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Abstract

Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A

potential difference applied between certain ionic bilayers made from insulating graphitic materials

such as BN, ZnO and AlN could reduce gap sizes, turning them into useful semiconductors. On the

other hand, opening of a small semiconducting gap occurs in graphene bilayers under applied field.

The aim here is to investigate to what extent substrate induced electron-phonon interactions (EPIs)

modify this gap change. We examine EPIs in several lattice configurations, using a perturbative

approach. The typical effect of EPIs on the ionic bilayers is an undesirable gap widening. The

size of this gap change varies considerably with lattice structure and the magnitude of the bias.

When bias is larger than the non-interacting gap size, EPIs have the smallest effect on the bandgap,

especially in configurations with AA′ and AB structures. Thus careful selection of substrate, lattice

configuration and bias strength to minimise the effects of EPIs could be important for optimising

the properties of electronic devices. We use parameters related to BN in this article. In practice,

the results presented here are broadly applicable to other graphitic bilayers, and are likely to be

qualitatively similar in metal dichalcogenide bilayers such as MoS2, which are already of high

interest for their use in FETs.
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I. INTRODUCTION

The discovery and manufacture of graphene has given a significant boost to research

into two-dimensional materials [1], often with the aim of integrating them into electronic

devices.[2] These new two-dimensional materials are robust, with high crystal qualities. How-

ever, with the exception of graphene, many of these materials are relatively unexplored.[3]

For example, hexagonal boron nitride (h-BN) is a low dimensional material of high interest,

because of its many similarities to graphene; a honeycomb lattice structure and a similar

bond length, although the bonds between boron and nitrogen atoms have a high degree of

ionicity in comparison to the covalent bonds in graphene.[4] This ionicity leads to a band

gap, and may also be found in other ionic graphitic bilayers such as ZnO, GaN, AlN, BeO

and MgO. Another subtle difference is that graphene has two possible configurations of

atoms, whereas ionic graphitic bilayers have four possible stable bilayer configurations due

to the two distinct atom types in the bilayer (see Figure 1). All four configurations display

differing characteristics that could be desirable, with a range of tight binding parameters

and energy gaps (for example all of the BN configurations have gaps of order 4eV).[5]

Of particular interest for the current article is the prediction by Tang et al. that applying

a bias across bilayer h-BN can close the BN gap.[6] Such an effect is not limited to bilayers

of BN, and is also predicted to occur in bilayer MoS2, which has attracted a great deal

of interest for use in field effect transistors.[7] Given the similarity of graphitic phases of

compounds such as ZnO, GaN, AlN, BeO and MgO to BN, and similarity of MoS2 to a wide

variety of other metal dichalcogenides,[8] such band closing effects could be widespread.

In this article, we will use parameters relating to BN, although the other ionic graphitic

materials have similar properties. We note that other theoretical and experimental ap-

proaches to manipulate h-BN band structure have been similar to those used to make gaps

in graphene (and it is likely that similar approaches would be applicable to other ionic

graphitic bilayers) [9]. Examples include the alteration of the structural geometry of BN,

introduction of impurities by replacing B or N atoms or by adding adatoms, creating h-BN

nanotubes, amplifying ionicity with substrate mediated electron-phonon interactions or by

forming nanoribbons.[10–12] An interesting effect has been seen when h-BN bilayers are

functionalised with hydrogen; if both layers are fully saturated the size of the band gap is

reduced and the gap changes from direct to indirect.[13, 14]
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Lattice Configuration Hamiltonian Parameters / eV

AA′



−∆ Φk 0 γ1

Φ∗k ∆ γ1 0

0 γ1 −∆ Φ∗k

γ1 0 Φk ∆



γ0 = 2.36

γ1 = 0.32

∆ ≈ 2.04

AB



−∆ Φk 0 0

Φ∗k ∆ γ1 0

0 γ1 −∆ Φ∗k

0 0 Φk ∆



γ0 = 2.37

γ1 = 0.60

∆ ≈ 2.08

A′B



−∆ Φk 0 0

Φ∗k ∆ γ1 0

0 γ1 ∆ Φ∗k

0 0 Φk −∆



γ0 = 2.34

γ1 = 0.25

∆ ≈ 1.96

AB′



∆ Φk 0 0

Φ∗k −∆ γ1 0

0 γ1 −∆ Φ∗k

0 0 Φk ∆



γ0 = 2.38

γ1 = 0.91

∆ ≈ 2.16

AB (graphene)



−∆ Φk 0 0

Φ∗k ∆ γ1 0

0 γ1 ∆ Φ∗k

0 0 Φk −∆



γ0 = 3.00

γ1 = 0.30

∆ = 0.0105

FIG. 1. Lattice configurations and tight-binding parameters of the bilayer boron nitride and

graphene configurations. BN values are taken from Ref. 3, and graphene ones mimic experiment

[15]. Red circles represent N, blue ones represent B and black ones represent C. The small ∆ in

graphene originates from the proximity of carbon atoms in different layers.

Given the wide range of graphitic materials with gap closure under bias, the aim of this

paper is to investigate the effect of electron-phonon interactions on those materials, especially

on the band closing effect - does it enhance or reduce the effect, and are there situations
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where the effects of EPI can be minimised? In this paper we focus on modifications to

the band gap using parameters related to biased bilayer BN [16] caused by EPIs between

the bilayer and a substrate [12]. With the exception of graphene, we are not aware of

other studies of EPIs in biased graphitic bilayers. The model may also be considered as

an approximation to in-plane EPIs. We also consider the effect of EPIs on biased bilayer

graphene. The paper is structured as follows; in Sec. II we introduce our model and perform

a Green’s function analysis to determine the low order contributions to the self-energy, and

therefore to derive self-consistent equations. Section III presents numerical solutions to the

Green’s function, which are used to determine the gap enhancement. We examine the effects

of EPIs on bilayers of graphitic materials for a range of structures that couple to substrates

and sandwiches of polar materials. Finally, we summarise, discuss limitations and further

work and make conclusions in Sec. IV.

II. MODEL

We model hexagonal boron nitride bilayers using a tight-binding approach, with a bias

applied normal to the bilayer surface. We introduce an additional electron-phonon term

describing the interactions between electrons in the bilayer and phonons in the substrate (or

superstrate if the bilayer is sandwiched). There are several possible forms of the electron-

phonon interaction. The two main classes are those where (a) local electron density couples

to phonon modes directly, such as the Holstein and extended Holstein (Fröhlich) models [17–

19], and (b) significant distortions of the lattice modify hopping integrals and therefore lead

to interaction with phonon modes when electrons move, as is the case in the Su-Schrieffer-

Heeger model of polyacetylene and other polymers [20]. The deformability of the system

is critical for determining which of types (a) and (b) dominate: If materials are not very

flexible or compressible, then type (a) dominates. For systems which are flexible, such

as polymers, then interactions of type (b) are more typical. Freestanding and suspended

graphene are also flexible, and electrons in the plane can interact with out of plane flexural

modes through coupling of the hopping to a local vector potential representing the local

deformation [21] (which is in essence a 2D extension of the SSH interaction), whereas the

presence of substrates makes the graphene planes rigid and leads to suppression of flexural

modes [22]. The graphitic bilayer systems considered in this paper exist on substrates, and
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therefore the electron-phonon interactions are expected to be between electrons in the plane

and phonons in the substrate, where the extended Holstein (or Fröhlich) forms dominate.

The extended Holstein form is known to be the dominant type of interaction in layered

materials [19], including 2D materials such as graphene on substrate systems (see e.g. [23]),

and this form has been measured directly between carbon nanotubes and SiO2 substrates

[24]. We expect this to be the case for all graphitic systems on substrates (or in sandwiches)

such as those studied here.

Extended Holstein and local Holstein forms of interaction have qualitatively similar prop-

erties. On the mean-field level, Holstein and Fröhlich interactions are identical [25] due to

averaging of the interaction across the Brillouin zone [26]. Therefore, the form of the inter-

action is taken to be of the local, Holstein, form [27],

H =− γ0
∑
〈n,n′〉uσ

(α†nuσβn′uσ + β†n′uσαnuσ)

− γ1
∑
σn

(X†n1σYn′2σ + Y †n′2σXn1σ)−
∑
nuσ

gunnuσxn (1)

+
∑
m

~Ω(Nm +
1

2
) +

∑
nuσ

∆nunnuσ +
∑
nuσ

Vunnuσ

Here, γ0 and γ1 represent the hopping integrals for intra-layer and inter-layer hopping re-

spectively. α†iσ creates an electron on a boron site with a spin σ and lattice vector i, and

the operator β annihilates an electron on the nitrogen sublattice. The index u indicates the

layer in which the site sits, and we use the symbols 5 and 4 for the layers respectively

closest and furthest from the substrate. V4 = +V and V5 = −V . X† and Y † are either

α† or β† depending on the specified lattice configuration. Inter-layer terms are taken into

account when an atom X sits directly below an atom Y in the lattice structure, where X and

Y can represent the boron and / or nitrogen atoms (or other atoms if alternative graphitic

bilayers are to be considered). gu determines the magnitude of interaction between electrons

and ions on sites at position n, and can be related to the dimensionless electron-phonon

coupling λu = g2u/2MΩ2γ0. M is the ion mass, Ω is the phonon frequency, n the electron

number operator, Nm the phonon number operator and xn the ion displacement. Finally,

∆nu introduces the atomic ionicity of each site, and V is the magnitude of the potential at

each plane, such that the total potential difference between the planes is 2V .

Low order perturbation theory can be used to solve this Hamiltonian when phonon fre-

quencies are low and electron-phonon coupling constants are weak. We construct the full
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Green’s function of the system using Dyson’s equation, G−1(k, iωn) = G−10 (k, iωn)−Σ(iωn),

substituted with the following form for the self-energy,

Σjj(iωn) ≈ iωn(1− Zj) + δj (2)

The number of unique sites dictates the minimum number of functions that are used to

describe the system. In the following, we start by examining the general case with four

modified potentials, δ1, δ2, δ3 and δ4 which represent the effects of interactions on the four

sites of the unit cell. In addition, the respective quasi-particle weights Z1, Z2, Z3 and Z4

are included. Both δ and Z are real functions of the Matsubara frequency for fermions,

ωn = 2πkBT (n + 1/2). Off diagonal terms in the self-energy are zero in the low order

perturbation theory considered here and terms are completely momentum independent. The

non-interacting Green’s function of the system can be found from, G−10 (k, iωn) = [Iiωn −

(H + V )]. Where H is defined in Fig. 1 and V represents the applied bias,

V =


V 0 0 0

0 V 0 0

0 0 −V 0

0 0 0 −V

 (3)

We invert Dyson’s equation and then place it into the lowest order contribution to the

self-energy, which is,

Σij(k, iωn) = −Tγ0λij
∑
iωs

∫
d2q

VBZ
Gij(k − q, iωn−s) (4)

× [2d0(q, ωs=0)− d0(q, ωs)] ,

In this equation, the non-interacting phonon propagator is d0(iωs) = δijΩ
2/(Ω2 − ω2

s), and

the Matsubara frequencies for bosons are, ωs = 2πkBTs. λij is defined from,

λ =


λ5 0 0 0

0 λ5 0 0

0 0 λ4 0

0 0 0 λ4

 (5)

For the case of substrate and superstrate, λ5 = λ4 = λ. For the case where there is only

a substrate, but no covering superstrate, λ4 would have a tiny value on the order of 2-3%
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of λ5 (assuming the upper layer is about twice as far from the substrate as the lower layer,

since the coupling, λ ∼ g2 and g goes like 1/r3), so we take the coupling to be λ5 = λ, and

λ4 = 0.

Thus, we obtain four sets of simultaneous equations for each configuration, that describe

how the effective potential, δ and quasi-particle weight, Z, change with our input parameters;

temperature, phonon frequency, on-site potential and electron-phonon coupling constant,

δ1 + iωn(1− Z1) = γ0λ5kBT
∑
f

[2d0(iωs=0)− d0(iωs)]
∫

dε
D(ε) (ε2Π2 + Π4(γ

2
1 −Π2Π3))

(−ε4 + Π1Π4(γ21 −Π2Π3)) + ε2(Π1Π2 + Π3Π4)
(6)

δ2 + iωn(1− Z2) = γ0λ5kBT
∑
f

[2d0(iωs=0)− d0(iωs)]
∫

dε
D(ε) (ε2Π1 + Π3(Π1Π4))

(−ε4 + Π1Π4(γ21 −Π2Π3)) + ε2(Π1Π2 + Π3Π4)
(7)

δ3 + iωn(1− Z3) = γ0λ4kBT
∑
f

[2d0(iωs=0)− d0(iωs)]
∫

dε
D(ε) (ε2Π4 + Π2(Π4Π1))

(−ε4 + Π1Π4(γ21 −Π2Π3)) + ε2(Π1Π2 + Π3Π4)
(8)

δ4 + iωn(1− Z4) = γ0λ4kBT
∑
f

[2d0(iωs=0)− d0(iωs)]
∫

dε
D(ε) (ε2Π3 + Π1(γ

2
1 −Π3Π2))

(−ε4 + Π1Π4(γ21 −Π2Π3)) + ε2(Π1Π2 + Π3Π4)
(9)

which are valid for the the AB′, A′B and AB configurations. In the case of the AA′

stacked configuration, atoms in different planes sit above or below every site, so equations

(7) and (8) are replaced with a different form,

δ2 + iωn(1− Z2) = γ0λ5kBT
∑
f

[2d0(iωs=0)− d0(iωs)]
∫

dε
D(ε) (ε2Π1 + Π3(γ

2
1 −Π1Π4))

(−ε4 + Π1Π4(γ21 −Π2Π3)) + ε2(Π1Π2 + Π3Π4)
(10)

δ3 + iωn(1− Z3) = γ0λ4kBT
∑
f

[2d0(iωs=0)− d0(iωs)]
∫

dε
D(ε) (ε2Π4 + Π2(γ

2
1 −Π4Π1))

(−ε4 + Π1Π4(γ21 −Π2Π3)) + ε2(Π1Π2 + Π3Π4)
(11)

where, f = n − s. In the self-consistent equations, all terms are momentum independent

except for terms of the form, ΦkΦ∗k and (ΦkΦ∗k)2, where Φk = γ0
∑

l e
−ik·l and the sum is

over the nearest neighbour vectors within the same layer, l. The products ΦΦ∗ have the

same form as the squared dispersion in the monolayer case, and therefore as a mathematical

tool the sum over momenta can be replaced by an integral over the monolayer density of

states, D(ε). This is mathematically identical to the identification of the bilayer dispersion

and replacement of the momentum sum with the bilayer density of states. The rewriting in

terms of the monolayer DOS leads to the slight advantage of a straightforward analytical

form for the DOS at all energies, although in the following we will use a linear approximation,

D(ε) = |ε|/πγ20
√

3, for |ε| < γ0π
1/231/4.[21]

Each configuration has separate definitions of Πx, although all have the general form,

Πx(iωn) = δx±∆± V + iωnZx, with sign changes relating to the properties of site x. All δx
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and Zx are all taken to be real so each equation is solvable by separating real and imaginary

parts. Summing over all Matsubara frequencies, truncated at sufficiently large ωn to ensure

convergence, the equations can be solved self-consistently (ωnmax = 240γ0). Calculations

for each bilayer configuration were performed separately according to their tight binding

parameters (seen in Figure 1), in addition to the potential bias placed perpendicularly

over the two planes, and the electron-phonon interaction. For comparison, we also make

computations for bilayer graphene.

III. RESULTS

Tight binding parameters for each of the lattice configurations can be found in Figure

1 where they have been extracted from Ref. 3. All intra-layer hopping parameters in the

different h-BN configurations are very similar (within 1% of 2.36eV). On the other hand,

inter-layer hopping parameters are highly dependent on stacking configurations, ranging

from γ1 = 0.25eV to γ1 = 0.91eV. The band gap for all configurations is approximately 4eV

before electron-phonon interactions and the interlayer potential are switched on. The inter-

layer potential modifies the band gap, with different changes in gap size for the alternative

configurations of BN and graphene, and these can be seen in Fig. 2. There are 3 main forms

of the response of the gap to potential. In bilayer graphene, the gap rapidly increases with

potential until it reaches a plateau of around 300meV. This plateau is very wide, persisting

up to 9V (3γ0). The A′B, AB′ and (when negative potential difference is applied) AB forms

of BN undergo gap reduction until V ≈ ∆. After this, the gaps slowly rise again, not quite

reaching a plateau until a point of inflection around V = 3γ0 where the gradient starts to

increase rapidly. Finally, the AA′ stacked form and the AB form with positive potential

difference have a rapid gap decrease to a point of inflection around V = ∆, and then the

gap remains only weakly changed up to V = 3γ0, where there is a minimum followed by a

rapid increase of the gap with V . The difference between the application of positive and

negative potential in the AB case relates to the asymmetry between B and N atoms on the

central sites of the unit cell. No such asymmetry exists for the other cases.

In the following, temperature is set at kBT = 0.01γ0, which is ≈ 24meV for BN and

≈ 30meV for graphene, corresponding to a range between 266K and 278K dependent on

the value of γ0, although the results are essentially temperature independent around room
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FIG. 2. Band gap evolution for the alternative configurations of BN and graphene as the potential

difference perpendicular to the planes is changed, when interactions are not present. There are

3 main forms of the response of the gap to potential, including regions where the gap does not

change rapidly with potential, and specific values of V where the gap is reduced to zero.

temperature (we checked for kBT = 48meV or 540K, obtaining essentially identical results).

Phonon energies of ~Ω = 0.02γ0 were used in the calculations (corresponding to ~Ω ≈ 48meV

for BN, depending on the differences in γ0, and ~Ω ≈ 60meV for graphene). Computations

were also made for a higher value of ~Ω = 0.06γ0, with no qualitative changes to the results.

Equations 6-11 were solved numerically with a linear approximation to the the density

of states to lower the computational costs. Calculations were conducted at several points of

interest in boron nitride bilayers; the point at which the bias produces an electron band gap

of 1eV (similar in size to that found in silicon) and the point at which the gap size becomes

zero in certain configurations (found to be close to V = ∆). Specific values of V used for

the different BN structures can be found in Table I. Calculations were also carried out for

V = γ0 and V = 2γ0, where the gap varies less quickly on change of V .

A total of four on-site potential corrections and their corresponding quasi-particle weights

were calculated using Eqns. 6-11. The Matsubara frequency dependence of these quantities

for all the studied lattice configurations of boron nitride are displayed in Fig. 3. Figures

display the frequency dependence at λ = 1 and a bias potential corresponding to the point of

inflection or zero band gap at V ≈ ∆. Magnitudes of δ(iωn) are plotted to aid comparison.

For all functions, asymptotic behaviour is reached at low Matsubara frequencies. Figure 4

displays the Matsubara frequency dependence of δ for bilayer graphene with an electron

phonon coupling λ = 1 and bias V = γ0. It can be seen that these functions also quickly
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Configuration V (1eV gap) V (zero gap

/ point of inflection)

AA′ 1.655eV 2.04eV

AB (+ve) 3.114eV +2.08eV

AB (-ve) -1.595eV −2.08eV

A′B 1.445eV 1.96eV

AB′ 1.536eV 2.06eV

TABLE I. Required potential bias between h-BN sheets to produce a band-gap of 1eV, and V cor-

responding to zero gap or point of inflection depending on configuration. N.B. There are differences

between the gaps at +ve and -ve V for the AB configuration.

1.64
1.66
1.68

1.7
1.72

(a)

δ(
i ω

n)
 / 

eV

(b) (c) (d)

0.2
0.4
0.6
0.8

0 10 20 30 40

(e)

Z
(i ω

n)
 / 

10
-2

ωn

0 10 20 30 40

(f)

ωn

0 10 20 30 40

(g)

ωn

0 10 20 30 40

(h)

ωn

AA'
AB (+ve)
AB (-ve)

A'B
AB'

FIG. 3. Panels (a)-(d). Matsubara frequency dependence of the magnitude of the bilayer boron

nitride on-site potentials (a) δ1 to (d) δ4 for an electron-phonon coupling λ = 1, at the point of

inflection / zero gap around V ≈ ∆. The bilayer is completely sandwiched in this case, but the

forms of the functions are similar for coupling to substrate only. Each panel shows a different

sub-lattice site. Panels (e)-(h) show values for the associated quasi-particle weights Z1 through to

Z4.

settle at a constant asymptotic value. In both cases, the bilayer is completely sandwiched.
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0.9
0.92
0.94
0.96
0.98

1

δ(
i ω

n)
 / 

eV

0.04
0.08
0.12
0.16

0 10 20 30 40

1-
Z

(iω
n)

ωn

0 10 20 30 40

ωn

0 10 20 30 40

ωn

0 10 20 30 40

ωn

FIG. 4. (a)-(d) The Matsubara frequency dependence of the gap potential enhancement functions

in biased bilayer graphene. (e)-(h) show the associated quasi-particle weight. Each panel shows a

different sub-lattice site. Here λ = 1 and V = γ0. The bilayer is completely sandwiched so that

coupling is with both layers.

Results are similar for coupling to the substrate only.

Figure 5 shows the EPI modified gap for all h-BN stacking configurations for a non-

interacting gap size of 1eV, and different values of λ. Panel (a) shows the effect of interaction

with a substrate only, and panel (b) with both substrate and superstrate, and this convention

will be used throughout the remainder of this article. The initial parameters were chosen

following Table I such that the non-interacting tight binding model used for each of the

lattice configurations had a band gap of approximately 1eV (where there are 2 values of V

leading to a 1eV gap, the smallest V is used). For increasing electron-phonon coupling, in all

cases, the electron band gap is also increased, and this is typically (although not always) the

case, since electron-phonon interactions tend to localise electrons and holes. As the electron-

phonon coupling approaches λ = 1, the gap modification is quite pronounced. The majority

of the lattice structures are highly sensitive to the effects of electron-phonon interaction.

The exception is the AB configuration with positive V (i.e. from the bottom to top of the

page in Fig. 1). In that case the gap is quite stable against EPI, although it should be

noted that the magnitude of V to obtain a 1eV gap is approximately double in this case.
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FIG. 5. Electron band gap evolution with increasing substrate induced electron-phonon interaction

strength. Panel (a) shows the effect of interaction with a substrate only, and panel (b) with

both substrate and superstrate. All stable lattice configurations are set to an original gap size

of 1eV via an applied bias potential before adding the effects of the EPI. The gap associated

with applying positive potential difference over the AB configuration is particularly stable against

electron-phonon coupling, however the applied potential is large. Other configurations are quite

sensitive to EPI.

The effect of coupling to both layers rather than to a single layer is that the response of

the gap is approximately double that of the bilayers. Otherwise the results are qualitatively

similar. This approximate doubling of response is found regardless of bias voltage.

Figure 6 presents the overall results for band gap evolution when a electron-phonon

coupling is added to BN bilayers when V ≈ ∆, which is where there is a point of inflection

indicating the start of the smaller gradient evolution of the gap on changing V for the AA′

and positive V AB configurations, and where there is zero gap for the other configurations.

In the case of AB stacked bilayer boron nitride with negative V, AB′ and A′B stacking,

we see a sharp increase in band gap size similar to that shown in Figure 5. This turns on

the gap in all 3 cases, and indicates that attempts to switch of the BN gap with potential

could be highly sensitive to the strength of electron interactions. On the other hand, in the

case of AA′ stacking, and AB stacking with positive V a differing situation occurs; for AA′

stacking the band gap evolution is much less sensitive to increasing electron-phonon coupling

strength. The increase in coupling strength initially has little effect on the band gap, before

the band gap evolves towards the same asymptotic behaviour as that seen for the structures

with zero gap. Again, this indicates that BN electronics made with AA′ stacking and the

positive V case of AB stacking could be less sensitive to perturbations from substrates.
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FIG. 6. Electron band gap evolution with increasing electron-phonon interaction strength. V is

selected so that the system is at the point of inflection around V ≈ ∆ before adding the effects of

the electron-phonon interaction. Again, panel (a) shows the effect of interaction with a substrate

only, and panel (b) with both substrate and superstrate. Owing to a quadratic response of the gap

to the EPI, the AA′ configuration and the AB form with positive V are most stable against the

effect of interactions for this potential difference between the layers. Zero gap states in the other

configurations are not stable against EPI, indicating that attempts to turn off the gap in BN could

be sensitive to substrate type.

Finally, Figs. 7 and 8 show evolution of the BN band gaps when V = γ0 and V = 2γ0.

These are more stable against electron-phonon interactions than the gaps at V ≈ ∆. For

comparison, the gap evolution for graphene is shown on both graphs. The graphene gap is

highly stable due to the large plateau for applied potentials of up to V ∼ 3γ0 that can be

observed in the non-interacting system as applied potential is increased. However, the gap

size of the biased graphene system is limited to 0.3eV. While the gap in some configurations

is unstable to closure followed by gap widening when the electron-phonon interaction is

switched on, both the AA′ and AB (+ve potential) configurations are very stable against

EPI when V = γ0, and far more so than for V ∼ ∆. Again, this can be related to the

broad minimum in the gap seen for the non-interacting model for AA′ and AB (+ve V )

configurations as applied potential is changed (see Fig. 2). In particular, only a small

percentage change in gap is expected for dimensionless electron-phonon couplings of up

to λ ∼ 0.3. The gap in the AB′ system seems to be particularly stable against electron

interactions for this applied potential. It should therefore be possible to use a wide range

of substrates with AA′, AB (+ve V ) and AB′ BN configurations without risk of modifying

electronic behaviour. Finally, for V = 2γ0, all structures are reasonably stable against EPI,
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and a variety of band gaps are available. However, it should be noted that since the total

potential difference between the two layers is 2V , this would correspond to a very large bias

between bilayers of approximately 9.5V.
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FIG. 7. Effective potential relative to the applied potential of applied potential V = γ0 for various

λ. Panel (a) shows the effect of interaction with substrate only, and panel (b) with both substrate

and superstrate. The graphene gap is stable against EPI, but is relatively small. The gap of the

AB′ configuration is also relatively stable against EPI, with a gap of around 0.5eV. AA′ and AB

(+ve V ) configurations have gaps that are stable for moderate EPI.
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FIG. 8. Effective potential relative to the applied potential of applied potential V = 2γ0 for various

λ. Panel (a) shows the effect of interaction with substrate only, and panel (b) with both substrate

and superstrate. For this potential difference between the bilayers, the gap is quite stable over a

range of λ, and there are a wide variety of gap sizes. However, the total potential difference of

2V = 4γ0 is very large at approximately 9.5V.
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IV. SUMMARY AND CONCLUSION

In this paper we have explored the effects of the electron-phonon interaction on biased

graphitic bilayers. Our model is built specifically using a tight binding parameterisation

for BN, which (with a change of hopping and intrinsic gap size) is applicable for any ionic

graphitic bilayer in any of four possible configurations. We have also studied biased bilayer

graphene in the AB configuration. Perturbative introduction of EPIs to the tight binding

model of these systems was carried out using a Green’s function approach. For graphene and

each graphitic bilayer stacking configuration, four equations for the on-site potential were

solved self-consistently. The resulting on-site potentials were then placed into a tight-binding

model and the effective band gap was calculated. Band gap modification was examined for

four stable and experimentally observable stacking configurations of BN and one of graphene

with varying but significant effects.

Our calculations indicate that when a substrate mediated electron-phonon interaction is

added to biased bilayer graphene, the induced electron band gap is essentially unmodified

once a 300meV gap forms due to a plateau of stability. The choice of substrate/superstrate

is therefore expected to make little difference to the gap in biased bilayer graphene, which

remains relatively small. We note that this is not contrary to our previous results on gap

opening in unbiased graphene [28], rather that the presence of large applied potential dif-

ference between layers overwhelms the effects of the small Coulomb induced inhomogeneity

that is responsible for gap opening in the unbiased case.

On the other hand, for all the stacking configurations, the band gap in ionic graphitic

bilayers has potential to be significantly affected by the electron-phonon interaction. This

modification changes according to the size of the applied potential and the stacking config-

uration. While it is in principle possible to reduce the gap to zero to induce graphene like

properties in certain stacking configurations of bilayer graphitic materials, our calculations

indicate that interaction with substrates could mean that different applied potentials would

be needed for different substrates, making such devices difficult to tune. Ionic bilayers with

both an AA′ configuration and an AB configuration and positive applied bias each have a

broad minimum in gap size that extends from around V ≈ ∆ to V ≈ 3γ0. Electron-phonon

interactions change the effective size of the applied potential, and therefore any near con-

stant region in the response of the gap to change of applied potential can lead to a region
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of relative stability against electron-phonon interactions, and therefore better compatibility

between devices made on different substrates. Response to interactions in all configurations

tends to decrease steadily once V > ∆, with the response becoming steadily flatter until

V ∼ 3γ0.

There are several limitations to the calculations presented here. The most significant

is the mean-field (local) approach to self consistency. We also note that the lowest order

perturbation theory is used. While use of the local approach is quite standard for this type

of calculation, one can go beyond the mean field theory, for example by using the dynamical

cluster approximation. Detailed DCA calculations using higher order perturbation theory

have been carried out for monolayers of graphene on substrates in Ref. [25] showing only

quantitative differences with the mean-field results. We would expect similar quantitative

differences in the results for the bilayer systems discussed here, but nothing qualitative. The

quantitative changes are a reduction in the gap modification when non-local fluctuations are

present, and an increase in the gap modification when higher order terms in the perturbation

theory are introduced. We suggest this type of calculation to be the next logical step,

although such calculations would be very complex for bilayers and we would not expect

any significant changes to the conclusions. We also note that the EPIs are simplified by

the rigidity introduced by the substrate. Additional flexural contributions could lead to

modulation of the hopping terms in the case of freestanding bilayers, although such terms

would be smaller than those in monolayers due to the extra rigidity of the bilayer.

This article has focused on using tight binding parameterisations of BN as a starting point

for the calculations. In fact, the results will be valid for a range of other graphitic bilayers

such as ZnO,GaN, AlN, BeO and MgO, although there will be quantitative differences in the

size of interlayer hopping and the intrinsic gap. The main difference being that the induced

gap will be different, especially that associated with the plateaus, which are sensitive to

the interlayer hopping. Also, results are expected to be qualitatively similar for metal

dichalcogenides (noting that the metal dichalcogenides have 6 atoms per unit cell, which

would increase the complexity of the calculations). Such starting materials typically have

lower bare gaps than BN, so the regions where gaps are stable against interactions would be

reached with lower potential differences across the planes. Results presented here may be

particularly important for optimising devices that use strongly polarisable substrates. Some

of these materials are already being used in experimental electronic devices, and MoS2 has
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been the subject of a lot of recent interest for its use in FETs. It would not be surprising

to see other graphitic bilayers used for such a purpose in the near future.
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