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We compare three contrasting models of the perceived distance between root-position major
and minor chords and test them against new empirical data. The models include a recent
psychoacoustic model called spectral pitch-class distance, and two well-established music the-
oretical models – Tonnetz distance and voice-leading distance. To allow a principled challenge,
in the context of these data, of the assumptions behind each of the models, we compare them
with a simple “benchmark” model that simply counts the number of common tones between
chords. Spectral pitch-class distance and Tonnetz have the highest correlations with the ex-
perimental data and each other, and perform significantly better than the benchmark. The
voice-leading model performs worse than the benchmark. We suggest that spectral pitch-class
distance provides a psychoacoustic explanation for perceived triadic distance and its music
theory representation, the Tonnetz. The experimental data and the computational models
are available in the online supplement.
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1. Introduction

Since Aurelian’s designation of pitches as “high” and “low” in the middle of the ninth
century (Cohen 2002), distance-based representations of musical pitch have played an im-
portant role in music theory, pedagogy, notation, models of music perception, and musical
instrument design. For instance, pitches have typically been represented as points on an
idealized line extending from low to high, or on a curve such as a helix to additionally
model the similarity of octaves (e.g. Drobisch 1855, Shepard 1982, and Deutsch 1982), or
on a circle (a flattened helix) in contexts where pitches an octave apart can be usefully
considered equivalent (e.g. Révész 1913 and Bachem 1950). In many cases, the struc-
ture is chosen so that the distances between pitches approximate their perceived musical
distances. The importance of such representations is that they can facilitate the under-
standing of music for musicians and composers; they can also shed light on processes
that may underlie our perception and cognition of music.
Distance relationships can also be applied to chords, where they can play a similarly
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useful role. Major and minor triads, in particular, are often described as one of the funda-
mental units in the construction and appreciation of tonal music, but their relationships
are arguably more complex than those of individual pitches. The line- and curve-based
models for perceived pitch distance seem intuitively e↵ective and they are relatively sim-
ple. However, for chords, there are a variety of di↵erent possible models. If one were to
consider successive chords solely as multiple voices (melodic lines), voice-leading models
(which total the pitch distances moved by all voices) would be an obvious choice. How-
ever, a chord – notably a major or minor triad – is not just the sum of its parts. It has
a root, which is a specific pitch class that is the most salient and determines the per-
ceived stability of the chord depending on whether or not it is the lowest pitch (Parncutt
1988); these di↵erent weightings and chord stabilities may play an additional role. Fur-
thermore, Huron (1989) and McLachlan, Marco, and Wilson (2012) have demonstrated
that even musically experienced listeners cannot reliably enumerate the pitches in an
unfamiliar chord, let alone individuate their pitches (indeed, this is an aural skill that
often requires considerable training). These two aspects of harmony suggest that pure
voice-leading models may not be the most appropriate method for modelling perceived
triadic distances. Analogous complications also hold for the perceived distances between
keys.
A common alternative, for both chord and key distances, is the chord Tonnetz (German

for tone network). The chord Tonnetz is a regular geometrical lattice where chords are
represented by points such that chords with roots a perfect fifth/fourth, or third/sixth
apart, and those sharing two common tones (e.g. Cmaj and Amin), are closer than those
without. The historical longevity of, and current interest in, voice-leading and Tonnetz -
like models in the domain of music theory (e.g. Cohn 1997; Tymoczko 2006; Callender,
Quinn, and Tymoczko 2008; Tymoczko 2011; Capuzzo 2014) suggest they are worthy of
investigation in an experimental context.
In this paper, we also put forward a psychoacoustically oriented spectral model, which

treats each chord (or tone) as a large collection of pitch classes corresponding to all
its tones’ harmonics (frequency components). Other recent research has demonstrated
that spectral models can successfully predict the perceived fit of chromatic probe tones
to an established key (Krumhansl’s (1982) tonal hierarchies) (Milne, Laney, and Sharp
2015) and the perceived a�nity of microtonal melodies (Milne, Laney, and Sharp 2016).
The spectral model tends to make chords with more common tones and more tones a
perfect fifth/perfect fourth apart (between any voices) closer than those with fewer such
intervals. (Our precise formalizations of all these models are detailed subsequently.)

1.1. Symmetry and asymmetry of distance

According to most definitions, distance is symmetrical with respect to order. This means
that the distance from object x to object y is equal to the distance from y to x. Familiar
spatial distances (e.g. Euclidean) are also invariant under translation (in other words, the
distance between x and y is equivalent to the distance between x+ a and y + a). (Both
properties hold for all the models we test in this paper.) If true for perceived distances
between chords, these properties would mean that neither the order nor the transposition
of the chord pair would matter. This raises an immediate question: is a symmetrical,
translation invariant measure like this directly applicable to music perception in which
asymmetrical relationships play a vital role?1

For example, Bharucha and Krumhansl (1983) have shown that, given a previously

1A question also raised by Krumhansl (1990).
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established context such as a C major key (established with a IV-V-I cadence), the chords
Gmaj and Cmaj are “closer” than the chords Dmaj and Gmaj. Furthermore, in a C
major context, conventional tonal intuition suggests that the chord Cmaj will be heard
to follow Gmaj better than Gmaj follows Cmaj (the former being the stable authentic
cadence in Western music, the latter being a less stable half-cadence). These suggest
that asymmetry plays an important role in music perception. However, as argued below,
asymmetrical features of music perception can arise from combinations of symmetrical
distances.
Simply put, apparent asymmetries in the distance between two objects may occur

due to their both being measured with respect to a third object. For example, suppose
the perceived distance between the chords Cmaj and Gmaj is the same as the perceived
distance between Gmaj and Dmaj (this is to be expected because the latter pair is just a
transposition – mathematically, a translation – of the former pair). But now suppose that
both chord pairs are played directly after a previously established C major key context,
which we represent by the pitch-class set C, D, E, F, G, A, B. It is likely the Dmaj chord
is more distant from this context than the Cmaj chord because, for example, only the
former contains a pitch class (F]) not in the scale; this may well result in the distance
between Gmaj and Dmaj being rated as larger than the distance between the Cmaj
and Gmaj. Even though both the chord-chord and chord-scale distances are individually
invariant with respect to translation, their combination is not.
In the second of the examples noted above (namely, that in a C major key context,

the chord Cmaj will likely be heard to follow Gmaj better than Gmaj follows Cmaj)
the apparent order asymmetry may occur because, in relation to a C major scale context
(used, as before, to represent the C major key), the first pair moves from a possibly
more distant chord-scale relationship (Gmaj chord in a C major scale) to a possibly
closer chord-scale relationship (Cmaj chord in a C major scale), while the second pair
moves in the opposite direction and hence from a closer relationship to a more distant
relationship.2 Analogously to the previous example, both the chord-chord and chord-
scale distances are individually symmetrical with respect to order, but their combination
is not.
It is possible that, in harmony perception, other embedded contexts may play similar

roles; for example, each pitch class is contextualized by the chord of which it is a part, the
chords that precede and follow it, the scale from which each of these chords is taken, the
broader and most dominant key or scale of the entire piece of music, and the prevalent
cultural practice of which the music is an exemplar (in addition, episodic memories, the
acoustical environment, and the listener’s neurological make-up, as well as numerous
other factors, may provide important additional contexts). Each of these contexts may
introduce surface level asymmetries, which are actually combinations of symmetrical
distances between multiple deeper levels.
For these reasons, we believe that investigating the more atomic symmetrical distances

between musical objects (in this case, root-position triads) is a vital task. This is because
combining such distances across di↵erent musical levels may allow us to build more com-
plex models that elucidate the complex and apparently asymmetrical perception of har-
monic relationships in tonal (and microtonal) music. An example of such a methodology
is given in Milne, Laney, and Sharp (2015) with their model of the tonicness of chords
in a variety of conventional and microtonal scales.

2Although not relevant to the more abstract argument being made here, the spectral pitch-class model does
indeed predict that the Cmaj chord is closer to the C major scale than is the Gmaj chord (Milne, Laney, and
Sharp 2015).
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1.2. Experimental methods and related research

The overall purpose of the study is to compare three principal kinds of models of musi-
cal distance and to test them against experimentally obtained ratings of the perceived
distance between all root-position major and minor triads. As noted earlier, the models
(detailed in the next section) include a recent psychoacoustic model called spectral pitch-
class distance, and two well-established music theoretical models: Tonnetz distance and
voice-leading distance.
We do not seek to find a single best model for all aspects of perceived triadic distance.

Such a thing is somewhat nebulous in that its meaning as well as its “quantity” will vary
depending on the listening context, the aim of the listening (analytical, compositional,
for pleasure, etc.), as well as the personality and cultural context of the listener. In
this paper, however, we do aim to find the best model for the data we have collected.
As detailed later, listeners were presented with naturalistic sounding material and were
asked to listen attentively. We expect, therefore, that the better a model performs on
these data, the more likely it is that it will also adequately represent and explain aspects
of real-world listeners’ responses to chord progressions in music with which they are
actively engaging. Furthermore, the models are available for download and so can also
be tested on new empirical data.
We have endeavoured to construct a set of experimental methods (fully described in

Sec. 3) that allow us to measure precisely the posited underlying symmetrical aspects
of harmony perception described in the previous section. We have also attempted to
minimize the possibility that the principle embodied by any single model may gain an
unfair advantage. This means that in many respects our methods di↵er from those used
in previous related research by Krumhansl and Kessler (1982), Bharucha and Krumhansl
(1983), Bigand, Parncutt, and Lerdahl (1996), Krumhansl (1998), and Rogers and Cal-
lender (2006). Notably, (as motivated and detailed in Sec. 3.3) we used stimuli with full
harmonic complex tones rather than octave complex tones, we repeatedly looped the
chords, we did not establish a tonal context (indeed, we took measures to avoid such a
context inadvertently arising), and we asked our participants to make ratings about the
relationship between the chords (e.g. their similarity) rather than a property of one of
the chords (e.g. its tension). We are unaware of any previous research that has done all
of these things together and explicitly attempted to measure the perceived symmetrical
distance between major and minor triads.

2. The models

When comparing the three principal kinds of model of perceived triadic distance (spec-
tral, Tonnetz, and voice-leading) with our participants’ ratings, each model was first pa-
rameterized to ensure that all well-known variants of each model could be tested against
the data, and the best fitting variant of each model selected. Potential over-flexibility
was shown to be negligible by a process of cross-validation (in Sec. 4.3).
In addition to the parameterizations of all of the models, the voice-leading class of

model was further split into two variant models, representing di↵erent assumptions about
how voice-leading may operate. A variant of the Tonnetz model based on transforma-
tional distance was also created. A sixth and final model, the Hamming model, was
included specifically as a benchmark model. The Hamming model fits this role well,
since it contains only elements common to all of the other models – each of the other
models adds additional assumptions to this benchmark. Consequently, the failure of any

4
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model to outperform the benchmark would suggest its assumptions are inapplicable to
this context.
Thus, the six models and their parameterizations are detailed in the following subsec-

tions. The models, empirical data, and statistical analyses have been coded in matlab
and can be downloaded from the online supplement or http://www.dynamictonality.
com/harmonic_distance_files/.

2.1. The Tonnetz and its parameterization

The Tonnetz comes in two standard forms: the pitch-class Tonnetz, whose points repre-
sent pitch classes, and the chord Tonnetz, whose points represent major or minor triads.
It is the latter that is our principal interest in this paper, though we need to understand
the former because the latter is most easily understood as being derived from it.
The pitch-class Tonnetz is a geometric structure which has many closely related ver-

sions. In all cases, pitch classes are points in a two-dimensional lattice with axes of a
perfect fifth and a major (or minor) third. However, the fifth and third axes are not neces-
sarily geometrically orthogonal. For example, the canonical form is perfectly hexagonal,
with the fifth and third axes at 60 degrees but, historically, a variety of other instan-
tiations have been used (e.g. Euler 1739, Oettingen and Riemann (see Gollin 2011),
Longuet-Higgins 1962, Balzano 1980, Holland 1994, Chew 2006, etc.). The chord Ton-
netz can be derived from the pitch-class Tonnetz in that each chord lies at the centroid
of the shape enclosed by its pitch classes. The centroid can be characterized as the mean
position of all points in a shape; alternatively, it can be thought of as the centre of mass
(assuming the shape has uniform density and thickness).3

In order to allow our Tonnetz model to be parameterized to encompass many typical
variations, we start with the canonical form but then allow for the perfect fifth axis to be
independently scaled (by parameter s), and for the lattice to be sheared parallel with the
perfect fifth axis (by parameter h). The e↵ects of a small but indicative sample of these
transformations on the resulting chord Tonnetz are illustrated in Figure 1. The middle
row has an identity scaling of 1, the top row has a scaling of

p
3 ⇡ 1.73, the bottom

row has a scaling of
p

1/3 ⇡ 0.58; the central column has an identity shear of 0, the left

column has a shear of �
p

1/3 ⇡ �0.58, the right column has a shear of
p

1/3 ⇡ 0.58.
Uppercase letters are major triads, lowercase letters are minor triads.
The Tonnetz distance between any two chords is simply defined as their Euclidean

distance (i.e. the straight-line, as-the-crow-flies, distance). (After the formalization of the
Euclidean approach, we will discuss an alternative Tonnetz distance measure.) However,
a complicating factor is that any given pitch class will appear at more than one location
in an extended (or infinite) Tonnetz. For example, in Figure 1(e), note how the chords
D and f], appear twice, as also do numerous enharmonically equivalent chords, such as
G[/F], and g]/a[.
For many uses of a Tonnetz, this duplication can be ignored trivially by choosing a

subset of the plane that contains just one member of each enharmonic equivalence class.4

However, crucially, when measuring the Tonnetz distance between any two pitch classes

3The two types of Tonnetz can also be characterized as geometrical duals (Cohn 1998; Tymoczko 2012).
4In this paper, enharmonic equivalence refers to all Tonnetz locations with the same pitch in 12-tone equal

temperament, which is the tuning of the experimental stimuli (in just intonation, their pitches would di↵er).
This includes standard enharmonic equivalences such as . . . , B]]], C]], D, E[[, F[[[, . . . , but it also includes
Tonnetz locations with the same pitch name. More precisely, all notes separated by some integer combination of
the syntonic comma (up four Tonnetz fifths and down one Tonnetz major third) and the major diesis (up four
Tonnetz fifths and down four Tonnetz major thirds) are termed enharmonically equivalent because they have the
same pitch in 12-tet. They have the same pitch because these two commas are a basis of the null space of the
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Figure 1. Some examples showing the e↵ects of the shear and scale parameters on the chord Tonnetz. Uppercase
letters are major triads, lowercase are minor triads. The parameters’ e↵ects on the pitch-class Tonnetz are identical,
and can be visualized by ignoring the minor triads.
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or chords, we should choose the shortest amongst all possible enharmonic equivalents.
Moreover, as the scale and shear parameters are varied, the location of that shortest path
may change. Consequently, in our distance definition, we need to explicitly consider the
issue of enharmonically equivalent pitch classes in the Tonnetz. Thus, in order to find the
variant of the Tonnetz model that best fits the empirical data (i.e. finding its optimal
parameter values), the Tonnetz distances need to be calculated between a wide variety of
enharmonic equivalents for every di↵erent setting of the scale and shear parameters. On
a technical note, the resulting nonlinearity of distance as a function of the scale and shear
parameters means that the model must be optimized – to empirical data – iteratively
(e.g. using a gradient descent method) rather than analytically.
The above considerations are concisely formalized in the following equation. Directly

after the equation, we define the variables and then provide a brief walk-through of how
the formula works:

dT(x,y;h, s) = min
q2Q

(kHSL(q + gc)k2) ; (1)

• dT(x,y;h, s) is the modelled Tonnetz distance between the chords x and y, as param-
eterized by the shear h 2 (�1,1) and scale s 2 [0,1) values;

• H =
�
1 0
h 1

�
is a shear matrix containing the shear parameter h, such that when h = 0

no change occurs;
• S =

�
1 0
0 s

�
is a scale matrix containing the scale parameter s, such that when s = 1 no

change occurs;

• L =
⇣

0
p

3/4

1 1/2

⌘
transforms coordinates from a square Tonnetz (with perfect fifths and

major thirds as axes) into corresponding coordinates from the canonical hexagonal
Tonnetz (which has unit distances between pitch classes separated by fifths or thirds,
and the perfect fifth and major third axes are at 60�);

• q 2 Z2 gives the numbers of perfect fifths and major thirds required to get from the
root of chord x to the root of chord y (i.e. their displacement in a square Tonnetz ).
Since each pitch class occurs at di↵erent locations on the Tonnetz, q has more than one
possible value for any pair of chords; for example, for the chords Cmajor and Amajor,
one of several possible q is q = (�1, 1)| because you can get from pitch class C to
pitch class A by going down one perfect fifth and up one major third. An alternative
is q = (3, 0)|, while yet another is q = (7, 2)|, and so forth (the | symbol denotes the
transpose operator that turns a row vector into a column vector, and vice versa, hence
the just-mentioned vectors are column vectors);

• Q is the set (of infinite cardinality) of all such enharmonically equivalent q for any
given x and y;

• c = (13 ,�
2
3)

| is the spatial displacement between between major and minor triads with
the same root in a square Tonnetz ;

• g 2 {�1, 0, 1} determines when the displacement vector c needs to be used, and in
which direction: g = 0 is used when chords x and y are both major or both minor,
g = 1 is used when chord x is major and chord y is minor, g = �1 is used when chord
x is minor and chord y is major.

To more simply explain the equation, let us initially focus on a single possible value of
q. The term q+gc corresponds to a displacement, in a square Tonnetz, between x and y

after taking into account whether they are major or minor triads. The multiplication by
L transforms this displacement into what would occur in the canonical hexagonal lattice.

linear map from 5-limit just intonation to 12-tet (Milne, Sethares, and Plamondon 2008).
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The multiplication by HS first scales, then shears this displacement as a function of the
two free parameters h and s. The Euclidean norm k·k2 of the resulting displacement
is then used to provide its length – this gives the distance between the two chords in
the sheared and scaled Tonnetz. This is done for all possible di↵erent values of q in
Q (in the computational routine a finite, but su�ciently comprehensive, subset of Q is
actually searched). From these, the minimum possible distance value is chosen, which is
dT(x,y;h, s).
In the approach described above, we model perceived chordal distances with their

Euclidean distances in the Tonnetz (those distances varying as a function of the two pa-
rameters). This is a familiar tradition within psychology and perceptual research where
empirical data are represented in a low-dimensional structure that ensures Euclidean dis-
tances correspond – as much as possible – with perceived distances (Shepard 1987). Such
procedures have formed an important part of music perception research and computa-
tional visualization of musical structure (e.g. Shepard 1982; Krumhansl and Kessler 1982;
Krumhansl 1998; Toiviainen and Krumhansl 2003). Given the simplicity and intuitive
appeal of Euclidean distance, it is likely this underlies many historical representations
too.
The neo-Riemannian approach (e.g. Hyer 1995; Cohn 1998; Tymoczko 2012) is some-

what di↵erent; here, the Tonnetz is often thought of as an approximate visualization of
four important harmonic relationships – the parallel (e.g. Cmaj–Cmin), leittonwechsel
(e.g. Cmaj–Emin), relative (e.g. Cmaj–Amin), and dominant (e.g. Cmaj–Gmaj) – all
of which are spatially close in the hexagonal Tonnetz. This underlying “transformational
distance” can be modelled simply by counting the minimum number of such transfor-
mations to get from chord to another (as in Krumhansl 1998, where such a model suc-
cessfully predicted interkey distances derived from probe tone data). Clearly, this count
is invariant with respect to the shear and scaling parameters we apply in the previously
described Tonnetz model. We could parametrize the transformational model by allowing
each transformation type to have a separate weight, but this would make it excessively
flexible (over-parametrized) for our data set. We refer to this (unparameterized) model
as the transformational distance.

2.2. Voice-leading distance and its parameterization

We utilize two types of voice-leading model that we term the standard voice-leading model
(detailed in Sec. 2.2.1) and the minimal voice-leading model (detailed in Sec. 2.2.2). The
standard model uses the actual pitch distances moved by each voice in the stimuli,
while the minimal version uses the smoothest possible voice-leading (achieved by octave
transposition and permutation of the voices) and so abstracts over the specific voicings
actually used. At first sight, the standard voice-leading model seems more obvious and
more likely to be useful as a representation of perceived triadic distance. However, the
more abstract minimal version reflects a psychologically plausible prototype-based model
of memory retrieval. Under such a model, any pair of chords with a specific voicing is
considered to be treated cognitively as an elaboration, or exemplar, of a prototypical
pair of chords, which themselves have a minimal voice-leading distance. In other words,
we might think of each concretely heard chord pair as triggering a memory of a re-
voiced prototypical pair of chords, where the prototypical pair is such that voice-leading
is minimized. Under such a model, it is the minimized distance that is reported by
listeners. It is possible that cognitive processes reporting these two models of voice-
leading distance (concrete vs abstract) may both be present simultaneously, an idea
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which can be replicated by some linear combination of the standard and minimal voice-
leading models. For these reasons, and because minimal voice-leading models are the
type most widely discussed in contemporary music theory (e.g. Tymoczko 2011), both
types of voice-leading model are here considered.
A principal di↵erence between the predictions made by the two models is that the voice-

leading distances between di↵erent voicings of the same underlying chords will typically
be di↵erent for the standard version, whereas they will be identical for the minimal
version. This means that for the experimental stimuli it is useful to include voicings
of given chord pairs that do not always minimize the standard voice-leading distance;
indeed, minimizing standard voice-leading distance is impossible if we also wish to satisfy
other musical constraints such as avoiding parallel fifths. Furthermore, although minimal
voice-leadings are common in real-world music, they are far from ubiquitous.
When given any two chords, each model produces a voice-leading vector, which needs

to be converted to a distance value. Recall that in order to test all five models in their
best possible light, we have striven to account for all common variations in the models
when calculating distances. Consequently, rather than use a single fixed distance met-
ric to calculate distances in the the voice-leading models, we use the very general and
parameterizable p-norm, which includes Manhattan and Euclidean distance as two spe-
cial cases (the use of di↵erent p-norms for voice-leading distances has been previously
discussed by Callender 2004 and Tymoczko 2006, supporting online material). The two
voice-leading models are now explained separately and in detail.

2.2.1. Standard voice-leading model

The pitch values in each chord are placed into a pitch vector in order of their voice which,
for our stimuli, is cello, then viola, then second violin, then first violin. For convenience,
we use MIDI pitch values, where C4 (middle C) has the value 60, and the units are
twelve-tone equal temperament semitones (so D[4 is 61). The voice-leading vector v

is simply calculated by subtracting the pitch vector of the first chord x from that of
the second chord y (i.e. v = y � x). For example, given the chord progression (Cmaj,
Emaj), as played by the specific voicings x = (48, 60, 64, 67) and y = (52, 59, 64, 68), the
voice-leading vector is v = (4,�1, 0, 1).
The resulting voice-leading distance is calculated with a p-norm of this vector, where

p is a free parameter that is optimized to the data. In other words, rather than a priori
assuming which distance metric to use (represented by di↵erent values of p), we will use
iteration to find the value of p that best fits the empirical data.

dsV(x,y; p) = kvk
p

=

 
NX

n=1

|y
n

� x

n

|p
!1/p

, (2)

where |·| denotes the absolute value, and p 2 [1,1). For instance, when p = 1, the
resulting distance is the Manhattan (or taxicab); when p = 2, the resulting distance
is the Euclidean; when p ! 1, the resulting distance is equivalent to the maximum
distance moved by any voice. As p gets larger, larger elements of the voice-leading vector
become progressively more important than smaller elements. At the limit p ! 1, only
the largest element matters. It is worth noting that when p < 1, the resulting value breaks
the triangle inequality and so the function does not constitute a true norm nor accord
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with most people’s intuitive understanding of a reasonable distance measure.5 Tymoczko
(2006) points out various reasons why any reasonable model of voice-leading distance
should support the triangle inequality. For this reason, we constrain this parameter to
be no less than 1.

2.2.2. Minimal voice-leading model

For the minimal voice-leading model, the voice-leading distance between any two pitch
vectors is given by choosing the minimum p-norm (for a given p) over the voice-leading
vectors between all possible permutations of voices and octave transpositions of individ-
ual pitches in one of the chords. For example, the minimal voice-leading vector between
(C4,E4,G4) = (60, 64, 67) and (E4,G5,B5) = (64, 79, 83) (an unlikely voice-leading,
but useful for demonstration purposes) is not the actual voice-leading (4, 15, 16), but
the minimal (1, 0, 0). This is achieved by permuting the voices of the second chord
to (B5,E4,G5) = (83, 64, 79), and octave transposing two of the pitches to make
(B3,E4,G4) = (59, 64, 67). There is no other such transformation of the second pitch
vector that can minimize the voice-leading distance further. For the two N -element pitch
vectors x and y, this can be expressed more formally as

dmV(x,y; p) = min
k2ZN

s2SN

 
NX

n=1

|y
s(n) + 12k

n

� x

n

|p
!1/p

, (3)

where k = (k1, k2, . . . , kN ) 2 ZN allows all possible octave transpositions of every pitch
in y to be tested, s indexes over all N ! permutations of the set {1, 2, . . . N}, and the set
of all such permutations is denoted S

N

. For any given p > 1, the same transformation of
y (i.e. permutation s and vector k), will produce the minimal value for the resulting p-
norm. This means the values of s and k that minimize the distance need to be determined
for just one p-value for each pair of pitch vectors x and y. The vector (y

s(1) + 12k1 �
x1, y

s(2) + 12k2 � x2, . . . , y
s(N) + 12k

N

� x

N

) that satisfies the minimality constraint is
denoted the minimal voice-leading vector.6

Clearly, the minimal voice-leading may represent a useful abstraction across a broad
equivalence class of chord voicings. In our model we apply one further abstraction, which
is to convert our four-voice major and minor triads (in which one pitch class was played
by two voices) into three-voice triads containing all three distinct pitches. For example,
the actual chords (48, 60, 64, 67) and (41, 60, 65, 69) were represented by the vectors x =
(0, 4, 7) and y = (5, 9, 0).
The resulting minimal voice-leading vectors are exactly the same as the maximally

smooth voice-leadings calculated by Tymoczko’s software application, called Voice Lead-
ing, which is available at http://dmitri.tymoczko.com/software.html. A maximally
smooth voice-leading vector is one whose p-norm is minimal when p = 1 (i.e. the sum of
its absolute-valued components is minimal). For certain chord pairs, there is more than
one maximally smooth vector. Our voice-leading calculation utilizes the vector, from this
set, that has the smallest range of values because this will additionally have the smallest

5The triangle inequality requires that d(x, z)  d(x, y) + d(y, z); that is, the distance between two objects is at
least as short as the distance when passing through a third object.

6Due to the abstraction (i.e. permutations) over voices, the ordering of elements in this vector has no meaning;
hence this vector is most usefully thought of as just one out of all possible orderings of a single (unordered)
multiset – the latter corresponding to the mathematical formalization used by Tymoczko (2006, 2011). Vectors
may, however, be a more appropriate formalization whenever voices are not abstracted over.
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(a) Unsmoothed spectrum.
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(b) Smoothed spectrum.

Figure 2. Spectral pitch-class vectors showing the e↵ect of smearing (convolving) a set of harmonic partials (from
a major chord whose root is at pitch class 0) with a discrete normal distribution with a standard deviation of
� = 6.83 cents. The roll-o↵ is ⇢ = 0.75. These are the parameter values as optimized to the experimental data, as
detailed later.

p-norm when p > 1. For example, for the chord pair (Cmaj, Dmaj), Tymoczko’s Voice
Leading application outputs two maximally smooth voice-leadings: (2, 2, 2) and (2, 1, 3).
We use the former because it has a smaller range of values and hence a lower p-norm for
all p > 1. For example, the Euclidean norms (i.e. p = 2) of these two voice-leadings are
3.46 and 3.74, respectively (their norms are identical only when p = 1).

2.3. Spectral pitch-class distance and its parameterization

Spectral pitch-class distance utilizes the expectation tensors introduced in Milne et al.
(2011). Here, the tensor is of the simplest kind—a spectral pitch-class vector in which
delta spikes, indicating the log-frequencies modulo the octave and perceptual weights
of all partials, are smoothed with a discrete normal distribution. This is illustrated in
Figure 2.
The width of the smoothing is a free parameter �, and the steepness of the roll-o↵ in

the weighting of ascending harmonics is another free parameter ⇢. The smoothing-width
parameter models the perceptual inaccuracies that result in close, but non-identical, fre-
quencies being judged as having the same pitch class – the greater the width of the
normal distribution the greater the modelled perceptual inaccuracy. The roll-o↵ param-
eter models the lesser perceptual importance of higher partials relative to lower partials.
This will likely depend on the spectrum used for the stimulus, but this parameter ad-
ditionally allows the model to take account of psychoacoustic processes. For example, it
is easier to perceptually resolve (consciously hear out) lower harmonics than it is higher
harmonics, even when they have equal intensity (Bernstein and Oxenham 2003; Moore
2005).
More formally, for any given tone, a 1200-element row-vector of zeros is created. The

first element represents the log-frequency (modulo the octave) of the pitch class of C.
The second element is one cent higher, the third element is two cents higher, and so
forth. This implies the vector encompasses a full octave range of finely-grained (cent-
valued) pitch classes. For each of the tone’s harmonics (indexed by i, so the fundamental
has i = 1, the second harmonic an octave higher has i = 2, the third harmonic has

11
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i = 3, etc.), a value of 1/i⇢ is added to the element corresponding to its cents value. For
example, the first, second, fourth, eighth, and so on, harmonics of a complex harmonic
tone all have the same pitch class value, so this element of the vector is given a total
weight of 1 + 1/2⇢ + 1/4⇢ + 1/8⇢ + · · · . When ⇢ > 0, this means every higher partial
contributes a lesser individual weight to the total than every lower partial, but no partial
has a negative weight. The steepness of the roll-o↵ is determined by the size of ⇢. The
same process is applied to all three tones in a chord, and the three resulting vectors of
weights are summed to produce the row-vector xwt. An example of a typical such vector
is illustrated in Figure 2(a).
The spectral pitch-class vector xe is given by smearing xwt across the log-frequency

domain. This is achieved by circularly convolving with a discrete truncated normal dis-
tribution g with a standard deviation of �; that is, xe = xwt ⇤ g. The e↵ect of this
smearing is illustrated in Figure 2(b). For this vector, we use the term pitch, rather than
log-frequency or cents, because the smoothing and weights are modelling perceptual pro-
cesses that have “transformed” the original acoustical stimulus.
In our analysis, we include only the first twelve partials in the spectral pitch-class vec-

tors. This is because partials higher than this typically cannot be perceptually resolved
(Bernstein and Oxenham 2003), and removing them from the model reduces the number
of calculations required (the computational e�ciency of the model becomes a concern
under optimization to the data, particularly when cross-validating). We would expect
the optimized value of ⇢ to approximately correspond to the loudnesses of the partials in
the sonic stimuli actually used. The string sounds used in our experiment have a typical
amplitude (pressure) roll-o↵ of 1/i which, using the rough approximation provided by
Steven’s law, corresponds to a loudness roll-of of about 1/i0.6. Hence, we would expect
the optimized ⇢ to have a value similar to 0.6. As discussed in Milne et al. (2011, App. A,
Online Supplementary), the standard deviation of g models the just noticeable frequency
di↵erence, which is 3–13 cents between 125 and 6000 Hz (Moore 1973). We would, there-
fore, expect the optimized smoothing width to be within or close to this range of cents
values.
The spectral pitch-class distance of any two chords is simply modelled as the cosine

distance between their respective spectral pitch-class vectors. Cosine distance is unity
minus the cosine of the angle between the two vectors. For vectors all of whose values are
positive (as is the case for spectral pitch-class vectors), their cosine distance is always
between zero (maximally similar) and unity (maximally distant). Thus, for two triads x
and y, their spectral pitch-class distance dS can be calculated as follows, given a roll-o↵
parameter of ⇢ and a smoothing width parameter of �

dS(x,y; ⇢,�) = 1� xey
|
ep

xex
|
e yey

|
e

, (4)

where both xe and ye are row vectors, and | is the transpose operator that converts a
row vector into a column vector (and vice versa).7

7It is worth noting that the model described here is quite di↵erent to a voice-leading type model – even if each
harmonic were to be represented as an individual “voice.” For discussion of the di↵erences between the category

domain pitch embeddings used in voice-leading models and the pitch domain embeddings used in expectation
tensors, and their implications when used to obtain distances, see Milne et al. (2011).
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2.4. Hamming distance benchmark model

The final model – the Hamming distance between chords – serves as a simple “bench-
mark.” As outlined earlier and detailed below, it has the benefit that each of the other
models can be interpreted as an extension of it and makes use of a greater set of infor-
mation. If the hypothesis underyling each of the other models is relevant to the data at
hand, it should predict these data better than the Hamming model alone.
The Hamming distance model simply counts the number of non-zero entries in the

minimal three-voice voice-leading vector, as defined above (though, in this case, the voice-
leading vector representing the smallest Hamming distance – the vector with the fewest
non-zero entries – is chosen). For example, the Hamming distance between the three-voice
chords Cmaj = (60, 64, 67) and Amin = (60, 64, 69) is 1 because only one voice moves;
the distance between Cmaj = (60, 64, 67) and Amaj = (61, 64, 69) is 2 because two voices
move; the Hamming distance between Cmaj = (60, 64, 67) and Dmin = (62, 65, 69) is
3 because there are no pitch classes in common. The Hamming distance model has no
parameters other than the linear intercept and slope parameters, also used by every other
model so far discussed, to linearly map their values to the numerical values of the rating
scale (which ran from 1 to 5).
More formally, we can represent the Hamming distance with

dH(x,y) = min
k2ZN

s2SN

NX

n=1

1� �

�
y

s(n) + 12k
n

� x

n

�
, (5)

where �(·) is the Kronecker delta function, which is 1 when its argument is zero, but is
otherwise 0. The remaining notation is as described for Equation (3). The chords are all
entered as three-note versions, as in the minimal voice-leading model.

2.4.1. All four models viewed in detail as extensions of Hamming model

As already noted, the Hamming model serves as a particularly useful benchmark because,
in important respects, all the other models can be thought of as alternative elaborations
or extensions of it. For example, like Hamming, the voice-leading models give zero dis-
tance to pitch classes that do not change but, instead of giving a unit weight to any
moving voice, they quantify it by the distance that voice actually moves. In this sense,
voice-leading refines the Hamming model by making use of a greater amount of informa-
tion.
In the case of the spectral pitch-class distance model, given a roll-o↵ approaching in-

finity (⇢ ! 1), the resulting spectral pitch-class vectors only contain the fundamental
pitch class of each chord tone (the harmonics are ignored). This means the resulting
model is equivalent to the Hamming model (it just counts di↵erences between the two
vectors). However, as the roll-o↵ parameter is reduced towards unity, the influence of
the harmonics increases and the two models diverge. With a finite value of ⇢, the spec-
tral pitch-class distance model incorporates information not included in the Hamming
model – the harmonics of every chord tone. However, this additional information is quite
di↵erent to that utilized in the voice-leading models.
In the canonical hexagonal Tonnetz, all major and minor triads with two common

tones (as represented by C–c, C–e, c–E[) have a Euclidean distance of 1 (the same as
their Hamming distance).8 Major and minor triads triads with one common tone have

8For concision here, and in future examples, we use uppercase for major triads and lowercase for minor triads.
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a Euclidean distance of
p
3 ⇡ 1.73 (C–E[, C–E, C–F, c–e[, c–e, c–f), or 2 (C-c], C–f,

c–F). Major and minor triads with no common tones have a distance of
p
7 ⇡ 2.65 (C–

d, C–e[, C–f], c–D[, c–E), or 3 (C–D[, C–D, c–d[, c–d), or 2
p
3 ⇡ 3.46 (C–F], c–f]),

or
p
13 ⇡ 3.61 (c–D). So, like Hamming, the Tonnetz chord distances fall into non-

overlapping groups as characterized by their number of common tones, but there is some
additional variation within the one-common-tone group and the no-common-tone group.
This can be thought of as additional structure beyond the Hamming that results from
representing chord relationships in a regular two-dimensional geometry. The correlation
between the canonical hexagonal chord Tonnetz and the Hamming model is very high
(r(24) = .96 and, with the small shear and scale values of 0.17 and 1.08 respectively, the
correlation can be maximized to r(24) = .97). By choosing di↵erent values of shear and
scale, the Tonnetz ’ additional structure changes in extent and form. In these ways, the
chord Tonnetz model represents an elaboration of the Hamming model.
As detailed in the next section, our experiment elicited ratings of the perceived distance

between di↵erent pairs of root-position major and minor triads. If any of the three main
models were to perform no better than the Hamming model at predicting these data,
this would demonstrate that the extra information it takes into account – voice-leading
distance, non-fundamental harmonics, or a regular structure founded on fifths and thirds
– is irrelevant to these data.

3. The experiment

3.1. Participants

There were 35 participants (19 male, 16 female, with a mean age of approximately 30
years), most of whom were international students or sta↵ of Jyväskylä University, Fin-
land. Participants were asked to rate their instrumental and music theory skills. The
average level of both was “intermediate,” and only two participants had no playing or
music theory skills (on a scale of “none” = 0, “basic” = 1, “intermediate” = 2, “advanced”
= 3, average instrumental skill was 2.3, average music theory skill was 2.1).

3.2. Apparatus

The experimental interface was created with Max/MSP. The music was stored as MIDI
files and played through a software sampler to emulate a naturalistic stereo recording of
a string quartet (see Sec. 3.3.3). The synthesizer was Cakewalk’s Dimension Pro playing
a sample set from Garritan, and each instrument was individually panned to a left-right
location such as one would typically hear in a commercial recording. The music was
played over closed-back headphones (Audio Technica ATH-M40fs) in a quiet room.

3.3. Stimuli and procedure

As outlined in the introduction, the experiment was designed specifically to probe the
posited underlying symmetrical aspects of harmony perception described in that section.
We now discuss these methods in detail, and point out how they di↵er from previous
related research conducted by Krumhansl and Kessler (1982), Bharucha and Krumhansl
(1983), Bigand, Parncutt, and Lerdahl (1996), Krumhansl (1998), and Rogers and Cal-
lender (2006).

14



February 5, 2016 Journal of Mathematics and Music TriadicDistancePostReview2NonAnon

3.3.1. Avoiding order asymmetries in rating

As previously discussed, although asymmetries clearly exist in music and are a vital as-
pect of tonal cognition, our tests focus on stimuli and conditions well suited to comparing
the five models being tested here (all of which are symmetrical with respect to order and
transposition/translation). Thus, when asking participants to carry out ratings, we used
adjectives that do not imply an ordering, and which refer to a relationship between the
two chords, not to an a↵ect induced by just one of them. We do not, for example, ask
“how well the second chord follows the first” (as in Bharucha and Krumhansl 1983), or
the degree of “tension” in one chord out of a pair (as in Bigand, Parncutt, and Lerdahl
1996). Of course, the chords in a pair may have di↵ering degrees of tension, but our goal
is to focus on distance, not asymmetrical features. For each pair of chords, we asked our
participants two questions: “how ‘similar’ or ‘dissimilar’ do the two chords sound?,” and
“how ‘well’ or ‘badly’ do the two chords fit together?” In both cases, the question refers
to the relationship between the two chords, not to a property of a single chord in the
pair.
Furthermore, to minimize unwanted order asymmetries in the experiment, we played

each pair of chords in a continuous loop (chord1–chord2–chord1–chord2–. . . ). This di↵ers
from the method used by Bharucha and Krumhansl (1983) and Rogers and Callender
(2006), where each stimulus comprised two chords played in a unidirectional sequence. A
question remains as to whether musical distance is inherently asymmetric – this question
cannot be answered by the given experimental setting, because it minimizes asymmetry.

3.3.2. Avoiding tonal context

We endeavoured, as much as practicable, to present the chord pairs without any previ-
ously established tonal context. As previously discussed, such contexts can induce un-
wanted asymmetries with respect to order and transposition. For each chord pair, the
overall pitch was randomly transposed (with a uniform distribution) over a one-octave
range of equally tempered semitones. In between each stimulus, a three-second randomly
generated four-part atonal progression of six chords was played. The purpose of this
was to displace any sense of a specific tonal centre that may have been inadvertently
established by the previous chord pair. The order of presentation was also random for
each participant. This di↵ers from the method of Bigand, Parncutt, and Lerdahl (1996),
where a tonal context was deliberately established.

3.3.3. Naturalistic stimuli

The musical examples played to participants used standard (common-practice) voice-
leadings, and they were played with high-quality samples of the four instruments in a
string quartet (two violins, a viola, and cello). Each instrument was independently panned
to sound like a commercial recording of a string quartet. These naturalistic qualities not
only enhance ecological validity, they additionally have two important impacts.
Firstly, the stereo and vibrato independence of the instruments playing the constituent

notes of the chords should help to enhance the ability to separately stream each voice
(Bregman 1990). For the same purpose, we also follow conventional rules of voice-leading
by, for example, retaining common tones and avoiding parallel fifths and octaves (the
utility of common-practice voice-leading to individuate voices is extensively discussed in
Huron 2001). This is essential to test the voice-leading models fairly, while in no way
disadvantaging the other models being tested.
Secondly, the spectral pitch-class distance model posits that the entire harmonic spec-
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Figure 3. Mean distance ratings for all twenty-six chord pairs, and 95% confidence intervals.

trum associated with the played chords a↵ects human judgement of triadic distance. If
this should be the case, then naturalistic stimuli with harmonic complex tones are es-
sential to test this model fairly, unlike, for example, the octave complex tones used in
experiments such as Krumhansl and Kessler (1982), Bharucha and Krumhansl (1983),
and Rogers and Callender (2006).9 Stimuli with naturalistic harmonic complex tones in
no way disadvantage the other models being tested, and were historically ubiquitous at
the foundation of all of the other models.
All chords were played at a moderate tempo of 100 beats per minute (so the inter-

onset intervals were 1200ms). The note durations were 1125ms, resulting in a “legato”
articulation ratio of .94. Every chord was played in twelve-tone equal temperament.
The parts were composed so as to broadly follow conventional rules of voice-leading

(given that both chords are always in root position): retention of common tones, choosing
stepwise motion over leaps, avoiding parallel and hidden fifths, octaves and unisons,
particularly in the bass and soprano parts. Due to the necessity for all chords to be in root-
position, these rules cannot all be simultaneously fulfilled, so aesthetically based choices
had to be made. There was no deliberate attempt made to minimize the standard voice-
leading; rather, the concern was to produce musically reasonable sounding progressions.
The MIDI files used are shown in score form in Figure 4 (note that for each presentation,
each chord pair was randomly transposed over the range of �6 to +5 semitones).

3.3.4. Measurement

As discussed earlier, we probe the perceived distance of the chords in each stim-
ulus by asking our participants two questions. One is a direct question about dis-
tance/dissimilarity. The other question, which is about fit, is commonly used in mu-
sic perception research to measure the perceived distance between tones and/or chords
in a variety of contexts (e.g. Krumhansl and Kessler 1982, Castellano, Bharucha, and
Krumhansl 1984, Kessler, Hansen, and Shepard 1984, and the multidimensional scalings
thereof). Our participants gave their responses on five-point scales with bipolar labels at
the top and bottom – “dissimilar” and “similar,” and “bad fit” and “good fit.” We used
the terms “similarity” and “dissimilarity” rather than “near” and “far” or “close” and
“distant,” because we did not want to inadvertently emphasize a one-, two-, or three-
dimensional distance relationship due to the latter terms’ conventional usage in spatial
contexts.
In psychological measurement, it is common practice to use more than one question,

9A harmonic complex tone comprises frequency components at integer multiples of a fundamental frequency,
an octave complex tone comprises only those frequency components at 2n multiples of the fundamental – the first,
second, fourth, eighth, sixteenth, etc., harmonics. Most pitched Western musical instruments, and the sung human
voice, produce harmonic complex tones. Octave complex tones do not occur in nature and must be artificially
synthesized.
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and associated rating scale, and to combine them to produce a more complete measure-
ment of a single underlying (latent) variable. Typically, it is advised that scales should be
combined so long as they are su�ciently correlated (e.g. Cronbach’s ↵ > .7), though it
is also desirable that the two measures are not too highly correlated otherwise they may
not be providing a su�ciently broad measurement (Iacobucci 2001). As discussed in the
subsequent results section, participants’ responses to the two questions were su�ciently
– and not excessively – correlated, so we took their mean to serve as our final measure,
and operationalization, of perceived triadic distance.

3.3.5. Minimizing confounds

In order to minimize the potential confound of chords with di↵ering levels of harmonic
consonance and dissonance, only root-position major and minor triads were used. In
Western music theory, these are the only chords categorized as fully consonant – in-
versions of major and minor triads are generally described as unstable in e↵ect, and
other simultaneously sounded pitch-class sets, like diminished and augmented triads, or
extensions like sevenths and ninths, are considered dissonant. Not having to account
for consonance and dissonance makes the modelling simpler; furthermore, there is as
yet no strong agreement about which are the most e↵ective models of consonance and
dissonance.
Ignoring overall transposition, the ordering of the chords, and their voicings, and as-

suming the enharmonic equivalences embodied in twelve-tone equal temperament, there
are twenty-six di↵erent pairs of root-position major and minor triads. The following list
shows these pairs notated such that the first chord is always C (Cmaj) or c (Cmin):
C–C; C–D[; C–D; C–E[; C–E; C–F; C–F]; c–c; c–d[; c–d; c–e[; c–e; c–f; c–f]; C–c; C–c];
C–d; C–e[; C–e; C–f; C–f]; c–D[; c–D; c–E[; c–E; c–F. When these labels are used in
the figures below, they should be understood to refer not to the specific pair shown,
but as representing an equivalence class containing all reasonable transpositions of both
chords by the same amount (e.g. c–d ⌘ c]–d]), over all enharmonic equivalences (e.g.
C–e[ ⌘ C–d]), and in both possible orderings (e.g. C–E ⌘ E–C). Hence, the chord pairs
C–E and C–A[, for example, are in the same equivalence class because they are are re-
lated by a combination of transposition and reordering. The precise chords played to the
participants, and the equivalence chord classes they represent are shown in Figure 4.
Each participant was presented with some randomly selected practice examples before

starting. Each stimulus was then rated once for similarity, and once for fit. The experi-
ment took approximately ten minutes, so any chance of listener fatigue was minimized.

4. Results

4.1. Interparticipant correlations and preprocessing of data

We calculated Cronbach’s ↵ to estimate the reliability of participants’ responses for
each of the two items separately (similarity and fit).10 Across participants’ ratings of
“similarity,” it was ↵ = .97; across ratings of “fit,” it was ↵ = .94. In neither case, was
there any participant whose removal increased the Cronbach’s ↵ (taken to two decimal

10Cronbach’s ↵ is equivalent to the mean split-half correlation of a data set and is used as an estimate of
reliability, consistency, or homogeneity. A split-half correlation is given by splitting the data into two equally-sized
halves, summing across each half, and then correlating these two summed halves. The mean split-half correlation is
the mean correlation over all possible equal splits. It is equivalent to Cronbach’s ↵, though the latter is calculated
in a computationally simpler – though intuitively less understandable – manner.
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Figure 4. Prior to each chord pair being randomly transposed over the range �6 to +5 semitones, these are the
26 pairs used in the experiment. The chords’ names corresponding to the notated pitches are shown on the top
line above the sta↵; the corresponding chord equivalence classes’ names are shown on the line below.

places). In light of these results, we took the means of all participants’ responses for both
fit and similarity to produce two mean rating scales.
Analysis of the two resulting scales demonstrated that similarity and fit are consis-

tent with each other (↵ = .83), consequently we averaged the two scales into a single
scale called triadic distance (their high consistency was additionally indicated by the
Cronbach’s ↵ of .97 across both similarity and fit, prior to taking their means).
In Figure 3, we show the resulting triadic distance ratings given to the twenty-six

di↵erent chord pairs. They are arranged in order of their distance value (1 corresponds
to “similar” and “good fit”; 5 corresponds to “dissimilar” and “bad fit”). Each value is
surrounded by a 95% confidence interval calculated over 1000 bootstrap resamplings of
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Table 1. Inter-correlations between the empirical data and all models (24 degrees
of freedom).

data dH dsV dmV dTr dS dT

Experimental data 1.00 .88 .62 .72 .83 .91 .92
dH – Hamming .88 1.00 .70 .85 .82 .96 .89
dsV – standard voice-leading .62 .70 1.00 .62 .54 .63 .59
dmV – minimal voice-leading .72 .85 .62 1.00 .69 .79 .78
dTr – transformational .83 .82 .54 .69 1.00 .93 .94
dS – spectral pitch class .91 .96 .63 .79 .93 1.00 .97
dT – chord Tonnetz .92 .89 .59 .78 .94 .97 1.00
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Figure 5. A scatter plot showing the relationship between the empirical data (x-axis) and their modelled values
(y-axis). The spectral pitch-class model is indicated with the + symbol, the Tonnetz model with the ⇤ symbol. A
perfectly fitting model would have all data points on the diagonal dotted line. The vertical distance between each
data point and this line is the model’s error for that chord pair’s perceived distance. For both models, the most
outlying data point, with an empirical rating of almost 3, is the triad pair C–c. The root-mean-square-errors of the
Tonnetz and spectral models are .28 and .30, respectively; their mean absolute errors are .22 and .23, respectively.

participants.11

4.2. Model fitting and cross-validation

We fitted all six models to the above triadic distance data using iterative optimization
(matlab’s optimset function) to minimize the sum of squared errors between the model
and data. This maximizes the Pearson correlation between the model and the data and
is equivalent to the fitting criterion used in standard linear regression. The resulting
correlations, between all models and data, are shown in Table 1.
Of the voice-leading models, the minimal performs better than the standard; further-

more, when both voice-leading models are included in a linear regression, the coe�cient
for the standard voice-leading model is small and insignificant. Of the Tonnetz -based
models, the Tonnetz performs better than the transformational distance. For the sake of
brevity in the following analyses, we consider only the better of each pair. This leaves the
following models: Hamming, minimal voice-leading, spectral pitch class, and Tonnetz. A
scatter plot comparing the Tonnetz and spectral pitch-class distance models’ predictions
with the twenty-six empirical data points is shown in Figure 5.
The optimized parameter values are shown in Table 2. In Figure 6, we show the chord

Tonnetz that results from these optimized parameter values (the corresponding pitch-

11Bootstrapping is a method for estimating the variance of a statistical estimate – in this case the variances of
the means. It makes no assumptions about the underlying distribution of the data.
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Table 2. Parameter values as optimized to the empirical data.

p-norm roll-o↵ ⇢ smoothing � scale s shear h

dmV 1.00 - - - -
dS - 0.75 6.83 - -
dT - - - 0.55 �0.15
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Figure 6. The optimized chord Tonnetz – major triads in uppercase, minor triads in lowercase.

class Tonnetz can be visualized by ignoring the minor chords and treating the major chord
roots as pitch classes). In Figures 7 and 8, we show the spectral pitch-class distances for
intervals and chords as generated under that model with optimized parameter values.
The optimized pitch-class Tonnetz predicts that perfect fifths are almost twice as close

(perceptually) as major and minor thirds, and that major thirds are slightly closer than
minor thirds. This is similar to conventional judgements of their relative consonances.
Due to the construction of the Tonnetz, the distances of all other intervals are linear
combinations of these fifths and thirds.
For the spectral pitch-class model, the optimized smoothing width falls within the

expected range (3–13 cents), as does the roll-o↵, which corresponds approximately to
the loudnesses of the partials in the string sounds used (similar optimized values were
also obtained in the related models detailed in Milne, Laney, and Sharp 2015 and Milne,
Laney, and Sharp 2016). As shown in Figure 7, the optimized spectral pitch-class distance
model can calculate values for any interval size, including microtonal. In this context, we
are interested in those that are twelve-tone equal temperament intervals and, hence, fall
on the dotted radial lines (clock-face positions). For such intervals, the model predicts
that, other than the unison/octave, only the perfect fifth/perfect fourth departs more
than modestly from the maximal distance. This reflects the unique importance of this
interval in Western music, and some non-Western music (Chalmers 1990; Xenakis 1992;
Serrà et al. 2011).
Clearly, the models have di↵ering flexibilities due to their di↵ering constructions and

nonlinear parameterizations. It might be that some of the models are achieving a high fit
because they are excessively flexible and are fitting the noise in the data rather than the
underlying process. A well-established method for determining this is to conduct multiple
runs of k-fold cross-validation, and it is common to use a value of k approximating ten
because this provides an e↵ective trade-o↵ between the bias and variance of the cross-
validation estimates (e.g. Rodŕıguez, Pérez, and Lozano 2010).
We used 100 runs of 13-fold cross-validation, which means the empirical data set of 26
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Figure 7. Spectral pitch-class distances of all pitch-class intervals. The size of the interval increases around the
circle and is labelled in cents (one hundredths of a 12-TET semitone). The spectral pitch-class distance is 0 at the
centre of the circle and 1 at the perimeter. The roll-o↵ and smoothing parameters are as optimized to the data.
The symmetry about the vertical axis results from the use of spectral pitch classes rather than pitches.

C−C c−c c−Eb C−e C−c c−f C−F C−f c−F C−E c−e C−Ebc−eb C−d C−c# c−d C−D c−Db c−E c−dbC−DbC−f# c−D C−eb c−f# C−F#
0

0.2

0.4

0.6

0.8

1

Chord pair

S
p
e
ct

ra
l p

itc
h
 c

la
ss

 d
is

ta
n
ce

Figure 8. Spectral pitch-class distances, in order, of all chord pairs. The roll-o↵ and smoothing parameters are
as optimized to the data.

distance values is split into a training set of 24 distance values and a validation set of 2
distance values. The parameters of each model are optimized to the training set (for the
Hamming model these are just the linear intercept and slope parameters; for the other
models there are additional nonlinear parameters, as shown in Table 2). The modelled
values for the two validation data points are then calculated. This procedure is done 13
times; in each case a di↵erent training and validation set is used, such that each validation
set never contains a data point used in a previous validation set. This ensures we end
up with 26 modelled values corresponding to all 26 data points. The cross-validation
statistic of interest is then calculated for these values (in this case, the cross-validation
correlation). Cross-validation statistics have an unknown variance, but this variance can
be reduced by repeating the process multiple times with di↵erent validation sets and
taking the mean value of the statistic. As mentioned above, we performed 100 runs of
the 13-fold cross-validation.
The resulting cross-validation correlations are shown in Table 3. They replicate the

rankings of the un-cross-validated results, and the top-performing models show only small
reductions in their correlations after cross-validation. The Hamming model is a simple
linear model having only intercept and slope parameters so we know, a priori, that it
is not excessively flexible. The reductions in correlations (after cross-validation) of the
spectral and Tonnetz models are no greater than that of the Hamming. This implies all
three models (Hamming, spectral pitch-class distance, and Tonnetz ) are not excessively
flexible. In other words, they are not rendered vacuous by their parameterizations, and
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Table 3. Cross-validation cor-
relations between each model
and the empirical data.

dH dmV dS dT

.85 .66 .88 .90

Table 4. Partial F -tests to compare models.

d
dmV

c
dS

c
dT

dH .665 .006⇤ .0003⇤

c
dS - - .045

The row labels show the model included in the
reduced regression, the column labels show
the additional model included in the full re-
gression. The entries show the p-value for the
resulting partial F -test. Results that are sig-
nificant at the .05 level after Bonferroni cor-
rection for multiple comparisons are starred.

are su�ciently parsimonious.

4.3. Model comparisons

In order to test the relative performances of the models, we fixed their nonlinear pa-
rameters to the previously optimized values (we denote these fixed models by ddmV, bdS,
and so forth – note that the dH has no nonlinear parameters). These predictors were
then entered into a pairs of multiple linear regressions to enable partial F -tests to be
performed. For example, to determine if the previously optimized Tonnetz model adds a
significant amount of additional predictive power to the Hamming model, we compare a
full regression model (distance = �0 + �1dH + �2

c
dT + e) and a reduced regression model

(distance = �0 + �1dH + e). A partial F -test allows us to determine whether the R

2 fit
of the full model is significantly greater than that in the reduced model, given that the
full model has additional degrees of freedom (in this case, there is one additional degree
of freedom because the full model has an additional parameter �2).
We are particularly interested in how voice-leading, spectral pitch-class distance, and

the Tonnetz compare with the benchmark model. Given the results, we are additionally
interested to know whether the Tonnetz model has significant predictive power beyond
the spectral model. Table 4 summarizes the p-values for these four comparisons; all the
F -tests have the degrees of freedom F (1, 23).
In an investigation where multiple comparisons are made, the probability of a null

hypothesis being incorrectly rejected increases. This can be corrected by dividing the
significance level by the number of comparisons (this is the well-known Bonferroni cor-
rection). In our case, this means a p-value of .05/4 = .0125 is required for significance at
the conventional 5% level. Under the Bonferroni correction, both the spectral pitch-class
distance model and the Tonnetz model add a significant amount of additional predictive
power beyond that provided by the Hamming benchmark. The minimal voice-leading
model adds no significant predictive power beyond the Hamming (indeed, a partial F -
test comparing a voice-leading-only model with a model also including the Hamming
predictor shows the former to perform significantly worse, p = .00005). There is some
evidence, though inconclusive due to the Bonferroni correction, that the Tonnetz model
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may add predictive power beyond that provided by spectral pitch classes.
We do not report results from a multiple linear regression of the empirical data on all

models, or even on the best models, because they are too highly intercorrelated (multi-
collinear) for the estimates of their coe�cients to be reliable. For example, a regression on

dH, cdT, and bdS has variance inflation factors (VIFs) of 16.7, 54.5, and 21.1, respectively
(any VIF greater than 5 is typically considered to make coe�cient estimates excessively
unreliable).

5. Discussion

Let us start this section with the important caveat that any generalizations we make
here can only be reliably extended to musical listeners with a similar university-educated
and predominantly Western background as our participants. This is not to say that
these results are not more generally applicable, but our data should not be used to
generalize beyond this. Furthermore, the confidence intervals shown in Figure 3 suggest
that, ideally, this or a similar experiment should be replicated in order to make firmer
conclusions about the models’ relative and absolute strengths.
The results, as summarized in Tables 1 and 4, demonstrate that the number of non-

common pitch classes in two chords – the Hamming model – is a very e↵ective predictor
of their perceived distance. They also show that the the sizes of the pitch or pitch-class
intervals between pairs of chords – the modus operandi of voice-leading models – do
not, in this case, play a useful predictive role. Indeed, and surprisingly, the voice-leading
model performs significantly worse than the Hamming model (we suggest a possible
reason later). In contrast, both spectral pitch-class distance and the Tonnetz model
perform very e↵ectively and also perform better than the Hamming model. Indeed, it is
notable that the Tonnetz – a simple music theory representation of Western harmony
that dates back to the end of the Baroque period – is so e↵ective for listeners exposed
to centuries’ worth of later music.
The Tonnetz is often explained as being based on the consonance of perfect fifths and

major and minor thirds (and their inversions) – these intervals form the Tonnetz ’ axes
(Hyer 1995; Gollin 2011) (this explanation for the Tonnetz can be agnostic as to why
these specific intervals have high consonance; e.g. whether consonance is psychoacousti-
cal, cultural, or both). However, these harmonic consonance based justifications are not
directly applicable to the context explored here, which is the extent to which successive
(non-simultaneous) chords fit, rather than any quality of simultaneously played harmonic
intervals. The predictive e↵ectiveness of spectral pitch-class distance (r(24) = .91) and
the Tonnetz (r(24) = .92) and their very high mutual correlation (r(24) = .97) sug-
gest that spectral pitch-class distance provides a sensory (psychoacoustic) explanation
for perceived triadic distances and for the Tonnetz (the latter being a music theory
representation of these perceived musical distances).
An alternative – and non-acoustic – explanation for the pitch-class Tonnetz comes

from Balzano (1980) (as illustrated in Fig. 5 of that paper and the corresponding chord
Tonnetz in Fig. 1(b) of this paper), who uses it as a representation of how the cyclic group
of order 12 (the octave) is the direct product of the cyclic subgroups of orders 3 and 4
(minor and major thirds, respectively). The resulting lattice has orthogonal axes of major
and minor thirds and is somewhat similar to the canonical pitch-class Tonnetz (indeed,
in our parameterization, it is given by h = 0 and s =

p
3). In the acoustical explanation,

scaling and shearing balance the relative consonances of perfect fifths and major and
minor thirds. In the group theory explanation, the scaling and shear parameters have no
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obvious justification because, in this purely mathematical context, all integers should be
treated equally and the two subgroups – major and minor thirds – should be orthogonal.
It is interesting to note that when the chord Tonnetz model’s parameters are fixed to
the above-mentioned values for the Balzano version, its correlation with the distance
data drops from r(24) = .92 to only r(24) = .69, which is worse than the benchmark
model and even the minimal voice-leading model. This suggests that the e↵ectiveness of
the Tonnetz model results from its ability to model acoustical rather than group theory
properties.
This research provides some evidence, though not conclusive, that the Tonnetz may

have greater predictive power than the spectral pitch-class distance model. If this were
the case, this might even suggest that the brain summarizes implicitly learned spectral
similarities in a lower-dimensional form that is essentially isomorphic to the Tonnetz (in
terms of hypothesized neural implementation this might be a spatial isomorphism, as
suggested by Janata et al.’s (2002) findings, or a functional isomorphism). However, this
is speculative – it may be that, under replication, di↵erent results will obtain (spectral
pitch-class distance may perform better than the Tonnetz or there may be a more signif-
icant di↵erence). Another thing to consider, when comparing the Tonnetz and spectral
distance, is that the former has narrower applicability than the latter. The latter can eas-
ily be generalized to any possible scale tuning or spectral tuning (e.g. the non-harmonic
partials produced by many percussion and non-Western instruments), as investigated
in Milne, Laney, and Sharp (2016). It is not obvious how, or if, the Tonnetz could be
extended to cover such non-harmonic timbres and non-standard tunings.
Before finishing, let us consider some possible reasons for the comparatively weak

performances of the voice-leading models. Due to our desire to respect common prac-
tice voice-leading rules (such as avoiding parallel fifths and octaves) and to use only
root-position triads, the chord voicings used for given chord pairs in the experimen-
tal stimuli (see Fig. 4) often did not minimize their standard voice-leading distances
(the voice-leadings were not maximally smooth). Might this have prejudiced the voice-
leading models? For example, consider the chord loop notated as G–A[, which was played
with the voicing (G3,G4,D5,B5)–(A[3,E[4,C5,C[6). This has a voice-leading vector of
(1,�4,�2, 1) whose 1-norm is 8 semitones. If parallel fifths and octaves were used instead,
this could be voiced as (G3,G4,D5,B5)–(A[3,A[4,E[5,C[6) whose voice-leading vector
(1, 1, 1, 1) has a 1-norm of just 4. Similarly, the chord loop notated as (E[3,G4,E[5,B[5)–
(G3,G4,D5,B[5) has a voice-leading vector with a 1-norm of 5. If a non-root-position
chord were used instead, this could be voiced as (E[3,B[3,G4,B[4)–(D3,B[3,G4,B[4)
whose voice-leading vector’s 1-norm is only 1. As noted in Sections 2.2 and 3.3.3, even
leaving aside the constraints on parallels and inversions, voicings were not always chosen
to minimize the standard voice-leading distance, for the following reason. Using sounded
voice-leadings that are not maximally smooth is advantageous because the distances
given by the standard voice-leading model and the minimal voice-leading model will be
less highly correlated, thereby allowing their relative performance to be more clearly
disambiguated.
If voice-leading distance – as conventionally described – does play a meaningful role

for these data, there are three plausible ways it can function: a) we perceive chord
distances directly from the voicings actually used (as reflected by the standard model),
(b) the distances result from maximally smooth versions of the actual voice-leadings (as
reflected by the minimal model), (c) distances result from some combination of the two
(as reflected by a linear combination of the standard and minimal models). However,
individually neither model performs well (relative to the benchmark), and the regression
using both the minimal and standard models leads to no significant improvement beyond
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the minimal.
Another possibility may be that the outer voices (bass and soprano) are more salient

than the inner voices (tenor and alto), as experimentally demonstrated by Huron (1989).
This was checked with a regression containing both an adjusted standard voice-leading
model that considered only the outer voices, and the original standard voice-leading
model. The correlation achieved with the experimental data improved from r(24) = .62
to r(24) = .72. This matches the minimal voice-leading model, though with one extra
parameter, but still falls well short of the Hamming, spectral and Tonnetz models.
As discussed in the introduction, it is possible our participants were unable to indi-

viduate all or some of the four voices in each chord, which would weaken the impact of
voice-leading, but this does not immediately explain why the voice-leading model would
be performing worse than the Hamming. Figure 7 may provide an explanation. Let us
consider the pitch-class intervals of sizes 1 to 6 (semitone to tritone). Spectral pitch-class
distance indicates that (for 12-TET tunings) we perceive the voice-leading-large perfect
fourth/perfect fifth to be closer than all (non-zero) voice-leading-small intervals. Indeed,
the correlation between voice-leading size and spectral pitch-class distance over intervals
from size 1 to 6 inclusive is negative (r = �.37). This suggests that spectral distance, in
this case, completely overwhelms the actual pitch distance moved.
Another reason for the disappointing performance of the voice-leading models may

simply be due to the constrained nature of the stimuli – in a longer succession of chords
or a more contrapuntal context where harmony does not move in such a block-like man-
ner, it may be easier to individuate the voices. In such contexts, therefore, we may find
that voice-leading plays a more important role. It is interesting to note that in the ex-
periment conducted by Bigand, Parncutt, and Lerdahl (1996), which used a succession
of three chords, a voice-leading model performed comparatively well. However, that ex-
periment di↵ered in two other important respects – a tonal context was established, and
participants were asked to rate the tension of a single chord in the progression (rather
than a distance or fit relationship between the chords). For the reasons outlined in this
paragraph, it would be wise to reserve final judgement on the e↵ectiveness of voice-
leading models until a wider range of musical material and di↵erent rating scales are
experimentally tested.
With the exception of the standard voice-leading model (which was the worst per-

forming), all the models used pitch classes rather than pitches (no distinction was made
between log-frequencies an octave apart). It is possible that pitch-class models, such as
these, will perform less well when the data also includes responses to chords separated by
large pitch distances (e.g. greater than one or two octaves). But, such chord progressions
are relatively uncommon, and it seems that using pitch classes is beneficial for modelling
the perceived distances of the types of chord progressions typically used in music. An
interesting possibility would be to develop the spectral model to allow for the spectral
pitch (not pitch-class) vectors to be discretely smeared (convolved) across octaves as well
as across closely neighbouring log-frequencies. However, this would require at least one
additional free parameter, so a larger set of empirical data would be required to test it.
In general terms, given the current state of knowledge, it is unclear the extent to which

human judgements of similarity and fit are determined by low-level psychoacoustic mech-
anisms, as opposed to learned cultural factors. However, this experiment demonstrates
the remarkable extent to which spectral pitch-class distance – a straightforward model
of perceptual pitch uncertainty applied to physically present harmonics – is able to ac-
count accurately for human judgements, e↵ectively as well as or better than any available
model. In summary, therefore, we feel this research adds evidence in support of sensory
(psychoacoustic) processes underlying the perceived structure of harmonic relationships
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in tonal music.

6. Conclusion

We have investigated a variety of models of the perceived (symmetrical) distance between
root-position major and minor triads, and tested them against ratings given by partici-
pants. We used a set of methods to minimize the possibility that the principle embodied
by any single model may gain an unfair advantage – for example, by using natural-
istic stimuli and using parameterizations to allow for appropriate model flexibility (as
confirmed by cross-validation).
The results indicate that the number of common tones between chords (abstracted

across voices and octaves) is a highly e↵ective predictor of their perceived distance.
They also indicate that the harmonics of the two chords (their spectral pitch distance)
play an important additional role but that, in this context, the pitch distances moved
by the musical voices play no additional role (whether or not those pitch di↵erences
are abstracted over voices and octaves). We also show that the Tonnetz has a predictive
e↵ectiveness that is similar to spectral pitch-class distance, and that the two models have
an extremely high correlation. We suggest that spectral pitch-class distance provides a
sensory explanation for perceived triadic distances and their music theory representation,
the Tonnetz.
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