proof of lemmas or propositions) of a retrieval model.
There are a few works on the theoretical analysis of relevance feedback. For example, recently,
Clinchant and Gaussier [18] studied the statistical characteristics of the terms selected by several
pseudo-relevance feedback methods, and proposed properties that may be helpful for effective
relevance feedback models. However, to our knowledge, in the literature, there is a lack of a
generalized analysis for DSM and an investigation on the linear combination condition in MMF.

6. Experiments

We have theoretically described the relation between the mixture model feedback (MMF)
approach and our DSM method. The main experiments in this section provide empirical comparisons
of these two methods in an ad hoc retrieval task. In addition, since we compare RM and DSM in
Sections 5.4 and 5.5, we will conduct an implicit feedback task with RM as the baseline (for the
empirical comparison between RM and DSM in the ad hoc retrieval task, please refer to [6]). It is
expected that this additional experiment can show the flexibility of DSM on different tasks.
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6.1. Experimental Setup

The evaluation involves four standard TREC (Text REtrieval Conference) collections, including
WSJ (87–92, 173,252 documents), AP (88–89, 164,597 documents) in TREC Disk 1 and 2, ROBUST
2004 (528,155 documents) in TREC Disk 4 and 5 and WT10G (1,692,096 documents). These datasets
involve a variety of texts, ranging from newswire articles to web/blog data. Both WSJ and AP
datasets are tested on Queries 151–200, while the ROBUST 2004 and WT10G collections are tested
on Queries 601–700 and 501–550, respectively. The title field of the queries is used to reflect the typical
keyword-based search scenarios. In query expansion models, the top 100 terms in the corresponding
distributions are selected as expanded terms. The top 50 documents in the initial ranked list obtained
by the query likelihood approach are selected as the feedback documents. The top 1000 documents
retrieved by the negative KL-divergence between the expanded query model and the document
language model [19] are used for retrieval performance evaluation. The Lemur 4.7 toolkit [20] is used
for indexing and retrieval. All collections are stemmed using the Porter stemmer, and stop words are
removed in the indexing process.

As for the evaluation metric for the retrieval performance, we use the mean average precision
(MAP), which is the mean value of average precision over all queries. In addition, we use the
Wilcoxon significance test to examine the statistical significance of the improvements over the
baseline (baseline model and significant test results are shown in the result tables).

6.2. Evaluation on Retrieval Performance

As previously mentioned, the EM iteration algorithm of MMF can be simplified as a distribution
separation procedure (see Equation (14)) whose inputs are two distributions t f (w,F ) (TF for short)
and p(w|C), where TF is the mixture distribution for which the probability of a term is its frequency
in feedback documents, and C is the distribution of the term frequency in the whole document
collection. It has been shown in Section 4 that Equation (14) is actually a special case of DSM, when
TF and C are DSM’s input distributions and λ is assigned empirically without principled estimation.
We denote this special case as DSM (λ fixed). Now, we compare MMF (to the EM algorithm) and
DSM (λ fixed) to test Proposition 5 empirically.
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Figure 2. KL-divergence between the resultant distributions of distribution separation method (DSM)
(with λ fixed) and mixture model feedback (MMF) at each iteration of the EM method.

At first, we directly measure the KL-divergence between the resultant distributions of MMF and
DSM (λ fixed). We report the results of Queries 151–160 on WSJ 87-92 with λ = 0.8 in Figure 2, and
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the results of other queries/datasets show the same trends. It can be observed in Figure 2 that the
KL-divergence between the resultant distributions of MMF and DSM (λ fixed) tends to zero, when
the EM algorithm (of MMF) converges (as the iteration steps are going to 20). The above observation
supports the proof of their equivalence illustrated in Proposition 5.

Next, we compare the retrieval performance of MMF and DSM (λ fixed). For MMF, we set λ to
the value with the best retrieval performance, and this optimal value is also used in DSM (λ fixed).
Experimental results are shown in Table 3. We can find that the performances of these two methods
are very close, which is consistent with the analysis in Section 4. The results again confirm that the
EM algorithm in MMF can be simplified by Equation (14), which is a linear separation algorithm used
in DSM.

Table 3. Comparison of the DSM and MMF approach with TF and C as the input distributions. MAP,
mean average precision. (Statistically significant improvement over MMF at the 0.05 (*) and 0.01 (**)
levels.)

MAP WSJ 87-92 AP 88-89 ROBUST 2004 WT10G

MMF
0.3388

(λ = 0.2)
0.3774

(λ = 0.2)
0.2552

(λ = 0.1)
0.1282

(λ = 0.3)

DSM (λ fixed)
0.3386

(λ = 0.2)
0.3767

(λ = 0.2)
0.2487

(λ = 0.1)
0.1267

(λ = 0.3)
DSM (λL) 0.3474 (+2.54%) ∗ 0.3870 (+2.54%) ∗ 0.2889 (+13.21%) ∗∗ 0.1735 (+35.34%) ∗∗

DSM (+refine) 0.3565 (+5.22%) ∗∗ 0.3915 (+3.74%) ∗ 0.2957 (+15.87%) ∗∗ 0.1735 (+35.34%) ∗∗

As previously mentioned, DSM (λ fixed) is just a special case of DSM when the λ is empirically
assigned. This λ is the same for all of the concerned queries. For DSM, we can use the lower bound
of λ and this estimation (i.e., the lower bound λL) is computed adaptively for each query. In addition,
DSM involves a refinement step for the input distributions (see the algorithm in [6]). In Table 3, we
denote DSM with the lower bound of λ as DSM (λL) and denote DSM with the refinement step as
DSM (+refine).

We now test DSM (λL) and DSM (+refine) when TF and C are the mixture distribution and
seed irrelevance distribution, respectively, as used in DSM (λ fixed). It is demonstrated in Table 3
that the performances of both DSM (λL) and DSM (+refine) are significantly better than MMF.
This is because although MMF and DSM (λ fixed) empirically tune λ for each collection, the value
of λ is the same for each query. On the contrary, DSM (λL) and DSM (+refine) adopt the principled
estimation of λ for each concerned query adaptively based on the linear combination analysis, the
minimum correlation analysis and maximum KL-divergence analysis. This set of experiments
demonstrates that the estimation method for λ in the DSM method is crucial and effective for the
irrelevance distribution elimination.

6.3. Evaluation on Running Time

Now, we report the running time of the DSM in comparison with the MMF’s EM iterative
methods. The running times are recorded on a Dell PowerEdge R730 with one six-core CPU.
Each recorded time is computed over a number of topical queries, and this number is 50, 50, 100
and 50 for WS J8-792, AP 88-89, ROBUS 2004T and WT10G, respectively. We run each method 100
times and report the average running time of the MATLAB code. The number of iterations used in
the EM algorithm of MMF is set to 20, since in our experiments, the EM algorithm cannot converge
well with less than 20 iterations.

The running time comparisons between DSM and MMF are shown in Figure 3. For each figure,
the left column is for the DSM method (with distribution refinement), which has more computation
steps and is thus slower than DSM (with λ fixed) and DSM (with lower bound λL) described in
the previous experiment; while the right column is for the EM algorithm used in MMF. These results
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demonstrate the acceleration effect of DSM for MMF. It is clear that DSM with a linear time complexity
is much more efficient than the EM’s iterative algorithm used for MMF.
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Figure 3. Running time of DSM and MMF.

6.4. Application of DSM on Implicit Irrelevant Feedback Using Commercial Query Logs

To further show DSM’s flexibility, in this section, we will give the empirical evaluation of DSM in
implicit irrelevant feedback using query log data from a real commercial search engine. Since users’
behaviour can be exploited in implicit feedback to infer their preference [21], it can be used here
for identifying seed irrelevant documents. Without loss of generality, we assume that each query
is part of a searching session, which consists of a sequence of queries with a time interval (30 min
in our case). A list of returned documents is associated with each query, and whether or not the
documents were clicked is recorded. Besides, the clicked documents can also be divided into satisfied
clicked and unsatisfied clicked according to the hovering time over the document. We call the clicked
documents with a short hovering time (e.g., less than 30 s) as “unsatisfied”, because we believe that a
user clicking a document, but closing it really quickly, gives a hint that the user is not interested in this
document [22–24].

Now, we can obtain the seed irrelevant document set, which consists of the unsatisfied clicked
documents in the history appearing in the current returned documents list, recorded as Dunsatis f ied.
The corresponding seed irrelevance distribution is:

p(w|IS) = ∑
d∈Dunsatis f ied

p(w|d) p(q|d)
ZIS

(15)

where ZIS = ∑d′∈Dunsatis f ied
p(q|d′).
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We obtain the seed irrelevance distribution from unsatisfied clicked (USC) documents as the
implicit feedback documents. As for the mixture term distribution, we use the term distribution
derived from RM as an input for DSM. The detailed calculation for this mixture distribution can
be found in Appendix A.4. We compare DSM to the initial result of the search engine. In
addition, we compare DSM to two kinds of relevance feedback methods: pseudo-relevance feedback
using all of the returned documents for query expansion and implicit relevance feedback using the
clicked document in the log (the number of pseudo-relevant documents is not a constant, since the
number for each query’s returned documents is different; some sessions may have no unsatisfied
clicked documents, and to handle this problem, we simply ignore these sessions). For implicit
irrelevance feedback, the top 50 terms are selected as expanded terms in query expansion models,
and performance evaluations are conducted on all of the returned documents.

We sort all of the sessions based on the current query’s query click entropy [25,26], which is a
metric for the variability in click results from different users. Low click entropy means that clicks
from the most users are within a small number of returned documents, which leads to less potential
to benefit from user’s implicit feedback and little improvement space. To clearly compare different
implicit feedback-based re-ranking methods, we take the top n (n = 100, 200) sessions with the largest
click entropy. In Table 4, each column records the result for the top n sessions with the largest click
entropy.

In Table 4, “Initial” denotes the initial performance of the search engine. “Pseudo-Relevance
Feedback” and “Implicit Relevance Feedback” denote the cases when we use all of the returned
documents and clicked documents, respectively, as the feedback documents, based on which we carry
out query expansion using RM.

From Table 4, we can observe that DSM with unsatisfied clicked (USC) documents (as the seed
irrelevance documents) can largely improve the initial ranking performanceand works better than
both pseudo-relevance feedback and implicit relevance feedback. The above results demonstrate that
DSM is effective for implicit irrelevance feedback.

Table 4. Evaluation on DSM with implicit approaches to the seed irrelevance distribution.
(Statistically significant improvement over the initial at the 0.05 (*) and 0.01 (**) levels.)

MAP (change% Over Initial) rn = 0.1 rn = 0.2 rn = 0.3

100 Sessions (with largest click entropy)

Initial 0.3132 0.3132 0.3132
Pseudo-Relevance Feedback 0.3124 (−0.26%) 0.3124 (−0.26%) 0.3124 (−0.26%)
Implicit Relevance Feedback 0.3342 (+6.70%) ∗∗ 0.3342 (+6.70%) ∗∗ 0.3342 (+6.70%) ∗∗

DSM (USC) 0.3585 (+14.46%) ∗∗ 0.3585 (+14.46%) ∗∗ 0.3585 (+14.46%) ∗∗

200 Sessions (with largest click entropy)

Initial 0.2667 0.2667 0.2667
Pseudo-Relevance Feedback 0.2690 (+0.86%) 0.2690 (+0.86%) 0.2690 (+0.86%)
Implicit Relevance Feedback 0.2730 (+2.36%) 0.2730 (+2.36%) 0.2730 (+2.36%)

DSM (USC) 0.2884 (+8.14%) ∗∗ 0.2884 (+8.14%) ∗∗ 0.2884 (+8.14%) ∗∗

7. Conclusions and Future Work

In this paper, we have systematically investigated the theoretical properties of the distribution
separation method (DSM). Specifically, we have proven that the minimum correlation analysis in
DSM is generalizable to maximum (original and symmetrized) KL-divergence analysis, as well as
JS-divergence. We also proved that the solution to the well-known mixture model feedback (MMF)
can be simplified using the linear combination technique in DSM, and this is also empirically verified
using standard TREC datasets. We summarize the theoretical contributions of DSM for the IR research
in Section 5.6.

The experimental results on the ad hoc retrieval task show that the DSM with an
analytically-derived combination coefficient λ can not only achieve better retrieval performance, but
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also can largely reduce the running time, compared to the EM algorithm used in MMF. An additional
experiment on the query log shows that DSM can also work well in the implicit feedback task, which
indicates the flexibility of DSM on different tasks.

In our future work, we are going to investigate if it is possible to adopt the original query
model (or other relevance information) to regularize the separation algorithm in DSM. The empirical
evaluation will then be based on RMMF and QMMF as the baselines, in order to compare different
regularization strategies, given the same prior information for the regularization. Moreover, since the
EM algorithm is widely used in many fields, e.g., machine learning, data mining, etc., it is interesting
to investigate the distribution separation idea in certain applications of EM algorithms (e.g., the
Gaussian mixture model). In our future work, we will endeavour to make DSM be more applicable
to various methods/tasks.
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Appendix

A.1. Proof of Proposition 3

Proposition 3. If λ̂ (λ̂ > 0) decreases, the symmetrized KL-divergence between l̂(R, IS) and IS will increase.

Proof. Let the symmetrized KL-divergence between l̂(R, IS) and IS be denoted as:

SD(l̂(R, IS), IS) = D(l̂(R, IS), IS) + D(IS, l̂(R, IS)) (16)

Since we have proven in Proposition 2 the increasing trend of D(l̂(R, IS), IS) when λ̂ decreases,
we now only need to prove the same result for D(IS, l̂(R, IS)), which is computed by:

D(IS, l̂(R, IS)) = ∑
i

IS(i) log(
IS(i)
l̂(i)

) = ∑
i

IS(i) log IS(i)−∑
i

IS(i) log l̂(i) (17)

Now, let ξ = 1/λ̂. According to Equation (2), we have l̂(R, IS) = ξ ×M + (1− ξ)× IS. It then
turns out that:

l̂(i) = ξ × (M(i)− IS(i)) + IS(i). (18)

Based on Equations (17) and (18), we get:

D(IS, l̂(R, IS)) = ∑
i

IS(i) log IS(i)−∑
i

IS(i) log(ξ × (M(i)− IS(i)) + IS(i)) (19)

Let D(ξ) = D(IS, l̂(R, IS)). The derivative of D(ξ) can be calculated as:

D′(ξ) = ∑
i

−IS(i)(M(i)− IS(i))
ξ × (M(i)− IS(i)) + IS(i)

= ∑
i

−IS(i)(M(i)− IS(i))
l̂(i)

(20)

Since M(i) is a linear combination of l̂(i) and IS(i), M(i) is an in-between value of l̂(i) and IS(i).
In other words, if M(i) > IS(i), then l̂(i) > M(i) > IS(i), while l̂(i) < M(i) < IS(i) if M(i) < IS(i).
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If M(i) > IS(i), since M(i)− IS(i) > 0 and 0 < IS(i)
l̂(i)

< 1, we have:

−IS(i)(M(i)− IS(i))
l̂(i)

> −(M(i)− IS(i))

If M(i) < IS(i), since M(i)− IS(i) < 0 and IS(i)
l̂(i)

> 1, we have:

−IS(i)(M(i)− IS(i))
l̂(i)

> −(M(i)− IS(i))

We then have:

D′(ξ) = ∑
i

−IS(i)(M(i)− IS(i))
l̂(i)

= ∑
i:M(i)>IS(i)

−IS(i)(M(i)− IS(i))
l̂(i)

+ ∑
i:M(i)<IS(i)

−IS(i)(M(i)− IS(i))
l̂(i)

+ ∑
i:M(i)=IS(i)

−IS(i)(M(i)− IS(i))
l̂(i)

> ∑
i:M(i)>IS(i)

−(M(i)− IS(i)) + ∑
i:M(i)<IS(i)

−(M(i)− IS(i)) + ∑
i:M(i)=IS(i)

−(M(i)− IS(i))

= ∑
i
−(M(i)− IS(i))

= 0

(21)

We now have D′(ξ) > 0. This means that D(ξ) (i.e., D(IS, l̂(R, IS))) will increase after ξ increases.
Since λ = 1/ξ, after λ̂ decreases, D(IS, l̂(R, IS) will increase. Combined with the result proven in
Proposition 2, we can conclude that when λ̂ decreases, the symmetrized KL-divergence D(l̂(R, IS), IS)

+ D(IS, l̂(R, IS)) will increase monotonically.

A.2. Proof of Proposition 4

Proposition 4. If λ̂ (λ̂ > 0) decreases, the JS-divergence between l̂(R, IS) and IS will increase.

Proof. Let the JS-divergence of between l̂(R, IS) and IS be denoted as:

JS(l̂(R, IS), IS) =
1
2
(D(l̂(R, IS),

l̂(R, IS) + IS

2
) + D(IS,

l̂(R, IS) + IS

2
)) (22)

Now, let ξ = 1/λ̂. Based on Equations (22) and (18), we get:

JS(l̂(R, IS), IS) =
1
2 ∑

i
(ξ × (M(i)− IS(i)) + IS(i)) log(

2ξ × (M(i)− IS(i)) + 2IS(i)
ξ × (M(i)− IS(i)) + 2IS(i)

)

+
1
2 ∑

i
IS(i) log(

2IS(i)
ξ × (M(i)− IS(i)) + 2IS(i)

)

(23)

Let J(ξ) = 2× JS(l̂(R, IS), IS); we can have:

J(ξ) = ∑
i
(ξ × (M(i)− IS(i)) + IS(i)) log(2ξ × (M(i)− IS(i)) + 2IS(i))

−∑
i
(ξ × (M(i)− IS(i)) + IS(i)) log(ξ × (M(i)− IS(i)) + 2IS(i))

+ ∑
i

IS(i) log 2IS(i)−∑
i

IS(i) log(ξ × (M(i)− IS(i)) + 2IS(i))

(24)
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The derivative of J(ξ) can be calculated as:

J′(ξ) = ∑
i
(M(i)− IS(i)) log(2ξ × (M(i)− IS(i)) + 2IS(i))

+ ∑
i
(ξ × (M(i)− IS(i)) + IS(i))

M(i)− IS(i)
ξ × (M(i)− IS(i)) + IS(i)

−∑
i
(M(i)− IS(i)) log(ξ × (M(i)− IS(i)) + 2IS(i))

−∑
i
(ξ × (M(i)− IS(i)) + IS(i))

M(i)− IS(i)
ξ × (M(i)− IS(i)) + 2IS(i)

−∑
i

IS(i)
M(i)− IS(i)

ξ × (M(i)− IS(i)) + 2IS(i)

(25)

Since l̂(i) = ξ × (M(i)− IS(i)) + IS(i) (see Equation (18)), we have:

J′(ξ) = ∑
i
(M(i)− IS(i)) log(2l̂(i)) + ∑

i
l̂(i)

M(i)− IS(i)
l̂(i)

−∑
i
(M(i)− IS(i)) log(l̂(i) + IS(i))

−∑
i

l̂(i)
M(i)− IS(i)
l̂(i) + IS(i)

−∑
i

IS(i)
M(i)− IS(i)
l̂(i) + IS(i)

= ∑
i
(M(i)− IS(i)) log(

2l̂(i)
l̂(i) + IS(i)

)−∑
i
(l̂(i) + IS(i))

M(i)− IS(i)
l̂(i) + IS(i)

= ∑
i
(M(i)− IS(i)) log(

2l̂(i)
l̂(i) + IS(i)

)

(26)

If M(i) > IS(i), since M(i)− IS(i) > 0 and l̂(i) > IS(i) ≥ 0, we have:

(M(i)− IS(i)) log(
2l̂(i)

l̂(i) + IS(i)
) > 0

If M(i) < IS(i), since M(i)− IS(i) < 0 and 0 ≤ l̂(i) < IS(i), we have:

(M(i)− IS(i)) log(
2l̂(i)

l̂(i) + IS(i)
) > 0

We then have J′(ξ) > 0. This means that JS(l̂(R, IS), IS)) increases after ξ increases. Since
λ = 1/ξ, after λ̂ decreases, JS(l̂(R, IS), IS) will increase monotonically.

A.3. Proof of Proposition 5

Proposition 5. If the EM algorithm (in MMF) converges, the mixture model of the feedback documents is a
linear combination of the collection model and the output relevance model of the EM iterative algorithm.

Proof. When the EM method converges in MMF, without loss of generality, let
p(w|θ(n+1)

F ) = p(w|θ(n)F ). In addition, we can replace the p(zw = 1|F , θ
(n)
F ) in Equation (12)

using Equation (11) and then get:
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p(w|θn+1
F ) = p(w|θ(n)F ) =

∑d∈F

[
1− (1−λ)p(w|C)

λp(w|θ(n)F )+(1−λ)p(w|C)

]
· c(w, d)

∑d∈F ∑w∗∈V

[
1− (1−λ)p(w∗ |C)

λp(w∗ |θ(n)F )+(1−λ)p(w∗ |C)

]
· c(w∗, d)

=
∑d∈F

λp(w|θ(n)F )

λp(w|θ(n)F )+(1−λ)p(w|C)
· c(w, d)

∑d∈F ∑w∗∈V
λp(w∗ |θ(n)F )

λp(w∗ |θ(n)F )+(1−λ)p(w∗ |C)
· c(w∗, d)

(27)

By dividing p(w|θ(n)F ) in both the second term and the fourth term in Equation (27), we have:

1 =
∑d∈F

λ

λp(w|θ(n)F )+(1−λ)p(w|C)
· c(w, d)

∑d∈F ∑w∗∈V
λp(w∗ |θ(n)F )

λp(w∗ |θ(n)F )+(1−λ)p(w∗ |C)
· c(w∗, d)

(28)

Then, for a particular word w,

∑
d∈F

c(w, d)

λp(w|θ(n)F ) + (1− λ)p(w|C)
= ∑

d∈F
∑

w∗∈V

p(w∗|θ(n)F )c(w∗, d)

λp(w∗|θ(n)F ) + (1− λ)p(w∗|C)

After we replace ∑d∈F c(w, d) with c(w,F ) and replace ∑d∈F c(w∗, d) with c(w∗,F ), it turns
out that:

c(w,F )
λp(w|θ(n)F ) + (1− λ)p(w|C)

= ∑
w∗∈V

p(w∗|θ(n)F )c(w∗,F )
λp(w∗|θ(n)F ) + (1− λ)p(w∗|C)

(29)

If each side of Equation (29) is multiplied by (1− λ)p(w|C), then it becomes:

(1− λ)p(w|C)c(w,F )
λp(w|θ(n)F ) + (1− λ)p(w|C)

= (1− λ)p(w|C) ∑
w∗∈V

p(w∗|θ(n)F )c(w∗,F )
λp(w∗|θ(n)F ) + (1− λ)p(w∗|C)

(30)

We can obtain Equation (30) for any word w∗ in the vocabulary, and now, we sum them together
as follows:

∑
w∗∈V

(1− λ)p(w∗|C)c(w∗,F )
λp(w∗|θ(n)F ) + (1− λ)p(w∗|C)

= ∑
w∗∈V

(1− λ)p(w∗|θ(n)F )c(w∗,F )
λp(w∗|θ(n)F ) + (1− λ)p(w∗|C)

(31)

Then, we add ∑w∗∈V
λp(w∗ |θ(n)F )c(w∗ ,F )

λp(w∗ |θ(n)F )+(1−λ)p(w∗ |C)
to both sides of Equation (31):

∑
w∗∈V

c(w∗,F ) = ∑
w∗∈V

p(w∗|θ(n)F )c(w∗,F )
λp(w∗|θ(n)F ) + (1− λ)p(w∗|C)

(32)

According to Equations (29) and (32), we get:

c(w,F )
λp(w|θ(n)F ) + (1− λ)p(w|C)

= ∑
w∗∈V

c(w∗,F ) (33)
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Then, we have:

λp(w|θ(n)F ) + (1− λ)p(w|C) = c(w,F )
∑w∗∈V c(w∗,F ) = t f (w,F ) (34)

where t f (w,F ) is the mixture model, which represents the term frequency in the feedback
documents, p(w|C) is the collection model and p(w|θ(n)F ) is the estimated relevance model output
by the n-th step of the EM iterative algorithm in MMF.

Thus, the above equation shows that the mixture model of the feedback documents is
a linear combination of the collection model and the output relevance model of the EM
iterative algorithm.

A.4. Mixture Distribution of the Relevance Model

The relevance model is one relevance feedback model that can derive the mixture distributions
as inputs of DSM. We now describe the linear combination condition by formulating the
mixed distribution, relevance distribution and irrelevance distribution obtained by the relevance
model (RM) [2].

The term distribution derived by RM is often a mixed distribution M corresponding to all of the
feedback documents D. Specifically, the mixture distribution M by RM can be formulated as:

p(w|M) = ∑
d∈D

p(w|d) p(q|d)
ZM

(35)

where p(w|d) is the probability of term w in a document d, p(q|d) is the query likelihood (QL) score
of the document d and ZM = ∑d′∈D p(q|d′) is the summed QL scores over all documents in feedback
document set D. Note that the (original) query q can contain a number of query terms. In RM, the
document prior p(d) is often assumed as uniform [2]. Therefore, we omit p(d) in Equation (35).

The true relevance distribution R should be derived from all of the relevant feedback documents
DR in D:

p(w|R) = ∑
d∈DR

p(w|d) p(q|d)
ZR

(36)

where ZR = ∑d′∈DR
p(q|d′).

In addition to the distribution R in Equation (36), we can obtain the irrelevance distribution I:

p(w|I) = ∑
d∈DI

p(w|d) p(q|d)
ZI

(37)

where ZI = ∑d′∈DI
p(q|d′) and DI correspond to all of the irrelevant documents in D. Now, we can

observe the linear combination as follows:

p(w|M) =
ZR
ZM

p(w|R) + ZI
ZM

p(w|I) (38)

It turns out that M = ZR
ZM

R + ZI
ZM

I, which shows that M is a linear combination between R and I.

The linearity can be seen by the fact that ZR
ZM

+ ZI
ZM

= 1.
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