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Techniques and issues in breath and clinical sample headspace analysis for 1 

disease diagnosis 2 

Claire Turner, The Open University, Walton Hall, MK7 6AA 3 

 4 

Abstract 5 

Analysis of volatile organic compounds (VOCs) from breath or clinical samples for disease 6 

diagnosis is an attractive proposition because it is non-invasive and rapid.  There are 7 

numerous studies showing its potential, yet there are barriers to its development.  Sampling 8 

and sample handling is difficult, and when coupled with a variety of analytical 9 

instrumentation, the same samples can give different results. Background air and the 10 

environment a person has been exposed to can greatly affect the VOCs emitted by the body, 11 

however this is not an easy problem to solve. This review investigates the use of VOCs in 12 

disease diagnosis, the analytical techniques employed and the problems associated with 13 

sample handling and standardization. It then suggests the barriers to future development. 14 

 15 

Keywords 16 

VOCs, breath analysis, biomarkers, SIFT-MS, GC-MS, headspace analysis, disease diagnosis, 17 

PTR-MS, e-nose, spectroscopy,  18 

 19 

Executive summary 20 

Introduction 21 

 It has been known for centuries that some diseases have an odour associated with 22 

them 23 

 Modern volatile organic compound (VOC) analysis for disease diagnosis has arisen 24 

from this  25 

The origin of VOCs 26 

 VOCs arise from normal or abnormal metabolic processes in the body and from the 27 

bacteria that live in or on the body 28 

 Some illnesses results in a difference of the profile of VOCs emitted in breath or from 29 

other body fluids 30 

 Infectious disease may also produce a change in the profile of VOCs. 31 

 VOCs also arise from the body through exposure to them in the environment 32 



Sampling and handling considerations 33 

 A major difficulty in using VOCs in diagnosing or detecting disease is being able to 34 

handle and store them 35 

 Whole breath may be analysed directly if it is possible to get the patient to the 36 

instrument 37 

 If it is not possible to do this, samples need to be stored 38 

 Whole breath can be stored in sample bags or evacuated metal canisters 39 

 If whole breath cannot be stored, sorbent methods such as SPME (solid phase micro-40 

extraction) or the use of sorbent tubes can be coupled with analytical techniques 41 

such as gas chromatography mass-spectrometry 42 

 These indirect methods are sensitive but not all compounds may be detected and 43 

quantified. 44 

Techniques 45 

 Trace gas analysis mass spectrometric techniques offer rapid and direct analysis but 46 

are often cumbersome and expensive 47 

 Laser based spectroscopic techniques are rapid and direct and may be used instead 48 

of mass spectrometry for some compounds 49 

 Non-specific sensors may be assembled into an array called an electronic nose, 50 

which respond to different odours by producing a complex signal.  E-noses are rapid, 51 

portable and relatively inexpensive but cannot identify individual compounds. 52 

 The most widely used technique is a combination of gas chromatography (GC) and 53 

mass spectrometry (MS).  Sample components are separated by GC and then 54 

identified by MS.  This is a powerful technique, but it is slow, cumbersome and 55 

expensive. 56 

Backgrounds 57 

 The environment to which a subject has been exposed will contribute its own VOCs, 58 

and these will be exhaled or excreted by the body for some time after, depending on 59 

their retention co-efficient in the body. 60 

 There needs to be some way of accounting for the variation in background 61 

environments to which subjects are exposed. 62 

 There is no perfect way of accounting for background air, but several methods have 63 

been tried, for example by analyzing the background and subtracting those VOC 64 

concentrations, calculating retention co-efficients for compounds of interest, or 65 

selecting matched controls who have lived in a similar environment. 66 

Standardisation 67 



 There are no acknowledged standardized ways of taking, handling, storing and 68 

analyzing breath and clinical fluid samples for VOC analysis 69 

 As there are many different methods for taking and analyzing samples, 70 

standardization methods need to focus on ensuring that each method should give 71 

the same results when analyzing identical samples. 72 

 This can be achieved through using standardised artificial breath test mixtures and 73 

validating methods against these. 74 

Future perspective 75 

 VOC analysis for disease diagnosis is promising but progress is slow 76 

 Standardization is necessary 77 

 Profiles from multiple compounds is likely to be more robust at diagnosis than the 78 

use of individual marker compounds 79 

 Properly validated statistical methods are needed to ensure findings are robust and 80 

repeatable 81 

 This approach has great potential but further work is needed to ensure it is at least 82 

as robust and accurate as existing diagnostic techniques 83 

 84 

Key references 85 

References of considerable interest ** 86 

[10], [43].  These articles are of particular interest as they summarise the knowledge 87 

available of the range of VOCs that are generated from various body fluids 88 

[128]  This article explains the need for standardization in breath sampling. 89 

[112] This shows the huge range of VOCs which may be analysed as instruments have 90 

improving sensitivity, however with complex data sets, use of this information is harder. 91 

References of interest * 92 

These articles are of interest because they give examples of where VOC analysis can be used 93 

in diagnosis: [15], [40]. 94 

[125] is important because it gives an effective method for dealing with background air, 95 

although only for known compounds.  96 

 97 

Introduction 98 

The ancient Greeks were known to use the odour of volatile organic compounds emitted 99 

from breath and body fluids as an aid to diagnosis [1], but it wasn’t until Linus Pauling and 100 



co-workers [2] condensed human breath and analysed its constituents using gas 101 

chromatography that modern breath analysis began. Linus Pauling was also involved in the 102 

early analysis of volatile organic compounds (VOCs) from urine in the 1970s [3,4].  It was still 103 

another decade or two before it really took off, but since the mid 1990s, there has been a 104 

very rapid development of analytical instrumentation to enable breath analysis to expand 105 

[5-8].  In actual fact, VOCs and other trace gases such as ammonia and hydrogen cyanide 106 

(which for the purposes of this article are included when VOCs are mentioned) are emitted 107 

from all body fluids and tissues, for example breath, urine, faeces, skin, sputum, blood, 108 

serum, pus, aspirates, tissue, lavage etc. Selecting the appropriate medium for analysis is 109 

important and the choice depends on a number of factors.  These include the particular 110 

disease or condition, ease of sampling, whether samples can be analysed directly or must be 111 

stored, the requirement for measuring individual compounds or a whole range, to name but 112 

a few.  It is also likely that analysis of more than one sample type yields better results than 113 

just looking at breath, for example [9] 114 

 115 

The origin of VOCs 116 

A whole range of trace gases and volatile organic compounds are emitted by the body 117 

continuously, through exhalation, through skin or from urine or faeces.  There are several 118 

potential origins of these compounds.  Firstly, many VOCs arise from normal metabolism.  119 

The body contains thousands of different molecules arising from all the biochemical 120 

pathways, and many of these compounds are either gases (for example ammonia) or are 121 

volatile enough for form a vapour at body temperature.  These compounds travel around 122 

the body in blood, and where blood meets the alveoli in the lungs, rapid gas exchange and 123 

diffusion means that gases and VOCs are exhaled.  Similarly, when capillaries are in contact 124 

with skin, gas exchange occurs.  VOCs are also excreted as part of the chemical composition 125 

of urine or faeces.  Thus is can be seen that through normal metabolism, the healthy body 126 

produces a whole range of different compounds at different concentrations [10]. 127 

When illness occurs, metabolism can alter the profile of trace gases and VOCs [11,12].  For 128 

example, untreated diabetes leads to a build-up of blood glucose which cannot enter the 129 

cells where it is needed. In response, the body starts to metabolise fat, which then leads to 130 

an increase in ketone bodies in blood [13].  Some of these are very volatile, and may be 131 

detected on breath, in blood or urine.  So it is clear that different profiles of metabolites 132 

(including volatile metabolites) occur through illness.  Cancer is another condition where the 133 

VOC profile may change.  This may be because various metabolic pathways are expressed to 134 

a greater or lesser extent in a cancer cell compared with a normal cell.  In addition, the pH of 135 

the cell and its surrounding medium may change, thus rendering the relative acid/base 136 

equilibria of various compounds change hence various volatile species may increase or 137 

decrease merely as a result of pH.  So you would expect to see more organic acids in the 138 

volatile form when the pH is lower, for example with acetic acid, CH3COOH, and its 139 



equilibrium with the acetate ion, CH3COO- would be shifted to have more of the CH3COOH 140 

species, which is volatile, while CH3COO- is not.  Conversely, at a lower pH, the 141 

concentration of ammonia as NH3 would be lower than NH4
+, for example. There have been 142 

numerous studies describing differences in VOC profile in cancer [14] e.g. colo rectal cancer 143 

[15-18], lung cancer [19-22], breast cancer [23,24] other cancers [25-29].    144 

VOCs may also be produced as a result of infection.  Bacteria, fungi and parasites all have 145 

their own metabolism and thus their own profile of VOCs and trace gases. When they infect 146 

the body, it is thus reasonable to expect that the VOC profile will change with the degree of 147 

infection [30]. In addition, the response of the body (host response) in fighting the infection 148 

may also change the volatile metabolites produced [31].  In addition, the host’s own 149 

metabolism may alter the chemical profile produced by the bacteria.  Infection in this case 150 

also includes the colonisation of the gastrointestinal tract (and other body cavities and 151 

surfaces) by trillions of bacteria which have a major impact on the VOC profile [32] 152 

These bacteria are generally benign, and many are even beneficial, but they produce many 153 

of the VOCs and trace gases that may be detected on breath, from skin, or from the 154 

headspace of blood, urine and faeces.  155 

Examples of infections causing a change in VOC profile are tuberculosis [33], mycobacteria 156 

infection [31], infections causing ventilator associated pneumonia [34], respiratory disease 157 

[35].  Gastrointestinal disease may be due to a change in the gut flora, or some pathology of 158 

the gut or a combination of both, and these have been shown to give distinct VOC profiles 159 

from headspace of urine or faeces as well as breath [36-40] [41].  160 

Finally, VOCs arise in the environment.  They are produced by plants, food, man-made 161 

products or processes (diesel exhausts for example) and if inhaled or ingested, they will then 162 

circulate in the blood [42].  In the case of environmental origin of VOCs on breath, there is 163 

no simple way of dealing with this so that the background air can be excluded in analysis.  164 

This is discussed in more detail later. 165 

A major review of all the volatile compounds emanating from the body has recently been 166 

produced, and this covers all sources of VOCs described above [43]. 167 

 168 

Sampling and handling considerations 169 

Capturing, handling and storing VOCs and trace gases is a major challenge [44].  Unless 170 

analysed directly, e.g. using an instrument that can analyse breath in real time [45], the 171 

VOCs and gases need to be captured, concentrated and then stored.  Ideally, storage should 172 

be at a very low temperature to reduce the loss of the VOCs, and the samples should be 173 

stored as soon after being taken as possible.  In the case of liquid or solid samples (e.g. 174 

urine, blood, faeces, pus, aspirates etc.), this is fairly straightforward.  Samples should 175 



immediately be placed in an appropriate container and frozen, preferably to -80oC or lower.  176 

The container should be clean, and should produce no VOCs which could interfere with 177 

analysis, and obviously should not change its characteristics with the temperature change 178 

and storage.   It is known that freezing samples can change their VOC composition [46], but 179 

unless every sample can be analysed immediately in the same way, all samples should be 180 

frozen immediately.  181 

When breath is to be sampled but cannot be analysed immediately, it is necessary to store 182 

it.  It can either be stored as whole breath, or if the VOCs are extracted, it can be condensed 183 

and stored.  If whole breath is stored, there are a number of issues to consider.  These 184 

include cost, integrity, storage time and simplicity, and also which part of the breath is 185 

sampled.  Generally, it is desirable to avoid measuring the dead-space of air in the upper 186 

respiratory tract and concentrate on end tidal breath.  These issues are described in detail in 187 

[44]. Probably the simplest and cheapest way of storing whole breath is in breath bags.  188 

These can be made of a variety of materials, and range from a few cents/pennies etc. for 189 

Nalophan, to the much more expensive Tedlar bags.  Other materials such as Kynar and 190 

Flexfilm [47], polyvinyl fluoride and polyester aluminium [48] have also been used.  Because 191 

of the cost, Nalophan is disposable, but as Tedlar is much more expensive, most people try 192 

and re-use Tedlar bags, which means a very thorough cleaning regime is required.  However, 193 

it is difficult to remove all traces of previous samples, even with this.  In addition, Tedlar 194 

produces a number of VOCs of its own which may contaminate the samples.  Despite this, 195 

Tedlar is often the sample bag of choice because generally, samples may be stored in Tedlar 196 

for longer than in Nalophan or other sample bag materials, as Nalophan tends to be slightly 197 

porous so diffusive losses occur.  Adsorption onto the walls of the bag also occurs [49].  So if 198 

samples cannot be analysed within a few hours, then Tedlar may be better [50].  There have 199 

been many studies looking at the relative merits of these sampling bags [47-49,51,52] and 200 

the choice of bag will come down to budget, analytes of interest and necessary storage 201 

time.  202 

A more expensive option is the use of evacuated metal canisters which have been used in 203 

environmental exposure breath analysis [53-55].  Because these are expensive and difficult 204 

to clean, they are no longer used much in breath analysis. 205 

If it is not possible or desirable to store whole breath, a sorbent material may be used which 206 

extracts the VOCS from the whole breath.  There are several sorbent materials that may be 207 

used, and this can either be within a thermal desorption (TD) or sorbent tube , or using a 208 

technique such as solid phase microextraction (SPME) [56-60] or needle trap device [61] .  209 

SPME involves using a very small microfiber and inserting it into the headspace for a fixed 210 

amount of time to absorb the VOCs.  Although very sensitive, it generally adsorbs some 211 

compounds preferentially over others, and as soon as removed from the headspace, may 212 

start to desorb the samples.  It is also not particularly robust, and great care must be applied 213 

in handling the fibre.  It is also not quantitative unless very specific steps are taken where 214 



standards are used and the marker compounds are known; the relative concentrations of 215 

other compounds present should also be known as they will affect binding.  However, SPME 216 

may be used to trap very low concentration compounds.  Generally the use of TD tubes is 217 

more robust, and once samples are collected, the TD tubes may be capped and stored for 218 

weeks prior to analysis.  TD tubes are also more sensitive [62] and again, accurate 219 

quantification is difficult, although slightly easier than with SPME. Great care must be taken 220 

in choosing the sorbent, and in many cases, dual or even triple bed sorbents are used in the 221 

same tube to capture the range of compounds.  Some sorbents are better at lower 222 

molecular weight compounds, some higher molecular weight, and others may be better for 223 

aromatic or sulphide compounds, for example.  From this it follows that to make best use of 224 

this technology, some idea of the types of compound expected is needed. Examples of 225 

where sorbent tubes techniques have been used to sample breath are in a study of patients 226 

with impaired respiratory function [63], or in a study for collecting breath from frail patients 227 

[64]. 228 

These sorbent techniques are very sensitive, and when coupled with GC-MS, compounds 229 

may be desorbed from the sorbent material (usually by heating), and then separated by gas 230 

chromatography (GC), followed by identification and quantification by mass spectrometry 231 

(MS).  The advantages of doing this are that it is very sensitive, compound identification is 232 

possible through separation and mass detection, and samples may readily be collected, 233 

concentrated and stored.  However, it is slow, indirect requiring several steps, and not 234 

always quantitative unless great care has been taken with sorbents and VOC amounts.   235 

A summary of breath sampling techniques may be found in table 1.  236 

Table 1. Summary of exhaled breath sampling techniques giving their main advantages and 237 

disadvantages 238 

Technique Main Advantage(s) Main Disadvantage(s) Reference 

Direct analysis Direct so no loss of 
sample integrity 

Need to get equipment to 
patient 

45 

Sample bags Diffusive losses; short 
storage times 

Cheap and simple 47-52 

Evacuated metal 
canisters 

Re-useable; longer 
storage possible 

Expensive; difficult to clean 53-55 

Thermal 
desorption 

Sensitive; long 
sample storage times 

Choice of sorbent crucial; not 
all compounds adsorbed; 
quantification difficult 

62-64 

SPME Very sensitive Fragile; quantification very 
difficult 
 

56-60 

 239 

 240 



Techniques 241 

There is a very wide range of techniques for the analysis for individual VOCs or VOC profiles 242 

from a sample.  These range from sophisticated and expensive techniques that can analyse 243 

samples of breath or headspace directly in real time, such as selected ion flow tube mass 244 

spectrometry (SIFT-MS) [65-80] or proton transfer mass spectrometry (PTR-MS) [67,81-85], 245 

to techniques which do not identify or analyse individual components but look at patterns, 246 

for example gas sensor arrays (electronic nose) [35,86-93].  If compound identification is 247 

required, it is essential to use a mass spectrometric technique, and preferably one that is 248 

coupled with a separation technique to avoid complicated spectra, for example gas-249 

chromatography-mass spectrometry. 250 

Direct analysis is difficult but can be done with SIFT-MS [65-68,75,80] and PTR-MS [67,81-251 

84].  Direct analysis using these mass spectrometric methods does not allow absolute 252 

identification, because compounds in samples are not separated (unlike in GC-MS, where 253 

retention index as well as ions generated aids identification), and the soft chemical 254 

ionisation may yield a number of ions which may arise from more than one compound.  255 

Despite this, the direct methodology offers the opportunity for quantification where 256 

compounds are identified, particularly with SIFT-MS [76,94]. It is a little more complicated 257 

with PTR-MS, with the variation in E/N (field strength in the drift tube) but quantification is 258 

in some cases possible particularly for low molecular mass compounds, and certainly with 259 

the use of calibration gases for specific compounds.  In SIFT-MS and PTR-MS, the sample is 260 

presented to the instrument, and then reacted with a precursor ion.  For SIFT-MS, a choice 261 

of H3O+, NO+ or O2
+ is possible; PTR-MS generally uses hydronium ions, H3O+, but newer 262 

instruments enable the use of other precursor ions.  Ions are generated according to their 263 

reactions with the precursors and then these product ions may then be separated by a mass 264 

spectrometer, typically a quadrupole for SIFT-MS, and quadrupole or time-of-flight, TOF, for 265 

PTR-MS.  Whole spectra may be looked at if one is interested in looking for the range of 266 

compounds present in either breath or headspace.  Alternatively the instrument could be 267 

set up to look for one or more specific compounds without scanning the whole spectrum, 268 

which would enable more accurate quantification. 269 

Laser based spectroscopic techniques have also been used for real time direct analysis of 270 

breath laser based techniques [95-99] and may offer a replacement for mass spectrometric 271 

techniques in the future.  Similarly, ion mobility spectrometry (IMS) has also been used in 272 

real time analysis of breath [20,100,101]. It is relatively low cost, however it cannot identify 273 

individual compounds with certainty, although it could indicate the potential identity of 274 

species based on how the sample components behave in the electric field. It has also been 275 

used by the military in personal equipment for detecting the deployment of chemical 276 

weapons [102]. 277 

Other gas sensor techniques may also be used in direct analysis of breath or headspace, but 278 

these tend to be non-specific.  This includes various types of so-called electronic nose, which 279 



use an array of sensors of various types [35,86-93]. Originally, electronic noses contained 280 

between 10 and 40 sensors, but newer technology means that a very high number of 281 

sensors can be included in a small array. These sensors respond differently to the various 282 

components in a sample, and a complex array of signals is generated.  By comparing signals 283 

from different classes of samples (e.g. breath samples from those with a particular illness 284 

and those without), patterns emerge which may enable differences associated with the 285 

disease to be identified.  There are problems with some sensors in e-nose devices – drift 286 

over time, fouling and memory effects [103]. An increasing number of sensor elements or 287 

spectral data means increasing complexity in multivariate statistical methods to interrogate 288 

and process the data, but such techniques are also developing [15,36,37,104-108]. 289 

Further developments in sensors means that some relatively low cost sensors are becoming 290 

increasingly sophisticated, and they can be made more sensitive and also selective.  Long 291 

period grating optical fibre sensors may be produced now, which are specific for individual 292 

components [109-112].  These can be assembled into an array to produce a low cost 293 

alternative to mass spectrometry, although in using a limited number of specific sensor 294 

elements means the need to know exactly which compounds should be measured and 295 

cannot be used for volatile biomarker discovery.  These sensors also enable on-line analysis 296 

and could conceivably be used in a point of care device, or even personal breath analysis 297 

tool, for instance like one that can monitor asthma and nitric oxide [113]. 298 

The most widely used technique for off-line or indirect analysis of samples is probably gas 299 

chromatography-mass spectrometry (GC-MS) [11,34,36,59,114-122].  Although this 300 

technique is relatively slow and indirect, it is also very powerful.  If samples are 301 

concentrated, for example by using a sorbent such as a thermal desorption tube or a SPME 302 

fibre, desorption of this can then deposit the concentrated sample onto a chromatographic 303 

capillary column.  This can then separate sample components, which may then be detected 304 

sequentially according to chemical and physical properties (e.g. size, volatility and 305 

hydrophobicity).  A further development in this area is the use of GCxGC MS, which deals 306 

with the problem of co-elution of compounds, where it is difficult to identify species.  This is 307 

a very sensitive technique that can detect many more compounds in any sample [114,123], 308 

but it is expensive and generates much more complex spectra 309 

Apart from being able to detect components present in the parts-per-trillion-by volume 310 

range (pptv), GC-MS is the best technique for identifying the individual components of a 311 

sample.  It is quantitative if standards are run for individual compounds, but it is difficult to 312 

make it quantitative for compounds during biomarker discovery due to the complexity of 313 

the sample and the absorption/desorption differences on the sorbent between individual 314 

components. 315 

Choosing the most suitable technique 316 



So which technique should be used?  This obviously comes down to a question of 317 

availability/budget, but generally if biomarker discovery is desired, then a mass 318 

spectrometric technique with a compound separation method, such as GC-MS, is best.  319 

However if the aim is to be able to distinguish between volatile profiles from a sample, a 320 

technique which can use multiple variables, for instance m/z or sensor array responses to 321 

produce a profile of the sample, composed of multiple compounds, then any technique may 322 

be used, coupled with suitable multivariate statistical approach.  However, even if a 323 

diagnostic profile is found and is robust enough for clinical use, knowledge of the major 324 

compounds contributing to the differences in profile is highly desirable.  This means that use 325 

of mass spectrometric methods in the discovery stage is ideal, and then when the 326 

compounds responsible for the change in disease state are known, then point of care 327 

devices which are less expensive and more portable are better.  In the discovery stage, the 328 

use of multiple techniques which exploits the advantages of each will give the best results.  329 

For instance, the ability to directly analyse a sample and obtain quantitative data (e.g. with 330 

SIFT-MS or PTR-MS) can be used in conjunction with GC-MS which is more sensitive and is 331 

better at compound identification but is slower and not so directly quantitative. 332 

The choice will also depend on whether the sample must be analysed directly, or whether 333 

samples may be taken and stored for subsequent analysis. 334 

For the analysis of a small number of individual compounds, then any technique capable of 335 

being sufficiently selective is acceptable.  This includes a variety of gas sensors, optic fibre 336 

sensors, IMS, mass spectrometry etc.  A summary of the main techniques is given in table 2. 337 

 338 

Table 2. Summary of analysis techniques giving their main advantages and disadvantages 339 

Technique Main Advantage(s) Main Disadvantage(s) Reference 

Direct trace gas 
mass 
spectrometry 

Direct, rapid Expensive, not always easy to 
take to the patient 

65-84, 94 

Gas sensors (e-
nose) 

Direct, rapid, 
inexpensive 

Non-specific; cannot identify 
compounds 

35, 86-93, 
103 

Laser based 
spectroscopic 
techniques 

Direct, rapid Relatively expensive 95-99 

Ion mobility 
spectrometry 

Rapid; relatively 
inexpensive 

Cannot identify unknown 
compounds  

20, 100-101 

Long period 
grating optic 
fibre sensors 

Can be made specific 
& low cost; rapid 

Not for biomarker discovery 109-112 

GC-MS (with TD 
or SPME) 

Sensitive; good for 
compound 
identification 

Expensive, slow 11, 34, 36, 
59, 114-123 



 340 

Backgrounds 341 

Something that breath analysis researchers in particular have been concerned about for 342 

some time is the background air and its effect on the components of breath. It is well known 343 

that inhaling compounds from the environment means that these compounds are exhaled 344 

for some time after.  How long the compounds will be exhaled for depends on factors such 345 

as the concentration of the compound inhaled and the duration of exposure, the chemical 346 

and physical nature of the compound – its molecular mass, volatility, how fat soluble it is 347 

etc.; the body mass index of the individual.  Because there are so many variables, it is very 348 

difficult to adequately deal with this problem.  Different groups have various ways of dealing 349 

with this.  For instance, Michael Phillips [124-126] uses the concept of alveolar gradient 350 

which involves measuring the background air and looking at the difference between the 351 

concentrations of various species in the air and in the breath.  Although this helps in some 352 

way, it is not accurate for all VOCs [127].  Other researchers insist that subjects giving breath 353 

samples inhale clean air for a minimum period prior to providing a breath sample, but this 354 

cannot reduce the levels of all exogenous compounds in breath.  This is much less effective 355 

for hydrophobic compounds and where patients have a high BMI, or where the 356 

concentration of the compound is high. Schubert et al [128] has shown that the approach of 357 

applying a simple background subtraction, where the concentration of the species in 358 

background is subtracted from that in breath, is not effective, and substances where 359 

concentrations in inspired breath is higher than 5% of expired concentrations should not be 360 

used as breath markers.  The best, but complicated option, is to apply retention coefficients 361 

for individual compounds in the background air [127].  This requires knowledge of the 362 

presence of such biomarkers and their retention coefficients.  None of these are entirely 363 

satisfactory because of the complexity of the problem, and people may have been exposed 364 

to a number of different backgrounds with different concentrations of compound in inspired 365 

air that may affect the breath prior to a breath sample being given. 366 

Rather than finding a way of dealing with the background directly, an alternative may be the 367 

use of appropriate controls.  At the same time that a sample is taken from a patient or 368 

subject, a sample should be taken from a control person who has been subjected to similar 369 

backgrounds, and is as closely as possible be matched to the subject.  This could be the 370 

partner of the individual, for example.  Other studies have used medical personnel for this 371 

purpose, but that is less satisfactory as medical facilities typically have high background 372 

levels of VOCs, and thus medical personnel may have been subjected to these backgrounds 373 

to a greater extent than subjects.  It is clear that this is a difficult problem, and backgrounds 374 

should always be carefully taken into account when a breath analysis study is conducted.  375 

This is also likely to have an impact on blood and urine VOCs as the origin of exogenous 376 

VOCs from the headspace of these fluids may also be inhaled air.  Table 3 summarises the 377 

techniques for dealing with background air. 378 



Table 3. Summary of techniques for dealing with background air, giving their main 379 

advantages and disadvantages 380 

Technique Main Advantage(s) Main Disadvantage(s) Reference 

Alveolar 
gradient 

Requires simple 
measurement of 
background air 

Not accurate for many 
compounds 

124-127 

Inhaling clean 
air 

Easy to do; requires 
no further 
measurements 

Ineffective for many 
compounds 

128 

Retention 
coefficients  

Effective Complicated and only useful 
for known compounds 

127 

Use of 
appropriate 
controls 

Will cope with 
problem of variable 
retention coefficients 

Not easy to recruit appropriate 
controls; doubles analysis 
required 

 

 381 

Standardisation 382 

Analysis of breath and the headspace of body fluids has been a growing field of endeavour 383 

since the 1970s, and as previously discussed, there are many techniques used.  However, 384 

results from these investigations often do not correlate with each other, and one reason for 385 

this is that there is no accepted standard for sampling and analysis.  To make progress in the 386 

area of VOC analysis for disease diagnosis, the importance of standardising methods for 387 

sampling and analysis of breath is being recognised [129-132].  What has not been noted is 388 

the requirement for standardisation of all samples for VOC analysis, but this is equally 389 

important.   390 

Breath analysis 391 

There are several aspects to this.  The first is where is the sample taken from?  Should it be 392 

the mouth, or nose or a combination of both?  The mouth contains its own flora which 393 

produce VOCs, so measuring from the mouth alone will mean that these will change the 394 

sample [133-136].  In some cases, mouth VOCs are important, but if systemic VOCs are 395 

important, e.g. where a condition at a distant site is to be monitored, then avoiding the 396 

contamination from mouth flora is important. This is the case with monitoring HCN in the 397 

lungs from Pseudomonas aeruginosa in cystic fibrosis patients [137]. Sometimes, the origin 398 

of specific VOCs is sought, in which case, both should be analysed in turn [138].   399 

Secondly, which part of the breath should be taken?  Should it be whole breath, end-tidal 400 

breath?  The answer to this depends on the degree of accuracy and precision required.  401 

Most methods for analysing VOCs in breath cannot do the analysis with any great accuracy 402 

and precision.  Repeat samples, even of direct breath, often differ, depending on the 403 

compound being analysed and the background [139,140]; factors such as rate and volume of 404 

exhalation may also have an effect [141].  The variation between the concentration of VOCs 405 



in whole breath and end tidal may not be close to this, so how important is it that methods 406 

require the complexity of a mechanism for excluding dead-space in the respiratory system 407 

and consider only end tidal breath?  This would depend on the necessary precision for the 408 

analysis of a compound.  If it is a compound where the presence or absence is important, 409 

this matters less, however if small variations in concentration show clinically relevant 410 

information, then the additional precision may be important.   411 

Methods for ensuring only end-tidal breath is taken involve switching mechanisms which 412 

may check CO2 composition of breath and then use a valve system to divert the required 413 

part of breath, discarding the dead space [34,142].  These methods are more complicated 414 

but can ensure that only a specific part of the breath is taken.  However, one study [143] 415 

shows comparatively low relative standard deviation between successive bag fills of whole 416 

breath, so perhaps accepting whole breath, with apparently better reproducibility but less 417 

emphasis on control, is an acceptable option. 418 

Aside from standardising which part of breath is taken, there are other factors that will 419 

affect the measurement. This includes the mechanism and material that transports the 420 

breath to the analytical instrument.  Even if it is direct analysis, breath will start to condense 421 

on any surface which is cool enough, so the pipes/tubing/sampling port should be at a 422 

standardised (warm) temperature. The material used should also minimise “sticking” of 423 

compounds. Some molecules, for example ammonia, are very “sticky” [144] so the longer 424 

the tube/pipe etc., the more the compound will stick and thus not be available for analysis.  425 

This can also contaminate later samples. 426 

For breath samples that are taken and then stored for subsequent analysis, further 427 

standardisation is required.  It is not reasonable to expect that every researcher will use 428 

exactly the same sampling mask or mouthpiece; instead a way of checking that each 429 

method delivers the same results is required.  One way of doing this is to use standardised 430 

artificial breath. This could involve special calibration vapours which are humid, as is breath, 431 

but which deliver known amounts of each analyte at a given temperature; 37oC is best as 432 

this is that of breath.  Calibration standards can be purchased or standard artificial 433 

headspaces or breath can be produced by making aqueous solutions of breath VOCs, putting 434 

them in an enclosed sample bag and allowing the aqueous solution and the headspace 435 

above it to reach equilibrium.  According to Henry’s law, a given concentration in the 436 

aqueous phase will be in equilibrium with the headspace above it at a given temperature.  437 

Knowing the Henry’s law coefficient for each compound of interest, these artificial 438 

headspaces can easily be generated, which will deliver standard concentrations of 439 

compounds in a headspace. These artificial breath samples or headspaces can then be 440 

presented to analytical devices and the responses assessed against each other. 441 

 442 

Headspace of body fluids 443 



Generating headspace of body fluids can also yield very different results depending upon 444 

how they are treated. In some cases, samples can be analysed immediately; they will need 445 

be put in a suitable receptacle, clean gas/air added and a headspace equilibrium allowed to 446 

develop.  However, generally samples of urine, blood, pus, faeces etc. are collected from a 447 

hospital or clinic and cannot be processed immediately, but will quickly degrade if not 448 

stored appropriately.  In this case, standardised samples treatment and storage protocols 449 

should be developed and followed.  Freezing samples at -80oC as soon as they are taken will 450 

reduce loss of VOCs, however samples can degrade under these conditions [46].  Hence 451 

standardised protocols should be developed for the sample type, duration of storage, 452 

temperature of storage and storage container.  In addition, the protocol for defrosting and 453 

preparing the sample for subsequent analysis should also be standardised.   454 

Standardisation of sample treatment, storage and use of calibration standards will enable a 455 

comparison between studies which should enable this field to be driven further.  One of the 456 

main issues in the field of VOC analysis for disease diagnosis is that studies do not always 457 

give the same results; the lack of standardised protocols means that these different studies 458 

are essentially measuring different things. 459 

 460 

Future perspective 461 

There is an increasing number of studies on the use of VOCs in diagnosing disease, and there 462 

are now very many examples of how VOCs can be used to detect various cancers, infections, 463 

metabolic conditions, gastro-intestinal disease etc.  Despite this, there are very few of these 464 

tests that are used routinely in the clinic. Given the potential advantages of VOC profiling for 465 

disease diagnosis i.e. that it is non-invasive or minimally invasive, rapid, potentially cost-466 

effective, etc., why have these apparent diagnostic successes not translated to routine 467 

clinical analysis?  There are likely to be several reasons for this.  One is that mentioned 468 

above, i.e. there is no single standardised method for breath or clinical fluid headspace 469 

sampling and analysis. Another possible reason is that in some cases, there is no real 470 

attempt to get clinical buy-in for the method.  Clinicians are responsible for the well-being of 471 

their patients so would need to be convinced of the effectiveness of a new test.  One reason 472 

why they haven’t been convinced is because studies often only involve clinicians in sample 473 

collection and not in the development the technique itself.   Secondly, the output of a 474 

breath or headspace analysis may be a complex profile which needs interpreting using 475 

multivariate statistics rather than with unique individual breath biomarkers.  Although the 476 

complex profiles may be fully statistically validated, they are often hard to explain, and thus 477 

effort and care needs to be taken in communicating their use. In addition, in order for a 478 

method to replace an existing screening or diagnostic method, it needs to be at least as 479 

good as the method it is replacing in every respect, and superior in at least one respect.  480 

Most studies published do not address this but it is essential for progression of this field.  481 



However, with the vast increase in published studies showing the use of VOC profiling, 482 

surely this is only a matter of time. 483 

 484 
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