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Abstract 

The increase in crimes targeting the cloud is increasing the amount of data that must be analysed 

during a digital forensic investigation, exacerbating the problem of processing such data in a 

timely manner. Since collecting all possible evidence proactively could be cumbersome to 

analyse, evidence collection should mainly focus on gathering the data necessary to investigate 

potential security breaches that can exploit vulnerabilities present in a particular cloud 

configuration. Cloud elasticity can also change the attack surface available to an adversary and, 

consequently, the way potential security breaches can arise. Therefore, evidence collection 

should be adapted depending on changes in the cloud configuration, such as those determined by 

allocation/deallocation of virtual machines. In this paper, we propose to use attack scenarios to 

configure more effective evidence collection for cloud services. In particular, evidence collection 

activities are targeted to detect potential attack scenarios that can violate existing security 

policies. These activities also adapt when new/different attacks scenarios can take place due to 

changes in the cloud configuration. We illustrate our approach by using examples of insider and 

outsider attacks. Our results demonstrate that using attack scenarios allows us to target evidence 

collection activities towards those security breaches that are likely, while saving space and time 

necessary to store and process such data. 

Keywords: forensic readiness; cloud computing; adaptive software; attack planning, digital 

investigation 

 

1. Introduction 

 Although recent years have seen substantial market growth in the usage of cloud services, 

such services are increasingly the target of cyber-crimes [1]. For example, a recent attack 

targeting JP Morgan Chase [2] likely exploited the lack of two factor authentication for gaining 

access to user information from over 76 millions house holds. To assess how a cyber-crime was 
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perpetrated, what harm was done, and who are the parties responsible, existing systems must be 

forensic ready [3] and, in particular, support targeted data collection. This would allow 

preserving relevant data that might provide evidence necessary for prosecution. Such data can 

reside at both the customer and the provider premises, and, therefore, the partitioning of forensic 

responsibilities between the cloud service providers and the customers may depend on the cloud 

service model used. 

 The increase in crimes targeting the cloud has also increased the amount of data that must 

be analysed during a digital forensic investigation, exacerbating the problem of processing such 

data in a timely manner. Moreover, while cloud computing provides an “elastic” environment for 

storage and computing resources to be provided and released on demand, the evidence necessary 

to investigate a cyber-crime can be volatile and may no longer be available after a security 

breach is perpetrated. Collecting all possible evidence proactively is not always a viable solution, 

since it can be too voluminous and cumbersome to analyse effectively. Instead, we suggest 

evidence collection activities should focus on gathering the data necessary to investigate 

potential security breaches that can exploit vulnerabilities present in a particular cloud 

configuration. 

 Cloud elasticity can also change the attack surface available to an adversary and, 

consequently, the way potential security breaches can arise. Therefore, cloud-related changes, 

such as those determined by allocation/deallocation of virtual machines (VMs) or the 

modification of physical/virtual machines configurations, should be detected and monitored, and 

the corresponding data collection activities should be adapted accordingly. 

 In this paper, we address the above concerns by proposing the use of attack scenarios [4] 

to engineer more effective evidence collection for cloud services. Attack scenarios represent a 

sequence of actions an adversary can perform to achieve her criminal goals (e.g., compromising 

a physical or virtual machine, or copying a VM image). Automated generation of attack 

scenarios [5, 4, 6, 7, 8] has been utilised extensively to identify the security breaches that are 

likely and to focus the security strategy of an organisation on their prevention. However, this 

might not always be possible; for example, as a security patch might not yet be available or a 

cloud provider may have to rely on the customer to apply such patches. Our approach, instead, 

builds on the intuition that attack scenarios can help reduce the amount of data to be preserved in 

the cloud, by focusing data collection activities on the security breaches that are likely. 
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 Our approach helps configure evidence collection activities for preserving the data 

necessary to explain how potential attacks are perpetrated. We model explicitly the cloud 

configuration, the security breaches and the basic actions that an adversary can perform to 

achieve her criminal goals (i.e. cause a security breach). These basic actions can be legitimate, 

such as access to a VM, or malicious, i.e. attack modules, that an adversary can execute to 

exploit existing vulnerabilities. We assume attack modules are defined systematically by a 

security administrator from vulnerability databases (e.g., CVE
1
) documenting existing 

vulnerabilities and how they can be exploited. Basing them on the representation of the cloud 

configuration, the security breaches, and the basic actions of an adversary, we use planning 

techniques to identify attack scenarios that achieve the security breaches by exploiting the 

current cloud configuration. Our technique cannot identify evidence related to attacks exploiting 

vulnerabilities that are unknown to the software vendor. Nevertheless, identifying attack 

scenarios exploiting known vulnerabilities is a challenging problem, as the complexity of a cloud 

computing environment makes it difficult for a security administrator to foresee all possible 

attack scenarios exploiting vulnerabilities introduced by the software components installed. 

 We then map each basic action composing the attack scenarios to the data to be collected 

at the cloud service provider premises for demonstrating their execution. Finally, we adapt the 

evidence collection activities in reaction to changes of the cloud environment or updates of 

available attacks modules, which may be the sources of new/different attack scenarios. Such 

changes are monitored constantly and reflected onto the model representing the cloud 

configuration and the basic actions that can be perpetrated by an adversary. Note that we 

proposed the notion of adaptive digital forensics in previous work [9, 10] for adapting the 

evidence collection and analysis activities of a digital forensic investigation depending on the 

likelihood of possible hypotheses of a crime. However, unlike our previous work, in this paper 

we propose to adapt evidence collection activities depending on changes in the cloud 

configuration and in existing vulnerabilities. 

 We illustrate our approach by using examples of cyber-crimes targeting cloud customers 

and providers. We do not consider additional cases [11] such as the use by an adversary of cloud 

resources to perpetrate a crime (e.g., to build botnets, to store and share illicit material). Our 

simplified examples are set in an Infrastructure as a Service (IaaS) cloud deployment including 

                                                 
1
https://cve.mitre.org/index.html 
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one service provider and several customers all sharing that infrastructure and resources. For this 

reason, in this paper we assume that the collection process does not breach the regulations of the 

jurisdiction in which the data are collected, and does not compromise the confidentiality of other 

tenants that share the resources. We evaluated our approach by estimating the percentage of data 

that it avoids collecting, and measuring the time required to generate attack scenarios for cloud 

configurations of increasing complexity. Our results demonstrate that using attack scenarios 

allows us to target evidence collection activities only in those situations in which security 

breaches are likely, while saving space and time necessary to store and process such data. We 

believe this is a reasonable simplification for preserving relevant evidence, and issues such as 

regulatory compliance can be addressed separately. Furthermore, attack scenarios can be 

generated in a negligible time even for cloud configurations representing realistic data centers. 

 The rest of the paper is organised as follows. Section 2 motivates our approach by 

discussing related work. Section 3 describes scenarios supporting the need for adaptive evidence 

collection in the cloud. Section 4 provides an overview of our approach. Section 5 explains how 

attack scenarios are generated for cases of insider and outsider attacks. Section 6 illustrates how 

evidence collection and monitoring of changes in the cloud environment are performed. Section 

7 presents our evaluation and Section 8 concludes. 

2. Related Work 

 Recently, researchers have analysed the digital forensic challenges brought by cloud 

computing [12, 13, 14, 15]. Wolthusen [12] notes that one of the major challenges is the 

collection of evidence across multiple virtual hosts, physical machines, data centers, and 

geographical and legal jurisdictions. Taylor et al. [13] emphasise the ephemerality of evidence 

stored in the cloud, such as registry entries (on Microsoft Windows platforms) or temporary 

internet files that can be lost when a customer leaves the service. Ruan et al. [14] suggest the 

need of approaches to continuously preserve volatile data and guarantee data segregation among 

multiple tenants and in various cloud service models. Grispos et al. [15] highlight the challenges 

that an investigator may face while analysing an extremely large amount of data placed in the 

cloud by a customer. Cloud environments have also been suggested as a basis for conducting 

digital forensic investigations [16]. In particular, cloud virtual instances and storage can be used, 

respectively, to gather and store evidence relative to potential or detected incidents/crimes. 

 Existing research has started exploring technical solutions to perform evidence collection 
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in the cloud. For example, Birk and Wegener [17] assess the usability of various sources of 

evidence for investigative purposes in all three major cloud service models (SaaS, PaaS, IaaS). 

Dykstra and Sherman [18] expose technical and trust issues that arise in acquiring forensic 

evidence from IaaS cloud deployments by using existing forensic acquisition tools (EnCase [19] 

and AccessData Forensic Toolkit [20]). The authors also suggest that evidence should be 

collected at the virtual machine level, where a web system interfaces with the provider’s 

underlying filesystem and hypervisor. The advantages lie in the fact that evidence can be 

collected “on-demand” by several parties, including customers, providers and lawyers. A tool 

providing such functionalities was subsequently developed by Dykstra et al. [21] to support 

forensic acquisition of virtual disks associated with VMs, logs of all APIs requests made to the 

cloud provider for administering virtual machines, and OpenStack firewall logs for any of the 

customers’ virtual machines. Shields et al. [22] created a proof-of-concept continuous forensic 

evidence collection system that could be used in the cloud, for example, to record the deletion 

and creation of service provisions. However, in large scale environments like the cloud, 

monitoring all possible evidence is not a viable solution, as it might be cumbersome to analyse. 

Existing work has mainly focused on how evidence can be collected in the cloud without 

providing guidance on what data should be preserved. Although triaging techniques have also 

been proposed as a means of reducing the amount of data to be analysed in conventional 

investigations [23], they have not been applied to target evidence collection activities towards the 

preservation of the data necessary to investigate the security breaches that are more likely. 

Furthermore, none of the existing approaches have focused on how to adapt evidence collection 

depending on the potential attack scenarios brought about by the current cloud configuration. 

 Our approach automatically generates attack scenarios through planning in order to 

identify the security breaches that are likely and the evidence that should be collected to 

investigate them. Attack planning [5, 4] has mainly been used to anticipate zero-day attacks 

against the networked computing infrastructures of an organisation and to improve penetration 

testing tools. Krautsevich et al. [6] propose to generate attack scenarios depending on the 

knowledge and resources possessed by an adversary. The authors assume an attacker can 

recompute her strategy dynamically in case an attack step is unsuccessful. This allows companies 

to focus their security strategies to prevent the most likely attacks. Similarly, Sarraute et al. [7] 

generate attack scenarios by taking into account lack of knowledge an adversary has about the 
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network topology. LeMay et al. [8] represent explicitly how an adversary is likely to attack the 

system depending on her preferences, actions cost, payoff and probability of detection. However, 

automated attack planning research has not addressed the problem of effective evidence 

collection in the cloud. 

 In our approach attack scenarios are generated automatically after the model of the cloud 

configuration, the security breaches and the attack modules representing existing vulnerabilities 

are defined by the security administrator. Considering the vulnerabilities associated with specific 

software products installed allows us to identify concrete attack scenarios and hence specific 

monitoring activities that collect forensic evidence necessary to demonstrate that these attacks 

took place. Cloud security reference architectures [24] provide guidance for identifying potential 

misuse cases [25] arising from the interaction of stakeholders with the system and for detecting a 

set of security patterns, which include countermeasures to prevent or mitigate those misuse 

cases. Security patterns also include a general list of components of the cloud architecture, such 

as VMs and networks, from which forensic evidence regarding a specific misuse pattern can be 

found. Introducing the usage of a reference architecture in our approach could lead to the 

identification of a more complete set of security breaches, referred to as threats. However, 

reference architectures are too general and do not suggest ways to implement monitoring 

activities to collect forensic evidence of specific attacks. Moreover they do not consider 

adaptation of security patterns, which might be necessary when the cloud configuration changes. 

3. Adaptive Evidence Collection Scenarios 

 In this section we explain how cloud-related changes affecting virtual and physical 

machines and jurisdictions can require modifying the evidence collection strategy at the cloud 

service provider. 

 Virtual machine changes are related to the allocation/deallocation of new or existing 

VMs or to the modification of their software configuration. In particular, changes a customer 

performs on the VMs she is authorised to use, such as installation of third party applications, 

might introduce vulnerabilities that can be exploited by an adversary. The introduction of new 

vulnerabilities may require a change in the evidence collection strategy to be enacted since new 

or different attack scenarios might be likely. Privileges over a VM determine whether a customer 

is authorised to use a specific VM, deploy third party applications within the VM, or make a 

copy of the present state of the VMs, including all the data contained within or associated with 
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the VM. Privileges that are currently granted and revoked to customers over specific VMs can 

affect how possible attacks can be perpetrated, and, therefore, may require modification of the 

evidence collection strategy depending on their current state. 

 Similarly, physical machine changes are related to the acquisition/dismissal of 

new/existing physical machines or to the modification of their software configuration. These 

changes can affect how insider attacks [26] and intrusions are performed. For example, the 

physical machine on which a VM is hosted can affect potential attacks scenarios. For instance, if 

a VM is hosted on a physical machine an administrator can login to and make copies of VM 

images, confidential data could be stolen easily by a malicious administrator. In this case, it will 

be necessary to collect information related to VM copy operations and logins on the physical 

machine. However, in another case, if a VM is installed on a physical machine an adversary 

cannot login to, she must exploit existing vulnerabilities of that physical machine (e.g., perform a 

buffer overflow attack) to gain the root privileges and copy the image of the target VM. In this 

case, different evidence should be collected in addition to the evidence specified in the previous 

case (e.g., networks connections and open ports of the machine, executing processes). 

 Jurisdiction changes are related to the modification of the privacy or security regulations 

a cloud provider should comply with. Indeed some evidence collection activities might no longer 

be legal in the new jurisdiction and might be restrained. Cloud provider merges (e.g., cloud 

provider outsources part of its services to IaaS offered by other providers) are also relevant as 

they might require to include evidence collection activities to comply with the SLAs negotiated 

with external providers. 

4. Overall Approach 

 An overview of our approach is shown in Figure 1. A Planning activity generates 

potential attack scenarios by using the information coming from potential Security Breaches, the 

Cloud Configuration, and the possible Attack Modules. We assume that these models are initially 

created and periodically updated by the system administrators at the provider premises. 

 Security breaches represent possible criminal goals of an adversary, which may violate 

the policies of an organisation or the regulations of a specific jurisdiction in which the violation 

takes place. For example, an adversary can aim to steal customers’ sensitive data stored on a 

target VM, or compromise a physical/virtual host (e.g., by installing untrusted software that can 

escalate her privileges). An attack can be perpetrated by individuals assuming different roles. An 
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adversary can be an administrator appointed by the host company, a customer with allocated 

virtual machines or an external individual who is not authorised to use or access the cloud 

infrastructure. 

 The cloud configuration models object types, objects instantiations and their states. 

Object types can represent, for example, physical and virtual machines, authoritative domains, 

installed software components, network connections, customers or system administrators at the 

hosting company. Object instantiations represent concrete objects of a specific type. Initial states 

can be used to identify, for example, the location of physical and virtual machines and their 

software configuration, network connections, open ports of physical and virtual hosts, or the 

authorisations granted to customers and administrators. 

 The cloud configuration also includes the legitimate actions that can be performed by the 

customers and system administrators within the cloud deployment. These are expressed in terms 

of pre- and post-conditions (effects) on the state of some of the objects represented in the cloud 

configuration. For example, some actions can be used to allocate/deallocate a VM, perform 

login/logout, or copy the image of a VM hosted on a physical machine. In this example, the 

pre-condition necessary to perform a copy of a VM image is that the user is an administrator 

logged on the physical machine hosting the target VM and s/he is authorised to perform a copy 

of the VM image or the user is a customer that has been allocated the VM and s/he is authorised 

to use it. 

 Attack modules represent malicious actions that can be performed by an adversary to 

compromise a virtual or physical host. These actions can also be expressed in terms of pre- and 

post-conditions on the state of the objects belonging to the cloud configuration. Attack modules 

leverage vulnerabilities that are present in existing hosts. For example, the following action 

( ) represents a local exploit that uses a vulnerability
2
 of VMware 

Workstation (versions 5.x and 6.x), which allows a local user to gain root privileges by installing 

a library path option in a configuration file. In this action parameter  is used to identify a 

physical machine ( ). The precondition requires either the existence of a user ( ) 

administering a physical machine to be logged on to it or the physical machine to be 

compromised. The physical machine should also run VMWare Workstation (versions 5.x or 6.x). 

The post-condition represents the fact that a local exploit is installed and has assigned root 

                                                 
2
http://www.cvedetails.com/cve/CVE-2008-0967/ 
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privileges. 

 We recognise that many of the vulnerabilities exploited by available attack modules can 

be patched by cloud providers. However, for some exploits a patch might not be available yet or 

the cloud provider may be at the mercy of the customer when it comes to applying patches 

(especially for IaaS cloud deployments). 

 The Attack Scenarios generated by the planning activity represent a sequence of 

legitimate or malicious actions that an attacker can perform to achieve a specific goal. We 

express the planning problem by using PDDL (Planning Domain Definition Language)
3
. A 

PDDL planning problem is expressed in terms of a domain and a problem definition. Different 

problem definitions may be connected to the same domain description just like several instances 

may exist of a class in Object Oriented Programming. The domain definition includes a 

representation of the objects types, constants, predicates expressed on objects and constants, and 

a set of actions. Each action has a set of parameters (variables that may be instantiated with 

objects), preconditions and effects. The problem definition includes the definition of all the 

possible objects, the initial conditions of the planning environment (a conjunction of true/false 

facts), and the definition of goal states (a logical expression over facts that should be true/false in 

a goal-state of the planning environment). The output of the planner is usually a totally or 

partially ordered plan (a sequence of actions) necessary to achieve the goal specified in the 

problem definition from the initial conditions of the planning environment. 

 In our approach we use the domain definition to model object types, such as physical and 

virtual machines, and their states (i.e. predicates expressed on these objects). We also use the 

                                                 
3
http://en.wikipedia.org/wiki/Planning_Domain_Definition_Language 
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domain definition to represent the legitimate actions that can be performed by cloud users and 

administrators as well as malicious actions performed by an adversary (attack modules). The 

problem definition is used to define concrete object instantiations of a specific type in the cloud 

environment and their initial state. In our case, the goal state refers to a specific security breach 

that the attack scenario aims to achieve. The output of the planner returns a sequence of 

legitimate or malicious actions that an offender can perform to achieve a specific goal. We chose 

to use PDDL as it is widely supported by several planners and allows ranking potential attack 

scenarios depending on specific metrics, such as number of actions in the scenario, or estimated 

harm caused by the attack, which are fundamental features to prioritise evidence collection 

strategies. 

 The Evidence Collection activity can be configured systematically after possible attack 

scenarios are generated. The evidence that should be collected is that necessary to verify whether 

the post-conditions of each (legitimate or malicious) action within the attack scenario are 

satisfied. This information can be extracted from the events recorded in the log files associated 

with the software installed in the cloud deployment. We expect that collected evidence will be 

useful during future investigations to reconstruct the events leading to a security breach and 

locate the vulnerabilities that were exploited. 

 The elasticity of a cloud environment requires continuous monitoring of cloud related 

changes (e.g., location of physical and virtual machines, software configuration of physical and 

virtual hosts). Such changes must be reflected on the domain and problem definition used during 

planning. To achieve this aim, we also configure a Monitoring activity which identifies potential 

changes that may affect the state of the objects instantiated in the problem definition, update the 

problem definition accordingly, and trigger a re-planning of the attacks scenarios. Updates of 

existing attack modules are also taken into account, as they can modify potential attack scenarios 

and, consequently, the evidence collection activities. We assume security administrators are 

notified when vulnerability databases contain new entries for the specific software versions 

installed in the current cloud deployment. Finally, we assume that modifications of the type of 

the objects belonging to the cloud configuration (e.g., a new software can be installed) are 

performed manually by the security administrator and may trigger updates when the new 

software is bringing known vulnerabilities. 

5. Attack Scenarios Generation 
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 In this section, we describe how the cloud configuration, the security breaches, and the 

attack modules are represented in PDDL, by using a simplified example of an Infrastructure as a 

Service (IaaS) cloud deployment. Subsequently, we explain how these models are used during 

planning to generate the attack scenarios. In particular, we consider two sets of scenarios, Insider 

attacks, where the adversary is an authorised individual at the cloud service provider premises, 

such as a malicious administrator, and Outsider attacks, where the attacks are perpetrated by a 

malicious customer or an external adversary. We also explain how changes in the cloud 

configuration trigger modifications in the attack scenarios (and, therefore, in the evidence 

collection strategy described in Section 6.1). 

5.1. Cloud Configuration, Attack Modules, and Security Breaches 

 The initial Cloud Configuration of our example cloud deployment is presented in Figure 

2. It comprises three physical machines ( , , and ) located within two different domains 

(  and ). All machines can accept network connections from the others.  and  belong to 

domain a while  belongs to domain . Each physical machine can host VMs; for example,  

hosts virtual machines . Each physical and virtual machine is characterised by a specific 

software and network configuration. Although we identified the VMs (in grey) hosted on each 

physical machine, for reasons of simplicity in this initial scenario we only consider the 

configuration of the physical machines. We subsequently introduce some of the configuration of 

the virtual machines when describing further attack scenarios. 

 Each physical machine is described by its operating system, virtualisation software, open 

ports and offered services. For example, as shown in Figure 2, the operating system ( ) of  

and  is , while the operating system of  is . The 

virtualisation software ( ) of , , and  is 

, , and , respectively. Ports  and  

are used for TCP networking and Web2Host connections, respectively. The services offered by 

each machine are Ruby vSphere Console ( ) on , Application Lifecycle Service ( ) on 

m2, and Shared Trace Service ( ) on . The  service is a Linux console UI for the 

VMWare vCenter Server Appliance v5. Access to this console allows users authenticated 

remotely to execute arbitrary commands as root, potentially granting themselves administrative 

privileges. The  service offered by the HP Helion Cloud Development Platform allows users 

to create VMs using a seed node image, where all VMs sharing the same node image also share 
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the same security key. Therefore a user having access to one of these VMs can also access the 

other ones created with the same seed node image. The  service of HP OpenStack 

Overview 7.5 is used to log the actions performed by the OpenStack components for debugging 

purposes. 

 We also represent cloud users (administrators and customers) and their privileges, 

explicitly. In this initial scenario we have one administrator ( ) who is authorised to login 

to  and  and perform copies of the images of the virtual machines hosted on . 

 The planning problem can be expressed in terms of a domain and a problem definition. 

The domain definition comprises a representation of the objects types, the legitimate and the 

malicious actions (attack modules) that can be performed, and the predicates adopted in the 

actions specification. The problem definition includes the objects instantiations in the cloud 

environment, their initial state and the potential crime goals. 

 The object types are defined using the :  keyword. Examples of object types 

representing virtual machines, physical machines, users, services and ports are expressed as 

follows. 

  

Some object types have constant values and are specified using the :  keyword. In 

particular, a set of constant names is followed by its type (preceded by symbol ‘–’). The 

following constants identify port  and the , , and  services. 

 

 The domain model also includes predicate definitions (keyword : ). The 

predicates are used to define the required pre- and post-condition of the possible actions. Each 

predicate is specified by a name and a set of parameters ( < > – 

< >. Some of the predicates are presented below and allow identifying the 

physical machine hosting a VM ( ), the operations an administrator is allowed to 

execute on a physical machine ( ) and the user authorised to use a VM 

( ). 
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 The following example describes a legitimate action ( ) that can be performed 

to copy a virtual machine. Actions are expressed in PDDL by using the :  keyword. An 

action is characterised by a name, pre- and post-conditions (effects), and a set of parameters used 

in the definition of such conditions. Pre-conditions and effects are expressed as a set of 

predicates in conjunction or disjunction. The precondition for copying a VM is that either a) a 

user is an administrator that is logged on the physical machine on which the VM is hosted and 

has the right to copy the VMs hosted on it, or b) the user is a customer who is logged an on the 

VM allocated to her and is authorised to perform a copy, or c) the VM is allocated on a 

compromised physical machine. If either of these conditions is satisfied the VM image can be 

copied. 

 Attack modules describe the malicious actions that can be performed by an adversary to 

exploit the vulnerabilities brought by the software installed in the physical and virtual machines 

that are present in the cloud configuration. We use the Common Vulnerability Exposure database 

(CVE) to identify the vulnerabilities associated with each software version and assess how they 

can be exploited. From this information the security administrator can define the action 

describing how the attack modules can exploit the vulnerabilities. Such actions are included in 

the domain definition. 

 For example,  virtualisation software 

Page 14 of 42



introduces a new vulnerability (
4
). In particular, this vulnerability can be 

exploited by the  attack module, which can be performed if a user is 

logged on a VM allocated on a physical machine running VMWAre vCenter version 5.x. The 

effect of this attack module is to allow a VM user to run the rvc service on the physical machine 

in which the vm is allocated. This enables the precondition of  attack 

module, and allows a user to grant herself the administrator privileges on the physical machine 

hosting the vm and the right to perform logins and copies of the VMs allocated on that machine. 

 Security breaches represent the goals of an adversary, such as unauthorised access to a 

customer’s sensitive information or escalation of privileges on a physical or virtual machine. 

Security breaches are represented as :  in the PDDL problem definition and represent the 

final state that must be achieved after the actions comprised in an attack scenario are executed. A 

possible security breach can be determined when there exists a malicious user who is authorised 

to use a VM ( ) that is not being assigned to him ( ) 

and performs a copy of the VM image ( ). This security breach is described by the 

following PDDL code snippet. 

                                                 
4
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5.2. Planning 

 We use a planner to determine whether there exists a sequence of legitimate or malicious 

actions, given an initial state of the system, that would make it possible for an adversary to 

perpetrate a security breach. If such a sequence of actions exists, it forms an attack scenario. The 

planner accepts as input the PDDL domain definition described in the previous section and the 

problem definition. The problem definition represents concrete object instances, their initial 

states, and the objective to be achieved (i.e. security breach). The problem definition makes use 

of the objects types and predicates defined in the domain model of the cloud configuration. For 

example, in the problem definition below ( ) we leverage the domain definition partially 

presented in the previous section ( ) to represent objects instantiations, such as 

physical machines ( ,  and ), virtual machines ( ,  and ), users ( , ,  and 

) and administrative domains (  and ). The problem definition defines the 

initial state of the objects from which an attack scenario aimed to achieve a security breach 

should be perpetrated. In this example, each VM is hosted ( ) on a different physical 

machine, each physical machine exists in an administrative domain and each customer is 

authorised to use a different VM. The problem definition also includes the security breach to be 

achieved (i.e. the crime goal described earlier). 
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 We model the domain and problem definitions by using PDDL 3.0 and use SGPlan5
5
 to 

generate possible attack scenarios. The rest of the section describes examples of possible insider 

and outsider attack scenarios
6
. 

5.2.1. Insider Attacks 

 An insider attack originates from people within the organisation, such as employees, 

former employees, contractors or business associates, who have insider information concerning 

the organisation’s security practices, data and computer systems. The domain and the problem 

definition reflect the cloud configuration presented in Figure 2. In this scenario the administrator 

( ) at the hosting company is authorised to login to the physical machines (  and ) of 

her authoritative domain ( ) and perform copies of the images of the VMs hosted on . 

Possible attack modules include  (presented in Section 4), which 

exploits a vulnerability present in VMWare vCenter SA 5 virtualisation software. 

 For example, a malicious adversary can be an administrator ( ) who aims to copy 

the image of a VM (e.g.,  hosted on ) containing sensitive information of a customer 

(predicate ), while she is logged to the physical machine hosting the VM (predicate 

). This security breach can be expressed as follows. 

To achieve the above goal and adversary can perform the following sequence of actions from the 

cloud configuration represented in Figure 2. These are the actions comprised in the attack 

scenario identified by the planner (Case 1.1). 

The administrator can login to , since she has the right to do so as  belongs to her 

administrative domain ( ). Subsequently, she can execute an 

 to compromise  (i.e. gain root privileges), and copy the image 

                                                 
5

 
6
A complete description of the examples can be found at 
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of v8. 

 If the target virtual machine (e.g., ) is hosted on a physical machine ( ) that does 

not belong to the authoritative domain of the administrator, the number of steps required to copy 

the image of  increases, as shown in the following attack scenario (Case 1.2). 

First, the administrator has to compromise  (steps 0-2), as explained in the previous attack 

scenario. Subsequently, she connects to  to run service  on port  and executes 

the HP openview remote buffer overflow attack module
7
 (steps 3-6). This exploits a 

vulnerability present in ( ), which allows an 

adversary to assign herself the root privileges when the ovtrcd service is executed. Subsequently, 

 is marked as compromised and the admin can copy the image of  (steps 7-8). 

5.3. Outsider Attacks 

 Outsider attacks are perpetrated by individuals from outside the organisation who do not 

have information related to the organisation security practices, data and computer systems. 

Outsider attackers can be registered customers or external individuals. To generate the attack 

scenarios we refer to the cloud configuration specified in Figure 3. In particular, we specify the 

permissions of three customers:  and  use virtual machines  and , respectively, hosted 

on , while  uses  hosted on . Based on this modified cloud configuration, a malicious 

customer (  or ) can aim to copy the image of a virtual machine (e.g., ) allocated to 

another customer (e.g., ). This security breach can be expressed as follows, where the goal of 

a malicious user c is to become an authorised customer of  that is already in use by another 

customer. 

                                                 
7
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In this case the planner generates the following attack scenario (Case 2.1). 

 For example,  can perform the login to her virtual machine, since she has the right to 

do so and exploit the vulnerability
8
 present in  virtualisation software to run the  service. 

Using the this service  can grant herself administrative privileges over  (steps 0-2). By 

using such privileges she can establish a network connection with  and allocate a new virtual 

machine (e.g., ) on her behalf (steps 3-4). Subsequently,  can login to the newly created 

virtual machine and exploit the vulnerability (
9
) brought by the HP Helion 

Cloud Development Platform installed on . In particular, since all virtual machines created 

using the  seed node image have a universal security key by default, the customer can access 

the other VMs in the  cluster that share the same security key. In the attack scenario above 

 exploits the security key generated for her VM ( ) to login to , which is allocated to 

another customer (steps 5-7). 

 In a second scenario, Case 2.2, a virtual machine related change takes place. In particular, 

customer  installs the  ( )  to host web 

content. The customer can manage the web content by accessing Gecko through a standard web 

browser, such as Google Chrome. The new cloud configuration is shown in Figure 4. Changes in 

the cloud configuration may determine changes in the attack modules available in order to reflect 

the vulnerabilities brought by the new software. In this case, for example,  brings 

a cross-site request forgery (CSRF) vulnerability (
10

), which allows remote 
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adversaries to hijack the authentication of legitimate users. This can be achieved by including a 

link or script in a page that accesses a site to which the user is known (or is supposed) to have 

authenticated access. For example, an adversary can circumvent the customer by enforcing her to 

open an HTML image element that references an action on ’s virtual machine, such as a 

 request creating a new VM user. Due to the CMS vulnerability it is likely that ’s 

browser keeps her authentication information in a cookie. If the cookie has not yet expired, the 

attempt by ’s browser to load the image will submit the malicious request to  successfully 

without asking for ’s approval. As a result, the external adversary can login to  as a 

legitimate user. 

 For this case, we hypothesise that an unknown adversary ( ) aims to gain access to a 

specific virtual machine (  hosted on ). The goal of the adversary in this case is the same as 

the one defined for Case 2.1. For this security breach, the planner generates the following attack 

scenario. 

In this scenario,  logins to  and connects to the  through a web browser (steps 

0-1). The external attacker  can enforce the execution of a command from ’s browser that 

creates a new local user of  by exploiting the CSRF vulnerability brought by the CMS (step 

2). Once  has access to , she can exploit the  service to grant herself administrative 

privileges
11

 (steps 3-4). Using the administrative privileges, she can subsequently connect to , 

as  runs , and allocate a new virtual machine ( ) (steps 5-6). The external 

adversary can finally exploit the  vulnerability 

                                                 
11

 

Page 20 of 42



12
 to gain access to v7 hosted on m2 (steps 7-9). 

 In the last case (Case 2.3) we deal with an unknown adversary ( ) trying to gain 

access to the database content ( ) associated with a specific VM (e.g., ). The cloud 

environment is the same as the one presented in Figure 4. This is a relevant case as it resembles 

the security breach [2] that arised at JP Morgan Chase last year. This security breach can be 

expressed as follows, where the goal of an adversary ( ) is to become an authorised user of v7 

(predicate ) that is already in use by another customer (predicate 

) and copy the content of a database (predicate ) stored on  

(predicate ). 

The attack scenario generated by the planner slightly extends the one presented in the previous 

case adding additional actions related to the database. 

In particular, once  has gained access to  (steps 0-9), she can connect to the database  

using the same credentials she has used to access  (step 10) in order to perform a query on the 
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relevant tables and subsequently copy their content (steps 11-12). In this case an adversary is 

able to gain access to the database content since the cloud provider does not require two-factors 

authentication to access the resources (database) installed in the VMs. 

6. Evidence Collection and Monitoring 

 The attack scenarios generated from the representation of the cloud configuration, the 

security breaches, and the attack modules are used to configure the evidence collection activities. 

We also define the monitoring activity to identify potential changes that may affect the cloud 

configuration and cause modifications in the attacks scenarios. The remainder of this section 

describes the evidence collection and monitoring activities. 

6.1. Evidence Collection 

 The evidence collection activity aims to identify and preserve data indicating that the 

basic actions comprised in the attack scenarios are taking place. During a digital investigation, 

the evidence collected helps demonstrate if and how a security breach took place. Moreover, it 

allows identifying the individuals (customers and providers) responsible for introducing the 

vulnerabilities exploited by the malicious actions comprised in the attack scenario. 

 We map each action in the domain definition to a specific log entry of the software 

affected by the action execution. As the format for log data varies based on the software 

generating the logs we consider a generic and standard format to represent log entries. Our 

format includes the following fields: date and time of action, action identifier, user identifier, 

user IP, additional parameters, action effects, and log source. Additional parameters cover those 

included in the action representation modelled in the domain definition. The log source allow 

identifying the software and the virtual and/or physical machine generating the log entry. 

However, not all fields identified in our generic format have to be mapped to the specific fields 

of a log entry. For example, the log entries related to a user’s login request to a VM only include 

her IP address, while the log entries identifying the authorisation performed during the login can 

also include the user ID and her credentials. 

 An example of a log entry extracted from the log of a VMWare ESXi Client application 

recording user login authorisation to access a specific VM is presented in Figure 5. This log 

entry is associated with the  action in the domain definition. This figure maps the 

log entry fields to our generic log format. Note that the parameter of the  action 

include the user ID and the VM a user is trying to access. The former parameter is inferred 
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directly from the log entry, while the VM is identified from the block of grouped log entries 

pertaining to that VM (e.g., ). Note that the format of the log entries varies depending on 

their source. For example the action ID ([

]) in the log entry defined in Figure 5, would be different if 

another virtualisation software client is adopted. Therefore a mapping between the actions 

present in the domain definition and the ID’s identified in the log entries must be defined at the 

initial setup by the system administrator and updated based on the configuration changes in the 

cloud. 

 Log sources may differ depending on the cloud configuration. A broad categorisation of 

the sources of log data is provided as follows. 

• Application Logs are generated by any software installed in the cloud environment, such as 

Content Management Software (Gecko CMS), Virtual Machine Managers (VMWare vCenter or 

ESXi) or Cloud development platforms (HP Helion). 

• Web Server Logs include information (e.g., user IP addresses, request time/date, address of the 

VM being accessed) about accesses to the VMs. 

• Database Logs contain information generated by database management systems (e.g., IBM 

DB2, Oracle DMS, MongoDB) about queries performed to existing databases, the content 

associated with a query and modifications of databases content. 

• Network Logs are generated by both the web server and the operating system running on a 

physical machine. They record information about how network connections are established, the 

data traffic on the network and who requested the connection. 

• System Logs are generated by the operating systems running on the physical machines 

belonging to the cloud deployment. For example, VMWare WorkStation record information 

about the use and performance of resources. These logs can be further categorised into: 

 – Identity Manager Logs containing data pertaining authentication attempts. 

 – Deployment Logs recording how various resources, such as databases, storage and 

development platforms, are deployed across the cloud, their virtual and physical addresses and 

how and by whom they can be accessed. 

 – Security Logs containing data about login attempts, and granting of user privileges. 

 The attack scenario presented in Case 2.1 described in Section 5.3, deals with an 

authenticated customer gaining access to a VM allocated to another customer. An example of the 
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log data collected for this attack scenario is presented in Table 1. For example, the log entry 

corresponding to the  action is inferred from the web server, application and 

system logs. The web server logs provide the user IP and the date and time a user tries to login to 

her VM. The application logs provide information about which VM a user is attempting to 

connect to while the system logs include information regarding users’ authentication and its 

corresponding outcome. 

6.2. Monitoring 

 Changes in the cloud configuration, i.e. virtual machine or physical machine changes 

described in Section 3, may require the regeneration of the attack scenarios and, consequently, 

modification of the evidence collection strategy. Therefore data identifying virtual and physical 

machine changes must be monitored automatically. Examples of relevant changes are those 

determining the allocation/deallocation of VMs on a physical machine. The data to be monitored, 

pertaining to the allocation/deallocation of VMs, would be generated by the virtualisation 

software installed on the physical machines. Other changes to be monitored are modifications of 

the software configuration of physical and virtual machines. In order to identify software 

configuration changes, the system logs, specifically deployment logs, generated by the operating 

system and virtualisation software deployed on different physical machines must be monitored. 

These changes also require the system administrators to identify the vulnerabilities 

introduced/removed by the software installed/uninstalled, and to update the attack modules 

included in the domain definition accordingly. 

 The evidence collection strategy must be updated in order to reflect the changes in the 

attack scenarios. If the new attack scenarios do not comprise actions that were included in the 

previous evidence collection strategy, the log entries associated with the execution of such 

actions must be removed from the evidence collection strategy. In particular if the attack 

scenarios comprise new (legitimate or malicious) actions that were not identified in the previous 

set of attack scenarios, the log entries associated with those actions must be included in the 

evidence collection strategy. For example, consider the attack scenarios generated for Case 2.1 

and Case 2.2 described in Section 5.3. The difference in the cloud configuration between cases 

2.1 and 2.2 is in the installation of  in . The  software introduces a 

new vulnerability into the cloud as described in Section 5.3. The vulnerability introduces a new 

set of attack modules that can be executed by an adversary to gain access to a VM that she is not 
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authorised to use. When the monitoring activity detects the software configuration changes, it 

regenerates the attack scenarios based on the new vulnerabilities introduced by the change and 

the evidence collection activity is adapted accordingly. Table 2 identifies the differences in the 

actions comprised in either attack scenario. Additional actions included in the attack scenario 

generated for Case 2.2 are  and . These 

new actions require the logging of access attempts performed by legitimate customers and the 

authorisation of external users to access a VM. Data pertaining to these actions can be found in 

the Web Server logs, Identity Manager logs and Security Logs. 

7. Evaluation 

 We evaluated our approach from both a qualitative and a quantitative perspective. From a 

qualitative perspective we estimate the percentage of data that our approach avoids collecting, 

compared to the case in which all possible data are preserved. We also discuss the effectiveness 

of our approach in handling false positives and negatives. From a quantitative perspective, we 

measured the overhead of generating attack scenarios and performing evidence collection 

activities in a real cloud environment. 

7.1. Qualitative Evaluation 

 Our approach for adaptive evidence collection reduces the quantity of log data to be 

collected and stored for future use during digital investigations of security breaches in the cloud. 

The log data comprises events generated from the software installed in the physical machines, 

network traffic, allocation/deallocation of virtual machines, and changes in their software 

configuration. Preserving all the log data increases the operational cost due to the requirement of 

external storage capabilities. It also increases the effort necessary to forensic examiners and 

automated tools to analyse the data in order to reconstruct the events leading to a security breach. 

As an example, let us consider a medium sized organisation [27] composed of around 250 users, 

250 user end points, 5 offices, 2 subnets, 2 databases, and a central data centre. We can assume 

that each subnet has an IPS, a switch and gateway/router, and the whole organisation has 2 

firewalls and a VPN. In such a scenario potential evidence includes events generated from each 

user end point, such as login/logout, files access/creation/modification/deletion, and network 

traffic. We estimated having 50 Events Per Second (EPS) during non peaks and 2500 EPS during 

peaks. If an organisation experiences peaks for 5% of the total time, we will have an average of 

215 EPS (125 EPS for non-peak and 90 for peak) and, consequently, around 278640000 events 

Page 25 of 42



in 15 days. Assuming that each event occupies around 50KB, the size of the database storing 

events happening within 15 days should be at least around 15TB. 

 Our approach uses attack scenarios to focus data collection only on the events that might 

be relevant for investigating possible security breaches, i.e. those determining whether the steps 

of the attack scenarios took place. Quantifying the reduction in the evidence to be collected 

highly depends on the cloud configuration and on the actions comprising the attack scenarios. In 

this section, we compare the number of actions whose log entries that the attack scenarios 

prescribe to collect with all possible log entries that can be collected. These possible log entries 

correspond to the actions defined within the domain definition of the cloud environment as 

described in Section 4. 

 Table 3 shows a rough estimation in the reduction of collected evidence for all cases 

presented in Section 5. For example, the cloud configuration shown in Figure 2 includes 11 

unique action types, dealing with the creation, allocation and deallocation of VMs, the 

authentication and authorisation of users, and the execution of services and malicious actions 

exploiting vulnerabilities. The attack scenario generated in Case 1.1 for this cloud configuration 

only includes 4 unique action types. Therefore, our approach only prescribes to preserve the log 

entries associated with the action types identified in the attack scenario as opposed to those 

identified in the domain definition, reducing the amount of log data preserved by 63%. As 

described earlier, when a new attack scenario is generated any additional action to be monitored 

is added to the evidence collection activity. Starting from Case 1.1, we include attack scenarios 

incrementally, adapt the evidence collection activity accordingly, and calculate the reduction in 

the amount of data collected. However, note that this an estimated theoretical measure that 

depends on the cloud configuration adopted. As described in Section 7.2, in real cloud 

environments this measure can vary depending on the number of actions that are executed at 

runtime, which determine the amount of log entries that are generated dynamically. 

 Another advantage of our approach is that it adapts the data collection strategies as soon 

as changes in the cloud configuration or in the available attack modules are detected. These 

modifications determine the generation of new/different attack scenarios that drive the adaptation 

of the evidence collection strategies. 

 False positives and negatives can threaten the validity of our approach. False positives 

correspond to attack scenarios that do not lead to security breaches. This can happen when a 
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vulnerability exploited by an attack module comprised in the attack scenario has been fixed. For 

example, if we consider the second insider attack described in Section 5.2.1, we can give rise to a 

false positive if Windows Xp ServicePack 2 installed on M3 is updated and its vulnerability 

( ) is fixed. Additionally, false positives can also arise when specific security 

controls have been put in place by cloud security administrators to prevent generated attack 

scenarios. For example, to make it less likely or invalidate the insider attack scenarios described 

in Section 5.2.1, additional authentication can be required to perform a copy of a VM. Although 

false positives are undesirable, they do not pose risks in terms of loss of data that might be 

relevant in future digital forensic investigations. Instead, they might cause the collection of 

irrelevant evidence. False positives can be avoided by re-generating the attack scenarios over an 

updated domain model reflecting the current cloud configuration, where the legitimate and 

malicious actions reflect the information coming from the security controls and the vulnerability 

databases, respectively. 

 False negatives can pose higher security risks since they represent the missed 

identification of potential attack scenarios, which can cause the loss of evidence that might be 

relevant in future digital forensic investigations. False negatives might arise from an incomplete 

domain definition that does not include all cloud configuration components (e.g., installed 

software, allocated VMs and storage), it might neglect legitimate actions that a user is allowed to 

perform, or it might not cover all possible attack modules exploiting known vulnerabilities. In 

such cases, false negatives can be avoided by constantly updating the representation of the cloud 

configuration and the attack modules as soon as changes in the real cloud platform take place or 

when vulnerability databases are updated with new vulnerabilities that can be brought by the 

software installed in the cloud platform. In other cases, false negatives might be caused by 

vulnerabilities that are not known to the software vendor and might lead to unexpected zero-day 

attacks. To address false negatives a possible solution would be to preserve all the logs 

associated with the software components of the cloud configuration. However, this solution 

might be inefficient as it can have increased time and storage overheads. An alternative solution 

would be to use honeypots [28], which are decoy servers used as a trap to detect and analyse 

(new) malware, the vulnerabilities they exploit and their possible sources. Malware identified 

with honeypots can be used to update the domain definition with new attack modules, triggering 

an update in the possible attack scenarios and in the evidence collection activities. However, we 
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recognise that malware analysis cannot always be fully automated. Further investigation on the 

use of honeypots to update attack modules will be addressed in future work. 

7.2. Quantitative Evaluation 

 We assessed the efficiency of the planner (SGPlan5) in generating attack scenarios for 

cloud configurations of increasing complexity, and the absolute and relative overhead in terms of 

storage capacity and time necessary to perform evidence collection activities in a real cloud 

infrastructure. 

7.2.1. Planning Efficiency 

 We measured the efficiency of SGPlan5 for generating attack scenarios for cloud 

configurations of increasing size (problem expansion) and attack scenarios comprising an 

increasing number of actions (attack expansion). Our experiments were conducted on an Ubuntu 

(64bit) virtual machine using 6GB RAM and hosted on a Mac OS 10.10.2, with 2.6GHz Intel 

Core I7 processor and 16GB RAM. 

 Problem Expansion. For the first experiment we consider a cloud configuration where the 

size of the problem definition is expanded at each iteration, while the number of steps of the 

generated attack scenarios remains constant (8 steps). We expand the size of the problem 

definition by starting from the cloud configuration defined in Section 5.1, hereafter referred to as 

a machine cluster. In particular, our machine cluster consists of 10 virtual machines, hosted on 3 

physical machines, where each physical machine in the cluster can establish a network 

connection to each other. Each cluster is connected to another one in sequence, i.e. a machine in 

the cluster can establish a network connection with a machine belonging to a subsequent cluster. 

In this way all machines in a cluster are reachable by traversing a specific number of machines in 

the cloud configuration. We start from 5 machine clusters and progressively add 5 machine 

clusters to the cloud configuration. The crime objective is to gain credentials to login to  

belonging to the first cluster included in the cloud configuration. The time taken by the planner 

to generate the attack scenarios for cloud configurations having an increasing number of entities 

(e.g., VMs, physical machines, and networks) is presented in Table 4. From our results, we can 

deduce that the time increases exponentially depending on the size of the problem definition. 

 Attack Expansion. In this case we adopt and maintain a cloud configuration comprising 

30 machine clusters. The crime goal at each iteration is to gain login credentials to access a 

physical machine belonging to a farther machine cluster. In particular, at each iteration the crime 
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goal changes in order to enforce the generation of attack scenarios that should traverse five more 

clusters. The time taken by SGPlan5 to generate the attack scenarios comprising an increasing 

number of actions is presented in Table 5. From this table we can deduce that the complexity of 

the attack scenario does have an impact on the efficiency of the planner. However this is 

marginal compared to the impact determined by the cloud configuration size shown in Table 4. 

7.2.2. Overhead of Evidence Collection Activities 

 To assess the overhead of evidence collection activities we developed a more complete 

example leveraging databases and storage resources. Our example was deployed on the Google 

Cloud Platform
13

; this choice allows repeatability of results as Google Cloud Platform provides 

consistent CPU, memory and disk performance. 

 The cloud configuration of our example is very similar to that proposed to explain the 

attack scenarios generation in Section 5. It comprises physical machines  and , which were 

hosted in North America, and physical machine , which was located in Europe. Each physical 

machine can accept network connections from the others and can host some VMs. In particular, 

 hosted , ,  and ,  hosted ,  and , and  hosted  and . As the 

software configuration of each physical machine is not released publicly by Google Cloud 

Platform, we assumed that the service provider has no control over it. Each VM type was 

, which allocates a single CPU on the Intel Sandy Bridge platform with a memory of 

0.6GB. The operating system of each VM was Ubuntu 14.04 LTS. Virtual machines  to  

served as backend servers controlled by the cloud service provider while  to  were 

designated as allocatable frontends, which could be outsourced to customers to run their own 

applications. 

 The backend VMs ran the MongoDB database software which provided database access 

to the applications running on the frontend VMs. This example focuses on the vulnerabilities 

introduced by MongoDB, specifically 
14

 and 
15

. The 

vulnerability described in  allows an authenticated user to obtain internal 

system privileges by leveraging username “ ”. This would allow a user to escalate her 

privileges and gain access to data in the database associated with other VMs not allocated to her. 
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The vulnerability described in  allows a user with the appropriate privileges 

to copy the credentials granted to other users of the database. This was caused by MongoDB 

disclosing the users’ credentials in its log files, which are accessible by users having root 

privileges. In this example we consider two users  and . The frontend VMs ,  and  

are allocated to , while  and  are allocated to . The database  is hosted on . 

The security breach we considered in this example was  being able to copy the credentials of 

. The attack scenario generated for this security breach is the following: 

 In this scenario,  performs the login to  and requests access to the database (steps 

0-1). Then, database  is allocated to  used by  (step 2), and  authorises an 

application installed by  on  to access the database (step 3). Subsequently,  exploits a 

vulnerability of  to mask her username and escalate her privileges (steps 4-5). Once 

 has escalated her privileges, she can gain command line access and copy the credentials of 

another user, e.g.,  (steps 7-8). This is due to the fact that anytime a user accesses the 

database, her credentials are written in the MongoDB log file (steps 6). Once  has copied ’s 

credentials, she can execute the same operations  is granted to perform. 

 The operations identified in the attack scenario above were mapped to relevant log files, 

as shown in Table 6. Column Action ID identifies the action performed at each step of the attack 

scenario, while columns Log Type and Log Name refer respectively to the type and name of the 

log file from which evidence that the corresponding action is taking place should be collected. 

We also distinguish whether the log file is located on the backend or frontend VMs; this allows 

us to separate responsibility for evidence collection between the service provider and the 

customer, respectively. The log entries relevant to the attack scenario were extracted and stored 

in a separate file. 
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 For this example, log types can refer to: a) Cloud System Logs, containing operations 

related to the deployment of databases and VMs on physical machines, b) VM System Logs 

registering the operations performed within the VM by a customer such as installation of 

applications, accesses to a database, copies of data, and c) Application Logs, generated by the 

applications installed on a VM and containing user access history, operations performed and 

resources used. The log files from which evidence was extracted are the following: 

• auth.log contains log entries pertaining to the authorisation of customers logging to VMs. Each 

log entry includes the following fields: time, customer’s IP address, and SSH key used to 

perform the login. 

• activity_log.json records the system level operations performed by the administrator to handle 

customers’ requests and resource allocation. 

• mongodb.log includes the operations performed during the usage of the MongoDB application. 

• syslog.log is the system log generated by the operating system running on a VM. 

 As the frontend VMs of our scenario ran a web-based application accessing the 

MongoDB database, we simulated the customers’ utilisation of such applications by reproducing 

the behaviour (read/write operations) of the Yahoo! Cloud Serving Benchmark (YCSB)
16

, which 

is used to compare the performance of NoSQL database management systems, such as 

MongoDB. In particular we considered the following cases: 

• Case 1 considers the actions necessary to set up the cloud configuration shown in Figure 6 and 

those performed by customer  to perpetrate the security breach illustrated previously. 

• Case 2 considers the actions of Case 1 and assumes that the interaction of the customers with 

the frontend services generated 10000 operations requiring access to MongoDB. 

• Case 3 considers the actions of Case 1 and assumes that the interaction of the customers with 

the frontend services generated 50000 operations requiring access to MongoDB. 

• Case 4 considers the actions of Case 1 and assumes that the interaction of the customers with 

the frontend services generated 100000 operations requiring access to MongoDB. 

 Table 7 shows the operations generated for each case and the absolute and relative 

storage overheads determined by evidence collection activities. The relative storage overhead 

obtained by preserving only the log entries associated with the steps of the attack scenarios was 

about 30 KB for each of the four cases. As it is possible to note the reduction in the storage 
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overhead increases as the number of operations that are not related to the attack scenario 

increases. In particular, the reduction in the storage overhead was 96%  in Case 1 and reached 

99.9%  in Case 4. 

 As the time overhead determined by the attack scenarios generation has already been 

discussed in Section 7.2.1, we now assess the time overhead determined by the log extraction 

operations performed during evidence collection. In particular, we compare the time taken to 

extract the logs necessary to detect the attack scenario ( 3 0 KB) with that necessary to extract an 

arbitrary number of logs proportional to the number of customers’ operations performed in Cases 

2-4. Table 8 presents the amount of logs extracted and the corresponding time overhead. From 

our results we can conclude that the time overhead introduced by the evidence collection 

activities is minimal and linearly increases with the amount of logs to be extracted. 

8. Conclusion 

 In this paper we proposed the use of attack scenarios to configure evidence collection 

activities at the cloud service provider premises. In particular, we focused these activities on the 

preservation of the data necessary to detect the attack scenarios that can be perpetrated within the 

current cloud deployment. Moreover, we adapted evidence collection activities depending on 

changes in the cloud configuration or in the vulnerabilities that are brought by the software 

installed in the physical and virtual machines present in the cloud configuration. The method 

proposed in this paper can collect forensic evidence for those attacks exploiting known 

vulnerabilities and does not consider zero-day attacks exploiting unknown vulnerabilities. It is 

out of the scope of this paper to preserve evidence for security breaches determined by unknown 

vulnerabilities and this problem will be addressed in future work. 

 Our results demonstrate that using attack scenarios allows reducing the data collected in 

the cloud by focusing on those security breaches that are likely, while saving space and time 

necessary to store and process such data. Furthermore, planning techniques for generating the 

attack scenarios exhibit negligible times even for realistic data centres including 90 physical 

machines and 300 VMs. To generate attack scenarios for bigger cloud deployments in future 

work we will also investigate techniques to partition the domain and problem definition 

representing the cloud configuration. Although our approach has been applied to attack scenarios 

targeting cloud customers and providers of a IaaS cloud deployment, its benefits also apply to 

other cloud deployments, such as PaaS (Platform as a Service) and SaaS (Software as a Service). 
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 One of the limitations of our approach is the potential loss of relevant evidence in case 

some of the possible attack scenarios are not generated. To address this issue, we will investigate 

the use of mutation testing [29, 30, 31], which has been used to evaluate the quality of generated 

software test cases. Mutation testing aims to apply small modifications to a software program in 

order to check whether the test cases can identify the introduced fault. We can reuse mutation 

testing to apply small changes to the cloud configuration in order to identify whether some 

additional attack scenario can be realised. As described in Section 7.1, another solution to 

identify a more complete set of attack scenarios is to analyse malware collected through 

honeypots. In particular, we will analyse bot malware, which is self-propagating malware that 

infects a host and connects back to a central server forming a network of compromised devices. 

The identification of attack scenarios taking into account this kind of malware can be particularly 

useful for considering additional kinds of attack scenarios in which the cloud is used as a vehicle 

to perpetrate an attack. Finally we will map the model of the cloud configuration to existing 

cloud security reference architectures (e.g., [24]); this will make our approach more systematic 

as it would allow us to discover a more complete set of security breaches and attack scenarios 

arising from the interaction of the stakeholders with the cloud system. 

 Finally, we recognise that a further trigger for adapting changes in evidence collection is 

jurisdictional changes. These changes refer to the modification of the privacy and security 

regulations within the jurisdiction for which the cloud resources belong. A new regulation might 

allow for the collection of additional data or might further restrict what data can be collected. In 

either case, the evidence collection activity must adapt. How to adapt evidence collection 

activities depending on jurisdictional changes will be explored in future work. 
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Figure 1: Overview of our approach for adaptive evidence collection. 

Figure 2: Initial Cloud Configuration. 

Figure 3: Cloud Configuration - Known Outsider Attack. 

Figure 4: Cloud Environment - Unknown Outsider Attack. 

Figure 5: VMWare ESXi VI Client Log entry: User login authorisation to access a VM. 

Figure 6: Evaluation Cloud Configuration. 

 

 

Table 1: Log Data Generated in Case 2.1 

Acti

on # 

User IP Us

er 

ID 

Date/Tim

e of 

Action 

Action ID Action 

Paramet

ers 

Action Effects Source 

0. 209.121.62.

135 

C1 [15/Mar/2

015 

17:37:23 

+0:00] 

login-cust [C1 V5] “logged_cust 

C1 V5” 

Web 

Server 

Logs, 

Applicat

ion 

Logs, 

System 

Logs 

1.  C1 [15/Mar/2

015 

17:37:33 

run-service-rvc [C1 V5 

M1] 

“has_service 

C1 rvc M1” 

System 

Logs, 

Applicat
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+0:00] ion Logs 

2.  C1 [15/Mar/2

015 

17:37:43 

+0:00] 

make-admin-loc

al 

[C1 V5 

M1 

ALS 

DA] 

“authorized_a

dmin C1 

loginop M1” 

“admin-dom 

C1 DA” 

“authorized_a

dmin C1 

copyvm M1” 

“admin C1 

M1” 

System 

Logs 

3. 209.121.62.

135 

C1 [15/Mar/2

015 

17:37:53 

+0:00] 

connect-over-ne

twork 

[C1 M1 

M2 

port505

3 RVC] 

“has_credenti

als C1 M2” 

Network 

Logs, 

Web 

Server 

Logs 

4. 209.121.62.

135 

C1 [15/Mar/2

015 

17:38:03 

+0:00] 

allocate-vm [V6 C1] “use-vm C1 

V6” 

“authorized_c

ust C1 V6” 

Applicat

ion Logs 

5. 209.121.62.

135 

C1 [15/Mar/2

015 

17:38:13 

+0:00] 

login-cust [C1 V6] “logged_cust 

C1 V6” 

Web 

Server 

Logs, 

System 

Logs 

6.  C1 [15/Mar/2

015 

17:38:23 

+0:00] 

get-service-als [C1 V6 

M2] 

“has_service 

C1 als M1” 

System 

Logs, 

Applicat

ion Logs 

7.  C1 [15/Mar/2

015 

connect-unowne

d-vm 

[C1 V6 

V7 M2] 

“authorized_c

ust C1 V7” 

System 

Logs 
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17:38:33 

+0:00] 

 

  

Page 38 of 42



 

Table 2: Changes in the evidence collection strategy when moving from Case 2.1 to Case 2.2. 

Case 2.1 Case 2.2 Evidence 

Collection 

Change 

allocate-vm allocate-vm  

login-cust login-cust  

 connect-to-vm-browser Access to 

VMs 

performed 

by 

authorised 

customers 

through a 

web 

browser. 

 make-user-vm-gekco Creation of 

new users of 

the VM by 

Gecko CMS. 

run-service-rvc run-service-rvc   

make-admin-local make-admin-local   

connect-over-network connect-over-network   

get-service-als get-service-als   

connect-unowned-vm connect-unowned-vm   
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Table 3: Reduction in Data Collection. 

Case No. # Cloud 

Configuration 

Actions 

# Monitored 

Actions 

Reduction 

Percentage 

1.1 11 4 64% 

1.1,1.2 15 8 47% 

1.1,1.2,2.1 19 14 26% 

1.1,1.2,2.1,2.2 23 16 30% 

1.1,1.2,2.1,2.2,2.3 30 19 37% 

 

 

Table 4: Evaluation of SGPlan5: Domain Expansion. 

# Clusters # VMs # Physical 

machines 

# Networks Time (sec) 

5 50 15 9 0.10 

10 100 30 19 0.87 

15 150 45 29 3.70 

20 200 60 39 10.13 

25 250 75 49 24.55 

30 300 90 59 46.79 
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Table 5: Evaluation of SGPlan5: Attack Expansion. 

# Clusters 

Traversed 

# Actions Time (sec) 

5 44 46.79 

10 89 49.32 

15 134 56.30 

20 179 68.74 

25 224 87.50 

30 269 116.13 

 

Table 6: Mapping the steps of the attack scenario to the relevant logs files. 

Action ID Log Type Log Name 

login_cust VM System 

Log 

auth.log 

(Frontend VM) 

request_db Cloud 

System Logs 

activity_log.JSON 

(Cloud) 

allocate_db Cloud 

System Logs 

activity_log.JSON 

(Cloud) 

autherise_to_db VM System 

Log 

mongodb.log 

(Backend VM) 

mask_username VM System 

Log 

syslog.log 

(Backend VM) 

escalate_privilege Application 

Log 

mongodb.log 

(Backend VM) 

login_db Application 

Log 

mongodb.log 

(Backend VM) 

write_db Application 

Log 

mongodb.log 

(Backend VM) 

get_service_cmdline VM System syslog.log 
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Log (Backend VM) 

copy_credentials VM System 

Log 

syslog.log 

(Backend VM) 

 

 

Table 7: Storage overhead. 

Case # of Actions Relative 

Overhead 

(KB) 

Absolute 

Overhead 

(KB) 

1 Setup 30 810 

2 Setup + 

10000 

30 7770 

3 Setup + 

50000 

30 35620 

4 Setup + 

100000 

30 70640 

 

 

Table 8: Time Overhead. 

Case Logs 

Extracted 

(KB) 

Real 

Overhead 

(sec) 

2 30 0.54 

 577 0.57 

3 30 1.89 

 2970 1.99 

4 30 2.95 

 6042 3.28 
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