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Abstract 

 

κ-carbide () in high aluminium (Al) steels is grown from austenite () via + or 

α+ ( represents ferrite), and is a lamellar structure. This work demonstrates that 

the formability of high Al lightweight steels is affected by the lattice misfit and 

interface shape between  and matrix. The cold workability can be improved by either 

to change the steel chemical constitution or to implement an 

electro-thermo-mechanical process. For ferrite-matrix-based high Al steel, 

electric-current promotes the spheroidization and refinement of  structure and 

reduces volume fraction of  phase. This retards the crack nucleation and propagation, 

and hence improves the materials formability. The observation is caused by a direct 

effect of electric-current rather than side effects.   
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1. Introduction 

Adding aluminium (Al) to steel reduces its mass density. Lightweight steel is 

desirable in manufacturing of fuel-economy and emission-reduction transportation 

components [1]. The challenge in fabrication of high Al steel includes clogging in 

continuous casting and cracking in cold working. The former is still outstanding due 

to mold flux problem. Some progress has been made in solving the latter challenge 

[2-6]. It is noticed that a high Al steel with austenite () matrix possesses better 

formability than that with ferrite (α) matrix [7]. Mn stabilizes  phase [8] and affects 

the plastic properties by influence on the specific stacking fault energy [9]. 

Fe-Mn-Al-C steel with sufficient high Mn composition is able to retain  matrix to 

ambient temperature. Rapid quench helps to retain  phase when martensitic, bainitic 

and ferritic transformations can be avoided. κ-carbide () has a formula (Fe,Mn)3AlC 

and is the face-centred-cubic crystal structure.  in high Al steel is formed by spinodal 

decomposition or eutectoid decomposition of . Spinodal decomposition in high Mn 

high Al steel leads to +L12 reaction, where L12 phase forms from an ordering 

reaction of the solute-enriched low temperature  phase and subsequently transforms 

into -carbide [10]. Eutectoid decomposition of  in low Mn (typically with a Mn 

content up to 10 wt.%) high Al steel leads to +. This is ferritic-matrix-based () 

but may contain a fraction of . In addition to  phase formed by the 

spinodal/eutectoid decomposition,  precipitates may form at the austenite grain 

boundaries after long annealing periods [11]. The steels with high Mn low Al and 

high Mn no Al are found free from , with  matrix and in excellent formability 
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[12-13]. κ-carbide appears when Al composition becomes significant in steel 

[8,14-15]. The eutectoid reaction in Fe-Mn-Al-C lightweight steels has been studied 

systematically [16]. The forming properties of Fe-Mn-Al-C lightweight steels have 

been reviewed comprehensively [17-18]. A lightweight steel fabricated with designed 

chemical-thermo-mechanical processing achieves a tensile strength >780 MPa and 

elongation >30% [7]. It consists of nanoscale κ-carbides and -matrix. The nanoscale 

κ-carbides provide strengthening to the steel [15].  

 

As is well-known, Mn is heavier and more expensive than Al. Low Mn constitution 

however, leads to the formation of α matrix and poor formability [8]. Other cheap and 

light -stabilizing elements (e.g. carbon or silicon) may cause other engineering 

problems (e.g. weldability or surface problem) [19]. The aim of this work was to find 

out how the formability of high Al steel was affected by its microstructure and how 

the cold work property could be improved. The structure-property analysis of 

-matrix-based and -matrix-based lightweight steels are presented in Section 2. The 

electric-current treatment of -matrix-based lightweight steel is described in Section 3.  

The processing mechanisms are investigated in Section 4. Section 5 summarized the 

conclusions.     

 

2. The microstructure-formability relationship 

The first objective of present research was to identify the microstructure differences 

between -matrix-based and α-matrix-based high Al steels. The former is better than 
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the latter in term of formability. To this purpose two types of ingot with respective 

chemical compositions of Fe-26Mn-9Al-0.75C and Fe-34Mn-9Al-0.65C (wt.%) were 

prepared using induction furnace. The microstructure and Vickers hardness of both 

steels after various annealing processes have been characterized previously [8, 14]. 

This helps to the design of thermomechanical processing conditions for the present 

research. The as-cast ingots were reheated to 1200 
o
C for 4 hours, followed by 

hot-rolling reduction from 30 mm to 3 mm thick plates at 1100 
o
C and then quenched 

in cold water before annealed at 600
 o
C and 700 

o
C respectively for 6 hours and then 

quenched in cold water again.  

 

The microstructure of steel is affected by not only its chemical constitution but also 

the thermomechanical processing conditions. It is possible to made -matrix-based 

steel with a chemical composition in the range of 12-35 wt.% Mn, 0-12wt.% Al and 

0.5-1.3wt.% C using adequate processing conditions. A steel containing 26 wt.% Mn 

is considered high Mn steel. The Mn compositions in both steels are high enough to 

affect the specific stacking fault energy. Choosing of an annealing temperature of 

700C for Fe-26Mn-9Al-0.75C steel rather than 600
 o

C was to maximize its - 

interface fraction [14]. It is impossible to generate different microstructures using two 

steels with identical chemical compositions and also the same thermomechanical 

processing conditions. 
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Fig. 1 Optical images for (a) Fe-26Mn-9Al-0.75C (wt.%, lower Mn) and (b) 

Fe-34Mn-9Al-0.65C (wt.%, higher Mn) steels after cold rolling at room temperature. 

SEM micrographs for (c) a lower Mn and (d) a higher Mn steels. TEM selected area 

diffraction patterns (SADP) for (e) a lower Mn sample and (f) a higher Mn sample.    

 

The samples cut from each ingot were cold rolled to 70% reduction using an 

automatic rolling machine in order to examine their cold formability. Microstructure 
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analyses were performed at room temperature using optical microscopy (OM), LEO 

scanning electron microscopy (SEM) and JEOL 2000FX transmission electron  

microscopy (TEM). Samples for OM and SEM analyses were grounded, polished and 

etched in 2 wt.% Nital for 10 seconds. Samples for TEM analysis were mechanically 

polished to 30 μm thick, punched to a disk of 3 mm diameter by a copper disk cutter 

and then jet polished to thin foil specimens in perchloric acid (10 %) and acetic acid 

(90 %) mixture under 20 V at 15 
o
C. The electrical conductivity was measured using 

Microhmmeter (DO5000 series).   

 

Fe-26Mn-9Al-0.75C samples (hereinafter to be referred as lower Mn samples) are 

cracked severely after cold rolling. A representative OM image for these samples is 

shown in Fig. 1(a). Fe-34Mn-9Al-0.65C samples (hereinafter to be referred as higher 

Mn samples) however, have no crack observed in their cold-rolled samples surface, as 

is illustrated in Fig. 1(b). Both steels have the same Al but slightly different Mn 

compositions. The higher Mn steel has better formability than that of the lower Mn 

steel. SEM analysis reveals the microstructure of the samples, as are presented in Fig. 

1(c) for a lower Mn sample and Fig. 1(d) for a higher Mn samples. Both samples are 

with lamellar structure despite higher Mn sample demonstrates finer and more regular 

structure than that of lower Mn samples. TEM selected area diffraction pattern (SADP) 

results are presented in Fig. 1(e) for a lower Mn sample and in Fig. 1(f) for a higher 

Mn sample. Based on the lattice parameter calculation and crystal structure analysis, 

the lamellar phase in both steels is found to be κ-carbide with lattice parameter 3.75 Å. 
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The matrix in SADP for lower Mn sample is body-centred-cubic α phase with lattice 

parameter 2.92 Å. The diffraction pattern confirms the  )110(//)111( and 

 ]001[//]011[  orientation relationships between κ-carbide and α-matrix. The matrix 

in higher Mn sample is face-centred-cubic  phase with lattice parameter 3.66 Å. The 

orientation relationships between κ-carbide and -matrix are (001)κ// (001)γ and [001]κ 

//[001]γ. The lattice parameters for those phases are 3.61 Å for , 2.86 Å for  and 

3.78 Å for κ-carbide in literature [20-21]. This gives the measurement errors in 

present work of 1.36 % for , 2.05% for  and 0.8% for , respectively. The lattice 

misfit around κ-α interface is (3.75-2.92)/3.75 = 22.1%, while that around κ- 

interface is (3.75-3.66)/3.75 = 2.40%. According to the previous results, -matrix in 

lower Mn steel contains 18%  phase and 68%  phase [14]. -carbides are 

surrounded by  phase. The latter is embedded in  phase [14].  

 

Topotaxy might happen when the -carbides are very small nanoscale precipitates. 

This leads to hardening but  carbides are cut by the lattice dislocations in  crystals 

and - the interface is coherent. It is seen clearly that -carbide in Fig. 1(c) is not in 

the case.  will probably not be cut by the lattice dislocations in  crystals. The - 

interface is incoherent due to large lattice misfit (22.1%). Orowan loops will be 

formed and cross slip will be enhanced at the  carbide. The cross slip may be 

particularly important for activating secondary slip and the associated hardening. 

Orowan loops will create back stresses leading to further hardening. This causes the 

accumulation of significant amount of dislocations around the - interface.  is a 
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soft matrix. -carbide is a hard inclusion. The high dislocation density around an 

interface between high mechanical contrast crystals ( and ) is favourable for the 

crack initiation [22]. The large lamellar κ-carbides leave long and planar -α interface. 

The nucleated cracks are easier to propagate along a planar interface due to less 

energy dissipation than that along a fractal one. Both the high crack nucleation rate 

and high crack propagation rate around - interface lead to a poor formability of 

Fe-26Mn-9Al-0.75C steel. - interface in Fe-34Mn-9Al-0.65C steel, on the contrary, 

has small lattice misfit. This causes less high dislocation density and low crack 

nucleation rate. The fine structure in higher Mn steel prevents the nucleated cracks 

from propagation. This explains why Fe-34Mn-9Al-0.65C steel has better formability. 

It has been suggested in literature that the alloys with coherent interface (i.e. zero 

misfit, e.g. twining) possesses ideal mechanical properties [23-24]. 

 

Without change chemical composition, the formability of α-matrix-based high Al 

steel can be improved by two other methods. The first is to modify  lamellar 

structure into fine spherical structure in order to prevent crack propagation along 

planer κ-α interface. The second is to reduce κ volume fraction and hence to retard 

crack nucleation around κ-α interface. The lattice misfit between  and α crystals is 

difficult to change under trivial processing conditions.   
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3. Electropulsing microstructure to improve the formability 

The second objective of the present work was to improve the workability of 

α-matrix-based high Al steel. According to literature, lamellar structure can be 

spheroidized [25] and refined [26] by electric current processing (electropulsing). 

Electropulsing has also been implemented to alternate the volume fraction of 

precipitate [27-28]. The annealed Fe-26Mn-9Al-0.75C samples were subjected to an 

electric current pulse with peak current density of 1.92×10
9
 Am

-2
. The pulse was 

generated by discharge a capacity at room temperature. The capacitor was charged at 

2.5 kv. Pulse is in the damped shape oscillations with initial period around 20 s and 

total duration of 110 s. One pulse was applied to each sample. The microstructure of 

the electropulsed samples was characterized using the same methods as that described 

in Section 2. The formability was testified by cold rolling to 70% reduction. The 

observations were compared to that of the samples without electropulsing treatment. 

 

Fig. 2 (a) An electropulsed Fe-26Mn-9Al-0.75C sample after cold rolling to 70% 

reduction. (b) SEM micrograph shows the spheroidized -carbide particle with 250 

nm average diameter in an electropulsed Fe-26Mn-9Al-0.75C sample.       
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Fig. 2(a) shows an electropulsed Fe-26Mn-9Al-0.75C sample after cold rolling to 70% 

reduction. No cracks were detected from the optical observation. In comparison to 

those not electropulsed samples, as shown in Fig. 1(a), the formability of 

electropulsed sample has been improved considerably. To identify the causes of the 

improvement, the microstructure was analysed by SEM. Fig. 2(b) presents a SEM 

micrograph of the electropulsed samples. The grey particles in the image are 

-carbides. The previous lamellar  structure has been converted into sub-micron 

particulate structure. The average particle size is 250 nm. Image analysis using Image 

J software reveals that  volume fraction has been reduced from 14% to 6.8% in the 

overall sample and from 68% to 31% in some local areas by the electropulsing 

treatment.   

 

TEM analysis for Fe-26Mn-9Al-0.75C samples before and after electropulsing 

treatment is presented in Fig. 3. Fig. 3(a) and 3(c) show lamellar  structure in the 

samples without electropulsing.  Fig. 3(b) and 3(d) show particulate  structure after 

electropulsing treatment. The α-matrix structure is also refined significantly. The 

average α grain size after electropulsing is 1.46 μm. As discussed in Section 2, the 

spheroidized and refined  microstructure leads to the improvement of formability. 

SADP in Fig. 3(e) and the orientation marks in Fig. 3(f) prove that the orientation 

relationships between  and α ferrite are unchanged by the electropulsing treatment.     
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Fig.3 TEM micrographs show the microstructure of the Fe-26Mn-9Al-0.75C samples 

before ((a) and (c)) and after ((c) and (d)) electropulsing treatment. The selected area 

diffraction pattern (e) and orientation marks (f) show the unchanged relationships 

between  and α crystals after electropulsing treatment.      

 

4. Discussion 

The observed electropulsing-induced microstructure refinement and property 

improvement cannot be explained by simply a thermal effect. Theoretical calculation 
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predicts the maximum current-induced temperature rising of around 200 
o
C [29-30]. 

The recrystallization temperature for the steel is the range of 450-750
 o

C. The 

temperature rising due to Ohm heat is too low to enable microstructure 

transformations.       

 

To prove that the observed electropulsing-induced microstructure evolution is not 

only taken place in some local areas but throughout the sample, electrical conductivity 

of the sample before and after the electropulsing treatment was measured using 

DO5000 series Microhmmeter. The measured electrical conductivities before and 

after electropulsing treatment are 6.37  10
6 

S/m and 7.94  10
6 
S/m, respectively. It 

increases 24.6%. Matthiessen’s rule states that the total electrical resistivity of an 

impure metal includes the temperature-dependent intrinsic resistivity (  T0 ) arising 

from the scattering of electrons by lattice waves or phonons and the residual 

resistivity (  cR ) caused by the scattering of electrons by impurity atoms and lattice 

defects which is temperature independent but dependent on the impurity concentration 

(c) [31]. This is represented as [31-32] 

    i

i

iR cTcTTc   )()(, 00        (1) 
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Fig. 4. Schematic diagrams illustrate that the electrical resistivity of a material with 

microstructure (a) is larger than that of (b) when the grey phase has larger 

conductivity than that of the matrix. The figure was drawn following the similar 

concept in literature [30, 33].   

 

where i  is the elemental resistivity of solute i in the matrix [32]. For transition 

metals (e.g. Fe), electron-electron scattering makes a significant contribution to 

 T0  at low temperature. It is found that  T0  should be represented by 

  )/1/1/(1 0 satT    for steels, where sat  is the saturation resistivity [32].  T0  

and sat  take the same values for all carbides and phases in steels. According to 

Matthiessen’s theory, the electrical resistivity of -carbide is higher than that of  

phase due to higher C, Al and Mn compositions in  than in . In microstructure 

configurations illustrated in Fig. 4, the system electrical resistivity of lamellar 

structure in Fig. 4(a) is close to value of that for -carbide, but that in Fig. 4(b) is 

close to that of  phase [30, 33]. The experimental measured values are consented to 

the theoretical analysis.   
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The observed microstructure evolution from lamellar to spherical can be understood 

in electroplasticity framework. Electroplasticity means that the strain rate of a metal 

can be increased by at least three orders of magnitude by the passing electric current 

[34]. The critical current density for generation of electroplasticity is 10
3
 A/m

2
 [35]. 

The applied electric current density in the present work is well-above that of the 

critical value. The mobility of the dislocations and elements in steels is enhanced by 

electric-current for at least 3 orders of magnitude and is proportional to the peak 

current density [36-37]. This promotes the structure transformation by reducing the 

kinetic barriers and accelerating kinetics [25]. The structure transformation can take 

place in a temperature which is much lower than its conventional value. The 

dislocations formed during materials processing and quenching and accumulated 

around -α interface are migrated into lamellar plates at the temperature [26]. This 

generates significant interfaces inside the original lamellar plates. The lamellar  

breaks into pieces. The current-enhanced mobility of elements also promotes the 

spheronization of  pieces. The structure refinement of  is hence achieved.  

Another effect of electric current is to change the free energy sequence between 

phases. For a system with electric current passing through, the system free energy 

consists of chemical free energy, interface energy, strain-stress energy and electric 

current free energy [38-39]. The electric current free energy is different for different 

phases due to their different electrical conductivities and magnetic permeabilities. 

This causes the different change of the total free energy for different phases when 

current is passing through. The original free energy sequence is hence changed due to 
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the extra electric current free energy. It has been proved that electric current helps to 

dissolve low conductive phase embedded in a high conductive matrix [27-28, 38]. The 

observed reduction of -carbides is alongside with this prediction. -α interface 

provides the major crack nucleation sites in the steel. The reduction of -α volume 

fraction leads to less crack nucleation sites. The formability is hence improved.  

 

The cold working properties of high Al steels are also quite profoundly affected by 

the texture and by the grain size [40-41]. Adequate choose of electropulsing 

processing parameters can tailor steels texture and grain size [42] in some cases. 

Optimizing the processing parameters to generate ideal cold working properties is 

with great research interests [9, 43-44].     

 

A low volume fraction of -carbides in high Al steel provides less crack nucleation 

sites. A refined and spheroidized  structure prevents micro-cracks from propagation. 

Those two effects make the formability of high Al steel improved. It is worth pointing 

out that the formability can be affected by many other factors. The chemical 

constitution, α- interface fraction, distribution of dislocations and defects, the ordered 

L12, D03 and B2 structures formed in Fe-Al system [45], and other inclusions and 

intermetallic phase might also affect the formability. Investigation of relationships 

between electropulsing and those just mentioned microstructures and the ways to 

improve the materials formability will be studied in future.            
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5. Summary             

a). The formability of high Al lightweight steel is dependent on the microstructure. 

The -matrix-based high Al steel has better formability than that of α-matrix-based 

steel. The α-matrix-based lightweight steel has high lattice misfit (22.1%) -α 

interface and coarse lamellar structure. Its cold working formability is low. The 

-matrix-based lightweight steel has low lattice misfit (2.70%) - interface and fine 

lamellar structure. k-carbide in higher Mn steels is much finer than that in lower Mn 

steel. This steel shows good formability. The -matrix-based lightweight steel can be 

obtained by adding more austenite stabilizing elements, e.g. Mn, or using suitable 

thermomechanical processing conditions.  

 

b). The formability of α-matrix-based lightweight steel can be improved by 

electropulsing treatment. The process converts the coarse lamellar  structure into fine 

particulate structure. The volume fraction of  is reduced after electropulsing 

treatment. The crack nucleation and propagation is retarded by in the electropulsed 

α-matrix-based lightweight steel.  

 

c). Electroplasticity promotes the migration of dislocation into lamellar structure. This 

causes microstructure transformation at a temperature lower than that in conventional 

recrystalization. Electropulse-enhanced mobility of elements promotes   

spheroidization. The change of electric current free energy makes dissolution of 
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-carbides possible. The formability of α-matrix-based lightweight steel has been 

improved significantly. 
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